15 References

[AJ12]

A. Ahmadi-Javid. Entropic value-at-risk: a new coherent risk measure. Journal of Optimization Theory and Applications, 12 2012. doi:10.1007/s10957-011-9968-2.

[AZ10]

D. Avramov and G. Zhou. Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1):25–47, 2010.

[BN01]

J. Bai and S. Ng. Determining the number of factors in approximate factor models. Econometrica, 01 2001. doi:10.1111/1468-0262.00273.

[BS11]

J. Bai and S. Shi. Estimating high dimensional covariance matrices and its applications. Annals of Economics and Finance, 12:199–215, 11 2011.

[BGP12]

D. Bertsimas, V. Gupta, and I. Paschalidis. Inverse optimization: a new perspective on the black-litterman model. Operations Research, 60:1389–1403, 12 2012. doi:10.2307/23323707.

[BBD+17]

S. Boyd, E. Busseti, S. Diamond, R. N. Kahn, K. Koh, P. Nystrup, and J. Speth. Multi-period trading via convex optimization. 2017. arXiv:1705.00109.

[Bra10]

M. W. Brandt. Chapter 5 - portfolio choice problems. In Handbook of Financial Econometrics: Tools and Techniques, volume 1 of Handbooks in Finance, pages 269–336. North-Holland, San Diego, 2010.

[CY16]

J. Chen and M. Yuan. Efficient portfolio selection in a large market. Journal of Financial Econometrics, 14:496–524, 06 2016. doi:10.1093/jjfinec/nbw003.

[Con95]

G. Connor. The three types of factor models: a comparison of their explanatory power. Financial Analysts Journal, 51:42–46, 05 1995. doi:10.2469/faj.v51.n3.1904.

[CM13]

G. Coqueret and V. Milhau. Estimating covariance matrices for portfolio optimization. 12 2013. EDHEC Risk Institute.

[CJPT18]

G. Cornuéjols, J. Peña, and R. Tütüncü. Optimization Methods in Finance. Cambridge University Press, 2 edition, 2018. doi:10.1017/9781107297340.

[CK20]

Giorgio Costa and Roy H. Kwon. Generalized risk parity portfolio optimization: an admm approach. J. of Global Optimization, 78(1):207–238, sep 2020.

[dP19]

M. López de Prado. A robust estimator of the efficient frontier. SSRN Electronic Journal, 01 2019. doi:10.2139/ssrn.3469961.

[dPL19]

M. López de Prado and M. Lewis. Detection of false investment strategies using unsupervised learning methods. Quantitative Finance, 19:1–11, 07 2019. doi:10.1080/14697688.2019.1622311.

[DGNU09]

V. Demiguel, L. Garlappi, F. Nogales, and R. Uppal. A generalized approach to portfolio optimization: improving performance by constraining portfolio norms. Management Science, 55:798–812, 05 2009. doi:10.2139/ssrn.1004707.

[Dod12]

J. Dodson. Why is it so hard to estimate expected returns? 2012. University of Minnesota, School of Mathematics. URL: https://www-users.math.umn.edu/~dodso013/docs/dodson2012-lambda.pdf.

[EM75]

B. Efron and C. Morris. Data analysis using stein's estimator and its generalizations. Journal of The American Statistical Association, 70:311–319, 06 1975. doi:10.1080/01621459.1975.10479864.

[EM76]

B. Efron and C. Morris. Families of minimax estimators of the mean of a multivariate normal distribution. The Annals of Statistics, 01 1976. doi:10.1214/aos/1176343344.

[FS02]

Hans Foellmer and Alexander Schied. Convex measures of risk and trading constraints. Finance and Stochastics, 6:429–447, 09 2002. doi:10.1007/s007800200072.

[GI03]

Donald Goldfarb and Garud Iyengar. Robust portfolio selection problems. Math. Oper. Res., 28:1–38, 02 2003. doi:10.1287/moor.28.1.1.14260.

[GK00]

Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New York, 2 edition, 2000.

[Har91]

W.V. Harlow. Asset allocation in a downside-risk framework. Financial Analysts Journal, 47(5):28–40, 1991. doi:10.2469/faj.v47.n5.28.

[JM03]

R. Jagannathan and T. Ma. Risk reduction in large portfolios: why imposing the wrong constraint helps. Journal of Finance, 58:1651–1684, 08 2003. doi:10.1111/1540-6261.00580.

[Jor86]

P. Jorion. Bayes-stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21:279–292, 09 1986. doi:10.2307/2331042.

[Jor04]

P. Jorion. Portfolio optimization with tracking-error constraints. Financial Analysts Journal, 01 2004. doi:10.2469/faj.v59.n5.2565.

[Kak16]

Z. Kakushadze. Shrinkage = factor model. Journal of Asset Management, 17:, 03 2016. doi:10.1057/jam.2015.40.

[KS13]

R. Karels and M. Sun. Active portfolio construction when risk and alpha factors are misaligned. In C. S. Wehn, C. Hoppe, and G. N. Gregoriou, editors, Rethinking Valuation and Pricing Models, pages 399–410. Academic Press, 12 2013. doi:10.1016/B978-0-12-415875-7.00024-5.

[KY91]

Hiroshi Konno and Hiroaki Yamazaki. Mean-absolute deviation portfolio optimization model and its applications to tokyo stock market. Management Science, 37(5):519–531, 1991.

[Lau01]

G. J. Lauprête. Portfolio risk minimization under departures from normality. Ph.D. Thesis, Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center., 2001. URL: http://dspace.mit.edu/handle/1721.1/7582.

[LW03a]

O. Ledoit and M. Wolf. Honey, i shrunk the sample covariance matrix. The Journal of Portfolio Management, 07 2003. doi:10.2139/ssrn.433840.

[LW03b]

O. Ledoit and M. Wolf. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5):603–621, 2003. doi:https://doi.org/10.1016/S0927-5398(03)00007-0.

[LW04]

O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal., 88(2):365–411, 2004. doi:https://doi.org/10.1016/S0047-259X(03)00096-4.

[LW20]

O. Ledoit and M. Wolf. Analytical nonlinear shrinkage of large-dimensional covariance matrices. The Annals of Statistics, 48(5):3043–3065, 2020. doi:10.1214/19-AOS1921.

[LC98]

E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, New York, NY, 2 edition, 1998. doi:https://doi.org/10.1007/b98854.

[LMFB07]

M. S. Lobo, M. Fazel, and S. Boyd. Portfolio optimization with linear and fixed transaction costs. Annals of Operations Research, 152:341–365, 03 2007. doi:10.1007/s10479-006-0145-1.

[LB22]

E. Luxenberg and S. Boyd. Portfolio construction with gaussian mixture returns and exponential utility via convex optimization. 2022. URL: https://arxiv.org/abs/2205.04563, doi:10.48550/ARXIV.2205.04563.

[MWOS15]

R. Mansini, W. Ogryczak, and M. G. Speranza. Linear and Mixed Integer Programming for Portfolio Optimization. Springer International Publishing, 1 edition, 2015. doi:10.1007/978-3-319-18482-1.

[Meu05]

A. Meucci. Risk and Asset Allocation. Springer-Verlag Berlin Heidelberg, 1 edition, 2005. doi:10.1007/978-3-540-27904-4.

[Meu10a]

A. Meucci. Quant nugget 2: linear vs. compounded returns – common pitfalls in portfolio management. GARP Risk Professional, pages 49–51, 04 2010. URL: https://ssrn.com/abstract=1586656.

[Meu10b]

A. Meucci. Quant nugget 4: annualization and general projection of skewness, kurtosis and all summary statistics. GARP Risk Professional - "The Quant Classroom", pages 59–63, 08 2010. URL: https://ssrn.com/abstract=1635484.

[Meu10c]

A. Meucci. Quant nugget 5: return calculations for leveraged securities and portfolios. GARP Risk Professional, pages 40–43, 10 2010. URL: https://ssrn.com/abstract=1675067.

[Meu11]

A. Meucci. 'the prayer' ten-step checklist for advanced risk and portfolio management. SSRN, 02 2011. URL: https://ssrn.com/abstract=1753788.

[MM08]

Richard Michaud and Robert Michaud. Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation 2nd Edition. Oxford University Press, 2 edition, 01 2008.

[Pal20]

D. P. Palomar. Risk parity portfolio. 2020. Lecture notes, The Hong Kong University of Science and Technology.

[Ric99]

J. A. Richards. An introduction to james–stein estimation. 11 1999. M.I.T. EECS Area Exam Report.

[RU00]

R. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of risk, 2:21–42, 01 2000.

[RU02]

R. T. Rockafellar and S. P. Uryasev. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7):1443–1471, 2002. doi:https://doi.org/10.1016/S0378-4266(02)00271-6.

[RUZ06]

R. T. Rockafellar, S. P. Uryasev, and M. Zabarankin. Generalized deviations in risk analysis. Finance and Stochastics, 10:51–74, 2006.

[RSTF20]

D. Rosadi, E. Setiawan, M. Templ, and P. Filzmoser. Robust covariance estimators for mean-variance portfolio optimization with transaction lots. Operations Research Perspectives, 7:100154, 06 2020. doi:10.1016/j.orp.2020.100154.

[RWZ99]

M. Rudolf, H.-J. Wolter, and H. Zimmermann. A linear model for tracking error minimization. Journal of Banking & Finance, 23(1):85–103, 1999. doi:https://doi.org/10.1016/S0378-4266(98)00076-4.

[SHAD13]

Thomas Schmelzer, Raphael Hauser, Erling Andersen, and Joachim Dahl. Regression techniques for portfolio optimisation using mosek. 2013. URL: https://arxiv.org/abs/1310.3397.

[The71]

H. Theil. Principles of Econometrics. John Wiley and Sons, 1 edition, 06 1971.

[TLD+11]

B. Tóth, Y. Lemperiere, C. Deremble, J. Lataillade, J. Kockelkoren, and J.-P. Bouchaud. Anomalous price impact and the critical nature of liquidity in financial markets. Physical Review X, 05 2011. doi:10.2139/ssrn.1836508.

[VD09]

F. J. Nogales V. DeMiguel. Portfolio selection with robust estimation. Operations Research, 57(3):560–577, 02 2009. doi:https://doi.org/10.1287/opre.1080.0566.

[WZ07]

R. Welsch and X. Zhou. Application of robust statistics to asset allocation models. REVSTAT, 5:97–114, 03 2007.

[WO11]

M. Woodside-Oriakhi. Portfolio Optimisation with Transaction Cost. PhD thesis, School of Information Systems, Computing and Mathematics, Brunel University, 01 2011.

[MOSEKApS24]

MOSEK ApS. MOSEK Modeling Cookbook. MOSEK ApS, Fruebjergvej 3, Boks 16, 2100 Copenhagen O, 2024. Last revised April 2024. URL: https://docs.mosek.com/modeling-cookbook/index.html.