11.10 Semidefinite Relaxation of MIQCQO Problems¶
In this case study we will discuss a fairly common application for Semidefinite Optimization: to define a continuous semidefinite relaxation of a mixed-integer quadratic optimization problem. This section is based on the method by Park and Boyd [PB15].
We will focus on problems of the form:
where
integer least squares: minimize
subject to ,closest vector problem: minimize
subject to .
Following [PB15], we can derive a relaxed continuous model. We first relax the integrality constraint
The last constraint is still non-convex. We introduce a new variable
To get a conic problem we relax the last constraint and apply the Schur complement. The final relaxation follows:
Fusion Implementation
Implementing model (11.41) in Fusion is very simple. We assume the input
Model::t M = new Model();
The important step is to define a single PSD variable
Our code will create
Variable::t Z = M->variable("Z", Domain::inPSDCone(n + 1));
Variable::t X = Z->slice(new_array_ptr<int, 1>({0, 0}), new_array_ptr<int, 1>({n, n}));
Variable::t x = Z->slice(new_array_ptr<int, 1>({0, n}), new_array_ptr<int, 1>({n, n + 1}));
Then we define the constraints:
M->constraint( Expr::sub(X->diag(), x), Domain::greaterThan(0.) );
M->constraint( Z->index(n, n), Domain::equalsTo(1.) );
The objective function uses several available linear expressions:
M->objective( ObjectiveSense::Minimize, Expr::add(
Expr::sum( Expr::mulElm( P, X ) ),
Expr::mul( 2.0, Expr::dot(x, q) )
) );
Note that the trace operator is not directly available in Fusion, but it can easily be defined from scratch.
Complete code
Model::t miqcqp_sdo_relaxation(int n, Matrix::t P, const std::shared_ptr<ndarray<double, 1>> & q) {
Model::t M = new Model();
Variable::t Z = M->variable("Z", Domain::inPSDCone(n + 1));
Variable::t X = Z->slice(new_array_ptr<int, 1>({0, 0}), new_array_ptr<int, 1>({n, n}));
Variable::t x = Z->slice(new_array_ptr<int, 1>({0, n}), new_array_ptr<int, 1>({n, n + 1}));
M->constraint( Expr::sub(X->diag(), x), Domain::greaterThan(0.) );
M->constraint( Z->index(n, n), Domain::equalsTo(1.) );
M->objective( ObjectiveSense::Minimize, Expr::add(
Expr::sum( Expr::mulElm( P, X ) ),
Expr::mul( 2.0, Expr::dot(x, q) )
) );
return M;
}
Numerical Examples
We present now some simple numerical experiments for the integer least squares problem:
It corresponds to the problem (11.40) with
We implement the linear algebra operations using the LinAlg
module available in MOSEK.
An integer rounding xRound
of the solution to (11.41) is a feasible integer solution to (11.42). We can compare it to the actual optimal integer solution xOpt
, whenever the latter is available. Of course it is very simple to formulate the integer least squares problem in Fusion:
Model::t int_least_squares(int n, Matrix::t A, const std::shared_ptr<ndarray<double, 1>> & b) {
Model::t M = new Model();
Variable::t x = M->variable("x", n, Domain::integral(Domain::unbounded()));
Variable::t t = M->variable("t", 1, Domain::unbounded());
M->constraint( Expr::vstack(t, Expr::sub(Expr::mul(A, x), b)), Domain::inQCone() );
M->objective( ObjectiveSense::Minimize, t );
return M;
}
All that remains is to compare the values of the objective function
// problem dimensions
int n = 20;
int m = 2 * n;
auto c = new_array_ptr<double, 1>(n);
auto A = new_array_ptr<double, 1>(n * m);
auto P = new_array_ptr<double, 1>(n * n);
auto b = new_array_ptr<double, 1>(m);
auto q = new_array_ptr<double, 1>(n);
std::generate(A->begin(), A->end(), std::bind(normal_distr, generator));
std::generate(c->begin(), c->end(), std::bind(unif_distr, generator));
std::fill(b->begin(), b->end(), 0.0);
std::fill(q->begin(), q->end(), 0.0);
// P = A^T A
syrk(MSK_UPLO_LO, MSK_TRANSPOSE_YES,
n, m, 1.0, A, 0., P);
for (int j = 0; j < n; j++) for (int i = j + 1; i < n; i++) (*P)[i * n + j] = (*P)[j * n + i];
// q = -P c, b = A c
gemv(MSK_TRANSPOSE_NO, n, n, -1.0, P, c, 0., q);
gemv(MSK_TRANSPOSE_NO, m, n, 1.0, A, c, 0., b);
// Solve the problems
{
Model::t M = miqcqp_sdo_relaxation(n, Matrix::dense(n, n, P), q);
Model::t Mint = int_least_squares(n, Matrix::dense(n, m, A)->transpose(), b);
M->solve();
Mint->solve();
auto xRound = M->getVariable("Z")->
slice(new_array_ptr<int, 1>({0, n}), new_array_ptr<int, 1>({n, n + 1}))->level();
for (int i = 0; i < n; i++) (*xRound)[i] = round((*xRound)[i]);
auto yRound = new_array_ptr<double, 1>(m);
auto xOpt = Mint->getVariable("x")->level();
auto yOpt = new_array_ptr<double, 1>(m);
std::copy(b->begin(), b->end(), yRound->begin());
std::copy(b->begin(), b->end(), yOpt->begin());
gemv(MSK_TRANSPOSE_NO, m, n, 1.0, A, xRound, -1.0, yRound); // Ax_round-b
gemv(MSK_TRANSPOSE_NO, m, n, 1.0, A, xOpt, -1.0, yOpt); // Ax_opt-b
std::cout << M->getSolverDoubleInfo("optimizerTime") << " " << Mint->getSolverDoubleInfo("optimizerTime") << "\n";
double valRound, valOpt;
dot(m, yRound, yRound, valRound); dot(m, yOpt, yOpt, valOpt);
std::cout << sqrt(valRound) << " " << sqrt(valOpt) << "\n";
}
Experimentally the objective value for xRound
approximates the optimal solution with a factor of