# 7.3 Power Cone Optimization¶

Conic optimization is a generalization of linear optimization, allowing constraints of the type

$x^t \in \K_t,$

where $$x^t$$ is a subset of the problem variables and $$\K_t$$ is a convex cone. Since the set $$\real^n$$ of real numbers is also a convex cone, we can simply write a compound conic constraint $$x\in \K$$ where $$\K=\K_1\times\cdots\times\K_l$$ is a product of smaller cones and $$x$$ is the full problem variable.

MOSEK can solve conic optimization problems of the form

$\begin{split}\begin{array}{lccccl} \mbox{minimize} & & & c^T x + c^f & & \\ \mbox{subject to} & l^c & \leq & A x & \leq & u^c, \\ & l^x & \leq & x & \leq & u^x, \\ & & & x \in \K, & & \end{array}\end{split}$

where the domain restriction, $$x \in \K$$, implies that all variables are partitioned into convex cones

$x = (x^0, x^1, \ldots , x^{p-1}),\quad \mbox{with } x^t \in \K_t \subseteq \real^{n_t}.$

In this tutorial we describe how to use the power cone. The primal power cone of dimension $$n$$ with parameter $$0<\alpha<1$$ is defined as:

$\POW_n^{\alpha,1-\alpha} = \left\lbrace x \in \real^n: x_0^\alpha x_1^{1-\alpha}\geq\sqrt{\sum_{i=2}^{n-1}x_i^2},\ x_0,x_1\geq 0 \right\rbrace.$

In particular, the most important special case is the three-dimensional power cone family:

$\POW_3^{\alpha,1-\alpha} = \left\lbrace x \in \real^3: x_0^\alpha x_1^{1-\alpha}\geq |x_2|,\ x_0,x_1\geq 0 \right\rbrace.$

For example, the conic constraint $$(x,y,z)\in\POW_3^{0.25,0.75}$$ is equivalent to $$x^{0.25}y^{0.75}\geq |z|$$, or simply $$xy^3\geq z^4$$ with $$x,y\geq 0$$.

MOSEK also supports the dual power cone:

$\left(\POW_n^{\alpha,1-\alpha}\right)^{*} = \left\lbrace x \in \real^n: \left(\frac{x_0}{\alpha}\right)^\alpha \left(\frac{x_1}{1-\alpha}\right)^{1-\alpha}\geq\sqrt{\sum_{i=2}^{n-1}x_i^2},\ x_0,x_1\geq 0 \right\rbrace.$

For other types of cones supported by MOSEK see Sec. 7.2 (Conic Quadratic Optimization), Sec. 7.4 (Conic Exponential Optimization), Sec. 7.5 (Semidefinite Optimization). See Domain for a list and definitions of available cone types. Different cone types can appear together in one optimization problem.

In Fusion the coordinates of a cone are not restricted to single variables. They can be arbitrary linear expressions, and an auxiliary variable will be substituted by Fusion in a way transparent to the user.

## 7.3.1 Example POW1¶

Consider the following optimization problem which involves powers of variables:

(7.3)$\begin{split}\begin{array} {lrcl} \mbox{maximize} & x^{0.2}y^{0.8} + z^{0.4} - x & & \\ \mbox{subject to} & x+y+\frac12 z & = & 2, \\ & x,y,z & \geq & 0. \end{array}\end{split}$

With $$(x,y,z)=(x_0,x_1,x_2)$$ we convert it into conic form using auxiliary variables as bounds for the power expressions:

(7.4)$\begin{split}\begin{array} {lrcl} \mbox{maximize} & x_3 + x_4 - x_0 & & \\ \mbox{subject to} & x_0+x_1+\frac12 x_2 & = & 2, \\ & (x_0,x_1,x_3) & \in & \POW_3^{0.2,0.8}, \\ & (x_2,x_5,x_4) & \in & \POW_3^{0.4,0.6}, \\ & x_5 & = & 1. \end{array}\end{split}$

We start by creating the optimization model:

      using (Model M = new Model("pow1"))
{


We then define the variable x corresponding to the original problem (7.3), and auxiliary variables appearing in the conic reformulation (7.4).

        Variable x  = M.Variable("x", 3, Domain.Unbounded());
Variable x3 = M.Variable();
Variable x4 = M.Variable();


The linear constraint is defined using the dot product operator Expr.Dot:

        // Create the linear constraint
double[] aval = new double[] {1.0, 1.0, 0.5};
M.Constraint(Expr.Dot(x, aval), Domain.EqualsTo(2.0));


The primal power cone is referred to via Domain.InPPowerCone with an appropriate list of variables or expressions in each case.

        // Create the exponential conic constraint
// Create the conic constraints
M.Constraint(Var.Vstack(x.Slice(0,2), x3), Domain.InPPowerCone(0.2));
M.Constraint(Expr.Vstack(x.Index(2), 1.0, x4), Domain.InPPowerCone(0.4));


We only need the objective function:

        // Set the objective function
double[] cval = new double[] {1.0, 1.0, -1.0};
M.Objective(ObjectiveSense.Maximize, Expr.Dot(cval, Var.Vstack(x3, x4, x.Index(0))));


Calling the Model.Solve method invokes the solver:

        M.Solve();


The primal and dual solution values can be retrieved using Variable.Level, Constraint.Level and Variable.Dual, Constraint.Dual. Here we just display the primal solution

        double[] solx = x.Level();
Console.WriteLine("x,y,z = {0}, {1}, {2}", solx, solx, solx);


which is

[ 0.06389298  0.78308564  2.30604283 ]

Listing 7.3 Fusion implementation of model (7.3). Click here to download.
using System;
using mosek.fusion;

namespace mosek.fusion.example
{
public class pow1
{
public static void Main(string[] args)
{
using (Model M = new Model("pow1"))
{

Variable x  = M.Variable("x", 3, Domain.Unbounded());
Variable x3 = M.Variable();
Variable x4 = M.Variable();

// Create the linear constraint
double[] aval = new double[] {1.0, 1.0, 0.5};
M.Constraint(Expr.Dot(x, aval), Domain.EqualsTo(2.0));

// Create the exponential conic constraint
// Create the conic constraints
M.Constraint(Var.Vstack(x.Slice(0,2), x3), Domain.InPPowerCone(0.2));
M.Constraint(Expr.Vstack(x.Index(2), 1.0, x4), Domain.InPPowerCone(0.4));

// Set the objective function
double[] cval = new double[] {1.0, 1.0, -1.0};
M.Objective(ObjectiveSense.Maximize, Expr.Dot(cval, Var.Vstack(x3, x4, x.Index(0))));

// Solve the problem
M.Solve();

// Get the linear solution values
double[] solx = x.Level();
Console.WriteLine("x,y,z = {0}, {1}, {2}", solx, solx, solx);
}
}
}
}