14.2.21 Class Matrix¶
- mosek.fusion.Matrix¶
Base class for all matrix objects. It can be used to create and manipulate matrices of constant coefficients both in dense and sparse format. To operate with matrices containing variables and linear expressions use the classes
Expr
andVariable
.- Members
Matrix.get – Get a single entry.
Matrix.getDataAsArray – Return a dense array of values.
Matrix.getDataAsTriplets – Return the matrix data in sparse triplet format.
Matrix.isSparse – Returns true if the matrix is sparse.
Matrix.numColumns – Returns the number of columns in the matrix.
Matrix.numNonzeros – Returns the number of non-zeros in the matrix.
Matrix.numRows – Returns the number of rows in the matrix.
Matrix.toString – Get a string representation of the matrix.
Matrix.transpose (.T) – Transpose the matrix.
- Static members
Matrix.antidiag – Create a sparse square matrix with a given vector as anti-diagonal.
Matrix.dense – Create a dense matrix from the given data.
Matrix.diag – Create a sparse square matrix with a given vector as diagonal.
Matrix.eye – Create the identity matrix.
Matrix.ones – Create a matrix filled with all ones.
Matrix.sparse – Create a sparse matrix from the given data.
- Matrix.antidiag¶
Matrix.antidiag(float[] d) -> Matrix Matrix.antidiag(float[] d, int k) -> Matrix Matrix.antidiag(int n, float val) -> Matrix Matrix.antidiag(int n, float val, int k) -> Matrix
Create a sparse square matrix with a given vector as anti-diagonal.
- Parameters
d
(float
[]) – The anti-diagonal vector.k
(int
) – The anti-diagonal index. \(k=0\) is the default and means the main anti-diagonal. \(k>0\) means above, and \(k<0\) means below the main anti-diagonal.n
(int
) – The dimension of the matrix.val
(float
) – Use this value for all anti-diagonal elements.
- Return
(
Matrix
)
- Matrix.dense¶
Matrix.dense(float[][] data) -> Matrix Matrix.dense(int dimi, int dimj, float[] data) -> Matrix Matrix.dense(int dimi, int dimj, float value) -> Matrix Matrix.dense(Matrix other) -> Matrix
Create a dense matrix from the given data.
- Parameters
data
(float
[][]) – A one- or two-dimensional array of matrix coefficients.data
(float
[]) – A one- or two-dimensional array of matrix coefficients.dimi
(int
) – Number of rows.dimj
(int
) – Number of columns.value
(float
) – Use this value for all elements.other
(Matrix
) – Create a dense matrix from another matrix.
- Return
(
Matrix
)
- Matrix.diag¶
Matrix.diag(float[] d) -> Matrix Matrix.diag(float[] d, int k) -> Matrix Matrix.diag(int n, float val) -> Matrix Matrix.diag(int n, float val, int k) -> Matrix Matrix.diag(Matrix[] md) -> Matrix Matrix.diag(int num, Matrix mv) -> Matrix
Create a sparse square matrix with a given vector as diagonal.
- Parameters
d
(float
[]) – The diagonal vector.k
(int
) – The diagonal index. \(k=0\) is the default and means the main diagonal. \(k>0\) means above, and \(k<0\) means below the main diagonal.n
(int
) – The dimension of the matrix.val
(float
) – Use this value for all diagonal elements.md
(Matrix
[]) – A list of square matrices that are used to create a block-diagonal square matrix.num
(int
) – Number of times to repeat themv
matrix.mv
(Matrix
) – A matrix to be repeated in all blocks of a block-diagonal square matrix.
- Return
(
Matrix
)
- Matrix.eye¶
Matrix.eye(int n) -> Matrix
Construct the identity matrix of size \(n\).
- Parameters
n
(int
) – The dimension of the matrix.- Return
(
Matrix
)
- Matrix.get¶
get(int i, int j) -> float
Get a single entry.
- Parameters
i
(int
) – Row index.j
(int
) – Column index.
- Return
(
float
)
- Matrix.getDataAsArray¶
getDataAsArray() -> float[]
Return the matrix elements as a dense array in row-major format.
- Return
(
float
[])
- Matrix.getDataAsTriplets¶
getDataAsTriplets(int[] subi, int[] subj, float[] val)
Return the matrix data in sparse triplet format. Data is copied to the arrays
subi
,subj
andval
which must be pre-allocated to hold at least the number of non-zeros in the matrix.The data returned must be ordered with
subi
as primary key andsubj
as secondary key.- Parameters
subi
(int
[]) – Row subscripts are returned in this array.subj
(int
[]) – Column subscripts are returned in this array.val
(float
[]) – Coefficient values are returned in this array.
- Matrix.isSparse¶
isSparse() -> bool
Returns true if the matrix is sparse.
- Return
(
bool
)
- Matrix.numColumns¶
numColumns() -> int
Returns the number of columns in the matrix.
- Return
(
int
)
- Matrix.numNonzeros¶
numNonzeros() -> int
Returns the number of non-zeros in the matrix.
- Return
(
int
)
- Matrix.numRows¶
numRows() -> int
Returns the number of rows in the matrix.
- Return
(
int
)
- Matrix.ones¶
Matrix.ones(int n, int m) -> Matrix
Construct a matrix filled with ones.
- Parameters
n
(int
) – Number of rows.m
(int
) – Number of columns.
- Return
(
Matrix
)
- Matrix.sparse¶
Matrix.sparse(int nrow, int ncol, int[] subi, int[] subj, float[] val) -> Matrix Matrix.sparse(int[] subi, int[] subj, float[] val) -> Matrix Matrix.sparse(int[] subi, int[] subj, float val) -> Matrix Matrix.sparse(int nrow, int ncol, int[] subi, int[] subj, float val) -> Matrix Matrix.sparse(int nrow, int ncol) -> Matrix Matrix.sparse(float[][] data) -> Matrix Matrix.sparse(Matrix[][] blocks) -> Matrix Matrix.sparse(Matrix mx) -> Matrix
Create a sparse matrix from the given data.
- Parameters
nrow
(int
) – Number of rows.ncol
(int
) – Number of columns.subi
(int
[]) – Row subscripts of non-zero elements.subj
(int
[]) – Column subscripts of non-zero elements.val
(float
[]) – Coefficients of non-zero elements.val
(float
) – Coefficients of non-zero elements.data
(float
[][]) – Dense data array.blocks
(Matrix
[][]) – The matrix data in block format. All elements in a row must have the same height, and all elements in a column must have the same width. Entries that areNone
will be interpreted as a block of zeros whose height and width are deduced from the other elements in the same row and column. Any row that contains onlyNone
entries will have height 0, and any column that contains onlyNone
entries will have width 0.
- Return
(
Matrix
)
- Matrix.toString¶
toString() -> str
Get a string representation of the matrix.
- Return
(
str
)
- Matrix.transpose (.T)¶
transpose() -> Matrix
Transpose the matrix.
The standard Python operator
.T
can also be used for this purpose. See Sec. 14.1.3 (Pythonic extensions) for details.- Return
(
Matrix
)