14.3.12 Class Domain

mosek.fusion.Domain

The Domain class defines a set of static method for creating various variable and constraint domains. A Domain object specifies a subset of Rn, which can be used to define the feasible domain of variables and expressions.

For further details on the use of these, see Model.variable and Model.constraint.

Static members:

Domain.axis – Set the dimension along which the cones are created.

Domain.binary – Creates a domain of binary variables.

Domain.equalsTo (==) – Defines the domain consisting of a fixed point.

Domain.greaterThan (>=) – Defines the domain specified by a lower bound in each dimension.

Domain.inDExpCone – Defines the dual exponential cone.

Domain.inDGeoMeanCone – Defines the domain of dual geometric mean cones.

Domain.inDPowerCone – Defines the dual power cone.

Domain.inPExpCone – Defines the primal exponential cone.

Domain.inPGeoMeanCone – Defines the domain of primal geometric mean cones.

Domain.inPPowerCone – Defines the primal power cone.

Domain.inPSDCone – Creates a domain of Positive Semidefinite matrices.

Domain.inQCone – Defines the domain of quadratic cones.

Domain.inRange – Creates a domain specified by a range in each dimension.

Domain.inRotatedQCone – Defines the domain of rotated quadratic cones.

Domain.inSVecPSDCone – Creates a domain of vectorized Positive Semidefinite matrices.

Domain.integral – Creates a domain of integral variables.

Domain.isTrilPSD – Creates a domain of Positive Semidefinite matrices.

Domain.lessThan (<=) – Defines the domain specified by an upper bound in each dimension.

Domain.sparse – Use a sparse representation.

Domain.unbounded – Creates a domain in which variables are unbounded.

Domain.axis
Domain.axis(ConeDomain c, int a) -> ConeDomain

Set the dimension along which the cones are created. If this conic domain is used for a variable or expression of dimension d, then the conic constraint will be applicable to all vectors obtained by fixing the coordinates other than a-th and moving along the a-th coordinate. If d=2 this can be used to define the conditions “every row of the matrix is in a cone” and “every column of a matrix is in a cone”.

The default is the last dimension a=d1.

Parameters:
  • c (ConeDomain) – A conic domain.

  • a (int) – The axis.

Return:

(ConeDomain)

Domain.binary
Domain.binary(int n) -> RangeDomain
Domain.binary(int m, int n) -> RangeDomain
Domain.binary(int[] dims) -> RangeDomain
Domain.binary() -> RangeDomain

Create a domain of binary variables. A binary domain can only be used when creating variables, but is not allowed in a constraint. Another way of restricting variables to be integers is the method Variable.makeInteger.

Parameters:
  • n (int) – Dimension size.

  • m (int) – Dimension size.

  • dims (int[]) – A list of dimension sizes.

Return:

(RangeDomain)

Domain.equalsTo (==)
Domain.equalsTo(float b) -> LinearDomain
Domain.equalsTo(float b, int n) -> LinearDomain
Domain.equalsTo(float b, int m, int n) -> LinearDomain
Domain.equalsTo(float b, int[] dims) -> LinearDomain
Domain.equalsTo(float[] a1) -> LinearDomain
Domain.equalsTo(float[][] a2) -> LinearDomain
Domain.equalsTo(float[] a1, int[] dims) -> LinearDomain
Domain.equalsTo(Matrix mx) -> LinearDomain

Defines the domain consisting of a fixed point.

The Python operator/property == can also be used for this purpose. See Sec. 14.2 (Pythonic extensions) for details.

Parameters:
  • b (float) – A single value. This is scalable: it means that each element in the variable or constraint is fixed to b.

  • n (int) – Dimension size.

  • m (int) – Dimension size.

  • dims (int[]) – A list of dimension sizes.

  • a1 (float[]) – A one-dimensional array of bounds. The shape must match the variable or constraint with which it is used.

  • a2 (float[][]) – A two-dimensional array of bounds. The shape must match the variable or constraint with which it is used.

  • mx (Matrix) – A matrix of bound values. The shape must match the variable or constraint with which it is used.

Return:

(LinearDomain)

Domain.greaterThan (>=)
Domain.greaterThan(float b) -> LinearDomain
Domain.greaterThan(float b, int n) -> LinearDomain
Domain.greaterThan(float b, int m, int n) -> LinearDomain
Domain.greaterThan(float b, int[] dims) -> LinearDomain
Domain.greaterThan(float[] a1) -> LinearDomain
Domain.greaterThan(float[][] a2) -> LinearDomain
Domain.greaterThan(float[] a1, int[] dims) -> LinearDomain
Domain.greaterThan(Matrix mx) -> LinearDomain

Defines the domain specified by a lower bound in each dimension.

The Python operator/property >= can also be used for this purpose. See Sec. 14.2 (Pythonic extensions) for details.

Parameters:
  • b (float) – A single value. This is scalable: it means that each element in the variable or constraint is greater than or equal to b.

  • n (int) – Dimension size.

  • m (int) – Dimension size.

  • dims (int[]) – A list of dimension sizes.

  • a1 (float[]) – A one-dimensional array of bounds. The shape must match the variable or constraint with which it is used.

  • a2 (float[][]) – A two-dimensional array of bounds. The shape must match the variable or constraint with which it is used.

  • mx (Matrix) – A matrix of bound values. The shape must match the variable or constraint with which it is used.

Return:

(LinearDomain)

Domain.inDExpCone
Domain.inDExpCone() -> ConeDomain
Domain.inDExpCone(int m) -> ConeDomain
Domain.inDExpCone(int[] dims) -> ConeDomain

Defines the domain of dual exponential cones:

{xR3 : x1x3e1ex2/x3, x1>0, x3<0}

The conic domain scales as follows. If a variable or expression constrained to an exponential cone is not a single vector but a d-dimensional variable then the conic domain is applicable to all vectors obtained by fixing the first d1 coordinates and moving along the last coordinate. If d=2 it means that each row of a matrix must belong to a cone. See also Domain.axis.

If m was given the domain is a product of m such cones.

Parameters:
  • m (int) – The number of cones (default 1).

  • dims (int[]) – Shape of the domain.

Return:

(ConeDomain)

Domain.inDGeoMeanCone
Domain.inDGeoMeanCone() -> ConeDomain
Domain.inDGeoMeanCone(int n) -> ConeDomain
Domain.inDGeoMeanCone(int m, int n) -> ConeDomain
Domain.inDGeoMeanCone(int[] dims) -> ConeDomain

Defines the domain of dual geometric mean cones:

{xRn : (n1)(i=1n1xi)1/(n1)|xn|, x1,,xn10}

The conic domain scales as follows. If a variable or expression constrained to a cone is not a single vector but a d-dimensional variable then the conic domain is applicable to all vectors obtained by fixing the first d1 coordinates and moving along the last coordinate. If d=2 it means that each row of a matrix must belong to a cone. See also Domain.axis.

If m was given the domain is a product of m such cones.

Parameters:
  • n (int) – The size of each cone; at least 2.

  • m (int) – The number of cones (default 1).

  • dims (int[]) – Shape of the domain.

Return:

(ConeDomain)

Domain.inDPowerCone
Domain.inDPowerCone(float alpha) -> ConeDomain
Domain.inDPowerCone(float alpha, int m) -> ConeDomain
Domain.inDPowerCone(float alpha, int[] dims) -> ConeDomain
Domain.inDPowerCone(float[] alphas) -> ConeDomain
Domain.inDPowerCone(float[] alphas, int m) -> ConeDomain
Domain.inDPowerCone(float[] alphas, int[] dims) -> ConeDomain

Defines the domain of dual power cones. For a single double argument alpha it defines the set

{xRn : (x1α)α(x21α)1αi=3nxi2, x1,x20}.

For an array alphas of length nl, consisting of weights for the cone, it defines the set

{xRn : i=1nl(xiβi)βixnl+12++xn2, x1,,xnl0}.

where βi are the weights normalized to add up to 1, ie. βi=αi/(jαj) for i=1,,nl.

The conic domain scales as follows. If a variable or expression constrained to a power cone is not a single vector but a d-dimensional variable then the conic domain is applicable to all vectors obtained by fixing the first d1 coordinates and moving along the last coordinate. If d=2 it means that each row of a matrix must belong to a cone. See also Domain.axis.

If m was given the domain is a product of m such cones.

Parameters:
  • alpha (float) – The exponent of the power cone. Must be between 0 and 1.

  • m (int) – The number of cones (default 1).

  • dims (int[]) – Shape of the domain.

  • alphas (float[]) – The weights of the power cone. Must be positive.

Return:

(ConeDomain)

Domain.inPExpCone
Domain.inPExpCone() -> ConeDomain
Domain.inPExpCone(int m) -> ConeDomain
Domain.inPExpCone(int[] dims) -> ConeDomain

Defines the domain of primal exponential cones:

{xR3 : x1x2ex3/x2, x1,x2>0}

The conic domain scales as follows. If a variable or expression constrained to an exponential cone is not a single vector but a d-dimensional variable then the conic domain is applicable to all vectors obtained by fixing the first d1 coordinates and moving along the last coordinate. If d=2 it means that each row of a matrix must belong to a cone. See also Domain.axis.

If m was given the domain is a product of m such cones.

Parameters:
  • m (int) – The number of cones (default 1).

  • dims (int[]) – Shape of the domain.

Return:

(ConeDomain)

Domain.inPGeoMeanCone
Domain.inPGeoMeanCone() -> ConeDomain
Domain.inPGeoMeanCone(int n) -> ConeDomain
Domain.inPGeoMeanCone(int m, int n) -> ConeDomain
Domain.inPGeoMeanCone(int[] dims) -> ConeDomain

Defines the domain of primal geometric mean cones:

{xRn : (i=1n1xi)1/(n1)|xn|, x1,xn10}

The conic domain scales as follows. If a variable or expression constrained to a cone is not a single vector but a d-dimensional variable then the conic domain is applicable to all vectors obtained by fixing the first d1 coordinates and moving along the last coordinate. If d=2 it means that each row of a matrix must belong to a cone. See also Domain.axis.

If m was given the domain is a product of m such cones.

Parameters:
  • n (int) – The size of each cone; at least 2.

  • m (int) – The number of cones (default 1).

  • dims (int[]) – Shape of the domain.

Return:

(ConeDomain)

Domain.inPPowerCone
Domain.inPPowerCone(float alpha) -> ConeDomain
Domain.inPPowerCone(float alpha, int m) -> ConeDomain
Domain.inPPowerCone(float alpha, int[] dims) -> ConeDomain
Domain.inPPowerCone(float[] alphas) -> ConeDomain
Domain.inPPowerCone(float[] alphas, int m) -> ConeDomain
Domain.inPPowerCone(float[] alphas, int[] dims) -> ConeDomain

Defines the domain of primal power cones. For a single double argument alpha it defines the set

{xRn : x1αx21αi=3nxi2, x1,x20}.

For an array alphas of length nl, consisting of weights for the cone, it defines the set

{xRn : i=1nlxiβixnl+12++xn2, x1,,xnl0}.

where βi are the weights normalized to add up to 1, ie. βi=αi/(jαj) for i=1,,nl.

The conic domain scales as follows. If a variable or expression constrained to a power cone is not a single vector but a d-dimensional variable then the conic domain is applicable to all vectors obtained by fixing the first d1 coordinates and moving along the last coordinate. If d=2 it means that each row of a matrix must belong to a cone. See also Domain.axis.

If m was given the domain is a product of m such cones.

Parameters:
  • alpha (float) – The exponent of the power cone. Must be between 0 and 1.

  • m (int) – The number of cones (default 1).

  • dims (int[]) – Shape of the domain.

  • alphas (float[]) – The weights of the power cone. Must be positive.

Return:

(ConeDomain)

Domain.inPSDCone
Domain.inPSDCone() -> PSDDomain
Domain.inPSDCone(int n) -> PSDDomain
Domain.inPSDCone(int n, int m) -> PSDDomain

When used to create a new variable in Model.variable it defines a domain of symmetric positive semidefinite matrices, that is

S+n={XRn×n : X=XT, yTXy0, for all y}.

The shape of the result is n×n. If m was given the domain is a product of m such cones, that is of shape m×n×n.

When used to impose a constraint in Model.constraint it defines a domain

{XRn×n : 12(X+XT)S+n}.

i.e. a positive semidefinite matrix without the symmetry assumption.

Parameters:
  • n (int) – Dimension of the PSD matrix.

  • m (int) – Number of matrices (default 1).

Return:

(PSDDomain)

Domain.inQCone
Domain.inQCone() -> ConeDomain
Domain.inQCone(int n) -> ConeDomain
Domain.inQCone(int m, int n) -> ConeDomain
Domain.inQCone(int[] dims) -> ConeDomain

Defines the domain of quadratic cones:

{xRn : x12i=2nxi2, x10}

The conic domain scales as follows. If a variable or expression constrained to a quadratic cone is not a single vector but a d-dimensional variable then the conic domain is applicable to all vectors obtained by fixing the first d1 coordinates and moving along the last coordinate. If d=2 it means that each row of a matrix must belong to a cone. See also Domain.axis.

If m was given the domain is a product of m such cones.

Parameters:
  • n (int) – The size of each cone; at least 2.

  • m (int) – The number of cones (default 1).

  • dims (int[]) – Shape of the domain.

Return:

(ConeDomain)

Domain.inRange
Domain.inRange(float lb, float ub) -> RangeDomain
Domain.inRange(float lb, float[] uba) -> RangeDomain
Domain.inRange(float[] lba, float ub) -> RangeDomain
Domain.inRange(float[] lba, float[] uba) -> RangeDomain
Domain.inRange(float lb, float ub, int[] dims) -> RangeDomain
Domain.inRange(float lb, float[] uba, int[] dims) -> RangeDomain
Domain.inRange(float[] lba, float ub, int[] dims) -> RangeDomain
Domain.inRange(float[] lba, float[] uba, int[] dims) -> RangeDomain
Domain.inRange(float[][] lba, float[][] uba) -> RangeDomain
Domain.inRange(Matrix lbm, Matrix ubm) -> RangeDomain

Creates a domain specified by a range in each dimension.

Parameters:
  • lb (float) – The lower bound as a common scalar value.

  • ub (float) – The upper bound as a common scalar value.

  • uba (float[]) – The upper bounds as an array.

  • uba (float[][]) – The upper bounds as an array.

  • lba (float[]) – The lower bounds as an array.

  • lba (float[][]) – The lower bounds as an array.

  • dims (int[]) – A list of dimension sizes.

  • lbm (Matrix) – The lower bounds as a Matrix object.

  • ubm (Matrix) – The upper bounds as a Matrix object.

Return:

(RangeDomain)

Domain.inRotatedQCone
Domain.inRotatedQCone() -> ConeDomain
Domain.inRotatedQCone(int n) -> ConeDomain
Domain.inRotatedQCone(int m, int n) -> ConeDomain
Domain.inRotatedQCone(int[] dims) -> ConeDomain

Defines the domain of rotated quadratic cones:

{xRn : 2x1x2i=3nxi2, x1,x20}

The conic domain scales as follows. If a variable or expression constrained to a quadratic cone is not a single vector but a d-dimensional variable then the conic domain is applicable to all vectors obtained by fixing the first d1 coordinates and moving along the last coordinate. If d=2 it means that each row of a matrix must belong to a cone. See also Domain.axis.

If m was given the domain is a product of m such cones.

Parameters:
  • n (int) – The size of each cone; at least 3.

  • m (int) – The number of cones (default 1).

  • dims (int[]) – Shape of the domain.

Return:

(ConeDomain)

Domain.inSVecPSDCone
Domain.inSVecPSDCone() -> ConeDomain
Domain.inSVecPSDCone(int n) -> ConeDomain
Domain.inSVecPSDCone(int d1, int d2) -> ConeDomain
Domain.inSVecPSDCone(int[] dims) -> ConeDomain

Creates a domain of vectorized Positive Semidefinite matrices:

{(x1,,xd(d+1)/2)Rn : sMat(x)S+d}={sVec(X) : XS+d},

where

sVec(X)=(X11,2X21,,2Xd1,X22,2X32,,Xdd),

and

sMat(x)=[x1x2/2xd/2x2/2xd+1x2d1/2xd/2x2d1/2xd(d+1)/2].

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidefinite matrix, with the non-diagonal elements additionally rescaled.

Parameters:
  • n (int) – Length of the vectorization - this must be of the form d(d+1)/2 for some positive integer d.

  • d1 (int) – Size of first dimension of the domain.

  • d2 (int) – Size of second dimension of the domain.

  • dims (int[]) – Shape of the domain.

Return:

(ConeDomain)

Domain.integral
Domain.integral(ConeDomain c) -> ConeDomain
Domain.integral(LinearDomain ld) -> LinearDomain
Domain.integral(RangeDomain rd) -> RangeDomain

Modify a given domain restricting its elements to be integral. An integral domain can only be used when creating variables, but is not allowed in a constraint. Another way of restricting variables to be integers is the method Variable.makeInteger.

Parameters:
Return:
Domain.isTrilPSD
Domain.isTrilPSD() -> PSDDomain
Domain.isTrilPSD(int n) -> PSDDomain
Domain.isTrilPSD(int n, int m) -> PSDDomain

Creates an object representing a cone of the form

{XRn×n : tril(X)S+n}.

i.e. the lower triangular part of X defines the symmetric matrix that is positive semidefinite. The shape of the result is n×n. If m was given the domain is a product of m such cones, that is of shape m×n×n.

Parameters:
  • n (int) – Dimension of the PSD matrix.

  • m (int) – Number of matrices (default 1).

Return:

(PSDDomain)

Domain.lessThan (<=)
Domain.lessThan(float b) -> LinearDomain
Domain.lessThan(float b, int n) -> LinearDomain
Domain.lessThan(float b, int m, int n) -> LinearDomain
Domain.lessThan(float b, int[] dims) -> LinearDomain
Domain.lessThan(float[] a1) -> LinearDomain
Domain.lessThan(float[][] a2) -> LinearDomain
Domain.lessThan(float[] a1, int[] dims) -> LinearDomain
Domain.lessThan(Matrix mx) -> LinearDomain

Defines the domain specified by an upper bound in each dimension.

The Python operator/property <= can also be used for this purpose. See Sec. 14.2 (Pythonic extensions) for details.

Parameters:
  • b (float) – A single value. This is scalable: it means that each element in the variable or constraint is less than or equal to b.

  • n (int) – Dimension size.

  • m (int) – Dimension size.

  • dims (int[]) – A list of dimension sizes.

  • a1 (float[]) – A one-dimensional array of bounds. The shape must match the variable or constraint with which it is used.

  • a2 (float[][]) – A two-dimensional array of bounds. The shape must match the variable or constraint with which it is used.

  • mx (Matrix) – A matrix of bound values. The shape must match the variable or constraint with which it is used.

Return:

(LinearDomain)

Domain.sparse
Domain.sparse(LinearDomain ld, int[] sparsity) -> LinearDomain
Domain.sparse(LinearDomain ld, int[][] sparsity) -> LinearDomain
Domain.sparse(RangeDomain rd, int[] sparsity) -> RangeDomain
Domain.sparse(RangeDomain rd, int[][] sparsity) -> RangeDomain

Given a linear domain, this method explicitly suggest to Fusion that a sparse representation is helpful.

Parameters:
  • ld (LinearDomain) – The linear sparse domain.

  • sparsity (int[]) – Sparsity pattern.

  • sparsity (int[][]) – Sparsity pattern.

  • rd (RangeDomain) – The ranged sparse domain.

Return:
Domain.unbounded
Domain.unbounded() -> LinearDomain
Domain.unbounded(int n) -> LinearDomain
Domain.unbounded(int m, int n) -> LinearDomain
Domain.unbounded(int[] dims) -> LinearDomain

Creates a domain in which variables are unbounded.

Parameters:
  • n (int) – Dimension size.

  • m (int) – Dimension size.

  • dims (int[]) – A list of dimension sizes.

Return:

(LinearDomain)