15.7 Parameters (alphabetical list sorted by type)¶
15.7.1 Double parameters¶
- dparam¶
The enumeration type containing all double parameters.
- dparam.ana_sol_infeas_tol¶
If a constraint violates its bound with an amount larger than this value, the constraint name, index and violation will be printed by the solution analyzer.
- Default
1e-6
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.ana_sol_infeas_tol, 1e-6)
- Generic name
MSK_DPAR_ANA_SOL_INFEAS_TOL
- Groups
- dparam.basis_rel_tol_s¶
Maximum relative dual bound violation allowed in an optimal basic solution.
- Default
1.0e-12
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.basis_rel_tol_s, 1.0e-12)
- Generic name
MSK_DPAR_BASIS_REL_TOL_S
- Groups
- dparam.basis_tol_s¶
Maximum absolute dual bound violation in an optimal basic solution.
- Default
1.0e-6
- Accepted
[1.0e-9; +inf]
- Example
task.putdouparam(dparam.basis_tol_s, 1.0e-6)
- Generic name
MSK_DPAR_BASIS_TOL_S
- Groups
- dparam.basis_tol_x¶
Maximum absolute primal bound violation allowed in an optimal basic solution.
- Default
1.0e-6
- Accepted
[1.0e-9; +inf]
- Example
task.putdouparam(dparam.basis_tol_x, 1.0e-6)
- Generic name
MSK_DPAR_BASIS_TOL_X
- Groups
- dparam.check_convexity_rel_tol¶
Not in use.
- Default
1e-10
- Accepted
[0; +inf]
- Example
task.putdouparam(dparam.check_convexity_rel_tol, 1e-10)
- Generic name
MSK_DPAR_CHECK_CONVEXITY_REL_TOL
- Groups
- dparam.data_sym_mat_tol¶
Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate a warning.
- Default
1.0e-12
- Accepted
[1.0e-16; 1.0e-6]
- Example
task.putdouparam(dparam.data_sym_mat_tol, 1.0e-12)
- Generic name
MSK_DPAR_DATA_SYM_MAT_TOL
- Groups
- dparam.data_sym_mat_tol_huge¶
An element in a symmetric matrix which is larger than this value in absolute size causes an error.
- Default
1.0e20
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_sym_mat_tol_huge, 1.0e20)
- Generic name
MSK_DPAR_DATA_SYM_MAT_TOL_HUGE
- Groups
- dparam.data_sym_mat_tol_large¶
An element in a symmetric matrix which is larger than this value in absolute size causes a warning message to be printed.
- Default
1.0e10
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_sym_mat_tol_large, 1.0e10)
- Generic name
MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
- Groups
- dparam.data_tol_aij_huge¶
An element in \(A\) which is larger than this value in absolute size causes an error.
- Default
1.0e20
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_tol_aij_huge, 1.0e20)
- Generic name
MSK_DPAR_DATA_TOL_AIJ_HUGE
- Groups
- dparam.data_tol_aij_large¶
An element in \(A\) which is larger than this value in absolute size causes a warning message to be printed.
- Default
1.0e10
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_tol_aij_large, 1.0e10)
- Generic name
MSK_DPAR_DATA_TOL_AIJ_LARGE
- Groups
- dparam.data_tol_bound_inf¶
Any bound which in absolute value is greater than this parameter is considered infinite.
- Default
1.0e16
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_tol_bound_inf, 1.0e16)
- Generic name
MSK_DPAR_DATA_TOL_BOUND_INF
- Groups
- dparam.data_tol_bound_wrn¶
If a bound value is larger than this value in absolute size, then a warning message is issued.
- Default
1.0e8
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_tol_bound_wrn, 1.0e8)
- Generic name
MSK_DPAR_DATA_TOL_BOUND_WRN
- Groups
- dparam.data_tol_c_huge¶
An element in \(c\) which is larger than the value of this parameter in absolute terms is considered to be huge and generates an error.
- Default
1.0e16
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_tol_c_huge, 1.0e16)
- Generic name
MSK_DPAR_DATA_TOL_C_HUGE
- Groups
- dparam.data_tol_cj_large¶
An element in \(c\) which is larger than this value in absolute terms causes a warning message to be printed.
- Default
1.0e8
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_tol_cj_large, 1.0e8)
- Generic name
MSK_DPAR_DATA_TOL_CJ_LARGE
- Groups
- dparam.data_tol_qij¶
Absolute zero tolerance for elements in \(Q\) matrices.
- Default
1.0e-16
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_tol_qij, 1.0e-16)
- Generic name
MSK_DPAR_DATA_TOL_QIJ
- Groups
- dparam.data_tol_x¶
Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound is less than this value, then the lower and upper bound is considered identical.
- Default
1.0e-8
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.data_tol_x, 1.0e-8)
- Generic name
MSK_DPAR_DATA_TOL_X
- Groups
- dparam.intpnt_co_tol_dfeas¶
Dual feasibility tolerance used by the interior-point optimizer for conic problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_co_tol_dfeas, 1.0e-8)
- See also
- Generic name
MSK_DPAR_INTPNT_CO_TOL_DFEAS
- Groups
Interior-point method, Termination criteria, Conic interior-point method
- dparam.intpnt_co_tol_infeas¶
Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.
- Default
1.0e-12
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_co_tol_infeas, 1.0e-12)
- Generic name
MSK_DPAR_INTPNT_CO_TOL_INFEAS
- Groups
Interior-point method, Termination criteria, Conic interior-point method
- dparam.intpnt_co_tol_mu_red¶
Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_co_tol_mu_red, 1.0e-8)
- Generic name
MSK_DPAR_INTPNT_CO_TOL_MU_RED
- Groups
Interior-point method, Termination criteria, Conic interior-point method
- dparam.intpnt_co_tol_near_rel¶
Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot compute a solution that has the prescribed accuracy then it will check if the solution found satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then the solution is also declared optimal.
- Default
1000
- Accepted
[1.0; +inf]
- Example
task.putdouparam(dparam.intpnt_co_tol_near_rel, 1000)
- Generic name
MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
- Groups
Interior-point method, Termination criteria, Conic interior-point method
- dparam.intpnt_co_tol_pfeas¶
Primal feasibility tolerance used by the interior-point optimizer for conic problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_co_tol_pfeas, 1.0e-8)
- See also
- Generic name
MSK_DPAR_INTPNT_CO_TOL_PFEAS
- Groups
Interior-point method, Termination criteria, Conic interior-point method
- dparam.intpnt_co_tol_rel_gap¶
Relative gap termination tolerance used by the interior-point optimizer for conic problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_co_tol_rel_gap, 1.0e-8)
- See also
- Generic name
MSK_DPAR_INTPNT_CO_TOL_REL_GAP
- Groups
Interior-point method, Termination criteria, Conic interior-point method
- dparam.intpnt_qo_tol_dfeas¶
Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_qo_tol_dfeas, 1.0e-8)
- See also
- Generic name
MSK_DPAR_INTPNT_QO_TOL_DFEAS
- Groups
- dparam.intpnt_qo_tol_infeas¶
Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.
- Default
1.0e-12
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_qo_tol_infeas, 1.0e-12)
- Generic name
MSK_DPAR_INTPNT_QO_TOL_INFEAS
- Groups
- dparam.intpnt_qo_tol_mu_red¶
Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_qo_tol_mu_red, 1.0e-8)
- Generic name
MSK_DPAR_INTPNT_QO_TOL_MU_RED
- Groups
- dparam.intpnt_qo_tol_near_rel¶
Optimality tolerance used by the interior-point optimizer for quadratic problems. If MOSEK cannot compute a solution that has the prescribed accuracy then it will check if the solution found satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then the solution is also declared optimal.
- Default
1000
- Accepted
[1.0; +inf]
- Example
task.putdouparam(dparam.intpnt_qo_tol_near_rel, 1000)
- Generic name
MSK_DPAR_INTPNT_QO_TOL_NEAR_REL
- Groups
- dparam.intpnt_qo_tol_pfeas¶
Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_qo_tol_pfeas, 1.0e-8)
- See also
- Generic name
MSK_DPAR_INTPNT_QO_TOL_PFEAS
- Groups
- dparam.intpnt_qo_tol_rel_gap¶
Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_qo_tol_rel_gap, 1.0e-8)
- See also
- Generic name
MSK_DPAR_INTPNT_QO_TOL_REL_GAP
- Groups
- dparam.intpnt_tol_dfeas¶
Dual feasibility tolerance used by the interior-point optimizer for linear problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_tol_dfeas, 1.0e-8)
- Generic name
MSK_DPAR_INTPNT_TOL_DFEAS
- Groups
- dparam.intpnt_tol_dsafe¶
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly and/or the constraint or variable bounds are very large, then it might be worthwhile to increase this value.
- Default
1.0
- Accepted
[1.0e-4; +inf]
- Example
task.putdouparam(dparam.intpnt_tol_dsafe, 1.0)
- Generic name
MSK_DPAR_INTPNT_TOL_DSAFE
- Groups
- dparam.intpnt_tol_infeas¶
Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.
- Default
1.0e-10
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_tol_infeas, 1.0e-10)
- Generic name
MSK_DPAR_INTPNT_TOL_INFEAS
- Groups
- dparam.intpnt_tol_mu_red¶
Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.
- Default
1.0e-16
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_tol_mu_red, 1.0e-16)
- Generic name
MSK_DPAR_INTPNT_TOL_MU_RED
- Groups
- dparam.intpnt_tol_path¶
Controls how close the interior-point optimizer follows the central path. A large value of this parameter means the central path is followed very closely. On numerically unstable problems it may be worthwhile to increase this parameter.
- Default
1.0e-8
- Accepted
[0.0; 0.9999]
- Example
task.putdouparam(dparam.intpnt_tol_path, 1.0e-8)
- Generic name
MSK_DPAR_INTPNT_TOL_PATH
- Groups
- dparam.intpnt_tol_pfeas¶
Primal feasibility tolerance used by the interior-point optimizer for linear problems.
- Default
1.0e-8
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_tol_pfeas, 1.0e-8)
- Generic name
MSK_DPAR_INTPNT_TOL_PFEAS
- Groups
- dparam.intpnt_tol_psafe¶
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be worthwhile to increase this value.
- Default
1.0
- Accepted
[1.0e-4; +inf]
- Example
task.putdouparam(dparam.intpnt_tol_psafe, 1.0)
- Generic name
MSK_DPAR_INTPNT_TOL_PSAFE
- Groups
- dparam.intpnt_tol_rel_gap¶
Relative gap termination tolerance used by the interior-point optimizer for linear problems.
- Default
1.0e-8
- Accepted
[1.0e-14; +inf]
- Example
task.putdouparam(dparam.intpnt_tol_rel_gap, 1.0e-8)
- Generic name
MSK_DPAR_INTPNT_TOL_REL_GAP
- Groups
- dparam.intpnt_tol_rel_step¶
Relative step size to the boundary for linear and quadratic optimization problems.
- Default
0.9999
- Accepted
[1.0e-4; 0.999999]
- Example
task.putdouparam(dparam.intpnt_tol_rel_step, 0.9999)
- Generic name
MSK_DPAR_INTPNT_TOL_REL_STEP
- Groups
- dparam.intpnt_tol_step_size¶
Minimal step size tolerance. If the step size falls below the value of this parameter, then the interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does not make any progress and therefore it is better to stop.
- Default
1.0e-6
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.intpnt_tol_step_size, 1.0e-6)
- Generic name
MSK_DPAR_INTPNT_TOL_STEP_SIZE
- Groups
- dparam.lower_obj_cut¶
If either a primal or dual feasible solution is found proving that the optimal objective value is outside the interval \([\)
dparam.lower_obj_cut
,dparam.upper_obj_cut
\(]\), then MOSEK is terminated.- Default
-1.0e30
- Accepted
[-inf; +inf]
- Example
task.putdouparam(dparam.lower_obj_cut, -1.0e30)
- See also
- Generic name
MSK_DPAR_LOWER_OBJ_CUT
- Groups
- dparam.lower_obj_cut_finite_trh¶
If the lower objective cut is less than the value of this parameter value, then the lower objective cut i.e.
dparam.lower_obj_cut
is treated as \(-\infty\).- Default
-0.5e30
- Accepted
[-inf; +inf]
- Example
task.putdouparam(dparam.lower_obj_cut_finite_trh, -0.5e30)
- Generic name
MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
- Groups
- dparam.mio_djc_max_bigm¶
Maximum allowed big-M value when reformulating disjunctive constraints to linear constraints. Higher values make it more likely that a disjunction is reformulated to linear constraints, but also increase the risk of numerical problems.
- Default
1.0e6
- Accepted
[0; +inf]
- Example
task.putdouparam(dparam.mio_djc_max_bigm, 1.0e6)
- Generic name
MSK_DPAR_MIO_DJC_MAX_BIGM
- Groups
- dparam.mio_max_time¶
This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number means infinity.
- Default
-1.0
- Accepted
[-inf; +inf]
- Example
task.putdouparam(dparam.mio_max_time, -1.0)
- Generic name
MSK_DPAR_MIO_MAX_TIME
- Groups
- dparam.mio_rel_gap_const¶
This value is used to compute the relative gap for the solution to an integer optimization problem.
- Default
1.0e-10
- Accepted
[1.0e-15; +inf]
- Example
task.putdouparam(dparam.mio_rel_gap_const, 1.0e-10)
- Generic name
MSK_DPAR_MIO_REL_GAP_CONST
- Groups
- dparam.mio_tol_abs_gap¶
Absolute optimality tolerance employed by the mixed-integer optimizer.
- Default
0.0
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.mio_tol_abs_gap, 0.0)
- Generic name
MSK_DPAR_MIO_TOL_ABS_GAP
- Groups
- dparam.mio_tol_abs_relax_int¶
Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance then an integer constraint is assumed to be satisfied.
- Default
1.0e-5
- Accepted
[1e-9; +inf]
- Example
task.putdouparam(dparam.mio_tol_abs_relax_int, 1.0e-5)
- Generic name
MSK_DPAR_MIO_TOL_ABS_RELAX_INT
- Groups
- dparam.mio_tol_feas¶
Feasibility tolerance for mixed integer solver.
- Default
1.0e-6
- Accepted
[1e-9; 1e-3]
- Example
task.putdouparam(dparam.mio_tol_feas, 1.0e-6)
- Generic name
MSK_DPAR_MIO_TOL_FEAS
- Groups
- dparam.mio_tol_rel_dual_bound_improvement¶
If the relative improvement of the dual bound is smaller than this value, the solver will terminate the root cut generation. A value of 0.0 means that the value is selected automatically.
- Default
0.0
- Accepted
[0.0; 1.0]
- Example
task.putdouparam(dparam.mio_tol_rel_dual_bound_improvement, 0.0)
- Generic name
MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
- Groups
- dparam.mio_tol_rel_gap¶
Relative optimality tolerance employed by the mixed-integer optimizer.
- Default
1.0e-4
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.mio_tol_rel_gap, 1.0e-4)
- Generic name
MSK_DPAR_MIO_TOL_REL_GAP
- Groups
- dparam.optimizer_max_ticks¶
CURRENTLY NOT IN USE.
Maximum amount of ticks the optimizer is allowed to spent on the optimization. A negative number means infinity.
- Default
-1.0
- Accepted
[-inf; +inf]
- Example
task.putdouparam(dparam.optimizer_max_ticks, -1.0)
- Generic name
MSK_DPAR_OPTIMIZER_MAX_TICKS
- Groups
- dparam.optimizer_max_time¶
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number means infinity.
- Default
-1.0
- Accepted
[-inf; +inf]
- Example
task.putdouparam(dparam.optimizer_max_time, -1.0)
- Generic name
MSK_DPAR_OPTIMIZER_MAX_TIME
- Groups
- dparam.presolve_tol_abs_lindep¶
Absolute tolerance employed by the linear dependency checker.
- Default
1.0e-6
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.presolve_tol_abs_lindep, 1.0e-6)
- Generic name
MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
- Groups
- dparam.presolve_tol_aij¶
Absolute zero tolerance employed for \(a_{ij}\) in the presolve.
- Default
1.0e-12
- Accepted
[1.0e-15; +inf]
- Example
task.putdouparam(dparam.presolve_tol_aij, 1.0e-12)
- Generic name
MSK_DPAR_PRESOLVE_TOL_AIJ
- Groups
- dparam.presolve_tol_primal_infeas_perturbation¶
The presolve is allowed to perturb a bound on a constraint or variable by this amount if it removes an infeasibility.
- Default
1.0e-6
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.presolve_tol_primal_infeas_perturbation, 1.0e-6)
- Generic name
MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION
- Groups
- dparam.presolve_tol_rel_lindep¶
Relative tolerance employed by the linear dependency checker.
- Default
1.0e-10
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.presolve_tol_rel_lindep, 1.0e-10)
- Generic name
MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
- Groups
- dparam.presolve_tol_s¶
Absolute zero tolerance employed for \(s_i\) in the presolve.
- Default
1.0e-8
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.presolve_tol_s, 1.0e-8)
- Generic name
MSK_DPAR_PRESOLVE_TOL_S
- Groups
- dparam.presolve_tol_x¶
Absolute zero tolerance employed for \(x_j\) in the presolve.
- Default
1.0e-8
- Accepted
[0.0; +inf]
- Example
task.putdouparam(dparam.presolve_tol_x, 1.0e-8)
- Generic name
MSK_DPAR_PRESOLVE_TOL_X
- Groups
- dparam.qcqo_reformulate_rel_drop_tol¶
This parameter determines when columns are dropped in incomplete Cholesky factorization during reformulation of quadratic problems.
- Default
1e-15
- Accepted
[0; +inf]
- Example
task.putdouparam(dparam.qcqo_reformulate_rel_drop_tol, 1e-15)
- Generic name
MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL
- Groups
- dparam.semidefinite_tol_approx¶
Tolerance to define a matrix to be positive semidefinite.
- Default
1.0e-10
- Accepted
[1.0e-15; +inf]
- Example
task.putdouparam(dparam.semidefinite_tol_approx, 1.0e-10)
- Generic name
MSK_DPAR_SEMIDEFINITE_TOL_APPROX
- Groups
- dparam.sim_lu_tol_rel_piv¶
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex optimizers and in the basis identification procedure. A value closer to 1.0 generally improves numerical stability but typically also implies an increase in the computational work.
- Default
0.01
- Accepted
[1.0e-6; 0.999999]
- Example
task.putdouparam(dparam.sim_lu_tol_rel_piv, 0.01)
- Generic name
MSK_DPAR_SIM_LU_TOL_REL_PIV
- Groups
- dparam.simplex_abs_tol_piv¶
Absolute pivot tolerance employed by the simplex optimizers.
- Default
1.0e-7
- Accepted
[1.0e-12; +inf]
- Example
task.putdouparam(dparam.simplex_abs_tol_piv, 1.0e-7)
- Generic name
MSK_DPAR_SIMPLEX_ABS_TOL_PIV
- Groups
- dparam.upper_obj_cut¶
If either a primal or dual feasible solution is found proving that the optimal objective value is outside the interval \([\)
dparam.lower_obj_cut
,dparam.upper_obj_cut
\(]\), then MOSEK is terminated.- Default
1.0e30
- Accepted
[-inf; +inf]
- Example
task.putdouparam(dparam.upper_obj_cut, 1.0e30)
- See also
- Generic name
MSK_DPAR_UPPER_OBJ_CUT
- Groups
- dparam.upper_obj_cut_finite_trh¶
If the upper objective cut is greater than the value of this parameter, then the upper objective cut
dparam.upper_obj_cut
is treated as \(\infty\).- Default
0.5e30
- Accepted
[-inf; +inf]
- Example
task.putdouparam(dparam.upper_obj_cut_finite_trh, 0.5e30)
- Generic name
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
- Groups
15.7.2 Integer parameters¶
- iparam¶
The enumeration type containing all integer parameters.
- iparam.ana_sol_basis¶
Controls whether the basis matrix is analyzed in solution analyzer.
- iparam.ana_sol_print_violated¶
A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All constraints violated by more than the value set by the parameter
dparam.ana_sol_infeas_tol
will be printed.
- iparam.auto_sort_a_before_opt¶
Controls whether the elements in each column of \(A\) are sorted before an optimization is performed. This is not required but makes the optimization more deterministic.
- iparam.auto_update_sol_info¶
Controls whether the solution information items are automatically updated after an optimization is performed.
- Default
- Accepted
- Example
task.putintparam(iparam.auto_update_sol_info, onoffkey.off.value)
- Generic name
MSK_IPAR_AUTO_UPDATE_SOL_INFO
- Groups
- iparam.basis_solve_use_plus_one¶
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with -1 in the right position. However, if this parameter is set to
onoffkey.on
, -1 is replaced by 1.This has significance for the results returned by the
Task.solvewithbasis
function.- Default
- Accepted
- Example
task.putintparam(iparam.basis_solve_use_plus_one, onoffkey.off.value)
- Generic name
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
- Groups
- iparam.bi_clean_optimizer¶
Controls which simplex optimizer is used in the clean-up phase. Anything else than
optimizertype.primal_simplex
oroptimizertype.dual_simplex
is equivalent tooptimizertype.free_simplex
.- Default
- Accepted
free
,intpnt
,conic
,primal_simplex
,dual_simplex
,free_simplex
,mixed_int
(seeoptimizertype
)- Example
task.putintparam(iparam.bi_clean_optimizer, optimizertype.free.value)
- Generic name
MSK_IPAR_BI_CLEAN_OPTIMIZER
- Groups
- iparam.bi_ignore_max_iter¶
If the parameter
iparam.intpnt_basis
has the valuebasindtype.no_error
and the interior-point optimizer has terminated due to maximum number of iterations, then basis identification is performed if this parameter has the valueonoffkey.on
.- Default
- Accepted
- Example
task.putintparam(iparam.bi_ignore_max_iter, onoffkey.off.value)
- Generic name
MSK_IPAR_BI_IGNORE_MAX_ITER
- Groups
- iparam.bi_ignore_num_error¶
If the parameter
iparam.intpnt_basis
has the valuebasindtype.no_error
and the interior-point optimizer has terminated due to a numerical problem, then basis identification is performed if this parameter has the valueonoffkey.on
.- Default
- Accepted
- Example
task.putintparam(iparam.bi_ignore_num_error, onoffkey.off.value)
- Generic name
MSK_IPAR_BI_IGNORE_NUM_ERROR
- Groups
- iparam.bi_max_iterations¶
Controls the maximum number of simplex iterations allowed to optimize a basis after the basis identification.
- Default
1000000
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.bi_max_iterations, 1000000)
- Generic name
MSK_IPAR_BI_MAX_ITERATIONS
- Groups
- iparam.cache_license¶
Specifies if the license is kept checked out for the lifetime of the MOSEK environment/model/process (
onoffkey.on
) or returned to the server immediately after the optimization (onoffkey.off
).By default the license is checked out for the lifetime of the MOSEK environment by the first call to
Task.optimize
.Check-in and check-out of licenses have an overhead. Frequent communication with the license server should be avoided.
- Default
- Accepted
- Example
task.putintparam(iparam.cache_license, onoffkey.on.value)
- Generic name
MSK_IPAR_CACHE_LICENSE
- Groups
- iparam.compress_statfile¶
Control compression of stat files.
- iparam.infeas_generic_names¶
Controls whether generic names are used when an infeasible subproblem is created.
- Default
- Accepted
- Example
task.putintparam(iparam.infeas_generic_names, onoffkey.off.value)
- Generic name
MSK_IPAR_INFEAS_GENERIC_NAMES
- Groups
- iparam.infeas_prefer_primal¶
If both certificates of primal and dual infeasibility are supplied then only the primal is used when this option is turned on.
- Default
- Accepted
- Example
task.putintparam(iparam.infeas_prefer_primal, onoffkey.on.value)
- Generic name
MSK_IPAR_INFEAS_PREFER_PRIMAL
- Groups
- iparam.infeas_report_auto¶
Controls whether an infeasibility report is automatically produced after the optimization if the problem is primal or dual infeasible.
- Default
- Accepted
- Example
task.putintparam(iparam.infeas_report_auto, onoffkey.off.value)
- Generic name
MSK_IPAR_INFEAS_REPORT_AUTO
- Groups
- iparam.infeas_report_level¶
Controls the amount of information presented in an infeasibility report. Higher values imply more information.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.infeas_report_level, 1)
- Generic name
MSK_IPAR_INFEAS_REPORT_LEVEL
- Groups
- iparam.intpnt_basis¶
Controls whether the interior-point optimizer also computes an optimal basis.
- Default
- Accepted
never
,always
,no_error
,if_feasible
,reservered
(seebasindtype
)- Example
task.putintparam(iparam.intpnt_basis, basindtype.always.value)
- See also
iparam.bi_ignore_max_iter
,iparam.bi_ignore_num_error
,iparam.bi_max_iterations
,iparam.bi_clean_optimizer
- Generic name
MSK_IPAR_INTPNT_BASIS
- Groups
- iparam.intpnt_diff_step¶
Controls whether different step sizes are allowed in the primal and dual space.
- Default
- Accepted
- Example
task.putintparam(iparam.intpnt_diff_step, onoffkey.on.value)
- Generic name
MSK_IPAR_INTPNT_DIFF_STEP
- Groups
- iparam.intpnt_hotstart¶
Currently not in use.
- Default
- Accepted
none
,primal
,dual
,primal_dual
(seeintpnthotstart
)- Example
task.putintparam(iparam.intpnt_hotstart, intpnthotstart.none.value)
- Generic name
MSK_IPAR_INTPNT_HOTSTART
- Groups
- iparam.intpnt_max_iterations¶
Controls the maximum number of iterations allowed in the interior-point optimizer.
- Default
400
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.intpnt_max_iterations, 400)
- Generic name
MSK_IPAR_INTPNT_MAX_ITERATIONS
- Groups
- iparam.intpnt_max_num_cor¶
Controls the maximum number of correctors allowed by the multiple corrector procedure. A negative value means that MOSEK is making the choice.
- Default
-1
- Accepted
[-1; +inf]
- Example
task.putintparam(iparam.intpnt_max_num_cor, -1)
- Generic name
MSK_IPAR_INTPNT_MAX_NUM_COR
- Groups
- iparam.intpnt_max_num_refinement_steps¶
Maximum number of steps to be used by the iterative refinement of the search direction. A negative value implies that the optimizer chooses the maximum number of iterative refinement steps.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.intpnt_max_num_refinement_steps, -1)
- Generic name
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
- Groups
- iparam.intpnt_off_col_trh¶
Controls how many offending columns are detected in the Jacobian of the constraint matrix.
\(0\)
no detection
\(1\)
aggressive detection
\(>1\)
higher values mean less aggressive detection
- Default
40
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.intpnt_off_col_trh, 40)
- Generic name
MSK_IPAR_INTPNT_OFF_COL_TRH
- Groups
- iparam.intpnt_order_gp_num_seeds¶
The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead to a better ordering. This parameter controls the number of random seeds tried.
A value of 0 means that MOSEK makes the choice.
- Default
0
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.intpnt_order_gp_num_seeds, 0)
- Generic name
MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS
- Groups
- iparam.intpnt_order_method¶
Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton equation system.
- Default
- Accepted
free
,appminloc
,experimental
,try_graphpar
,force_graphpar
,none
(seeorderingtype
)- Example
task.putintparam(iparam.intpnt_order_method, orderingtype.free.value)
- Generic name
MSK_IPAR_INTPNT_ORDER_METHOD
- Groups
- iparam.intpnt_purify¶
Currently not in use.
- Default
- Accepted
- Example
task.putintparam(iparam.intpnt_purify, purify.none.value)
- Generic name
MSK_IPAR_INTPNT_PURIFY
- Groups
- iparam.intpnt_regularization_use¶
Controls whether regularization is allowed.
- Default
- Accepted
- Example
task.putintparam(iparam.intpnt_regularization_use, onoffkey.on.value)
- Generic name
MSK_IPAR_INTPNT_REGULARIZATION_USE
- Groups
- iparam.intpnt_scaling¶
Controls how the problem is scaled before the interior-point optimizer is used.
- Default
- Accepted
free
,none
(seescalingtype
)- Example
task.putintparam(iparam.intpnt_scaling, scalingtype.free.value)
- Generic name
MSK_IPAR_INTPNT_SCALING
- Groups
- iparam.intpnt_solve_form¶
Controls whether the primal or the dual problem is solved.
- iparam.intpnt_starting_point¶
Starting point used by the interior-point optimizer.
- Default
- Accepted
free
,guess
,constant
(seestartpointtype
)- Example
task.putintparam(iparam.intpnt_starting_point, startpointtype.free.value)
- Generic name
MSK_IPAR_INTPNT_STARTING_POINT
- Groups
- iparam.license_debug¶
This option is used to turn on debugging of the license manager.
- Default
- Accepted
- Example
task.putintparam(iparam.license_debug, onoffkey.off.value)
- Generic name
MSK_IPAR_LICENSE_DEBUG
- Groups
- iparam.license_pause_time¶
If
iparam.license_wait
isonoffkey.on
and no license is available, then MOSEK sleeps a number of milliseconds between each check of whether a license has become free.- Default
100
- Accepted
[0; 1000000]
- Example
task.putintparam(iparam.license_pause_time, 100)
- Generic name
MSK_IPAR_LICENSE_PAUSE_TIME
- Groups
- iparam.license_suppress_expire_wrns¶
Controls whether license features expire warnings are suppressed.
- Default
- Accepted
- Example
task.putintparam(iparam.license_suppress_expire_wrns, onoffkey.off.value)
- Generic name
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS
- Groups
- iparam.license_trh_expiry_wrn¶
If a license feature expires in a numbers of days less than the value of this parameter then a warning will be issued.
- Default
7
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.license_trh_expiry_wrn, 7)
- Generic name
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
- Groups
- iparam.license_wait¶
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter MOSEK will wait for an available license.
- Default
- Accepted
- Example
task.putintparam(iparam.license_wait, onoffkey.off.value)
- Generic name
MSK_IPAR_LICENSE_WAIT
- Groups
- iparam.log¶
Controls the amount of log information. The value 0 implies that all log information is suppressed. A higher level implies that more information is logged.
Please note that if a task is employed to solve a sequence of optimization problems the value of this parameter is reduced by the value of
iparam.log_cut_second_opt
for the second and any subsequent optimizations.- Default
10
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log, 10)
- See also
- Generic name
MSK_IPAR_LOG
- Groups
- iparam.log_ana_pro¶
Controls amount of output from the problem analyzer.
- iparam.log_bi¶
Controls the amount of output printed by the basis identification procedure. A higher level implies that more information is logged.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_bi, 1)
- Generic name
MSK_IPAR_LOG_BI
- Groups
- iparam.log_bi_freq¶
Controls how frequently the optimizer outputs information about the basis identification and how frequent the user-defined callback function is called.
- Default
2500
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_bi_freq, 2500)
- Generic name
MSK_IPAR_LOG_BI_FREQ
- Groups
- iparam.log_cut_second_opt¶
If a task is employed to solve a sequence of optimization problems, then the value of the log levels is reduced by the value of this parameter. E.g
iparam.log
andiparam.log_sim
are reduced by the value of this parameter for the second and any subsequent optimizations.- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_cut_second_opt, 1)
- See also
iparam.log
,iparam.log_intpnt
,iparam.log_mio
,iparam.log_sim
- Generic name
MSK_IPAR_LOG_CUT_SECOND_OPT
- Groups
- iparam.log_expand¶
Controls the amount of logging when a data item such as the maximum number constrains is expanded.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_expand, 1)
- Generic name
MSK_IPAR_LOG_EXPAND
- Groups
- iparam.log_feas_repair¶
Controls the amount of output printed when performing feasibility repair. A value higher than one means extensive logging.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_feas_repair, 1)
- Generic name
MSK_IPAR_LOG_FEAS_REPAIR
- Groups
- iparam.log_file¶
If turned on, then some log info is printed when a file is written or read.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_file, 1)
- Generic name
MSK_IPAR_LOG_FILE
- Groups
- iparam.log_include_summary¶
If on, then the solution summary will be printed by
Task.optimize
, so a separate call toTask.solutionsummary
is not necessary.
- iparam.log_infeas_ana¶
Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies that more information is logged.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_infeas_ana, 1)
- Generic name
MSK_IPAR_LOG_INFEAS_ANA
- Groups
- iparam.log_intpnt¶
Controls amount of output printed by the interior-point optimizer. A higher level implies that more information is logged.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_intpnt, 1)
- Generic name
MSK_IPAR_LOG_INTPNT
- Groups
- iparam.log_local_info¶
Controls whether local identifying information like environment variables, filenames, IP addresses etc. are printed to the log.
Note that this will only affect some functions. Some functions that specifically emit system information will not be affected.
- iparam.log_mio¶
Controls the log level for the mixed-integer optimizer. A higher level implies that more information is logged.
- Default
4
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_mio, 4)
- Generic name
MSK_IPAR_LOG_MIO
- Groups
- iparam.log_mio_freq¶
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time
iparam.log_mio_freq
relaxations have been solved.- Default
10
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.log_mio_freq, 10)
- Generic name
MSK_IPAR_LOG_MIO_FREQ
- Groups
- iparam.log_order¶
If turned on, then factor lines are added to the log.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_order, 1)
- Generic name
MSK_IPAR_LOG_ORDER
- Groups
- iparam.log_presolve¶
Controls amount of output printed by the presolve procedure. A higher level implies that more information is logged.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_presolve, 1)
- Generic name
MSK_IPAR_LOG_PRESOLVE
- Groups
- iparam.log_response¶
Controls amount of output printed when response codes are reported. A higher level implies that more information is logged.
- Default
0
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_response, 0)
- Generic name
MSK_IPAR_LOG_RESPONSE
- Groups
- iparam.log_sensitivity¶
Controls the amount of logging during the sensitivity analysis.
\(0\). Means no logging information is produced.
\(1\). Timing information is printed.
\(2\). Sensitivity results are printed.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_sensitivity, 1)
- Generic name
MSK_IPAR_LOG_SENSITIVITY
- Groups
- iparam.log_sensitivity_opt¶
Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0 means no logging information is produced.
- Default
0
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_sensitivity_opt, 0)
- Generic name
MSK_IPAR_LOG_SENSITIVITY_OPT
- Groups
- iparam.log_sim¶
Controls amount of output printed by the simplex optimizer. A higher level implies that more information is logged.
- Default
4
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_sim, 4)
- Generic name
MSK_IPAR_LOG_SIM
- Groups
- iparam.log_sim_freq¶
Controls how frequent the simplex optimizer outputs information about the optimization and how frequent the user-defined callback function is called.
- Default
1000
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_sim_freq, 1000)
- Generic name
MSK_IPAR_LOG_SIM_FREQ
- Groups
- iparam.log_sim_minor¶
Currently not in use.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_sim_minor, 1)
- Generic name
MSK_IPAR_LOG_SIM_MINOR
- Groups
- iparam.log_storage¶
When turned on, MOSEK prints messages regarding the storage usage and allocation.
- Default
0
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.log_storage, 0)
- Generic name
MSK_IPAR_LOG_STORAGE
- Groups
- iparam.max_num_warnings¶
Each warning is shown a limited number of times controlled by this parameter. A negative value is identical to infinite number of times.
- Default
10
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.max_num_warnings, 10)
- Generic name
MSK_IPAR_MAX_NUM_WARNINGS
- Groups
- iparam.mio_branch_dir¶
Controls whether the mixed-integer optimizer is branching up or down by default.
- iparam.mio_conic_outer_approximation¶
If this option is turned on outer approximation is used when solving relaxations of conic problems; otherwise interior point is used.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_conic_outer_approximation, onoffkey.off.value)
- Generic name
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
- Groups
- iparam.mio_construct_sol¶
If set to
onoffkey.on
and all integer variables have been given a value for which a feasible mixed integer solution exists, then MOSEK generates an initial solution to the mixed integer problem by fixing all integer values and solving the remaining problem.- Default
- Accepted
- Example
task.putintparam(iparam.mio_construct_sol, onoffkey.off.value)
- Generic name
MSK_IPAR_MIO_CONSTRUCT_SOL
- Groups
- iparam.mio_cut_clique¶
Controls whether clique cuts should be generated.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_cut_clique, onoffkey.on.value)
- Generic name
MSK_IPAR_MIO_CUT_CLIQUE
- Groups
- iparam.mio_cut_cmir¶
Controls whether mixed integer rounding cuts should be generated.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_cut_cmir, onoffkey.on.value)
- Generic name
MSK_IPAR_MIO_CUT_CMIR
- Groups
- iparam.mio_cut_gmi¶
Controls whether GMI cuts should be generated.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_cut_gmi, onoffkey.on.value)
- Generic name
MSK_IPAR_MIO_CUT_GMI
- Groups
- iparam.mio_cut_implied_bound¶
Controls whether implied bound cuts should be generated.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_cut_implied_bound, onoffkey.on.value)
- Generic name
MSK_IPAR_MIO_CUT_IMPLIED_BOUND
- Groups
- iparam.mio_cut_knapsack_cover¶
Controls whether knapsack cover cuts should be generated.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_cut_knapsack_cover, onoffkey.on.value)
- Generic name
MSK_IPAR_MIO_CUT_KNAPSACK_COVER
- Groups
- iparam.mio_cut_lipro¶
Controls whether lift-and-project cuts should be generated.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_cut_lipro, onoffkey.off.value)
- Generic name
MSK_IPAR_MIO_CUT_LIPRO
- Groups
- iparam.mio_cut_selection_level¶
Controls how aggressively generated cuts are selected to be included in the relaxation.
\(-1\). The optimizer chooses the level of cut selection
\(0\). Generated cuts less likely to be added to the relaxation
\(1\). Cuts are more aggressively selected to be included in the relaxation
- Default
-1
- Accepted
[-1; +1]
- Example
task.putintparam(iparam.mio_cut_selection_level, -1)
- Generic name
MSK_IPAR_MIO_CUT_SELECTION_LEVEL
- Groups
- iparam.mio_data_permutation_method¶
Controls what problem data permutation method is appplied to mixed-integer problems.
- Default
- Accepted
none
,cyclic_shift
,random
(seemiodatapermmethod
)- Example
task.putintparam(iparam.mio_data_permutation_method, miodatapermmethod.none.value)
- Generic name
MSK_IPAR_MIO_DATA_PERMUTATION_METHOD
- Groups
- iparam.mio_dual_ray_analysis_level¶
Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer in presolve.
\(-1\). The optimizer chooses the level of dual ray analysis employed
\(0\). Dual ray analysis is disabled
\(1\). A lower amount of dual ray analysis is employed
\(2\). A higher amount of dual ray analysis is employed
- Default
-1
- Accepted
[-1; 2]
- Example
task.putintparam(iparam.mio_dual_ray_analysis_level, -1)
- Generic name
MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL
- Groups
- iparam.mio_feaspump_level¶
Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.
\(-1\). The optimizer chooses how the Feasibility Pump is used
\(0\). The Feasibility Pump is disabled
\(1\). The Feasibility Pump is enabled with an effort to improve solution quality
\(2\). The Feasibility Pump is enabled with an effort to reach feasibility early
- Default
-1
- Accepted
[-1; 2]
- Example
task.putintparam(iparam.mio_feaspump_level, -1)
- Generic name
MSK_IPAR_MIO_FEASPUMP_LEVEL
- Groups
- iparam.mio_heuristic_level¶
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer feasible solution. A value of zero means the heuristic is not used at all. A larger value than \(0\) means that a gradually more sophisticated heuristic is used which is computationally more expensive. A negative value implies that the optimizer chooses the heuristic. Normally a value around \(3\) to \(5\) should be optimal.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.mio_heuristic_level, -1)
- Generic name
MSK_IPAR_MIO_HEURISTIC_LEVEL
- Groups
- iparam.mio_max_num_branches¶
Maximum number of branches allowed during the branch and bound search. A negative value means infinite.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.mio_max_num_branches, -1)
- Generic name
MSK_IPAR_MIO_MAX_NUM_BRANCHES
- Groups
- iparam.mio_max_num_relaxs¶
Maximum number of relaxations allowed during the branch and bound search. A negative value means infinite.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.mio_max_num_relaxs, -1)
- Generic name
MSK_IPAR_MIO_MAX_NUM_RELAXS
- Groups
- iparam.mio_max_num_restarts¶
Maximum number of restarts allowed during the branch and bound search.
- Default
0
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.mio_max_num_restarts, 0)
- Generic name
MSK_IPAR_MIO_MAX_NUM_RESTARTS
- Groups
- iparam.mio_max_num_root_cut_rounds¶
Maximum number of cut separation rounds at the root node.
- Default
100
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.mio_max_num_root_cut_rounds, 100)
- Generic name
MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
- Groups
- iparam.mio_max_num_solutions¶
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions has been located. If this parameter has the value \(n>0\), then the mixed-integer optimizer will be terminated when \(n\) feasible solutions have been located.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.mio_max_num_solutions, -1)
- Generic name
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
- Groups
- iparam.mio_memory_emphasis_level¶
Controls how much emphasis is put on reducing memory usage. Being more conservative about memory usage may come at the cost of decreased solution speed.
\(0\). The optimizer chooses
\(1\). More emphasis is put on reducing memory usage and less on speed
- Default
0
- Accepted
[0; +1]
- Example
task.putintparam(iparam.mio_memory_emphasis_level, 0)
- Generic name
MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL
- Groups
- iparam.mio_min_rel¶
Number of times a variable must have been branched on for its pseudocost to be considered reliable.
- Default
5
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.mio_min_rel, 5)
- Generic name
MSK_IPAR_MIO_MIN_REL
- Groups
- iparam.mio_mode¶
Controls whether the optimizer includes the integer restrictions and disjunctive constraints when solving a (mixed) integer optimization problem.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_mode, miomode.satisfied.value)
- Generic name
MSK_IPAR_MIO_MODE
- Groups
- iparam.mio_node_optimizer¶
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.
- Default
- Accepted
free
,intpnt
,conic
,primal_simplex
,dual_simplex
,free_simplex
,mixed_int
(seeoptimizertype
)- Example
task.putintparam(iparam.mio_node_optimizer, optimizertype.free.value)
- Generic name
MSK_IPAR_MIO_NODE_OPTIMIZER
- Groups
- iparam.mio_node_selection¶
Controls the node selection strategy employed by the mixed-integer optimizer.
- Default
- Accepted
free
,first
,best
,pseudo
(seemionodeseltype
)- Example
task.putintparam(iparam.mio_node_selection, mionodeseltype.free.value)
- Generic name
MSK_IPAR_MIO_NODE_SELECTION
- Groups
- iparam.mio_numerical_emphasis_level¶
Controls how much emphasis is put on reducing numerical problems possibly at the expense of solution speed.
\(0\). The optimizer chooses
\(1\). More emphasis is put on reducing numerical problems
\(2\). Even more emphasis
- Default
0
- Accepted
[0; +2]
- Example
task.putintparam(iparam.mio_numerical_emphasis_level, 0)
- Generic name
MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL
- Groups
- iparam.mio_perspective_reformulate¶
Enables or disables perspective reformulation in presolve.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_perspective_reformulate, onoffkey.on.value)
- Generic name
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE
- Groups
- iparam.mio_presolve_aggregator_use¶
Controls if the aggregator should be used.
- iparam.mio_probing_level¶
Controls the amount of probing employed by the mixed-integer optimizer in presolve.
\(-1\). The optimizer chooses the level of probing employed
\(0\). Probing is disabled
\(1\). A low amount of probing is employed
\(2\). A medium amount of probing is employed
\(3\). A high amount of probing is employed
- Default
-1
- Accepted
[-1; 3]
- Example
task.putintparam(iparam.mio_probing_level, -1)
- Generic name
MSK_IPAR_MIO_PROBING_LEVEL
- Groups
- iparam.mio_propagate_objective_constraint¶
Use objective domain propagation.
- Default
- Accepted
- Example
task.putintparam(iparam.mio_propagate_objective_constraint, onoffkey.off.value)
- Generic name
MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT
- Groups
- iparam.mio_qcqo_reformulation_method¶
Controls what reformulation method is applied to mixed-integer quadratic problems.
- Default
- Accepted
free
,none
,linearization
,eigen_val_method
,diag_sdp
,relax_sdp
(seemiqcqoreformmethod
)- Example
task.putintparam(iparam.mio_qcqo_reformulation_method, miqcqoreformmethod.free.value)
- Generic name
MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD
- Groups
- iparam.mio_rins_max_nodes¶
Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.
- Default
-1
- Accepted
[-1; +inf]
- Example
task.putintparam(iparam.mio_rins_max_nodes, -1)
- Generic name
MSK_IPAR_MIO_RINS_MAX_NODES
- Groups
- iparam.mio_root_optimizer¶
Controls which optimizer is employed at the root node in the mixed-integer optimizer.
- Default
- Accepted
free
,intpnt
,conic
,primal_simplex
,dual_simplex
,free_simplex
,mixed_int
(seeoptimizertype
)- Example
task.putintparam(iparam.mio_root_optimizer, optimizertype.free.value)
- Generic name
MSK_IPAR_MIO_ROOT_OPTIMIZER
- Groups
- iparam.mio_root_repeat_presolve_level¶
Controls whether presolve can be repeated at root node.
\(-1\). The optimizer chooses whether presolve is repeated
\(0\). Never repeat presolve
\(1\). Always repeat presolve
- Default
-1
- Accepted
[-1; 1]
- Example
task.putintparam(iparam.mio_root_repeat_presolve_level, -1)
- Generic name
MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL
- Groups
- iparam.mio_seed¶
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different seed can change the path the optimizer takes to the optimal solution.
- Default
42
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.mio_seed, 42)
- Generic name
MSK_IPAR_MIO_SEED
- Groups
- iparam.mio_symmetry_level¶
Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer in presolve.
\(-1\). The optimizer chooses the level of symmetry detection and handling employed
\(0\). Symmetry detection and handling is disabled
\(1\). A low amount of symmetry detection and handling is employed
\(2\). A medium amount of symmetry detection and handling is employed
\(3\). A high amount of symmetry detection and handling is employed
\(4\). An extremely high amount of symmetry detection and handling is employed
- Default
-1
- Accepted
[-1; 4]
- Example
task.putintparam(iparam.mio_symmetry_level, -1)
- Generic name
MSK_IPAR_MIO_SYMMETRY_LEVEL
- Groups
- iparam.mio_var_selection¶
Controls the variable selection strategy employed by the mixed-integer optimizer.
- Default
- Accepted
free
,pseudocost
,strong
(seemiovarseltype
)- Example
task.putintparam(iparam.mio_var_selection, miovarseltype.free.value)
- Generic name
MSK_IPAR_MIO_VAR_SELECTION
- Groups
- iparam.mio_vb_detection_level¶
Controls how much effort is put into detecting variable bounds.
\(-1\). The optimizer chooses
\(0\). No variable bounds are detected
\(1\). Only detect variable bounds that are directly represented in the problem
\(2\). Detect variable bounds in probing
- Default
-1
- Accepted
[-1; +2]
- Example
task.putintparam(iparam.mio_vb_detection_level, -1)
- Generic name
MSK_IPAR_MIO_VB_DETECTION_LEVEL
- Groups
- iparam.mt_spincount¶
Set the number of iterations to spin before sleeping.
- Default
0
- Accepted
[0; 1000000000]
- Example
task.putintparam(iparam.mt_spincount, 0)
- Generic name
MSK_IPAR_MT_SPINCOUNT
- Groups
- iparam.ng¶
Not in use.
- iparam.num_threads¶
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used will be equal to the number of cores detected on the machine.
- Default
0
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.num_threads, 0)
- Generic name
MSK_IPAR_NUM_THREADS
- Groups
- iparam.opf_write_header¶
Write a text header with date and MOSEK version in an OPF file.
- Default
- Accepted
- Example
task.putintparam(iparam.opf_write_header, onoffkey.on.value)
- Generic name
MSK_IPAR_OPF_WRITE_HEADER
- Groups
- iparam.opf_write_hints¶
Write a hint section with problem dimensions in the beginning of an OPF file.
- Default
- Accepted
- Example
task.putintparam(iparam.opf_write_hints, onoffkey.on.value)
- Generic name
MSK_IPAR_OPF_WRITE_HINTS
- Groups
- iparam.opf_write_line_length¶
Aim to keep lines in OPF files not much longer than this.
- Default
80
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.opf_write_line_length, 80)
- Generic name
MSK_IPAR_OPF_WRITE_LINE_LENGTH
- Groups
- iparam.opf_write_parameters¶
Write a parameter section in an OPF file.
- Default
- Accepted
- Example
task.putintparam(iparam.opf_write_parameters, onoffkey.off.value)
- Generic name
MSK_IPAR_OPF_WRITE_PARAMETERS
- Groups
- iparam.opf_write_problem¶
Write objective, constraints, bounds etc. to an OPF file.
- Default
- Accepted
- Example
task.putintparam(iparam.opf_write_problem, onoffkey.on.value)
- Generic name
MSK_IPAR_OPF_WRITE_PROBLEM
- Groups
- iparam.opf_write_sol_bas¶
If
iparam.opf_write_solutions
isonoffkey.on
and a basic solution is defined, include the basic solution in OPF files.- Default
- Accepted
- Example
task.putintparam(iparam.opf_write_sol_bas, onoffkey.on.value)
- Generic name
MSK_IPAR_OPF_WRITE_SOL_BAS
- Groups
- iparam.opf_write_sol_itg¶
If
iparam.opf_write_solutions
isonoffkey.on
and an integer solution is defined, write the integer solution in OPF files.- Default
- Accepted
- Example
task.putintparam(iparam.opf_write_sol_itg, onoffkey.on.value)
- Generic name
MSK_IPAR_OPF_WRITE_SOL_ITG
- Groups
- iparam.opf_write_sol_itr¶
If
iparam.opf_write_solutions
isonoffkey.on
and an interior solution is defined, write the interior solution in OPF files.- Default
- Accepted
- Example
task.putintparam(iparam.opf_write_sol_itr, onoffkey.on.value)
- Generic name
MSK_IPAR_OPF_WRITE_SOL_ITR
- Groups
- iparam.opf_write_solutions¶
Enable inclusion of solutions in the OPF files.
- Default
- Accepted
- Example
task.putintparam(iparam.opf_write_solutions, onoffkey.off.value)
- Generic name
MSK_IPAR_OPF_WRITE_SOLUTIONS
- Groups
- iparam.optimizer¶
The parameter controls which optimizer is used to optimize the task.
- Default
- Accepted
free
,intpnt
,conic
,primal_simplex
,dual_simplex
,free_simplex
,mixed_int
(seeoptimizertype
)- Example
task.putintparam(iparam.optimizer, optimizertype.free.value)
- Generic name
MSK_IPAR_OPTIMIZER
- Groups
- iparam.param_read_case_name¶
If turned on, then names in the parameter file are case sensitive.
- Default
- Accepted
- Example
task.putintparam(iparam.param_read_case_name, onoffkey.on.value)
- Generic name
MSK_IPAR_PARAM_READ_CASE_NAME
- Groups
- iparam.param_read_ign_error¶
If turned on, then errors in parameter settings is ignored.
- Default
- Accepted
- Example
task.putintparam(iparam.param_read_ign_error, onoffkey.off.value)
- Generic name
MSK_IPAR_PARAM_READ_IGN_ERROR
- Groups
- iparam.presolve_eliminator_max_fill¶
Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase of the presolve. A negative value means the parameter value is selected automatically.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.presolve_eliminator_max_fill, -1)
- Generic name
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL
- Groups
- iparam.presolve_eliminator_max_num_tries¶
Control the maximum number of times the eliminator is tried. A negative value implies MOSEK decides.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.presolve_eliminator_max_num_tries, -1)
- Generic name
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
- Groups
- iparam.presolve_level¶
Currently not used.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.presolve_level, -1)
- Generic name
MSK_IPAR_PRESOLVE_LEVEL
- Groups
- iparam.presolve_lindep_abs_work_trh¶
Controls linear dependency check in presolve. The linear dependency check is potentially computationally expensive.
- Default
100
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.presolve_lindep_abs_work_trh, 100)
- Generic name
MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
- Groups
- iparam.presolve_lindep_new¶
Controls whether whether a new experimental linear dependency checker is employed.
- iparam.presolve_lindep_rel_work_trh¶
Controls linear dependency check in presolve. The linear dependency check is potentially computationally expensive.
- Default
100
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.presolve_lindep_rel_work_trh, 100)
- Generic name
MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
- Groups
- iparam.presolve_lindep_use¶
Controls whether the linear constraints are checked for linear dependencies.
- iparam.presolve_max_num_pass¶
Control the maximum number of times presolve passes over the problem. A negative value implies MOSEK decides.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.presolve_max_num_pass, -1)
- Generic name
MSK_IPAR_PRESOLVE_MAX_NUM_PASS
- Groups
- iparam.presolve_max_num_reductions¶
Controls the maximum number of reductions performed by the presolve. The value of the parameter is normally only changed in connection with debugging. A negative value implies that an infinite number of reductions are allowed.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.presolve_max_num_reductions, -1)
- Generic name
MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS
- Groups
- iparam.presolve_use¶
Controls whether the presolve is applied to a problem before it is optimized.
- Default
- Accepted
off
,on
,free
(seepresolvemode
)- Example
task.putintparam(iparam.presolve_use, presolvemode.free.value)
- Generic name
MSK_IPAR_PRESOLVE_USE
- Groups
- iparam.primal_repair_optimizer¶
Controls which optimizer that is used to find the optimal repair.
- Default
- Accepted
free
,intpnt
,conic
,primal_simplex
,dual_simplex
,free_simplex
,mixed_int
(seeoptimizertype
)- Example
task.putintparam(iparam.primal_repair_optimizer, optimizertype.free.value)
- Generic name
MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
- Groups
- iparam.ptf_write_parameters¶
If
iparam.ptf_write_parameters
isonoffkey.on
, the parameters section is written.- Default
- Accepted
- Example
task.putintparam(iparam.ptf_write_parameters, onoffkey.off.value)
- Generic name
MSK_IPAR_PTF_WRITE_PARAMETERS
- Groups
- iparam.ptf_write_solutions¶
If
iparam.ptf_write_solutions
isonoffkey.on
, the solution section is written if any solutions are available, otherwise solution section is not written even if solutions are available.- Default
- Accepted
- Example
task.putintparam(iparam.ptf_write_solutions, onoffkey.off.value)
- Generic name
MSK_IPAR_PTF_WRITE_SOLUTIONS
- Groups
- iparam.ptf_write_transform¶
If
iparam.ptf_write_transform
isonoffkey.on
, constraint blocks with identifiable conic slacks are transformed into conic constraints and the slacks are eliminated.- Default
- Accepted
- Example
task.putintparam(iparam.ptf_write_transform, onoffkey.on.value)
- Generic name
MSK_IPAR_PTF_WRITE_TRANSFORM
- Groups
- iparam.read_debug¶
Turns on additional debugging information when reading files.
- Default
- Accepted
- Example
task.putintparam(iparam.read_debug, onoffkey.off.value)
- Generic name
MSK_IPAR_READ_DEBUG
- Groups
- iparam.read_keep_free_con¶
Controls whether the free constraints are included in the problem.
- Default
- Accepted
- Example
task.putintparam(iparam.read_keep_free_con, onoffkey.off.value)
- Generic name
MSK_IPAR_READ_KEEP_FREE_CON
- Groups
- iparam.read_mps_format¶
Controls how strictly the MPS file reader interprets the MPS format.
- iparam.read_mps_width¶
Controls the maximal number of characters allowed in one line of the MPS file.
- Default
1024
- Accepted
[80; +inf]
- Example
task.putintparam(iparam.read_mps_width, 1024)
- Generic name
MSK_IPAR_READ_MPS_WIDTH
- Groups
- iparam.read_task_ignore_param¶
Controls whether MOSEK should ignore the parameter setting defined in the task file and use the default parameter setting instead.
- Default
- Accepted
- Example
task.putintparam(iparam.read_task_ignore_param, onoffkey.off.value)
- Generic name
MSK_IPAR_READ_TASK_IGNORE_PARAM
- Groups
- iparam.remote_use_compression¶
Use compression when sending data to an optimization server.
- iparam.remove_unused_solutions¶
Removes unused solutions before the optimization is performed.
- Default
- Accepted
- Example
task.putintparam(iparam.remove_unused_solutions, onoffkey.off.value)
- Generic name
MSK_IPAR_REMOVE_UNUSED_SOLUTIONS
- Groups
- iparam.sensitivity_all¶
If set to
onoffkey.on
, thenTask.sensitivityreport
analyzes all bounds and variables instead of reading a specification from the file.- Default
- Accepted
- Example
task.putintparam(iparam.sensitivity_all, onoffkey.off.value)
- Generic name
MSK_IPAR_SENSITIVITY_ALL
- Groups
- iparam.sensitivity_optimizer¶
Controls which optimizer is used for optimal partition sensitivity analysis.
- Default
- Accepted
free
,intpnt
,conic
,primal_simplex
,dual_simplex
,free_simplex
,mixed_int
(seeoptimizertype
)- Example
task.putintparam(iparam.sensitivity_optimizer, optimizertype.free_simplex.value)
- Generic name
MSK_IPAR_SENSITIVITY_OPTIMIZER
- Groups
- iparam.sensitivity_type¶
Controls which type of sensitivity analysis is to be performed.
- Default
- Accepted
basis
(seesensitivitytype
)- Example
task.putintparam(iparam.sensitivity_type, sensitivitytype.basis.value)
- Generic name
MSK_IPAR_SENSITIVITY_TYPE
- Groups
- iparam.sim_basis_factor_use¶
Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization sometimes improves the stability of the simplex optimizers, but in most cases there is a performance penalty.
- Default
- Accepted
- Example
task.putintparam(iparam.sim_basis_factor_use, onoffkey.on.value)
- Generic name
MSK_IPAR_SIM_BASIS_FACTOR_USE
- Groups
- iparam.sim_degen¶
Controls how aggressively degeneration is handled.
- Default
- Accepted
- Example
task.putintparam(iparam.sim_degen, simdegen.free.value)
- Generic name
MSK_IPAR_SIM_DEGEN
- Groups
- iparam.sim_detect_pwl¶
Not in use.
- Default
- Accepted
- Example
task.putintparam(iparam.sim_detect_pwl, onoffkey.on.value)
- Generic name
MSK_IPAR_SIM_DETECT_PWL
- Groups
- iparam.sim_dual_crash¶
Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to \(x\), then a crash will be performed if a basis consists of more than \((100-x)\mod f_v\) entries, where \(f_v\) is the number of fixed variables.
- Default
90
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.sim_dual_crash, 90)
- Generic name
MSK_IPAR_SIM_DUAL_CRASH
- Groups
- iparam.sim_dual_phaseone_method¶
An experimental feature.
- Default
0
- Accepted
[0; 10]
- Example
task.putintparam(iparam.sim_dual_phaseone_method, 0)
- Generic name
MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
- Groups
- iparam.sim_dual_restrict_selection¶
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first choose a subset of all the potential outgoing variables. Next, for some time it will choose the outgoing variable only among the subset. From time to time the subset is redefined. A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.
- Default
50
- Accepted
[0; 100]
- Example
task.putintparam(iparam.sim_dual_restrict_selection, 50)
- Generic name
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
- Groups
- iparam.sim_dual_selection¶
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex optimizer.
- Default
- Accepted
- Example
task.putintparam(iparam.sim_dual_selection, simseltype.free.value)
- Generic name
MSK_IPAR_SIM_DUAL_SELECTION
- Groups
- iparam.sim_exploit_dupvec¶
Controls if the simplex optimizers are allowed to exploit duplicated columns.
- iparam.sim_hotstart¶
Controls the type of hot-start that the simplex optimizer perform.
- Default
- Accepted
none
,free
,status_keys
(seesimhotstart
)- Example
task.putintparam(iparam.sim_hotstart, simhotstart.free.value)
- Generic name
MSK_IPAR_SIM_HOTSTART
- Groups
- iparam.sim_hotstart_lu¶
Determines if the simplex optimizer should exploit the initial factorization.
- Default
- Accepted
- Example
task.putintparam(iparam.sim_hotstart_lu, onoffkey.on.value)
- Generic name
MSK_IPAR_SIM_HOTSTART_LU
- Groups
- iparam.sim_max_iterations¶
Maximum number of iterations that can be used by a simplex optimizer.
- Default
10000000
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.sim_max_iterations, 10000000)
- Generic name
MSK_IPAR_SIM_MAX_ITERATIONS
- Groups
- iparam.sim_max_num_setbacks¶
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where the optimizer moves in the wrong direction. This is impossible in theory but may happen due to numerical problems.
- Default
250
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.sim_max_num_setbacks, 250)
- Generic name
MSK_IPAR_SIM_MAX_NUM_SETBACKS
- Groups
- iparam.sim_non_singular¶
Controls if the simplex optimizer ensures a non-singular basis, if possible.
- Default
- Accepted
- Example
task.putintparam(iparam.sim_non_singular, onoffkey.on.value)
- Generic name
MSK_IPAR_SIM_NON_SINGULAR
- Groups
- iparam.sim_primal_crash¶
Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis consists of more than (100-this parameter value)% fixed variables, then a crash will be performed.
- Default
90
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.sim_primal_crash, 90)
- Generic name
MSK_IPAR_SIM_PRIMAL_CRASH
- Groups
- iparam.sim_primal_phaseone_method¶
An experimental feature.
- Default
0
- Accepted
[0; 10]
- Example
task.putintparam(iparam.sim_primal_phaseone_method, 0)
- Generic name
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
- Groups
- iparam.sim_primal_restrict_selection¶
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer first choose a subset of all the potential incoming variables. Next, for some time it will choose the incoming variable only among the subset. From time to time the subset is redefined. A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.
- Default
50
- Accepted
[0; 100]
- Example
task.putintparam(iparam.sim_primal_restrict_selection, 50)
- Generic name
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
- Groups
- iparam.sim_primal_selection¶
Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex optimizer.
- Default
- Accepted
- Example
task.putintparam(iparam.sim_primal_selection, simseltype.free.value)
- Generic name
MSK_IPAR_SIM_PRIMAL_SELECTION
- Groups
- iparam.sim_refactor_freq¶
Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines the best point of refactorization. It is strongly recommended NOT to change this parameter.
- Default
0
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.sim_refactor_freq, 0)
- Generic name
MSK_IPAR_SIM_REFACTOR_FREQ
- Groups
- iparam.sim_reformulation¶
Controls if the simplex optimizers are allowed to reformulate the problem.
- Default
- Accepted
on
,off
,free
,aggressive
(seesimreform
)- Example
task.putintparam(iparam.sim_reformulation, simreform.off.value)
- Generic name
MSK_IPAR_SIM_REFORMULATION
- Groups
- iparam.sim_save_lu¶
Controls if the LU factorization stored should be replaced with the LU factorization corresponding to the initial basis.
- Default
- Accepted
- Example
task.putintparam(iparam.sim_save_lu, onoffkey.off.value)
- Generic name
MSK_IPAR_SIM_SAVE_LU
- Groups
- iparam.sim_scaling¶
Controls how much effort is used in scaling the problem before a simplex optimizer is used.
- Default
- Accepted
free
,none
(seescalingtype
)- Example
task.putintparam(iparam.sim_scaling, scalingtype.free.value)
- Generic name
MSK_IPAR_SIM_SCALING
- Groups
- iparam.sim_scaling_method¶
Controls how the problem is scaled before a simplex optimizer is used.
- Default
- Accepted
pow2
,free
(seescalingmethod
)- Example
task.putintparam(iparam.sim_scaling_method, scalingmethod.pow2.value)
- Generic name
MSK_IPAR_SIM_SCALING_METHOD
- Groups
- iparam.sim_seed¶
Sets the random seed used for randomization in the simplex optimizers.
- Default
23456
- Accepted
[0; 32749]
- Example
task.putintparam(iparam.sim_seed, 23456)
- Generic name
MSK_IPAR_SIM_SEED
- Groups
- iparam.sim_solve_form¶
Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.
- iparam.sim_stability_priority¶
Controls how high priority the numerical stability should be given.
- Default
50
- Accepted
[0; 100]
- Example
task.putintparam(iparam.sim_stability_priority, 50)
- Generic name
MSK_IPAR_SIM_STABILITY_PRIORITY
- Groups
- iparam.sim_switch_optimizer¶
The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem. This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized, then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal (dual) one, then it is switched to the dual (primal).
- Default
- Accepted
- Example
task.putintparam(iparam.sim_switch_optimizer, onoffkey.off.value)
- Generic name
MSK_IPAR_SIM_SWITCH_OPTIMIZER
- Groups
- iparam.sol_filter_keep_basic¶
If turned on, then basic and super basic constraints and variables are written to the solution file independent of the filter setting.
- Default
- Accepted
- Example
task.putintparam(iparam.sol_filter_keep_basic, onoffkey.off.value)
- Generic name
MSK_IPAR_SOL_FILTER_KEEP_BASIC
- Groups
- iparam.sol_filter_keep_ranged¶
If turned on, then ranged constraints and variables are written to the solution file independent of the filter setting.
- Default
- Accepted
- Example
task.putintparam(iparam.sol_filter_keep_ranged, onoffkey.off.value)
- Generic name
MSK_IPAR_SOL_FILTER_KEEP_RANGED
- Groups
- iparam.sol_read_name_width¶
When a solution is read by MOSEK and some constraint, variable or cone names contain blanks, then a maximum name width much be specified. A negative value implies that no name contain blanks.
- Default
-1
- Accepted
[-inf; +inf]
- Example
task.putintparam(iparam.sol_read_name_width, -1)
- Generic name
MSK_IPAR_SOL_READ_NAME_WIDTH
- Groups
- iparam.sol_read_width¶
Controls the maximal acceptable width of line in the solutions when read by MOSEK.
- Default
1024
- Accepted
[80; +inf]
- Example
task.putintparam(iparam.sol_read_width, 1024)
- Generic name
MSK_IPAR_SOL_READ_WIDTH
- Groups
- iparam.solution_callback¶
Indicates whether solution callbacks will be performed during the optimization.
- Default
- Accepted
- Example
task.putintparam(iparam.solution_callback, onoffkey.off.value)
- Generic name
MSK_IPAR_SOLUTION_CALLBACK
- Groups
- iparam.timing_level¶
Controls the amount of timing performed inside MOSEK.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.timing_level, 1)
- Generic name
MSK_IPAR_TIMING_LEVEL
- Groups
- iparam.write_bas_constraints¶
Controls whether the constraint section is written to the basic solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_bas_constraints, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_BAS_CONSTRAINTS
- Groups
- iparam.write_bas_head¶
Controls whether the header section is written to the basic solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_bas_head, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_BAS_HEAD
- Groups
- iparam.write_bas_variables¶
Controls whether the variables section is written to the basic solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_bas_variables, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_BAS_VARIABLES
- Groups
- iparam.write_compression¶
Controls whether the data file is compressed while it is written. 0 means no compression while higher values mean more compression.
- Default
9
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.write_compression, 9)
- Generic name
MSK_IPAR_WRITE_COMPRESSION
- Groups
- iparam.write_data_param¶
If this option is turned on the parameter settings are written to the data file as parameters.
- Default
- Accepted
- Example
task.putintparam(iparam.write_data_param, onoffkey.off.value)
- Generic name
MSK_IPAR_WRITE_DATA_PARAM
- Groups
- iparam.write_free_con¶
Controls whether the free constraints are written to the data file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_free_con, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_FREE_CON
- Groups
- iparam.write_generic_names¶
Controls whether generic names should be used instead of user-defined names when writing to the data file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_generic_names, onoffkey.off.value)
- Generic name
MSK_IPAR_WRITE_GENERIC_NAMES
- Groups
- iparam.write_generic_names_io¶
Index origin used in generic names.
- Default
1
- Accepted
[0; +inf]
- Example
task.putintparam(iparam.write_generic_names_io, 1)
- Generic name
MSK_IPAR_WRITE_GENERIC_NAMES_IO
- Groups
- iparam.write_ignore_incompatible_items¶
Controls if the writer ignores incompatible problem items when writing files.
- Default
- Accepted
- Example
task.putintparam(iparam.write_ignore_incompatible_items, onoffkey.off.value)
- Generic name
MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
- Groups
- iparam.write_int_constraints¶
Controls whether the constraint section is written to the integer solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_int_constraints, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_INT_CONSTRAINTS
- Groups
- iparam.write_int_head¶
Controls whether the header section is written to the integer solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_int_head, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_INT_HEAD
- Groups
- iparam.write_int_variables¶
Controls whether the variables section is written to the integer solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_int_variables, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_INT_VARIABLES
- Groups
- iparam.write_json_indentation¶
When set, the JSON task and solution files are written with indentation for better readability.
- Default
- Accepted
- Example
task.putintparam(iparam.write_json_indentation, onoffkey.off.value)
- Generic name
MSK_IPAR_WRITE_JSON_INDENTATION
- Groups
- iparam.write_lp_full_obj¶
Write all variables, including the ones with 0-coefficients, in the objective.
- Default
- Accepted
- Example
task.putintparam(iparam.write_lp_full_obj, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_LP_FULL_OBJ
- Groups
- iparam.write_lp_line_width¶
Maximum width of line in an LP file written by MOSEK.
- Default
80
- Accepted
[40; +inf]
- Example
task.putintparam(iparam.write_lp_line_width, 80)
- Generic name
MSK_IPAR_WRITE_LP_LINE_WIDTH
- Groups
- iparam.write_mps_format¶
Controls in which format the MPS is written.
- iparam.write_mps_int¶
Controls if marker records are written to the MPS file to indicate whether variables are integer restricted.
- Default
- Accepted
- Example
task.putintparam(iparam.write_mps_int, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_MPS_INT
- Groups
- iparam.write_sol_barvariables¶
Controls whether the symmetric matrix variables section is written to the solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_sol_barvariables, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_SOL_BARVARIABLES
- Groups
- iparam.write_sol_constraints¶
Controls whether the constraint section is written to the solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_sol_constraints, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_SOL_CONSTRAINTS
- Groups
- iparam.write_sol_head¶
Controls whether the header section is written to the solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_sol_head, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_SOL_HEAD
- Groups
- iparam.write_sol_ignore_invalid_names¶
Even if the names are invalid MPS names, then they are employed when writing the solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_sol_ignore_invalid_names, onoffkey.off.value)
- Generic name
MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
- Groups
- iparam.write_sol_variables¶
Controls whether the variables section is written to the solution file.
- Default
- Accepted
- Example
task.putintparam(iparam.write_sol_variables, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_SOL_VARIABLES
- Groups
- iparam.write_task_inc_sol¶
Controls whether the solutions are stored in the task file too.
- Default
- Accepted
- Example
task.putintparam(iparam.write_task_inc_sol, onoffkey.on.value)
- Generic name
MSK_IPAR_WRITE_TASK_INC_SOL
- Groups
- iparam.write_xml_mode¶
Controls if linear coefficients should be written by row or column when writing in the XML file format.
- Default
- Accepted
row
,col
(seexmlwriteroutputtype
)- Example
task.putintparam(iparam.write_xml_mode, xmlwriteroutputtype.row.value)
- Generic name
MSK_IPAR_WRITE_XML_MODE
- Groups
15.7.3 String parameters¶
- sparam¶
The enumeration type containing all string parameters.
- sparam.bas_sol_file_name¶
Name of the
bas
solution file.- Accepted
Any valid file name.
- Example
task.putstrparam(sparam.bas_sol_file_name, "somevalue")
- Generic name
MSK_SPAR_BAS_SOL_FILE_NAME
- Groups
- sparam.data_file_name¶
Data are read and written to this file.
- Accepted
Any valid file name.
- Example
task.putstrparam(sparam.data_file_name, "somevalue")
- Generic name
MSK_SPAR_DATA_FILE_NAME
- Groups
- sparam.debug_file_name¶
MOSEK debug file.
- Accepted
Any valid file name.
- Example
task.putstrparam(sparam.debug_file_name, "somevalue")
- Generic name
MSK_SPAR_DEBUG_FILE_NAME
- Groups
- sparam.int_sol_file_name¶
Name of the
int
solution file.- Accepted
Any valid file name.
- Example
task.putstrparam(sparam.int_sol_file_name, "somevalue")
- Generic name
MSK_SPAR_INT_SOL_FILE_NAME
- Groups
- sparam.itr_sol_file_name¶
Name of the
itr
solution file.- Accepted
Any valid file name.
- Example
task.putstrparam(sparam.itr_sol_file_name, "somevalue")
- Generic name
MSK_SPAR_ITR_SOL_FILE_NAME
- Groups
- sparam.mio_debug_string¶
For internal debugging purposes.
- Accepted
Any valid string.
- Example
task.putstrparam(sparam.mio_debug_string, "somevalue")
- Generic name
MSK_SPAR_MIO_DEBUG_STRING
- Groups
- sparam.param_comment_sign¶
Only the first character in this string is used. It is considered as a start of comment sign in the MOSEK parameter file. Spaces are ignored in the string.
- Default
%%
- Accepted
Any valid string.
- Example
task.putstrparam(sparam.param_comment_sign, "%%")
- Generic name
MSK_SPAR_PARAM_COMMENT_SIGN
- Groups
- sparam.param_read_file_name¶
Modifications to the parameter database is read from this file.
- Accepted
Any valid file name.
- Example
task.putstrparam(sparam.param_read_file_name, "somevalue")
- Generic name
MSK_SPAR_PARAM_READ_FILE_NAME
- Groups
- sparam.param_write_file_name¶
The parameter database is written to this file.
- Accepted
Any valid file name.
- Example
task.putstrparam(sparam.param_write_file_name, "somevalue")
- Generic name
MSK_SPAR_PARAM_WRITE_FILE_NAME
- Groups
- sparam.read_mps_bou_name¶
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.
- Accepted
Any valid MPS name.
- Example
task.putstrparam(sparam.read_mps_bou_name, "somevalue")
- Generic name
MSK_SPAR_READ_MPS_BOU_NAME
- Groups
- sparam.read_mps_obj_name¶
Name of the free constraint used as objective function. An empty name means that the first constraint is used as objective function.
- Accepted
Any valid MPS name.
- Example
task.putstrparam(sparam.read_mps_obj_name, "somevalue")
- Generic name
MSK_SPAR_READ_MPS_OBJ_NAME
- Groups
- sparam.read_mps_ran_name¶
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.
- Accepted
Any valid MPS name.
- Example
task.putstrparam(sparam.read_mps_ran_name, "somevalue")
- Generic name
MSK_SPAR_READ_MPS_RAN_NAME
- Groups
- sparam.read_mps_rhs_name¶
Name of the RHS used. An empty name means that the first RHS vector is used.
- Accepted
Any valid MPS name.
- Example
task.putstrparam(sparam.read_mps_rhs_name, "somevalue")
- Generic name
MSK_SPAR_READ_MPS_RHS_NAME
- Groups
- sparam.remote_optserver_host¶
URL of the remote optimization server in the format
(http|https)://server:port
. If set, all subsequent calls to any MOSEK function that involves synchronous optimization will be sent to the specified OptServer instead of being executed locally. Passing empty string deactivates this redirection.- Accepted
Any valid URL.
- Example
task.putstrparam(sparam.remote_optserver_host, "somevalue")
- Generic name
MSK_SPAR_REMOTE_OPTSERVER_HOST
- Groups
- sparam.remote_tls_cert¶
List of known server certificates in PEM format.
- Accepted
PEM files separated by new-lines.
- Example
task.putstrparam(sparam.remote_tls_cert, "somevalue")
- Generic name
MSK_SPAR_REMOTE_TLS_CERT
- Groups
- sparam.remote_tls_cert_path¶
Path to known server certificates in PEM format.
- Accepted
Any valid path.
- Example
task.putstrparam(sparam.remote_tls_cert_path, "somevalue")
- Generic name
MSK_SPAR_REMOTE_TLS_CERT_PATH
- Groups
- sparam.sensitivity_file_name¶
If defined
Task.sensitivityreport
reads this file as a sensitivity analysis data file specifying the type of analysis to be done.- Accepted
Any valid string.
- Example
task.putstrparam(sparam.sensitivity_file_name, "somevalue")
- Generic name
MSK_SPAR_SENSITIVITY_FILE_NAME
- Groups
- sparam.sensitivity_res_file_name¶
If this is a nonempty string, then
Task.sensitivityreport
writes results to this file.- Accepted
Any valid string.
- Example
task.putstrparam(sparam.sensitivity_res_file_name, "somevalue")
- Generic name
MSK_SPAR_SENSITIVITY_RES_FILE_NAME
- Groups
- sparam.sol_filter_xc_low¶
A filter used to determine which constraints should be listed in the solution file. A value of \(0.5\) means that all constraints having
xc[i]>0.5
should be listed, whereas+0.5
means that all constraints havingxc[i]>=blc[i]+0.5
should be listed. An empty filter means that no filter is applied.- Accepted
Any valid filter.
- Example
task.putstrparam(sparam.sol_filter_xc_low, "somevalue")
- Generic name
MSK_SPAR_SOL_FILTER_XC_LOW
- Groups
- sparam.sol_filter_xc_upr¶
A filter used to determine which constraints should be listed in the solution file. A value of
0.5
means that all constraints havingxc[i]<0.5
should be listed, whereas-0.5
means all constraints havingxc[i]<=buc[i]-0.5
should be listed. An empty filter means that no filter is applied.- Accepted
Any valid filter.
- Example
task.putstrparam(sparam.sol_filter_xc_upr, "somevalue")
- Generic name
MSK_SPAR_SOL_FILTER_XC_UPR
- Groups
- sparam.sol_filter_xx_low¶
A filter used to determine which variables should be listed in the solution file. A value of “0.5” means that all constraints having
xx[j]>=0.5
should be listed, whereas “+0.5” means that all constraints havingxx[j]>=blx[j]+0.5
should be listed. An empty filter means no filter is applied.- Accepted
Any valid filter.
- Example
task.putstrparam(sparam.sol_filter_xx_low, "somevalue")
- Generic name
MSK_SPAR_SOL_FILTER_XX_LOW
- Groups
- sparam.sol_filter_xx_upr¶
A filter used to determine which variables should be listed in the solution file. A value of “0.5” means that all constraints having
xx[j]<0.5
should be printed, whereas “-0.5” means all constraints havingxx[j]<=bux[j]-0.5
should be listed. An empty filter means no filter is applied.- Accepted
Any valid file name.
- Example
task.putstrparam(sparam.sol_filter_xx_upr, "somevalue")
- Generic name
MSK_SPAR_SOL_FILTER_XX_UPR
- Groups
- sparam.stat_key¶
Key used when writing the summary file.
- Accepted
Any valid string.
- Example
task.putstrparam(sparam.stat_key, "somevalue")
- Generic name
MSK_SPAR_STAT_KEY
- Groups
- sparam.stat_name¶
Name used when writing the statistics file.
- Accepted
Any valid XML string.
- Example
task.putstrparam(sparam.stat_name, "somevalue")
- Generic name
MSK_SPAR_STAT_NAME
- Groups
- sparam.write_lp_gen_var_name¶
Sometimes when an LP file is written additional variables must be inserted. They will have the prefix denoted by this parameter.
- Default
xmskgen
- Accepted
Any valid string.
- Example
task.putstrparam(sparam.write_lp_gen_var_name, "xmskgen")
- Generic name
MSK_SPAR_WRITE_LP_GEN_VAR_NAME
- Groups