7.1 Linear Optimization¶
The simplest optimization problem is a purely linear problem. A linear optimization problem (see also Sec. 12.1 (Linear Optimization)) is a problem of the following form:
Minimize or maximize the objective function
subject to the linear constraints
and the bounds
The problem description consists of the following elements:
and — the number of constraints and variables, respectively, — the variable vector of length , — the coefficient vector of length — fixed term in the objective, — an matrix of coefficients and — the lower and upper bounds on constraints, and — the lower and upper bounds on variables.
Please note that we are using
The Fusion user does not need to specify all of the above elements explicitly — they will be assembled from the Fusion model.
7.1.1 Example LO1¶
The following is an example of a small linear optimization problem:
under the bounds
We start our implementation in Fusion importing the relevant modules, i.e.
#include "fusion.h"
using namespace mosek::fusion;
using namespace monty;
Next we declare an optimization model creating an instance of the Model
class:
Model::t M = new Model("lo1"); auto _M = finally([&]() { M->dispose(); });
For this simple problem we are going to enter all the linear coefficients directly:
auto A1 = new_array_ptr<double, 1>({ 3.0, 1.0, 2.0, 0.0 });
auto A2 = new_array_ptr<double, 1>({ 2.0, 1.0, 3.0, 1.0 });
auto A3 = new_array_ptr<double, 1>({ 0.0, 2.0, 0.0, 3.0 });
auto c = new_array_ptr<double, 1>({ 3.0, 1.0, 5.0, 1.0 });
The variables appearing in problem (7.1) can be declared as one
Variable::t x = M->variable("x", 4, Domain::greaterThan(0.0));
At this point we already have variables with bounds
M->constraint(x->index(1), Domain::lessThan(10.0));
The linear constraints can now be entered one by one using the dot product of our variable with a coefficient vector:
M->constraint("c1", Expr::dot(A1, x), Domain::equalsTo(30.0));
M->constraint("c2", Expr::dot(A2, x), Domain::greaterThan(15.0));
M->constraint("c3", Expr::dot(A3, x), Domain::lessThan(25.0));
We end the definition of our optimization model setting the objective function in the same way:
M->objective("obj", ObjectiveSense::Maximize, Expr::dot(c, x));
Finally, we only need to call the Model.solve
method:
M->solve();
The solution values can be attained with the method Variable.level
.
auto sol = x->level();
std::cout << "[x0,x1,x2,x3] = " << (*sol) << "\n";
#include <iostream>
#include "fusion.h"
using namespace mosek::fusion;
using namespace monty;
int main(int argc, char ** argv)
{
auto A1 = new_array_ptr<double, 1>({ 3.0, 1.0, 2.0, 0.0 });
auto A2 = new_array_ptr<double, 1>({ 2.0, 1.0, 3.0, 1.0 });
auto A3 = new_array_ptr<double, 1>({ 0.0, 2.0, 0.0, 3.0 });
auto c = new_array_ptr<double, 1>({ 3.0, 1.0, 5.0, 1.0 });
// Create a model with the name 'lo1'
Model::t M = new Model("lo1"); auto _M = finally([&]() { M->dispose(); });
M->setLogHandler([ = ](const std::string & msg) { std::cout << msg << std::flush; } );
// Create variable 'x' of length 4
Variable::t x = M->variable("x", 4, Domain::greaterThan(0.0));
// Create constraints
M->constraint(x->index(1), Domain::lessThan(10.0));
M->constraint("c1", Expr::dot(A1, x), Domain::equalsTo(30.0));
M->constraint("c2", Expr::dot(A2, x), Domain::greaterThan(15.0));
M->constraint("c3", Expr::dot(A3, x), Domain::lessThan(25.0));
// Set the objective function to (c^t * x)
M->objective("obj", ObjectiveSense::Maximize, Expr::dot(c, x));
// Solve the problem
M->solve();
// Get the solution values
auto sol = x->level();
std::cout << "[x0,x1,x2,x3] = " << (*sol) << "\n";
}