15 List of examples

List of examples shipped in the distribution of API for MATLAB:

Table 15.1 List of distributed examples

File

Description

acc1.m

A simple problem with one affine conic constraint (ACC)

affco1.m

A simple problem using affine conic constraints

affco2.m

A simple problem using affine conic constraints

ceo1.m

A simple conic exponential problem

cqo1.m

A simple conic quadratic problem

diet.m

Solving Stigler’s Nutrition model diet from the GAMS model library

djc1.m

A simple problem with disjunctive constraints (DJC)

facility_location.m

Demonstrates a small one-facility location problem (CQO)

gp1.m

A simple geometric program (GP) in conic form

helloworld.m

A Hello World example

lo1.m

A simple linear problem using msklpopt

lo1_simplex.m

A simple linear problem solved with the simplex solver

lo2.m

A simple linear problem using mosekopt

lo2_simplex.m

A simple linear problem solved with the simplex solver

lo_reoptimize.m

Simplex warm-start through reoptimization

lo_warmstart.m

Simplex warm-start with initial data

mico1.m

A simple mixed-integer conic problem

milo1.m

A simple mixed-integer linear problem

mioinitsol.m

A simple mixed-integer linear problem with an initial guess

normex.m

Demonstrates least squares and other norm minimization problems

opt_server_sync.m

Uses MOSEK OptServer to solve an optimization problem synchronously

parameters.m

Shows how to set optimizer parameters and read information items

pinfeas.m

Shows how to obtain and analyze a primal infeasibility certificate

portfolio_1_basic.m

Portfolio optimization - basic Markowitz model

portfolio_2_frontier.m

Portfolio optimization - efficient frontier

portfolio_3_impact.m

Portfolio optimization - market impact costs

portfolio_4_transcost.m

Portfolio optimization - transaction costs

portfolio_5_card.m

Portfolio optimization - cardinality constraints

portfolio_6_factor.m

Portfolio optimization - factor model

pow1.m

A simple power cone problem

reoptimization.m

Demonstrate how to modify and re-optimize a linear problem

response.m

Demonstrates proper response handling

Additional examples can be found on the MOSEK website and in other MOSEK publications.

acc1.m

Listing 15.1 acc1.m Click here to download.
%%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File :      acc1.m
%
%  Purpose :   Tutorial example for affine conic constraints.
%              Models the problem:
%
%              maximize c^T x
%              subject to  sum(x) = 1
%                          gamma >= |Gx+h|_2
%%

function [xx,prosta,solsta] = acc1()
    % Example data
    c = [2 3 -1]';
    gamma = 0.03;
    G = [1.5 0.1 0; ...
         0.3 0   2.1];
    h = [0 0.1]';

    n = size(c, 1);
    k = size(h, 1);

    % Initialize the model
    model = mosekmodel(name = "acc1",...
                       numvar = n);
    
    % Set objective vector
    model.objective("maximize", c);

    % The constraint sum(x) = 1
    model.appendcons(F = ones(1,n), domain = mosekdomain("equal", rhs=1));

    % The conic quadratic constraint Fx+g \in \Quad with k+1 rows
    model.appendcons(F = sparse([zeros(1,n); G]), ...
                     g = [gamma; h], ...
                     domain = mosekdomain("quadratic cone", dim=k+1));

    % Solve the problem
    model.solve();

    % Check if solution is available
    [hassol, prosta, solsta] = model.hassolution("interior"); 

    if hassol && solsta == "OPTIMAL"
        % Get primal solution
        xx = model.getsolution("interior", "x");

        % Get dual solution
        y = model.getsolution("interior", "y");

        disp("Primal solution");
        disp(xx);
    end

end

affco1.m

Listing 15.2 affco1.m Click here to download.
%%
%  File : affco1.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Description :
%    Implements a basic tutorial example with affine conic constraints:
%
%    maximize x_1^(1/3) + (x_1+x_2+0.1)^(1/4)
%    st.      (x_1-0.5)^2 + (x_2-0.6)^2 <= 1
%             0 <= x_1 <= x_2 + 1
% 
%%
function affco1()

   % Variables [x1; x2; t1; t2]
   model = mosekmodel(name = "affco1", numvar = 4, ...
                      objsense = "maximize", objective = [0, 0, 1, 1], ...
                      F = sparse([zeros(1,4); speye(2) zeros(2,2)]), ...    % The quadratic cone constraint
                      g = [1 -0.5 -0.6]', ...
                      domain = mosekdomain("qcone", dim = 3));

   % The power cones added as one block:
   model.appendcons(name="pow", ...
                    F = sparse([1,3,4,4,6], [1,3,1,2,4], ones(1,5)), ...
                    g = [0 1 0 0.1 1 0]', ...
                    domain = [mosekdomain("pow", dim = 3, alpha = [1 2]'), ...     % Exponents [ 1/3, 2/3 ]
                              mosekdomain("pow", dim = 3, alpha = 0.25) ]);        % Exponents [ 0.25, 0.75 ]

   % Linear inequality x_1 - x_2 <= 1
   model.appendcons(F = [1 -1 0 0], domain = mosekdomain("less than", rhs = 1));

   % Solve and get solution
   model.solve();

   if model.hassolution("interior")
      [xx, prosta, solsta] = model.getsolution("interior", "x");
      x = xx(1:2);
      t = xx(3:4);
      disp(x);
   end
end

affco2.m

Listing 15.3 affco2.m Click here to download.
%%
%  File : affco2.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Description :
%    Implements a basic tutorial example with affine conic constraints:
%
%    minimize t
%    st.      (d, z1*y1,... zn*yn) \in Q^{n+1}
%             (yi, 1, ai*t)        \in EXP, i=1,\ldots,n
%
%    with input ai<0, zi, d.
%
%    See also https://docs.mosek.com/modeling-cookbook/expo.html#hitting-time-of-a-linear-system
% 
%%
function affco2()

n = 3;
z = [3.3, 2.2, 1.3]';
a = [-0.08, -0.3, -0.06]';
d = 0.5;

t = firstHittingTime(n, z, a, d);
disp(sprintf('\nt = %.4e', t))


function t = firstHittingTime(n, z, a, d)

   % Variables [t, y1, ..., yn]
   model = mosekmodel(...
       name = "affco2", ...
       numvar = n + 1, ...
       objective = [1 zeros(1,n)], ...
       objsense = "minimize");

   model.varname([1], ["t"]);

   % Quadratic cone
   model.appendcons(F = diag([0; z]), ...
                    g = [d; zeros(n,1)], ...
                    domain = mosekdomain("qcone", dim = n + 1));

   % All exponential cones (their number is n)
   FExp = sparse([1:3:3*n    3:3:3*n], ...
                 [2:n+1      ones(1,n)], ...
                 [ones(1,n)  a']);
   gExp = repmat([0; 1; 0], n, 1);
   model.appendcons(F = FExp, g = gExp, ...
                    domain = mosekdomain("exp", dim = 3, n = n));

   % Solve and get solution
   model.solve();

   if model.hassolution("interior")
      [x, prosta, solsta] = model.getsolution("interior", "x");
      t = x(1);
   end

ceo1.m

Listing 15.4 ceo1.m Click here to download.
%
%   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%   File:      ceo1.m
%
%   Purpose:   To demonstrate how to solve a small conic exponential
%              optimization problem using the MOSEK API.
%
function [xx,prosta,solsta] = ceo1()
    model = mosekmodel(...
        name = "ceo1",...
        numvar = 3);
 
    % Minimize x1+x2
    model.objective("minimize", [1 1 0]);
 
    % Subject to: sum(x) == 1
    model.appendcons(F = [1 1 1], domain = mosekdomain("equal", rhs = 1.0));
 
    % And subject to: (x1, x2, x3) \in ExpCone
    model.appendcons(F = speye(3), ...
                     domain = mosekdomain("exp", dim = 3));
    
    % Solve the model and retrieve the solution
    model.solve();
    if model.hassolution("interior")
        [xx,prosta,solsta] = model.getsolution("interior","x");
        disp(xx);
    end
end

cqo1.m

Listing 15.5 cqo1.m Click here to download.
%%
%   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%   File:      cqo1.m
%
%   Purpose: Demonstrates how to solve the problem
%
%   minimize y1 + y2 + y3
%   such that
%            x1 + x2 + 2.0 x3  = 1.0
%                    x1,x2,x3 >= 0.0
%   and
%            (y1,x1,x2) in C_3,
%            (y2,y3,x3) in K_3
%
%   where C_3 and K_3 are respectively the quadratic and
%   rotated quadratic cone of size 3 defined as
%       C_3 = { z1,z2,z3 :      z1 >= sqrt(z2^2 + z3^2) }
%       K_3 = { z1,z2,z3 : 2 z1 z2 >= z3^2              }
%%

function [xx,prosta,solsta] = cqo1()
    model = mosekmodel(...
        name = "cqo1", ...
        numvar = 6);

    % Variable is [x, y]
    model.objective("minimize", [0 0 0 1 1 1]');

    % Linear constraint
    model.appendcons(F = [1 1 2 0 0 0], domain = mosekdomain("eq", rhs=1.0));
    
    % Bounds on x
    model.appendcons(F = sparse([eye(3) zeros(3)]), domain = mosekdomain("rplus", dim=3));

    % Quadratic cone
    model.appendcons(F = sparse([1,2,3],[4,1,2],[1,1,1]), domain = mosekdomain("qcone",dim=3));
    
    % Rotated quadratic cone
    model.appendcons(F = sparse([1,2,3],[5,6,3],[1,1,1]), domain = mosekdomain("rqcone",dim=3));

    model.solve();
    if model.hassolution("interior")
        [xx,prosta,solsta] = model.getsolution("interior","x");
        fprintf("Solution x1,x2,x3: [ %s ]\n", sprintf("%.2g ", xx(1:3)));
        fprintf("Solution y1,y2,y3: [ %s ]\n", sprintf("%.2g ", xx(4:6)));
    end

end

diet.m

Listing 15.6 diet.m Click here to download.
%%
% Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
% File:      diet.m
%
% Purpose: Solving Stigler's Nutrition model (DIET,SEQ=7)
%
% Source: GAMS Model library,
%           Dantzig, G B, Chapter 27.1. In Linear Programming and Extensions.
%           Princeton University Press, Princeton, New Jersey, 1963.
%
% Given a set of nutrients, foods with associated nutrient values, allowance of
% nutrients per day, the model will find the cheapest combination of foods
% which will provide the necessary nutrients.
%%
function [xx,prosta,solsta] = diet()
    nutrient_unit = [ ...
      "thousands",  "grams",        "grams", ...
      "milligrams", "thousand ius", "milligrams", ...
      "milligrams", "milligrams",   "milligrams" ];
    nutrients = [ ...
      "calorie",    "protein",      "calcium", ...
      "iron",       "vitamin a",    "vitamin b1", ...
      "vitamin b2", "niacin",       "vitamin c" ];
    foods = [ ...
      "wheat",        "cornmeal", "cannedmilk", "margarine", "cheese", ...
      "peanut butter", "lard",     "liver",      "porkroast", "salmon", ...
      "greenbeans",   "cabbage",  "onions",     "potatoes",  "spinach", ...
      "sweet potatos", "peaches",  "prunes",     "limabeans", "navybeans" ];

    daily_allowance = [ ...
      3.     70.   .8    12.   5.      1.8    2.7   18.   75. ];
    nutritive_value = [...
      % calorie     calcium    vitamin a    vitamin b2  vitamin c
      %       protein        iron    vitamin b1      niacin
           44.7  1411   2.0   365    0     55.4   33.3  441     0;  % wheat
           36     897   1.7    99   30.9   17.4    7.9  106     0;  % cornmeal
            8.4   422  15.1     9   26      3     23.5   11    60;  % cannedmilk
           20.6    17    .6     6   55.8     .2    0      0     0;  % margarine
            7.4   448  16.4    19   28.1     .8   10.3    4     0;  % cheese
           15.7   661   1      48    0      9.6    8.1  471     0;  % peanut butter
           41.7     0   0       0    0.2    0       .5    5     0;  % lard
            2.2   333    .2   139  169.2    6.4   50.8  316   525;  % liver
            4.4   249    .3    37    0     18.2    3.6   79     0;  % porkroast
            5.8   705   6.8    45    3.5    1      4.9  209     0;  % salmon
            2.4   138   3.7    80   69      4.3    5.8   37   862;  % greenbeans
            2.6   125   4      36    7.2    9      4.5   26  5369;  % cabbage
            5.8   166   3.8    59   16.6    4.7    5.9   21  1184;  % onions
           14.3   336   1.8   118    6.7   29.4    7.1  198  2522;  % potatoes
            1.1   106   0.0   138  918.4    5.7   13.8   33  2755;  % spinach
            9.6   138   2.7    54  290.7    8.4    5.4   83  1912;  % sweet potatos
            8.5    87   1.7   173   86.8    1.2    4.3   55    57;  % peaches
           12.8    99   2.5   154   85.7    3.9    4.3   65   257;  % prunes
           17.4  1055   3.7   459    5.1   26.9   38.2   93     0;  % limabeans
           26.9  1691  11.4   792    0     38.4   24.6  217     0]  % navybeans

    [N,M] = size(nutritive_value);

    model = mosekmodel(...
        name = "Stinglers Diet Problem", ...
        numvar = N);
    model.varname([1:N],foods);
  
    model.appendcons(name = "Daily purchase",   F = speye(N),         domain = mosekdomain("greater than", n=N, rhs=zeros(N,1)));
    model.appendcons(name = "Nutrient balance", F = nutritive_value', domain = mosekdomain("greater than", n=M, rhs=daily_allowance'));
    model.objective("minimize", ones(N,1));

    model.solve();
    [ok,prosta,solsta] = model.hassolution("interior");
    if ok 
        fprintf("Solution status: %s, Problem status: %s\n",solsta,prosta);
        [xx,prosta,solsta] = model.getsolution("interior","x");
    end
end

djc1.m

Listing 15.7 djc1.m Click here to download.
%%
%   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%   File:      djc1.m
%
%   Purpose: Demonstrates how to solve the problem with two disjunctions:
%
%      minimize    2x0 + x1 + 3x2 + x3
%      subject to   x0 + x1 + x2 + x3 >= -10
%                  (x0-2x1<=-1 and x2=x3=0) or (x2-3x3<=-2 and x1=x2=0)
%                  x0=2.5 or x1=2.5 or x2=2.5 or x3=2.5
%%

function [xx,prosta,solsta] = djc1()
    model = mosekmodel(name = "djc1", ...
                       objsense = "minimize", ...
                       objective = [ 2,1,3,1 ]', ...
                       numvar = 4);

    % A disjunction of two clauses
    model.appenddisjunction( [ model.clause(F = [1 -2 0 0 ;
                                                 0  0 1 0 ; 
                                                 0  0 0 1], ...
                                            domain=[ mosekdomain("less than", rhs = [-1]), ...                % 1st simple term of 1st clause
                                                     mosekdomain("equal",     dim = 2, rhs = [0 0]') ]), ...  % 2nd simple term of 1st clause

                               model.clause(F = [0 0 1 -3 ; 
                                                 1 0 0  0 ; 
                                                 0 1 0  0], ...
                                            domain = [ mosekdomain("less than", rhs = -2), ...                % 1st simple term of 2nd clause
                                                       mosekdomain("equal", dim = 2, rhs = [0 0]') ]) ], ...  % 2nd simple term of 2nd clause
                            name = "first-djc");

    % A disjunction of four clauses
    model.appenddisjunction([ model.clause(F = [1 0 0 0], domain = mosekdomain("equal", rhs = 2.5)),...
                              model.clause(F = [0 1 0 0], domain = mosekdomain("equal", rhs = 2.5)),...
                              model.clause(F = [0 0 1 0], domain = mosekdomain("equal", rhs = 2.5)),...
                              model.clause(F = [0 0 0 1], domain = mosekdomain("equal", rhs = 2.5)) ],...
                            name = "second-djc");

    % The standard liner constraint
    model.appendcons(name = "C", F = [1 1 1 1], domain = mosekdomain("greater than", rhs = -10));

    model.solve();

    if model.hassolution("integer")
        [xx,prosta,solsta] = model.getsolution("integer","x");
        fprintf("Solution : [%s]\n", sprintf("%g ", xx));
    end
end

facility_location.m

Listing 15.8 facility_location.m Click here to download.
%%
%  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File:      facility_location.m
%
%  Purpose: Demonstrates a small one-facility location problem.
%
%  Given 10 customers placed in a grid we wish to place a facility
%  somewhere so that the total sum of distances to customers is
%  minimized.
%
%  The problem is formulated as a conic optimization problem as follows.
%  Let f=(fx,fy) be the (unknown) location of the facility, and let
%  c_i=(cx_i,cy_i) be the (known) customer locations; then we wish to
%  minimize
%      sum_i || f - c_i ||
%  where
%      ||.||
%  denotes the euclidian norm.
%  This is formulated as
%
%  minimize   sum(d_i)
%  such that  d_i ^ 2 > tx_i ^ 2 + ty_i ^ 2, for all i (a.k.a. (d_i,tx_i,ty_i) in C^3_r)
%             tx_i = cx_i - fx, for all i
%             ty_i = cy_i - fy, for all i
%             d_i > 0, for all i
%%
function [xx,prosta,solsta] = facility_location()
    customerloc = [12.0  2.0 ; ... 
                   15.0 13.0 ; ... 
                   10.0  8.0 ; ... 
                    0.0 10.0 ; ... 
                    6.0 13.0 ; ... 
                    5.0  8.0 ; ... 
                   10.0 12.0 ; ... 
                    4.0  6.0 ; ... 
                    5.0  2.0 ; ... 
                    1.0 10.0];
    N = size(customerloc,1);
    model = mosekmodel(...
        name="FacilityLocation",...
        numVar=2+N);
    % variable(1:N) are the distances from the facility to each customerloc
    % variable(N+1:N+2) is the location of the facility

    % distance per customer
    appendcons(model,...
               F = sparse([1:N*3], reshape([ [1:N] ; repmat([N+1;N+2],1,N)],N*3,1)', ones(1,N*3)),...
               g = reshape([ zeros(1,N) ; -customerloc' ], 3*N,1),...
               domain=mosekdomain("qcone",n=N,dim=3));
    % Summed distances
    objective(model,...
              "minimize", ...
              [ 0; 0; ones(N,1)] );

    solve(model);
    if hassolution(model,"interior") 
        [xx,prosta,solsta] = getsolution(model,"interior","x");
    end
end

gp1.m

Listing 15.9 gp1.m Click here to download.
%   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%   File:      gp1.m
%
%   Purpose:   Demonstrates how to solve a simple Geometric Program (GP)
%              cast into conic form with exponential cones and log-sum-exp.
%
%              Example from
%                https://gpkit.readthedocs.io/en/latest/examples.html%maximizing-the-volume-of-a-box
function [xx,prosta,solsta] = gp1()
    Awall  = 200
    Afloor = 50
    alpha  = 2
    beta   = 10
    gamma  = 2
    delta  = 10
 
    % A model with variables [x,y,z,u1,u2]
    model = mosekmodel(...
        name = "gp1",...
        numvar = 5);
    model.objective("maximize", [ 1 1 1 0 0]);

    % u1 + u2 = 1
    model.appendcons(F = [ 0 0 0 1 1 ], domain = mosekdomain("equal",     rhs=1.0));
    
    % y + z <= log(Afloor)
    model.appendcons(F = [ 0 1 1 0 0 ], domain = mosekdomain("less than", rhs=log(Afloor)));
    
    % Two-sided bounds on x-y and z-y
    model.appendcons(F = [ 1 -1 0 0 0 ; ...
                           0 -1 1 0 0 ], domain = mosekdomain("greater than",dim=2, rhs=[log(alpha) log(gamma)]'));
    model.appendcons(F = [ 1 -1 0 0 0 ; ...
                           0 -1 1 0 0 ], domain = mosekdomain("less than",   dim=2, rhs=[log(beta)  log(delta)]'));

    % Conic constraints
    model.appendcons(F = sparse([1 3 3],[4 1 2],[1.0 1.0 1.0]), g = [0 1 log(alpha/Awall)]', domain = mosekdomain("exp"));
    model.appendcons(F = sparse([1 3 3],[5 1 3],[1.0 1.0 1.0]), g = [0 1 log(alpha/Awall)]', domain = mosekdomain("exp"));
    
    model.solve();
    if model.hassolution("interior")
        [xx,prosta,solsta] = model.getsolution("interior","x");
        x = xx(1:3);
        disp(exp(x));
    end
end

helloworld.m

Listing 15.10 helloworld.m Click here to download.
%%
%  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File:      helloworld.m
%
%  The most basic example of how to get started with MOSEK.
%

function [xx,prosta,solsta] = helloworld()
    model = mosekmodel(...
                  name = "helloworld", ...
                  objsense = "min", ...
                  objective = [ 1, 2 ]', ...
                  numvar = 2, ...
                  F = [ 1 0 ; ...
                        0 1 ; ...
                        3 -1 ], ...
                  domain = [ mosekdomain("greater than", rhs = 2), ...   % x >= 2,    1st row of F
                             mosekdomain("greater than", rhs = 3), ...   % y >= 3,    2nd row of F
                             mosekdomain("less than", rhs = 1) ]);       % 3x-y <= 1, 3rd row of F
    model.solve();
    
    if model.hassolution("interior")
        [xx,prosta,solsta] = model.getsolution("any", "x");
        xx
    end

end

lo1.m

Listing 15.11 lo1.m Click here to download.
%%
%  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File:      lo1.m
%
%  Purpose: Demonstrates how to solve the problem
%
%  maximize 3*x0 + 1*x1 + 5*x2 + x3
%  such that
%           3*x0 + 1*x1 + 2*x2        = 30,
%           2*x0 + 1*x1 + 3*x2 + 1*x3 > 15,
%                  2*x1 +      + 3*x3 < 25
%  and
%           x0,x1,x2,x3 > 0,
%           0 < x1 < 10
%%
function [xx,prosta,solsta] = lo1()
    
    model = mosekmodel(...
                  name = "lo1", ...
                  objsense = "maximize", ...
                  objective = [ 3 1 5 1 ]', ...
                  numvar = 4, ...
                  F = [ 3 1 2 0 ; ...
                        2 1 3 1 ; ...
                        0 2 0 3 ; ...
                        1 0 0 0 ; ...
                        0 1 0 0 ; ...
                        0 0 1 0 ; ...
                        0 0 0 1 ; ...
                        0 1 0 0 ;], ...
                  domain = [ mosekdomain("equal",        rhs=30), ...
                             mosekdomain("greater than", rhs=15), ...
                             mosekdomain("less than",    rhs=25), ...
                             mosekdomain("nonnegative",  n=4), ...
                             mosekdomain("less than",    rhs=10) ]);
    model.varname([1:4],["x","y","z","w"]);
    model.solve();
    if model.hassolution("interior")
        [xx,prosta,solsta] = model.getsolution("interior","x");
    end
end

lo1_simplex.m

Listing 15.12 lo1_simplex.m Click here to download.
%%
%  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File:      lo1_simplex.m
%
%  Purpose: Demonstrates how to solve the problem
%
%  maximize 3*x0 + 1*x1 + 5*x2 + x3
%  such that
%           3*x0 + 1*x1 + 2*x2        = 30,
%           2*x0 + 1*x1 + 3*x2 + 1*x3 > 15,
%                  2*x1 +      + 3*x3 < 25
%  and
%           x0,x1,x2,x3 > 0,
%           0 < x1 < 10
%
%  using the linear/simplex toolbox.
%%
function [xx,prosta,solsta] = lo1_simplex()
    model = moseklinmodel(...
                  name = "lo1", ...
                  numvar = 6, ...
                  objsense = "maximize", ...
                  objective = [ 3 1 5 1 0 0 ]', ...
                  A = [ 3 1 2 0  0  0 ; ...
                        2 1 3 1 -1  0 ; ...
                        0 2 0 3  0 -1 ], ...
                  b = [ 30 15 25 ]', ...
                  blx = [ 0.0  0.0 0.0 0.0   0.0 -inf ]', ...
                  bux = [ inf 10.0 inf inf   inf  0.0 ]', ...
                  varnames = ["x1" "x2" "x3" "x4" "y1" "y2"]',...
                  conname = ["c1" "c2" "c3"]');

    % Choose the simplex optimizer to solve with
    model.solve(param = [ "MSK_IPAR_OPTIMIZER", "MSK_OPTIMIZER_FREE_SIMPLEX" ]);

    % Check the solution status and fetch the solution
    [hassol, prosta, solsta] = model.hassolution();
    if hassol && solsta == "OPTIMAL"
        fprintf("Solution, problem status = %s, solution status = %s:\n", prosta, solsta);

        % Primal variables
        result = model.getsolution("x");
        x = result(1:4);
        s = result(5:6);
        fprintf("  x[%d] = %.4f\n",[1:4 ; x']);
        fprintf("Slacks:\n");
        fprintf("  s[%d] = %.4f\n",[1:2 ; s']);

        % Other elements of the solution
        fprintf("Duals:\n");
        fprintf("  y[%d] = %.4f\n",[1:3 ; model.getsolution("y")']);
        fprintf("slx[%d] = %.4f\n",[1:6 ; model.getsolution("slx")']);
        fprintf("sux[%d] = %.4f\n",[1:6 ; model.getsolution("sux")']);

        fprintf("Status keys of constraints:\n");
        fprintf("skc[%s] = %s\n",[1:3 ; model.getsolution("skc")']);

        fprintf("Status keys of variables:\n");
        fprintf("skx[%s] = %s\n",[1:6 ; model.getsolution("skx")']);
    end
end

lo2.m

Listing 15.13 lo2.m Click here to download.
%%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File :      lo2.m
%
%  Purpose: Demonstrates how to solve the problem
%
%  maximize 3*x0 + 1*x1 + 5*x2 + x3
%  such that
%           3*x0 + 1*x1 + 2*x2        = 30,
%           2*x0 + 1*x1 + 3*x2 + 1*x3 > 15,
%                  2*x1 +      + 3*x3 < 25
%  and
%           x0,x1,x2,x3 > 0,
%           0 < x1 < 10
%%
function [xx,prosta,solsta] = lo2()
    model = mosekmodel(name = "lo2", ...
                       objsense = "maximize", ...
                       objective = [ 3 1 5 1 ]', ...
                       numvar = 4);

    model.appendcons(name="con-eq30", F = [ 3 1 2 0 ], domain = mosekdomain("equal",        rhs=30));
    model.appendcons(name="con-gt14", F = [ 2 1 3 1 ], domain = mosekdomain("greater than", rhs=15));
    model.appendcons(name="con-lt25", F = [ 0 2 0 3 ], domain = mosekdomain("less than",    rhs=25)); 
    model.appendcons(name="con-nneg", F = speye(4),    domain = mosekdomain("nonnegative", n=4));
    model.appendcons(name="con-lt10", F = [ 0 1 0 0 ], domain = mosekdomain("less than", rhs="10"));

    model.varname([1:4],["x","y","z","w"]);

    model.solve();
    if model.hassolution("interior")
        [xx,prosta,solsta] = model.getsolution("interior","x");
    end
end

lo2_simplex.m

Listing 15.14 lo2_simplex.m Click here to download.
%%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File :      lo2_simplex.m
%
%  Purpose :   Demonstrates how to solve small linear
%              optimization problem using the MOSEK API for Matlab
%              in multiple calls.
%%
function [xx,prosta,solsta] = lo2_simplex()
    % Create an empty model
    model = moseklinmodel(name = "lo2");

    % Add some variables with bounds
    model.appendvars(6,...
                     bl = [ 0.0  0.0 0.0 0.0   0.0 -inf ]', ...
                     bu = [ inf 10.0 inf inf   inf  0.0 ]');
    model.varname([1:6],["x1" "x2" "x3" "x4" "y1" "y2"]);
    
    % Set the objective
    model.objective("maximize", [ 3 1 5 1 0 0]', objfixterm = 0.0);

    % Constraint 3x1 + x2 + 2x3 == 30
    model.appendcons([ 3 1 2 0 0 0], [30]);

    % The two remaining constraints
    model.appendcons([ 2 1 3 1 -1  0 ; ...
                       0 2 0 3  0 -1 ], ...
                     [ 15 25 ]');

    % Constraint names
    model.conname([1:3],["c1" "c2" "c3"]);
    
    % Choose the simplex optimizer
    model.solve(param = [ "MSK_IPAR_OPTIMIZER", "MSK_OPTIMIZER_FREE_SIMPLEX" ]);
    
    % Check the solution status and fetch the solution
    [hassol, prosta, solsta] = model.hassolution();
    if hassol && solsta == "OPTIMAL"
        fprintf("Solution, problem status = %s, solution status = %s:\n", prosta, solsta);

        % Primal variables
        result = model.getsolution("x");
        x = result(1:4);
        s = result(5:6);
        fprintf("  x[%d] = %.4f\n",[1:4 ; x']);
        fprintf("Slacks:\n");
        fprintf("  s[%d] = %.4f\n",[1:2 ; s']);

        % Other elements of the solution
        fprintf("Duals:\n");
        fprintf("  y[%d] = %.4f\n",[1:3 ; model.getsolution("y")']);
        fprintf("slx[%d] = %.4f\n",[1:6 ; model.getsolution("slx")']);
        fprintf("sux[%d] = %.4f\n",[1:6 ; model.getsolution("sux")']);

        fprintf("Status keys of constraints:\n");
        fprintf("skc[%s] = %s\n",[1:3 ; model.getsolution("skc")']);

        fprintf("Status keys of variables:\n");
        fprintf("skx[%s] = %s\n",[1:6 ; model.getsolution("skx")']);
    end
end

lo_reoptimize.m

Listing 15.15 lo_reoptimize.m Click here to download.
%%
%  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File:      lo_reoptimize.m
%
%  Purpose: Demonstrates warm-starting the simplex optimizer
%           during reoptimizations of problems starting from
%
%  maximize 3*x0 + 1*x1 + 5*x2 + x3
%  such that
%           3*x0 + 1*x1 + 2*x2        = 30,
%           2*x0 + 1*x1 + 3*x2 + 1*x3 > 15,
%                  2*x1 +      + 3*x3 < 25
%  and
%           x0,x1,x2,x3 > 0,
%           0 < x1 < 10
%%
function [] = lo_reoptimize()
    % We set up and initially solve a sample linear model
    model = moseklinmodel(...
                  numvar = 6, ...
                  objsense = "maximize", ...
                  objective = [ 3 1 5 1 0 0 ]', ...
                  A = [ 3 1 2 0  0  0 ; ...
                        2 1 3 1 -1  0 ; ...
                        0 2 0 3  0 -1 ], ...
                  b = [ 30 15 25 ]', ...
                  blx = [ 0.0  0.0 0.0 0.0   0.0 -inf ]', ...
                  bux = [ inf 10.0 inf inf   inf  0.0 ]');
    
    model.solve(param = [ "MSK_IPAR_OPTIMIZER", "MSK_OPTIMIZER_FREE_SIMPLEX" ], quiet = true);    

    checksolution(model);

    % Introduce a stricter upper bound for the 3-rd constraint
    model.setb([30, 15, 22]');

    % Solve, using dual simplex
    model.solve(param = [ "MSK_IPAR_OPTIMIZER", "MSK_OPTIMIZER_DUAL_SIMPLEX" ]);

    checksolution(model);

    % Change an objective coefficient
    model.setc([3 2 0 2]');

    % Solve, using primal simplex
    model.solve(param = [ "MSK_IPAR_OPTIMIZER", "MSK_OPTIMIZER_PRIMAL_SIMPLEX" ]);

    checksolution(model);
end

function [] = checksolution(model)
    [hassol, prosta, solsta] = model.hassolution();
    if hassol && solsta == "OPTIMAL"
        fprintf("Solution, problem status = %s, solution status = %s:\n", prosta, solsta);
        disp("Solution, status keys and duals");
        disp([(1:6)' model.getsolution("x") model.getsolution("skx") model.getsolution("slx") model.getsolution("sux")]);
        disp("Constraint status and duals");
        disp([(1:3)' model.getsolution("skc") model.getsolution("y")]);
        fprintf("Optimizer time %.3f\n", model.info.MSK_DINF_OPTIMIZER_TIME);
        fprintf("#iterations    %ld\n",  model.info.MSK_LIINF_SIMPLEX_ITER);
    else
        fprintf("Solution, unexpected problem status = %s, solution status = %s:\n", prosta, solsta);
    end
end

lo_warmstart.m

Listing 15.16 lo_warmstart.m Click here to download.
%%
%  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File:      lo_warmstart.m
%
%  Purpose: Demonstrates warm-starting the simplex optimizer
%           using the problem
%
%  maximize 3*x0 + 1*x1 + 5*x2 + x3
%  such that
%           3*x0 + 1*x1 + 2*x2        = 30,
%           2*x0 + 1*x1 + 3*x2 + 1*x3 > 15,
%                  2*x1 +      + 3*x3 < 25
%  and
%           x0,x1,x2,x3 > 0,
%           0 < x1 < 10
%%
function [] = lo_warmstart()
    % We set up the linear model
    % together with:
    % - approximate primal solution
    % - status keys
    model = moseklinmodel(...
                  name = "lo1", ...
                  numvar = 6, ...
                  objsense = "maximize", ...
                  objective = [ 3 1 5 1 0 0 ]', ...
                  A = [ 3 1 2 0  0  0 ; ...
                        2 1 3 1 -1  0 ; ...
                        0 2 0 3  0 -1 ], ...
                  b = [ 30 15 25 ]', ...
                  blx = [ 0.0  0.0 0.0 0.0   0.0 -inf ]', ...
                  bux = [ inf 10.0 inf inf   inf  0.0 ]', ...
                  varnames = ["x1" "x2" "x3" "x4" "y1" "y2"]',...
                  conname = ["c1" "c2" "c3"]', ...
                  solution_x = [0 0 15 8.3 0 0]', ...
                  solution_skx = ["LOW"  "LOW"  "BAS"  "BAS"  "BAS"  "UPR"]', ...
                  solution_skc = ["FIX"  "FIX", "FIX"]);

    % Choose the simplex optimizer to solve with
    model.solve(param = [ "MSK_IPAR_OPTIMIZER", "MSK_OPTIMIZER_FREE_SIMPLEX" ]);

    % Check the solution status and fetch the solution
    [hassol, prosta, solsta] = model.hassolution();
    if hassol && solsta == "OPTIMAL"
        fprintf("Solution, problem status = %s, solution status = %s:\n", prosta, solsta);

        % Show solution
        disp("Solution, status keys and duals");
        disp([(1:6)' model.getsolution("x") model.getsolution("skx") model.getsolution("slx") model.getsolution("sux")]);
        disp("Constraint status and duals");
        disp([(1:3)' model.getsolution("skc") model.getsolution("y")]);

        % Solver statistics
        fprintf("Optimizer time %.3f\n", model.info.MSK_DINF_OPTIMIZER_TIME);
        fprintf("#iterations    %ld\n",  model.info.MSK_LIINF_SIMPLEX_ITER);
    end
end

mico1.m

Listing 15.17 mico1.m Click here to download.
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File      : mico1.m
%
%  Purpose   : Demonstrates how to solve a small mixed
%              integer conic optimization problem.
%
%              minimize    x^2 + y^2
%              subject to  x >= e^y + 3.8
%                          x, y - integer
%

function mico1()

    %The full variable is [t; x; y]
    model = mosekmodel(name = "mi-conic", ...
                       numvar = 3, objective = [1 0 0], objsense = "min", ...
                       F = [ speye(3); ...
                             0 1 0;    ...
                             0 0 0;    ...
                             0 0 1 ],  ...
                       g = [0 0 0 -3.8 1 0], ...
                       domain = [mosekdomain("qcone", dim = 3), ...
                                 mosekdomain("exp")], ...
                       intvars = [2, 3]);     % Specify the indices of integer variables

    % It is as always possible (but not required) to input an initial solution
    % to start the mixed-integer solver. 
    model.setsolution("x", [100, 9, -1]);

    model.solve();
    x = model.getsolution("integer", "x");
    fprintf("Optimal (x,y) = (%.2e, %.2e)\n", x(2), x(3));
end

milo1.m

Listing 15.18 milo1.m Click here to download.
%%
%    Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%    File:    milo1.m
%
%    Purpose:  Demonstrates how to solve a small mixed
%              integer linear optimization problem.
%%

function [xx,prosta,solsta] = milo1()
    model = mosekmodel(name="milo1", numvar=2, ...
                       intvars=[1 2]');    % Specify indices of integer variables

    model.objective("maximize", [ 1.0 0.64 ]);
    model.appendcons(F = speye(2),    domain = mosekdomain("rplus",dim=2));
    model.appendcons(F = [50.0 31.0], domain = mosekdomain("less than", rhs=250.0));
    model.appendcons(F = [4.0  -2.0], domain = mosekdomain("greater than", rhs=-4));

    model.solve();

    % Access the integer solution
    if model.hassolution("integer")
        [xx,prosta,solsta] = model.getsolution("integer", "x");
        fprintf("Solution: %s\n", sprintf("%g ", xx));
    else
        disp("Solve failed");
    end
end

mioinitsol.m

Listing 15.19 mioinitsol.m Click here to download.
%%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File :      mioinitsol.m
%
%   Purpose:   To demonstrate how to solve a MIP with a start
%   guess.
%%

function mioinitsol()

    model = mosekmodel(name = "init sol", ...
                       numvar = 4, objective = [7 10 1 5], objsense = "max", ...
                       F = [1 1 1 1; eye(4)], ...
                       domain = [mosekdomain("eq", rhs = 2.5), ...
                                 mosekdomain("gt", dim = 4, rhs = zeros(4, 1))], ...
                       intvars = [1, 2, 3]);     % Specify the indices of integer variables

    % Specify start guess for the integer variables.
    model.setsolution("x", [1 1 0 nan]);

    % Request constructing the solution from integer variable values
    model.solve(param = ["MSK_IPAR_MIO_CONSTRUCT_SOL", "1"]);

    % Display the optimal solution.
    if model.hassolution("integer")
        x = model.getsolution("integer", "x");
        fprintf("x = [%s]\n", sprintf("%g ", x));

        % Was the initial solution used ?
        fprintf("Construct solution used?      %d\n", model.info.MSK_IINF_MIO_CONSTRUCT_SOLUTION)
        fprintf("Construct solution objective: %f\n", model.info.MSK_DINF_MIO_CONSTRUCT_SOLUTION_OBJ);
    end
end

normex.m

Listing 15.20 normex.m Click here to download.
%%
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File :      normex.m
%
%  Purpose:   Demonstrates various norm minimization problems
%
%             * least squares regression
%             * ridge regularization
%             * lasso regularization
%             * p-norm minimization
%
%%

% This function runs a few examples
function normex()

    % Change this to display the plots
    usegraphics=false;

    % Create some random data
    N  = 100;
    x1 = sort(rand(N,1));
    p  = @(t) 1.5*t.^3-2*t.^2+0.5*t.^1-1;
    y1 = p(x1) + 0.01*randn(N,1);
    xp = smallVander(x1, 5);
    if usegraphics
      figure(1);
      scatter(x1, y1);
      hold on
    end

    % Least squares regression
    x = norm_lse(xp, y1, zeros(0,6), []);
    if usegraphics
      plot(0:0.01:1, smallVander((0:0.01:1)', 5)*x);
    end

    % With ridge regularization
    x = norm_lse_reg(xp, y1, zeros(0,6), [], 0.1);
    if usegraphics
      plot(0:0.01:1, smallVander((0:0.01:1)', 5)*x);
    end

    % Quadratic ridge
    x = norm_lse_reg_quad(xp, y1, zeros(0,6), [], 0.2);
    if usegraphics
      plot(0:0.01:1, smallVander((0:0.01:1)', 5)*x);
    end

    % Completely random large data for lasso example
    N = 100;
    K = 3000;
    F = sprandn(K, N, 0.5);
    g = randn(K, 1);
    disp(sprintf('Lasso regularization'));
    for gamma=[0.01, 0.1, 0.3, 0.6, 0.9, 1.3]
       x = norm_lse_lasso(F, g, zeros(0,N), [], gamma);
       disp(sprintf('Gamma %.4f  density %.0f%%   |Fx-g|_2: %.4f', gamma, sum(abs(x)>1e-6)/N*100, norm(F*x-g)));
    end

    % Example with the p-norm cone for various p
    % We add a far outlier to the first example
    x12 = [x1; 0.73];
    y12 = [y1; -0.99];
    xp2 = [x12.^5, x12.^4, x12.^3, x12.^2, x12.^1, x12.^0];
    parts = [];
    labels = [];

    if usegraphics
      figure(2);
      scatter(x12, y12);
      hold on
    end

    for p=[1.1, 2.0, 3.0, 6.0]
       x = norm_p_norm(xp2, y12, zeros(0,6), [], p);
       if usegraphics
         parts = [parts; plot(0:0.01:1, smallVander((0:0.01:1)', 5)*x);];
         labels = [labels; sprintf('%.1f', p)];
       end
    end
    if usegraphics
      legend(parts, labels);
    end
end

% Least squares regression
% minimize \|Fx-g\|_2
function x = norm_lse(F,g,A,b)
    n = size(F,2);
    k = size(g,1);
    m = size(A,1);

    % A model with variables x(n) and t(1)
    model = mosekmodel(name = "norm_lse", numvar = n + 1, objective = [zeros(n, 1); 1]);

    % Linear constraints
    model.appendcons(F = [A, zeros(m, 1)], domain = mosekdomain("equal", dim = m, rhs = b));

    % Affine conic constraint
    model.appendcons(F = [sparse(1,n), 1; F, sparse(k,1)], g = [0; -g], ...
                     domain = mosekdomain("quadratic cone", dim = k + 1));

    model.solve();
    xx = model.getsolution("any", "x");
    x = xx(1:n);
end

% Least squares regression with regularization
% minimize \|Fx-g\|_2 + gamma*\|x\|_2
function x = norm_lse_reg(F,g,A,b,gamma)
    n = size(F,2);
    k = size(g,1);
    m = size(A,1);

    % A model with variables x(n) and t1, t2
    model = mosekmodel(name = "norm_lse_reg", numvar = n + 2, objective = [zeros(n, 1); 1; gamma]);

    % Linear constraints
    model.appendcons(F = [A, zeros(m, 2)], domain = mosekdomain("equal", dim = m, rhs = b));

    % Affine conic constraint for \|Fx-g\|_2
    model.appendcons(F = [sparse(1,n),        1, 0; ...
                          F,            sparse(k,2)], ...
                     g = [0; -g], ...
                     domain = mosekdomain("quadratic cone", dim = k + 1));

    % Affine conic constraint for \|x\|_2
    model.appendcons(F = [sparse(1, n+1),        1; ...
                          speye(n),     sparse(n,2) ], ...
                     domain = mosekdomain("quadratic cone", dim = n + 1));

    model.solve();
    xx = model.getsolution("any", "x");
    x = xx(1:n);
end

% Least squares regression with regularization
% The "classical" quadratic version
% minimize \|Fx-g\|_2^2 + gamma*\|x\|_2^2
function x = norm_lse_reg_quad(F,g,A,b,gamma)
    n = size(F,2);
    k = size(g,1);
    m = size(A,1);

    % A model with variables x(n) and t1, t2
    model = mosekmodel(name = "norm_lse_reg_quad", numvar = n + 2, objective = [zeros(n, 1); 1; gamma]);

    % Linear constraints
    model.appendcons(F = [A, zeros(m, 2)], domain = mosekdomain("equal", dim = m, rhs = b));

    % Affine conic constraint for \|Fx-g\|_2^2
    model.appendcons(F = [sparse(1,n) 1 0; ...
                          sparse(1, n+2); ...
                          F sparse(k, 2)], ...
                     g = [0; 0.5; -g], ...
                     domain = mosekdomain("rotated quadratic cone", dim = k + 2));

    % Affine conic constraint for \|x\|_2^2
    model.appendcons(F = [sparse(1, n+1) 1; ...
                          sparse(1, n+2); ...
                          speye(n) sparse(n, 2) ], ...
                     g = [0; 0.5; zeros(n, 1)], ...
                     domain = mosekdomain("rotated quadratic cone", dim = n + 2));

    model.solve();
    xx = model.getsolution("any", "x");
    x = xx(1:n);
end

% Least squares regression with lasso regularization
% minimize \|Fx-g\|_2 + gamma*\|x\|_1
function x = norm_lse_lasso(F,g,A,b,gamma)
    n = size(F,2);
    k = size(g,1);
    m = size(A,1);

    % A model with variables x(n), u(n) and t1, t2
    model = mosekmodel(name = "norm_lse_lasso", numvar = n + n + 2, objective = [zeros(2*n, 1); 1; gamma]);

    % Linear constraints
    model.appendcons(F = [A, zeros(m, 2)], domain = mosekdomain("equal", dim = m, rhs = b));

    % u >=. |x|
    model.appendcons(F = [speye(n)  speye(n) sparse(n, 2); ...
                          -speye(n) speye(n) sparse(n, 2)], ...
                     domain = mosekdomain("greater than", dim = 2*n, rhs = zeros(2*n, 1)));

    % t2 >= sum(u)
    model.appendcons(F = [sparse(1, n), -ones(1, n), 0, 1], ...
                     domain = mosekdomain("greater than", rhs = 0));

    % Affine conic constraint for \|Fx-g\|_2
    model.appendcons(F = [sparse(1, 2*n) 1 0; ...
                          F sparse(k, n + 2)], ...
                     g = [0; -g], ...
                     domain = mosekdomain("quadratic cone", dim = k + 1));

    model.solve();
    xx = model.getsolution("any", "x");
    x = xx(1:n);
end

% P-norm minimization
% minimize \|Fx-g\|_p
function x = norm_p_norm(F,g,A,b,p)
    n = size(F,2);
    k = size(g,1);
    m = size(A,1);

    % A model with variables x(n), r(k) and t(1)
    model = mosekmodel(name = "norm_p_norm", numvar = n + k + 1, objective = [zeros(n + k, 1); 1]);

    % Linear constraints
    model.appendcons(F = [A, sparse(m, k + 1)], domain = mosekdomain("equal", dim = m, rhs = b));

    % t == sum(r)
    model.appendcons(F = [sparse(1, n), ones(1, k), -1], ...
                     domain = mosekdomain("equal", rhs = 0));

    % Permutation matrix which picks triples (r_i, t, F_ix-g_i)
    M = [];
    for i=1:3
      M = [M, sparse(i:3:3*k, 1:k, ones(k,1), 3*k, k)];
    end

    Fcon = M * [sparse(k, n), speye(k), sparse(k,1); ...
                sparse(k, n+k), ones(k, 1); ...
                F, sparse(k, k+1)];
    gcon = M * [sparse(2*k, 1); -g];

    model.appendcons(F = Fcon, g = gcon, ...
                     domain = mosekdomain("power cone", n = k, dim = 3, alpha = [1; p-1]));

    model.solve();
    xx = model.getsolution("any", "x");
    x = xx(1:n);
end

% Just a few columns of the Vandermode matrix
function M = smallVander(v, k)
M = [];
for i=0:k 
    M = [v.^i, M];
end
end

opt_server_sync.m

Listing 15.21 opt_server_sync.m Click here to download.
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File :      opt_server_sync.m
%
%  Purpose : Demonstrates solving a problem remotely using the OptServer.
%
%            url should be 'http://server:port' or 'https://server:port'
%            cert is the path to a TLS certificate, if using https
%

function opt_server_sync(url, cert)

% Here we can set up a model
model = mosekmodel(...
              objsense = "min", ...
              objective = [ 1, 2 ]', ...
              numvar = 2, ...
              F = [ 1 0 ; ...
                    0 1 ; ...
                    3 -1 ], ...
              domain = [ mosekdomain("greater than", rhs = 2), ... 
                         mosekdomain("greater than", rhs = 3), ... 
                         mosekdomain("less than", rhs = 1) ]);     


% Set up the certificate path, if using TLS, otherwise ignore
if exist('cert','var')
	param = ["MSK_SPAR_REMOTE_TLS_CERT_PATH", cert ];
else
	param = [];
end

% Optimize using the remote server
model.solve(param = param, optserver = url);

% Use the optimal solution
if model.hassolution("interior")
	xx = model.getsolution("interior", "x");
	disp(xx);
end

parameters.m

Listing 15.22 parameters.m Click here to download.
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File :      parameters.m
%
%  Purpose:    Demonstrates setting solver parameters and
%              retrieving information items.
%

function parameters()
    % Set up a small problem as an example
    model = mosekmodel(objsense = "min", ...
                       objective = [ 1, 2 ]', ...
                       numvar = 2, ...
                       F = [ 1 0 ; ...
                             0 1 ; ...
                             3 -1 ], ...
                       domain = [ mosekdomain("greater than", rhs = 2), ... 
                                  mosekdomain("greater than", rhs = 3), ...
                                  mosekdomain("less than", rhs = 1) ]);

    % Solve with a list of parameters
    model.solve(param = ["MSK_IPAR_LOG", "1", ...                           % Set log level (integer parameter)
                         "MSK_IPAR_CACHE_LICENSE", "MSK_OFF", ...           % Do not keep the license (integer parameter)
                         "MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7" ]);     % Set relative gap tolerance (double parameter)                      

    % Demonstrate information items after optimization
    fprintf("Optimizer time %.3f\n", model.info.MSK_DINF_OPTIMIZER_TIME);
    fprintf("#iterations    %d\n",   model.info.MSK_IINF_INTPNT_ITER);

end

pinfeas.m

Listing 15.23 pinfeas.m Click here to download.
%%
%  File : pinfeas.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Purpose: Demonstrates how to fetch a primal infeasibility certificate
%           for a linear problem
%%

function pinfeas()

% In this example we set up a simple problem
[model] = testProblem();

% Perform the optimization.
% For comparison with the following code, we will also
% ask MOSEK to print the infeasibility certificate to the log
% following optimization.
model.solve(param = ["MSK_IPAR_INFEAS_REPORT_AUTO", "MSK_ON"]);

% Check problem status
[hassol, prosta, solsta] = model.hassolution("interior");
if hassol && prosta == "PRIM_INFEAS"
    % Set the tolerance at which we consider a dual value as essential
    eps = 1e-7;

    % Obtain the dual values (contianing certificate)
    y = model.getsolution("interior", "y");

    % List all certificate entries with (sufficiently) nonzero dual values
    disp("Constraint rows participating in infeasibility: ");
    cert = find(abs(y) > eps);
    disp(cert);
else 
    disp("The problem is not primal infeasible, no certificate to show");
end

% Set up a simple linear problem from the manual for test purposes
function [model] = testProblem()
    model = mosekmodel(name = "pinfeas", numvar = 7, ...
                       objsense = "minimize", objective = [1 2 5 2 1 2 1]');
    model.appendcons(name = "s", ...
                     F = sparse([1,1,2,2,3,3,3], [1,2,3,4,5,6,7], [1,1,1,1,1,1,1]), ...
                     domain = mosekdomain("less than", dim = 3, rhs=[200, 1000, 1000]));
    model.appendcons(name = "d", ...
                     F = sparse([1,1,2,3,3,4,4], [1,5,2,3,6,4,7], [1,1,1,1,1,1,1]), ...
                     domain = mosekdomain("equals", dim = 4, rhs=[1100, 200, 500, 500]));
    model.appendcons(name = "low", F = speye(7), domain = mosekdomain("rplus", dim = 7));

portfolio_1_basic.m

Listing 15.24 portfolio_1_basic.m Click here to download.
%
%  File : portfolio_1_basic.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Purpose :   Implements a basic portfolio optimization model.
%
function [xx,prosta,solsta] = portfolio_1_basic()
    % Purpose:
    %     Computes the optimal portfolio for a given risk
    %
    % Input:
    %     n: Number of assets
    %     mu: An n dimmensional vector of expected returns
    %     GT: A matrix with n columns so (GT')*GT  = covariance matrix
    %     x0: Initial holdings
    %     w: Initial cash holding
    %     gamma: Maximum risk (=std. dev) accepted
    %
    % Output:
    %     Optimal expected return and the optimal portfolio

    n      = 8;
    w      = 59;
    mu     = [0.07197349 0.15518171 0.17535435 0.0898094  0.42895777 0.39291844 0.32170722 0.18378628]';
    x0     = [8.0 5.0 3.0 5.0 2.0 9.0 3.0 6.0]';
    gamma  = 36;
    GT     = [ 0.30758 0.12146 0.11341 0.11327 0.17625 0.11973 0.10435 0.10638; ...
               0.      0.25042 0.09946 0.09164 0.06692 0.08706 0.09173 0.08506; ...
               0.      0.      0.19914 0.05867 0.06453 0.07367 0.06468 0.01914; ...
               0.      0.      0.      0.20876 0.04933 0.03651 0.09381 0.07742; ...
               0.      0.      0.      0.      0.36096 0.12574 0.10157 0.0571 ; ...
               0.      0.      0.      0.      0.      0.21552 0.05663 0.06187; ...
               0.      0.      0.      0.      0.      0.      0.22514 0.03327; ...
               0.      0.      0.      0.      0.      0.      0.      0.2202 ];
    m = size(GT,1);

    model = mosekmodel(...
        name="Basic Markowitz", ...
        numvar = n, ...
        objsense = "maximize", ...
        objective = mu);

    % Bound on the variables (holdings). Shortselling is not allowed.
    model.appendcons(F = eye(n), domain = mosekdomain("nonnegative", n = n));
        
    % The amount invested  must be identical to initial wealth
    model.appendcons(F = ones(1, n), domain = mosekdomain("equal", rhs=w+sum(x0)));

    % Imposes a bound on the risk
    model.appendcons(F = [zeros(1,n); GT], g = [gamma; zeros(m,1)],...
                     domain = mosekdomain("qcone", dim = m+1));

    model.solve();

    % Check if the interior point solution is an optimal point
    % See https://docs.mosek.com/latest/matlabapi/accessing-solution.html about handling solution statuses.
    [ok,prosta,solsta] = model.hassolution("interior");
    if ~ ok || solsta ~= "OPTIMAL"
        error("Unexpected solution status");
    else
        xx = model.getsolution("interior","x");

        disp("\n-----------------------------------------------------------------------------------");
        disp("Basic Markowitz portfolio optimization");
        disp("-----------------------------------------------------------------------------------\n");
        fprintf("Expected return: %.4e Std. deviation: %.4e\n", mu' * xx, gamma);
    end

end

portfolio_2_frontier.m

Listing 15.25 portfolio_2_frontier.m Click here to download.
%
%  File : portfolio_2_frontier.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Purpose :   Implements a basic portfolio optimization model.
%              Computes points on the efficient frontier.
%
function [xx,prosta,solsta] = portfolio_2_frontier()
    %  Purpose:
    %      Computes several portfolios on the optimal portfolios by

    %          for alpha in alphas:
    %              maximize   expected return - alpha * variance
    %              subject to the constraints

    %  Input:
    %      n: Number of assets
    %      mu: An n dimmensional vector of expected returns
    %      GT: A matrix with n columns so (GT')*GT  = covariance matrix
    %      x0: Initial holdings
    %      w: Initial cash holding
    %      alphas: List of the alphas

    %  Output:
    %      The efficient frontier as list of tuples (alpha, expected return, variance)
    
    n      = 8;
    w      = 1.0;
    mu     = [0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.18379]';
    x0     = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
    GT     = [ 0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638;
               0.     , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506;
               0.     , 0.     , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914;
               0.     , 0.     , 0.     , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742;
               0.     , 0.     , 0.     , 0.     , 0.36096, 0.12574, 0.10157, 0.0571 ;
               0.     , 0.     , 0.     , 0.     , 0.     , 0.21552, 0.05663, 0.06187;
               0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.22514, 0.03327;
               0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.2202 ]; 

    % Some predefined alphas are chosen
    alphas = [ 0.0, 0.01, 0.1, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 10.0 ]';
    niter = size(alphas,1);
    frontier_mux = zeros(niter,1);
    frontier_s   = zeros(niter,1);

    for i = 1:niter
        alpha = alphas(i);
        model = mosekmodel(name = "Efficient frontier", numvar = n+1);

        % Defines the variables (holdings). Shortselling is not allowed.
        model.appendcons(F = speye(n), domain = mosekdomain("greater than", dim = n, rhs = zeros(n,1)));

        x_idxs = [1:n];
        s_idxs = n+1;

        model.appendcons(name = "budget", F = [ones(1,n) 0], domain = mosekdomain("equal", rhs = w + sum(x0)));

        % Computes the risk
        model.appendcons(name="variance", ...
                         F=[ sparse(1,n+1,[1.0],[1],[s_idxs]) ; ...
                             sparse(1,n+1) ; ...
                             GT zeros(n,1)], ...
                         g=[0; 0.5; zeros(n,1)], ...
                         domain = mosekdomain("rqcone", dim = n+2));

        %  Define objective as a weighted combination of return and variance
        model.objective("maximize", [ mu ; -alpha ]);

        % Solve the problem for the current alpha
        model.solve();

        % Check if the solution is an optimal point
        % See https://docs.mosek.com/latest/matlabapi/accessing-solution.html about handling solution statuses.
        [ok,prosta,solsta] = model.hassolution("interior");
        if ~ ok || solsta ~= "OPTIMAL"
            error("Unexpected solution status");
        else
            xx = model.getsolution("interior","x");
            x = xx(x_idxs,1);
            s = xx(s_idxs,1);

            frontier_mux(i,1) = mu' * x;
            frontier_s(i,1)   = s;
        end
    end

    fprintf("\n-----------------------------------------------------------------------------------\n");
    fprintf("Efficient frontier") ;
    fprintf("\n-----------------------------------------------------------------------------------\n");
    fprintf("\t%-12s  %-12s  %-12s\n", "alpha", "return", "std. dev.");

    sqrt_frontier_s = sqrt(frontier_s);
    for i = 1:niter
        fprintf("\t%-12.4f  %-12.4e  %-12.4e\n", alphas(i,1), frontier_mux(i,1), frontier_s(i,1));
    end

end

portfolio_3_impact.m

Listing 15.26 portfolio_3_impact.m Click here to download.
%%
%  File : portfolio_3_impact.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Description :  Implements a basic portfolio optimization model
%                 with transaction costs of order x^(3/2).
% 
%%

function [x,prosta,solsta] = portfolio_3_impact()

    %
    %        Description:
    %            Extends the basic Markowitz model with a market cost term.
    %
    %        Input:
    %            n: Number of assets
    %            mu: An n dimmensional vector of expected returns
    %            GT: A matrix with n columns so (GT')*GT  = covariance matrix
    %            x0: Initial holdings 
    %            w: Initial cash holding
    %            gamma: Maximum risk (=std. dev) accepted
    %            m: It is assumed that  market impact cost for the j'th asset is
    %               m_j|x_j-x0_j|^3/2
    %
    %        Output:
    %           Optimal portfolio (x)
    %

    n      = 8;
    w      = 1.0;
    mu     = [0.07197349 0.15518171 0.17535435 0.0898094 0.42895777 0.39291844 0.32170722 0.18378628]';
    x0     = [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]';
    gamma  = 0.36;
    GT     = [  0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638; ...
              0.     , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506; ...
              0.     , 0.     , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914; ...
              0.     , 0.     , 0.     , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742; ...
              0.     , 0.     , 0.     , 0.     , 0.36096, 0.12574, 0.10157, 0.0571 ; ...
              0.     , 0.     , 0.     , 0.     , 0.     , 0.21552, 0.05663, 0.06187; ...
              0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.22514, 0.03327; ...
              0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.2202 ];

    % Somewhat arbirtrary choice of m
    m = 1.0e-2*ones(n,1);

    % A model with variables (x, t)
    model = mosekmodel(name = "Impact", ...
                       numvar = n+n, ...
                       objsense = "maximize", ...
                       objective = [mu; zeros(n,1)]);

    % Linear constraint
    % [ e' m' ]  * [ x; t ]  =   w + e'*x0
    model.appendcons(name = "budget", F = [ ones(1,n), m' ], ...
                     domain = mosekdomain("equal", rhs = w + sum(x0)));

    % No shortselling, x >= 0 and no other bounds
    model.appendcons(F = speye(n, 2*n),  ...
                     domain = mosekdomain("greater than", dim = n, rhs = zeros(n,1)));

    % Affine conic constraint representing [ gamma, GT*x ] in quadratic cone
    model.appendcons(F = [sparse(1, 2*n); ...
                          GT, sparse(n, n)], ...
                     g = [gamma; zeros(n, 1)], ...
                     domain = mosekdomain("qcone", dim = n + 1));


    % Power cone constraints representing t(i) >= |x(i)-x0(i)|^1.5
    fi = [];
    fj = [];
    g  = [];
    fv = repmat([1; 1], n, 1);
    for k=1:n
      fi = [fi; 3*k-2; 3*k];
      fj = [fj; n+k; k];
      g  = [g; 0; 1; -x0(k)];
    end

    model.appendcons(name = "impact", ...
                     F = sparse(fi, fj, fv, 3*n, 2*n), g = g, ...
                     domain = mosekdomain("power cone", dim = 3, n = n, alpha = [2.0, 1.0]));

    model.solve();

    % Check if the solution is an optimal point
    % See https://docs.mosek.com/latest/matlabapi/accessing-solution.html about handling solution statuses.
    [ok,prosta,solsta] = model.hassolution("interior");
    if ~ ok || solsta ~= "OPTIMAL"
        error("Unexpected solution status");
    else
        xx = model.getsolution("interior","x");
        x = xx(1:n);
    end
end

portfolio_4_transcost.m

Listing 15.27 portfolio_4_transcost.m Click here to download.
%%
%  File : portfolio_4_transcost.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Description :  Implements a basic portfolio optimization model
%                 with fixed setup costs and transaction costs
%                 as a mixed-integer problem.
% 
%%

function [x,prosta,solsta] = portfolio_4_transcost()

    %
    %        Description:
    %            Extends the basic Markowitz model with a market cost term.
    %
    %        Input:
    %            n: Number of assets
    %            mu: An n dimmensional vector of expected returns
    %            GT: A matrix with n columns so (GT')*GT  = covariance matrix
    %            x0: Initial holdings 
    %            w: Initial cash holding
    %            gamma: Maximum risk (=std. dev) accepted
    %            f: If asset j is traded then a fixed cost f_j must be paid
    %            g: If asset j is traded then a cost g_j must be paid for each unit traded
    %
    %        Output:
    %           Optimal portfolio     
    %

    n      = 8;
    w      = 1.0;
    mu     = [0.07197349 0.15518171 0.17535435 0.0898094 0.42895777 0.39291844 0.32170722 0.18378628]';
    x0     = [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]';
    gamma  = 0.36;
    GT     = [  0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638; ...
                0.     , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506; ...
                0.     , 0.     , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914; ...
                0.     , 0.     , 0.     , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742; ...
                0.     , 0.     , 0.     , 0.     , 0.36096, 0.12574, 0.10157, 0.0571 ; ...
                0.     , 0.     , 0.     , 0.     , 0.     , 0.21552, 0.05663, 0.06187; ...
                0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.22514, 0.03327; ...
                0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.2202 ];

    f = 0.01*ones(n,1);
    g = 0.001*ones(n,1);

    % Upper bound on the traded amount
    u = w + sum(x0);

    % A model with variables (x, z, y)
    model = mosekmodel(name = "Impact", ...
                       numvar = n+n+n, ...
                       objsense = "maximize", ...
                       objective = [mu; zeros(n,1); zeros(n,1)], ...
                       intvars = 2*n+1:3*n);        % The variables y are integer

    % y is binary, ie. in [0,1]
    model.appendcons(F = [sparse(n,2*n) speye(n,n)], domain = mosekdomain("gt", dim = n, rhs = zeros(n,1)));
    model.appendcons(F = [sparse(n,2*n) speye(n,n)], domain = mosekdomain("lt", dim = n, rhs = ones(n,1)));

    % Linear constraints
    % [ e'  g'  f' ]   [ x ]  =   w + e'*x0
    % [ I  -I   0  ] * [ z ]  <=  x0
    % [ I   I   0  ]   [ y ]  >=  x0
    % [ 0   I  -U  ]          <=  0

    % Linear budget constraint
    model.appendcons(name = "budget", F = [ ones(1,n), g', f' ], ...
                     domain = mosekdomain("equal", rhs = u));

    % Linear absolute value model z >= |x-x0|
    model.appendcons(name = "abs1", F = [ speye(n) -speye(n) sparse(n,n) ], ...
                     domain = mosekdomain("lt", dim = n, rhs = x0));
    model.appendcons(name = "abs2", F = [ speye(n) speye(n) sparse(n,n) ], ...
                     domain = mosekdomain("gt", dim = n, rhs = x0));

    % "big-M" constraint z<=Uy
    model.appendcons(name = "bigM", F = [ sparse(n,n) speye(n) -u*speye(n) ], ...
                     domain = mosekdomain("lt", dim = n, rhs = zeros(n,1)));

    % No shortselling, x >= 0
    model.appendcons(F = speye(n, 3*n),  ...
                     domain = mosekdomain("greater than", dim = n, rhs = zeros(n,1)));

    % Affine conic constraint representing [ gamma, GT*x ] in quadratic cone
    model.appendcons(F = [sparse(1, 3*n); ...
                          GT, sparse(n, 2*n)], ...
                     g = [gamma; zeros(n, 1)], ...
                     domain = mosekdomain("qcone", dim = n + 1));

    model.solve();

    % Check if the solution is an optimal point
    % See https://docs.mosek.com/latest/matlabapi/accessing-solution.html about handling solution statuses.
    [ok,prosta,solsta] = model.hassolution("integer");
    if ~ ok || solsta ~= "INTEGER_OPTIMAL"
        error("Unexpected solution status");
    else
        xx = model.getsolution("integer","x");
        x = xx(1:n);
        y = xx(2*n+(1:n));
        z = xx(n+(1:n));
    end

    fprintf("\nMarkowitz portfolio optimization with transactions cost")
    fprintf("Expected return: %.4e Std. deviation: %.4e Transactions cost: %.4e", ...
                     mu'*x, gamma, f'*y+g'*z)
end

portfolio_5_card.m

Listing 15.28 portfolio_5_card.m Click here to download.
%%
%  File : portfolio_5_card.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Description :  Implements a basic portfolio optimization model
%                 with cardinality constraints on number of assets traded.
% 
%%
function portfolio_5_card()

    n      = 8;
    w      = 1.0;
    mu     = [0.07197349 0.15518171 0.17535435 0.0898094 0.42895777 0.39291844 0.32170722 0.18378628]';
    x0     = [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]';
    gamma  = 0.25;
    GT     = [  0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638; ...
                0.     , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506; ...
                0.     , 0.     , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914; ...
                0.     , 0.     , 0.     , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742; ...
                0.     , 0.     , 0.     , 0.     , 0.36096, 0.12574, 0.10157, 0.0571 ; ...
                0.     , 0.     , 0.     , 0.     , 0.     , 0.21552, 0.05663, 0.06187; ...
                0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.22514, 0.03327; ...
                0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.     , 0.2202 ];


    %
    %    Description:
    %        Extends the basic Markowitz model with cardinality constraints.
    %
    %    Input:
    %        n: Number of assets
    %        mu: An n dimensional vector of expected returns
    %        GT: A matrix with n columns so (GT')*GT  = covariance matrix
    %        x0: Initial holdings 
    %        w: Initial cash holding
    %        gamma: Maximum risk (=std. dev) accepted
    %        k: Maximum number of assets on which we allow to change position.
    %
    %    Output:
    %       Optimal portfolio     
    %

    fprintf("\nMarkowitz portfolio optimization with cardinality constraints\n");

    for k=1:n
        % Upper bound on the traded amount
        u = w + sum(x0);

        % A model with variables (x, z, y)
        model = mosekmodel(name = "Transaction costs", ...
                           numvar = n+n+n, ...
                           objsense = "maximize", ...
                           objective = [mu; zeros(n,1); zeros(n,1)], ...
                           intvars = 2*n+1:3*n);        % The variables y are integer

        % Linear constraints
        % [ e'  0   0  ]           =   w + e'*x0
        % [ I  -I   0  ]   [ x ]  <=  x0
        % [ I   I   0  ] * [ z ]  >=  x0
        % [ 0   I  -U  ]   [ y ]  <=  0
        % [ 0   0   e' ]          <=  k

        % Linear budget constraint
        model.appendcons(name = "budget", F = [ ones(1,n), zeros(1, 2*n) ], ...
                         domain = mosekdomain("equal", rhs = u));

        % Linear absolute value model z >= |x-x0|
        model.appendcons(name = "abs1", F = [ speye(n) -speye(n) sparse(n,n) ], ...
                         domain = mosekdomain("lt", dim = n, rhs = x0));
        model.appendcons(name = "abs2", F = [ speye(n) speye(n) sparse(n,n) ], ...
                         domain = mosekdomain("gt", dim = n, rhs = x0));

        % "big-M" constraint z<=Uy
        model.appendcons(name = "bigM", F = [ sparse(n,n) speye(n) -u*speye(n) ], ...
                         domain = mosekdomain("lt", dim = n, rhs = zeros(n,1)));

        % Cardinality bound sum(y) <= k
        model.appendcons(name = "card", F = [ zeros(1, 2*n) ones(1, n) ], ...
                         domain = mosekdomain("lt", rhs = k));

        % No shortselling, x >= 0
        model.appendcons(F = speye(n, 3*n),  ...
                         domain = mosekdomain("greater than", dim = n, rhs = zeros(n,1)));

        % Affine conic constraint representing [ gamma, GT*x ] in quadratic cone
        model.appendcons(F = [sparse(1, 3*n); ...
                              GT, sparse(n, 2*n)], ...
                         g = [gamma; zeros(n, 1)], ...
                         domain = mosekdomain("qcone", dim = n + 1));

        model.solve(quiet = true);

        % Check if the solution is an optimal point
        % See https://docs.mosek.com/latest/matlabapi/accessing-solution.html about handling solution statuses.
        [ok,prosta,solsta] = model.hassolution("integer");
        if ~ ok || solsta ~= "INTEGER_OPTIMAL"
            error("Unexpected solution status");
        else
            xx = model.getsolution("integer","x");
            x = xx(1:n);
            fprintf("Bound: %d   Expected return: %.4e  Solution: [ %s ]\n", k, mu'*x, sprintf("%.2g ", x));
        end
    end
end

portfolio_6_factor.m

Listing 15.29 portfolio_6_factor.m Click here to download.
%%
%  File : portfolio_6_factor.m
%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  Description :  Implements a basic portfolio optimization model
%                 of factor type.
% 
%%
function portfolio_6_factor()

    %
    %    Purpose:
    %        Computes the optimal portfolio for a given risk 
    %     
    %    Input:
    %        n: Number of assets
    %        mu: An n dimmensional vector of expected returns
    %        G_factor_T: The factor (dense) part of the factorized risk
    %        theta: specific risk vector
    %        x0: Initial holdings 
    %        w: Initial cash holding
    %        gamma: Maximum risk (=std. dev) accepted
    %     
    %    Output:
    %        Optimal expected return and the optimal portfolio     
    %

    n      = 8;
    w      = 1.0;
    mu     = [0.07197349 0.15518171 0.17535435 0.0898094 0.42895777 0.39291844 0.32170722 0.18378628]';
    x0     = [0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]';
    gammas = [0.24 0.28 0.32 0.36 0.4 0.44 0.48];

    B    = [ 0.4256, 0.1869; ...
             0.2413, 0.3877; ...
             0.2235, 0.3697; ...
             0.1503, 0.4612; ...
             1.5325, -0.2633; ...
             1.2741, -0.2613; ...
             0.6939, 0.2372; ...
             0.5425, 0.2116 ];

    S_F = [0.0620, 0.0577; ...
           0.0577, 0.0908 ];

    theta = [0.0720 0.0508 0.0377 0.0394 0.0663 0.0224 0.0417 0.0459];

    %% Compute the small factorization required for the model
    P  = chol(S_F)';
    G_factor  = B * P;
    G_factor_T = G_factor';

    fprintf("Basing Markowitz portfolio optimization using a factor model");
    for gamma = gammas
    
        % A model with variable x and maximized return
        model = mosekmodel(name = "Factor risk", ...
                           numvar = n, ...
                           objsense = "maximize", ...
                           objective = mu);

        % Linear budget constraint
        model.appendcons(name = "budget", F = ones(1,n), ...
                         domain = mosekdomain("equal", rhs = w + sum(x0)));

        % No shortselling, x >= 0
        model.appendcons(F = speye(n),  ...
                         domain = mosekdomain("greater than", dim = n, rhs = zeros(n,1)));

        % An affine conic constraint: [gamma, G_factor_T*x, sqrt(theta).'x ] in quadratic cone
        model.appendcons(name = "risk", ...
                         F = sparse([ zeros(1,n); G_factor_T; diag(sqrt(theta)) ]), ...
                         g = [gamma; zeros(size(G_factor_T, 1) + n, 1)], ...
                         domain = mosekdomain("qcone", dim = size(G_factor_T, 1) + n + 1 ));

        model.solve(quiet = true);

        % Check if the solution is an optimal point
        % See https://docs.mosek.com/latest/matlabapi/accessing-solution.html about handling solution statuses.
        [ok,prosta,solsta] = model.hassolution("interior");
        if ~ ok || solsta ~= "OPTIMAL"
            error("Unexpected solution status");
        else
            x = model.getsolution("interior","x");
            er = mu'*x;
            fprintf("Expected return: %.4e Std. deviation: %.4e\n", er, gamma);
        end
    end
end

pow1.m

Listing 15.30 pow1.m Click here to download.
%%
%   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%   File:      pow1.m
%
%   Purpose: Demonstrates how to solve the problem
%
%     maximize x^0.2*y^0.8 + z^0.4 - x
%           st x + y + 0.5z = 2
%              x,y,z >= 0
%
%%

function [xx,prosta,solsta] = pow1()
    model = mosekmodel(...
        name = "pow1",...
        numvar = 5);
    model.objective("maximize", [-1 0 0 1 1]);
    model.appendcons(F = [1 1 0.5], domain = mosekdomain("equal",rhs=2));
    model.appendcons(F = sparse([1 2 3],[1 2 4],[1.0 1.0 1.0]),       domain = mosekdomain("pow", dim=3, alpha=[0.2 0.8]));
    model.appendcons(F = sparse([1 3],[3 5],[1.0 1.0]), g = [0 1 0]', domain = mosekdomain("pow", dim=3, alpha=[0.4 0.6]));
    
    model.solve();
    if model.hassolution("interior")
        [xx,prosta,solsta] = model.getsolution("interior","x");
    end
end

reoptimization.m

Listing 15.31 reoptimization.m Click here to download.
%%
%  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File :      reoptimization.m
%
%  Purpose:   Demonstrates how to solve a  linear
%             optimization problem using the Conic Toolbox for Matlab
%             and modify and re-optimize the problem.
%%
function reoptimization()
    model = moseklinmodel(...
        name      = "reoptimization",...
        objsense  = "maximize", ... 
        numvar    = 7, ...
        blx = [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ]', ...
        bux = [ inf inf inf inf inf inf inf ]', ...
        b   = [ 100000.0 50000.0 60000.0 ]', ...
        ... %         x1  x2  x3  s1  s2  s3  s4
        objective = [ 1.5 2.5 3.0 0.0 0.0 0.0 0.0 ]', ...
        A         = [ 2.0 4.0 3.0 1.0 0.0 0.0 0.0 ; ...
                      3.0 2.0 3.0 0.0 1.0 0.0 0.0 ; ...
                      2.0 3.0 2.0 0.0 0.0 1.0 0.0 ]);
   
    model.solve();

    [result,prosta,solsta] = model.getsolution("x"); x = result';
    display(x);

    % Alter A and reoptimize
    fprintf("Update first row non-zeros\n");
    model.setrows([ 3.0 4.0 3.0 0.0 0.0 0.0 0.0 ], first=1);
    model.solve();

    [result,prosta,solsta] = model.getsolution("x"); x = result';
    display(x);

    % Add variable
    fprintf("Add variable\n");
    model.appendvars(1, ... 
                     bl = [ 0.0 ]', ...
                     A  = [ 4.0 0.0 1.0 ]', ...
                     c  = [ 1.0 ]);
    
    model.solve(param = [ "MSK_IPAR_OPTIMIZER","MSK_OPTIMIZER_FREE_SIMPLEX" ]);
    [result,prosta,solsta] = model.getsolution("x"); x = result';
    display(x);
   
    % Add constraint
    fprintf("Add constraints\n");
    %                  x1  x2  x3  s1  s2  s3  s4  x4
    model.appendcons([ 1.0 2.0 1.0 0.0 0.0 0.0 1.0 1.0 ], ...
                     [ 30000.0 ]);

    model.solve(param = [ "MSK_IPAR_OPTIMIZER","MSK_OPTIMIZER_FREE_SIMPLEX" ]);
    [result,prosta,solsta] = model.getsolution("x"); x = result';
    display(x);

    % Change bounds
    fprintf("Change bounds\n");
    model.setb([ 80000.0 40000.0 50000.0 22000.0 ]');
    
    model.solve(param = [ "MSK_IPAR_OPTIMIZER","MSK_OPTIMIZER_FREE_SIMPLEX" ]);
    [result,prosta,solsta] = model.getsolution("x"); x = result';
    display(x);
end

response.m

Listing 15.32 response.m Click here to download.
%%
%  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
%
%  File:      response.m
%
%  Purpose:   This example demonstrates the workflow for proper response handling
%

function response(args)
    % Ceate a simple model for the sake of the example
    model = mosekmodel(objsense = "min", ...
                       objective = [ 1, 2 ]', ...
                       numvar = 2, ...
                       F = [ 1 0 ; ...
                             0 1 ; ...
                             3 -1 ], ...
                       domain = [ mosekdomain("greater than", rhs = 2), ... 
                                  mosekdomain("greater than", rhs = 3), ...
                                  mosekdomain("less than", rhs = 1) ]);
    % Solve the model
    try
        model.solve();
    catch ME
        warning("An error during optimization; handle it here.");
        rethrow(ME);
    end
    
    % We check if the interior-point solution exists and what status it has
    [exists, prosta, solsta] = model.hassolution("interior");

    if exists
        disp("Solved the problem with statuses:");
        disp(prosta);
        disp(solsta);

        switch solsta
            case "OPTIMAL"
                disp("Optimal solution found:");
                x = model.getsolution("interior");
                disp(x);
            case "PRIM_INFEAS_CER"
                disp("The problem is primal infeasible.");
            case "DUAL_INFEAS_CER"
                disp("The problem is dual infeasible.");
            case "UNKNOWN"
                disp("Solution status UNKNOWN. This could indicate numerical issues");
            default
                disp("Another solution status:")
                disk(solsta)
        end
    else
        warning("Solution does not exists");
    end

end