11.9 Nearest Correlation Matrix Problem¶
A correlation matrix is a symmetric positive definite matrix with unit diagonal. This term has origins in statistics, since the matrix whose entries are the correlation coefficients of a sequence of random variables has all these properties.
In this section we study variants of the problem of approximating a given symmetric matrix
find the correlation matrix
nearest to in the Frobenius norm,find an approximation of the form
where is a diagonal matrix with positive diagonal and is a positive semidefinite matrix of low rank, using the combination of Frobenius and nuclear norm.
Both problems are related to portfolio optimization, where one can often have a matrix
11.9.1 Nearest correlation with the Frobenius norm¶
The Frobenius norm of a real matrix
and with respect to this norm our optimization problem can be expressed simply as:
We can exploit the symmetry of
Note that
/** Assuming that e is an NxN expression, return the lower triangular part as a vector.
*/
public static Expression vec(Expression e) {
int N = e.getShape()[0];
int[] msubi = new int[N * (N + 1) / 2];
int[] msubj = new int[N * (N + 1) / 2];
double[] mcof = new double[N * (N + 1) / 2];
for (int i = 0, k = 0; i < N; ++i)
for (int j = 0; j < i + 1; ++j, ++k) {
msubi[k] = k;
msubj[k] = i * N + j;
if (i == j) mcof[k] = 1.0;
else mcof[k] = Math.sqrt(2);
}
Matrix S = Matrix.sparse(N * (N + 1) / 2, N * N, msubi, msubj, mcof);
return Expr.mul(S, Expr.flatten(e));
}
That leads to an optimization problem with both conic quadratic and semidefinite constraints:
Code example
private static void nearestcorr(Matrix A)
throws SolutionError {
int N = A.numRows();
Model M = new Model("NearestCorrelation");
try {
// Setting up the variables
Variable X = M.variable("X", Domain.inPSDCone(N));
Variable t = M.variable("t", 1, Domain.unbounded());
// (t, vec (A-X)) \in Q
M.constraint( Expr.vstack(t, vec(Expr.sub( A, X))), Domain.inQCone() );
// diag(X) = e
M.constraint(X.diag(), Domain.equalsTo(1.0));
// Objective: Minimize t
M.objective(ObjectiveSense.Minimize, t);
// Solve the problem
M.solve();
// Get the solution values
System.out.println("X = \n" + mattostr(X.level(), N));
System.out.println("t = \n" + mattostr(t.level(), N));
} finally {
M.dispose();
}
}
We use the following input
int N = 5;
Matrix A = Matrix.dense(N, N,
new double[] { 0.0, 0.5, -0.1, -0.2, 0.5,
0.5, 1.25, -0.05, -0.1, 0.25,
-0.1, -0.05, 0.51, 0.02, -0.05,
-0.2, -0.1, 0.02, 0.54, -0.1,
0.5, 0.25, -0.05, -0.1, 1.25
});
The expected output is the following (small differences may apply):
X =
[[ 1. 0.50001941 -0.09999994 -0.20000084 0.50001941]
[ 0.50001941 1. -0.04999551 -0.09999154 0.24999101]
[-0.09999994 -0.04999551 1. 0.01999746 -0.04999551]
[-0.20000084 -0.09999154 0.01999746 1. -0.09999154]
[ 0.50001941 0.24999101 -0.04999551 -0.09999154 1. ]]
11.9.2 Nearest Correlation with Nuclear-norm Penalty¶
Next, we consider the approximation of
The combination of these constraints leads to a problem:
where the parameter
Exploit the mapping
Code example
/* Nearest correlation with nuclear norm penalty */
private static void nearestcorr_nn(Matrix A, double[] gammas, double[] res, int[] rank)
throws SolutionError {
int N = A.numRows();
Model M = new Model("NucNorm");
try {
// Setup variables
Variable t = M.variable("t", 1, Domain.unbounded());
Variable X = M.variable("X", Domain.inPSDCone(N));
Variable w = M.variable("w", N, Domain.greaterThan(0.0));
// (t, vec (X + diag(w) - A)) in Q
Expression D = Expr.mulElm( Matrix.eye(N), Var.repeat(w, N, 1) );
M.constraint( Expr.vstack( t, vec(Expr.sub(Expr.add(X, D), A)) ), Domain.inQCone() );
// Trace(X)
Expression TX = Expr.sum(X.diag());
for (int k = 0; k < gammas.length; ++k) {
// Objective: Minimize t + gamma*Tr(X)
M.objective(ObjectiveSense.Minimize, Expr.add(t, Expr.mul(gammas[k], TX)));
M.solve();
// Get the eigenvalues of X and approximate its rank
double[] d = new double[N];
LinAlg.syeig(mosek.uplo.lo, N, X.level(), d);
int rnk = 0; for (int i = 0; i < d.length; ++i) if (d[i] > 1e-6) ++rnk;
res[k] = t.level()[0];
rank[k] = rnk;
}
} finally {
M.dispose();
}
}
We feed MOSEK with the same input as in Sec. 11.9.1 (Nearest correlation with the Frobenius norm). The problem is solved for a range of values
--- Nearest Correlation with Nuclear Norm---
gamma=0.000000, res=3.076163e-01, rank=4
gamma=0.100000, res=4.251692e-01, rank=2
gamma=0.200000, res=5.112082e-01, rank=1
gamma=0.300000, res=5.298432e-01, rank=1
gamma=0.400000, res=5.592686e-01, rank=1
gamma=0.500000, res=6.045702e-01, rank=1
gamma=0.600000, res=6.764402e-01, rank=1
gamma=0.700000, res=8.009913e-01, rank=1
gamma=0.800000, res=1.062385e+00, rank=1
gamma=0.900000, res=1.129513e+00, rank=0
gamma=1.000000, res=1.129513e+00, rank=0