17 List of examples

List of examples shipped in the distribution of Optimizer API for .NET:

Table 17.1 List of distributed examples

File

Description

acc1.cs

A simple problem with one affine conic constraint (ACC)

acc2.cs

A simple problem with two affine conic constraints (ACC)

blas_lapack.cs

Demonstrates the MOSEK interface to BLAS/LAPACK linear algebra routines

callback.cs

An example of data/progress callback

ceo1.cs

A simple conic exponential problem

concurrent1.cs

Implementation of a concurrent optimizer for linear and mixed-integer problems

cqo1.cs

A simple conic quadratic problem

djc1.cs

A simple problem with disjunctive constraints (DJC)

feasrepairex1.cs

A simple example of how to repair an infeasible problem

gp1.cs

A simple geometric program (GP) in conic form

helloworld.cs

A Hello World example

lo1.cs

A simple linear problem

lo1.vb

A simple linear problem

lo2.cs

A simple linear problem

logistic.cs

Implements logistic regression and simple log-sum-exp (CEO)

mico1.cs

A simple mixed-integer conic problem

milo1.cs

A simple mixed-integer linear problem

mioinitsol.cs

A simple mixed-integer linear problem with an initial guess

opt_server_async.cs

Uses MOSEK OptServer to solve an optimization problem asynchronously

opt_server_sync.cs

Uses MOSEK OptServer to solve an optimization problem synchronously

parallel.cs

Demonstrates parallel optimization using a batch method in MOSEK

parameters.cs

Shows how to set optimizer parameters and read information items

pinfeas.cs

Shows how to obtain and analyze a primal infeasibility certificate

portfolio_1_basic.cs

Portfolio optimization - basic Markowitz model

portfolio_2_frontier.cs

Portfolio optimization - efficient frontier

portfolio_3_impact.cs

Portfolio optimization - market impact costs

portfolio_4_transcost.cs

Portfolio optimization - transaction costs

portfolio_5_card.cs

Portfolio optimization - cardinality constraints

portfolio_6_factor.cs

Portfolio optimization - factor model

pow1.cs

A simple power cone problem

qcqo1.cs

A simple quadratically constrained quadratic problem

qo1.cs

A simple quadratic problem

reoptimization.cs

Demonstrate how to modify and re-optimize a linear problem

response.cs

Demonstrates proper response handling

sdo1.cs

A simple semidefinite problem with one matrix variable and a quadratic cone

sdo2.cs

A simple semidefinite problem with two matrix variables

sdo_lmi.cs

A simple semidefinite problem with an LMI using the SVEC domain.

sensitivity.cs

Sensitivity analysis performed on a small linear problem

simple.cs

A simple I/O example: read problem from a file, solve and write solutions

solutionquality.cs

Demonstrates how to examine the quality of a solution

solvebasis.cs

Demonstrates solving a linear system with the basis matrix

solvelinear.cs

Demonstrates solving a general linear system

sparsecholesky.cs

Shows how to find a Cholesky factorization of a sparse matrix

Additional examples can be found on the MOSEK website and in other MOSEK publications.

acc1.cs

Listing 17.1 acc1.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:      acc1.cs

  Purpose :   Tutorial example for affine conic constraints.
              Models the problem:
 
              maximize c^T x
              subject to  sum(x) = 1
                          gamma >= |Gx+h|_2
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class acc1
  {
    public static void Main ()
    {
      /* Problem dimensions */
      const int n = 3;
      const int k = 2;

      int i,j;
      long quadDom;

      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;

      // Create a task object.
      using (mosek.Task task = new mosek.Task()) {
        // Directs the log task stream to the user specified
        // method msgclass.streamCB
        task.set_Stream (mosek.streamtype.log, new msgclass (""));

        // Create n free variables
        task.appendvars(n);
        task.putvarboundsliceconst(0, n, mosek.boundkey.fr, -infinity, infinity);

        // Set up the objective
        double[] c = {2, 3, -1};
        int[] cind = {0, 1, 2};  
        task.putobjsense(mosek.objsense.maximize);
        task.putclist(cind, c);

        // One linear constraint - sum(x) = 1
        task.appendcons(1);
        task.putconbound(0, mosek.boundkey.fx, 1.0, 1.0);
        for(i = 0; i < n; i++) task.putaij(0, i, 1.0);

        // Append empty AFE rows for affine expression storage
        task.appendafes(k + 1);

        // F matix in sparse form
        long[]   Fsubi = {1, 1, 2, 2};   // The G matrix starts in F from row 1
        int[]    Fsubj = {0, 1, 0, 2};
        double[] Fval  = {1.5, 0.1, 0.3, 2.1};
        // Other data
        double[] h     = {0, 0.1};
        double   gamma = 0.03;

        // Fill in F storage
        task.putafefentrylist(Fsubi, Fsubj, Fval);

        // Fill in g storage;
        task.putafeg(0, gamma);
        task.putafegslice(1, k+1, h);

        // Define a conic quadratic domain
        quadDom = task.appendquadraticconedomain(k + 1);

        // Create the ACC
        long[] afeidx = {0, 1, 2};
        task.appendacc(quadDom,    // Domain index
                       afeidx,     // Indices of AFE rows [0,...,k]
                       null);      // Ignored

        // Solve the problem
        task.optimize();

        // Print a summary containing information
        // about the solution for debugging purposes
        task.solutionsummary(mosek.streamtype.msg);

        /* Get status information about the solution */
        mosek.solsta solsta;
        task.getsolsta(mosek.soltype.itr, out solsta);

        switch (solsta)
        {
          case mosek.solsta.optimal:
            // Fetch solution
            double[] xx  = new double[n];
            task.getxx(mosek.soltype.itr, // Interior solution.
                       xx);
            Console.WriteLine ("Optimal primal solution");
            for (j = 0; j < n; ++j)
              Console.WriteLine ("x[{0}]: {1}", j, xx[j]);

            // Fetch doty dual of the ACC
            double[] doty  = new double[k+1];
            task.getaccdoty(mosek.soltype.itr, // Interior solution.
                            0,                 // ACC index
                            doty);
            Console.WriteLine ("Dual doty of ACC");
            for (j = 0; j < k+1; ++j)
              Console.WriteLine ("doty[{0}]: {1}", j, doty[j]);

            // Fetch activity of the ACC
            double[] activity  = new double[k+1];
            task.evaluateacc(mosek.soltype.itr, // Interior solution.
                             0,                 // ACC index
                             activity);
            Console.WriteLine ("Activity of ACC");
            for (j = 0; j < n; ++j)
              Console.WriteLine ("activity[{0}]: {1}", j, activity[j]);
            break;

          case mosek.solsta.dual_infeas_cer:
          case mosek.solsta.prim_infeas_cer:
            Console.WriteLine("Primal or dual infeasibility.\n");
            break;
          case mosek.solsta.unknown:
            Console.WriteLine("Unknown solution status.\n");
            break;
          default:
            Console.WriteLine("Other solution status");
            break;
        }
      }
    }
  }
}

acc2.cs

Listing 17.2 acc2.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:      acc2.cs

  Purpose :   Tutorial example for affine conic constraints.
              Models the problem:
 
              maximize c^T x
              subject to  sum(x) = 1
                          gamma >= |Gx+h|_2

              This version inputs the linear constraint as an affine conic constraint.
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class acc1
  {
    public static void Main ()
    {
      /* Problem dimensions */
      const int n = 3;
      const int k = 2;

      int i,j;
      long quadDom, zeroDom;

      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;

      // Create a task object.
      using (mosek.Task task = new mosek.Task()) {
        // Directs the log task stream to the user specified
        // method msgclass.streamCB
        task.set_Stream (mosek.streamtype.log, new msgclass (""));

        // Create n free variables
        task.appendvars(n);
        task.putvarboundsliceconst(0, n, mosek.boundkey.fr, -infinity, infinity);

        // Set up the objective
        double[] c = {2, 3, -1};
        int[] cind = {0, 1, 2};  
        task.putobjsense(mosek.objsense.maximize);
        task.putclist(cind, c);

        // Set AFE rows representing the linear constraint
        task.appendafes(1);
        task.putafeg(0, -1.0);
        for(i = 0; i < n; i++) task.putafefentry(0, i, 1.0);

        // F matix in sparse form
        long[]   Fsubi = {2, 2, 3, 3};   // The G matrix starts in F from row 2
        int[]    Fsubj = {0, 1, 0, 2};
        double[] Fval  = {1.5, 0.1, 0.3, 2.1};
        // Other data
        double[] h     = {0, 0.1};
        double   gamma = 0.03;

        task.appendafes(k + 1);
        task.putafefentrylist(Fsubi, Fsubj, Fval);
        task.putafeg(1, gamma);
        task.putafegslice(2, k+2, h);

        // Define domains
        zeroDom = task.appendrzerodomain(1);
        quadDom = task.appendquadraticconedomain(k + 1);

        // Create the linear ACC
        long[] afeidxZero = {0};
        task.appendacc(zeroDom,    // Domain index
                       afeidxZero,// Indices of AFE rows
                       null);      // Ignored

        // Create the quadratic ACC
        long[] afeidxQuad = {1, 2, 3};
        task.appendacc(quadDom,    // Domain index
                       afeidxQuad, // Indices of AFE rows
                       null);      // Ignored

        // Solve the problem
        task.optimize();

        // Print a summary containing information
        // about the solution for debugging purposes
        task.solutionsummary(mosek.streamtype.msg);

        /* Get status information about the solution */
        mosek.solsta solsta;
        task.getsolsta(mosek.soltype.itr, out solsta);

        switch (solsta)
        {
          case mosek.solsta.optimal:
            // Fetch solution
            double[] xx  = new double[n];
            task.getxx(mosek.soltype.itr, // Interior solution.
                       xx);
            Console.WriteLine ("Optimal primal solution");
            for (j = 0; j < n; ++j)
              Console.WriteLine ("x[{0}]: {1}", j, xx[j]);

            // Fetch doty dual of the ACC
            double[] doty  = new double[k+1];
            task.getaccdoty(mosek.soltype.itr, // Interior solution.
                            1,                 // ACC index
                            doty);
            Console.WriteLine ("Dual doty of ACC");
            for (j = 0; j < k+1; ++j)
              Console.WriteLine ("doty[{0}]: {1}", j, doty[j]);

            // Fetch activity of the ACC
            double[] activity  = new double[k+1];
            task.evaluateacc(mosek.soltype.itr, // Interior solution.
                             1,                 // ACC index
                             activity);
            Console.WriteLine ("Activity of ACC");
            for (j = 0; j < n; ++j)
              Console.WriteLine ("activity[{0}]: {1}", j, activity[j]);
            break;

          case mosek.solsta.dual_infeas_cer:
          case mosek.solsta.prim_infeas_cer:
            Console.WriteLine("Primal or dual infeasibility.\n");
            break;
          case mosek.solsta.unknown:
            Console.WriteLine("Unknown solution status.\n");
            break;
          default:
            Console.WriteLine("Other solution status");
            break;
        }
      }
    }
  }
}

blas_lapack.cs

Listing 17.3 blas_lapack.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:      blas_lapack.cs

   Purpose: To demonstrate how to call BLAS/LAPACK routines for whose MOSEK provides simplified interfaces.
*/
using System;

namespace mosek.example
{
  public class blas_lapack
  {
    public static void Main ()
    {
      const int n = 3, m = 2, k = 3;

      double alpha = 2.0, beta = 0.5;
      double[] x = {1.0, 1.0, 1.0};
      double[] y = {1.0, 2.0, 3.0};
      double[] z = {1.0, 1.0};

      /*A has m=2 rows and k=3 cols*/
      double[] A = {1.0, 1.0, 2.0, 2.0, 3.0, 3.0};
      /*B has k=3 rows and n=3 cols*/
      double[] B = {1.0, 1.0, 1.0,
                    1.0, 1.0, 1.0,
                    1.0, 1.0, 1.0
                   };
      double[] C = {1.0, 2.0, 3.0,
                    4.0, 5.0, 6.0
                   };

      double[] D = {1.0, 1.0, 1.0, 1.0};
      double[] Q = {1.0, 0.0, 0.0, 2.0};
      double[] v = new double[2];

      double xy;


      using (mosek.Env env = new mosek.Env())
      {
        /* BLAS routines */

        try
        {

          env.dot(n, x, y, out xy);

          env.axpy(n, alpha, x, y);

          env.gemv(mosek.transpose.no, m, n, alpha, A, x, beta, z);

          Console.WriteLine("m = {0}, n = {1}, k = {2}, len A = {3}",m,n,k,A.Length);
          env.gemm(mosek.transpose.no, mosek.transpose.no, m, n, k, alpha, A, B, beta, C);

          env.syrk(mosek.uplo.lo, mosek.transpose.no, m, k, alpha, A, beta, D);

          /* LAPACK routines*/

          env.potrf(mosek.uplo.lo, m, Q);

          env.syeig(mosek.uplo.lo, m, Q, v);

          env.syevd(mosek.uplo.lo, m, Q, v);
        }
        catch (mosek.Exception e)
        {
          Console.WriteLine (e.Code);
          Console.WriteLine (e);
        }
        finally
        {
          if (env != null)  env.Dispose ();
        }
      }
    }
  }
}

callback.cs

Listing 17.4 callback.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:      callback.cs

   Purpose:   To demonstrate how to use the progress 
              callback. 

              Use this script as follows:
              callback psim  25fv47.mps
              callback dsim  25fv47.mps
              callback intpnt 25fv47.mps

              The first argument tells which optimizer to use
              i.e. psim is primal simplex, dsim is dual simplex
              and intpnt is interior-point. 
*/
using mosek;
using System;

namespace mosek.example
{
  class myCallback : mosek.DataCallback
  {
    double maxtime;
    
    public myCallback(double maxtime_)
    {
      maxtime = maxtime_;
    }
    
    public override int callback( callbackcode caller, 
                                  double[]     douinf,
                                  int[]        intinf,
                                  long[]       lintinf )
    {
      double opttime = 0.0;
      int itrn;
      double pobj, dobj, stime;

      switch (caller)
      {
        case callbackcode.begin_intpnt:
          Console.WriteLine("Starting interior-point optimizer");
          break;
        case callbackcode.intpnt:
          itrn    = intinf[(int) iinfitem.intpnt_iter      ];
          pobj    = douinf[(int) dinfitem.intpnt_primal_obj];
          dobj    = douinf[(int) dinfitem.intpnt_dual_obj  ];
          stime   = douinf[(int) dinfitem.intpnt_time      ];
          opttime = douinf[(int) dinfitem.optimizer_time   ];
          
          Console.WriteLine("Iterations: {0,-3}",itrn);
          Console.WriteLine("  Elapsed: Time: {0,6:F2}({1:F2})",opttime,stime);
          Console.WriteLine("  Primal obj.: {0,-18:E6}  Dual obj.: {1,018:E6}e",pobj,dobj);
          break;
        case callbackcode.end_intpnt:
          Console.WriteLine("Interior-point optimizer finished.");
          break;
        case callbackcode.begin_primal_simplex:
          Console.WriteLine("Primal simplex optimizer started.");
          break;
        case callbackcode.update_primal_simplex:
          itrn    = intinf[(int) iinfitem.sim_primal_iter  ];
          pobj    = douinf[(int) dinfitem.sim_obj          ];
          stime   = douinf[(int) dinfitem.sim_time         ];
          opttime = douinf[(int) dinfitem.optimizer_time   ];
          
          Console.WriteLine("Iterations: {0,-3}}", itrn);
          Console.WriteLine("  Elapsed time: {0,6:F2}({1:F2})",opttime,stime);
          Console.WriteLine("  Obj.: {0,-18:E6}", pobj );
          break;
        case callbackcode.end_primal_simplex:
          Console.WriteLine("Primal simplex optimizer finished.");
          break;
        case callbackcode.begin_dual_simplex:
          Console.WriteLine("Dual simplex optimizer started.");
          break;
        case callbackcode.update_dual_simplex:
          itrn    = intinf[(int) iinfitem.sim_dual_iter    ];
          pobj    = douinf[(int) dinfitem.sim_obj          ];
          stime   = douinf[(int) dinfitem.sim_time         ];
          opttime = douinf[(int) dinfitem.optimizer_time   ];
          Console.WriteLine("Iterations: {0,-3}}", itrn);
          Console.WriteLine("  Elapsed time: {0,6:F2}({1:F2})",opttime,stime);
          Console.WriteLine("  Obj.: {0,-18:E6}", pobj );
          break;
        case callbackcode.end_dual_simplex:
          Console.WriteLine("Dual simplex optimizer finished.");
          break;
        case callbackcode.begin_bi:
          Console.WriteLine("Basis identification started.");
          break;
        case  callbackcode.end_bi:
          Console.WriteLine("Basis identification finished.");
          break;
        default:
          break;
      }

      if (opttime >= maxtime)
        // mosek is spending too much time. Terminate it.
        return 1;
                
      return 0;
    }
  }

  class myStream : Stream
  {
    public myStream () : base() { }
    
    public override void streamCB (string msg)
    {
      Console.Write ("{0}",msg);
    }
  }

  public class callback
  {
    public static void Main(string[] args)
    {
      string filename = "../data/25fv47.mps";
      string slvr     = "intpnt";

      if (args.Length < 2)
      {
          Console.WriteLine("Usage: callback ( psim | dsim | intpnt ) filename");
      }

      if (args.Length >= 1) slvr = args[0];
      if (args.Length >= 2) filename = args[1];

      using (Env env = new mosek.Env())
      {
        using (Task task = new Task(env,0,0))
        {
          task.readdata(filename);

          if (slvr == "psim")
            task.putintparam(iparam.optimizer, optimizertype.primal_simplex);
          else if (slvr == "dsim")
            task.putintparam(iparam.optimizer, optimizertype.dual_simplex);
          else if (slvr == "intpnt")
            task.putintparam(iparam.optimizer, optimizertype.intpnt);

          double maxtime = 0.06;
          task.set_InfoCallback(new myCallback(maxtime));
          task.optimize();

          task.solutionsummary(streamtype.msg);
        }
      }
    }
  }
}

ceo1.cs

Listing 17.5 ceo1.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:      ceo1.cs

  Purpose:   Demonstrates how to solve a small conic exponential
  optimization problem using the MOSEK API.
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class ceo1
  {
    public static void Main ()
    {
      const int numcon = 1;
      const int numvar = 3;

      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;

      mosek.boundkey bkc = mosek.boundkey.fx;
      double blc = 1.0 ;
      double buc = 1.0 ;

      mosek.boundkey[] bkx = {mosek.boundkey.fr,
                              mosek.boundkey.fr,
                              mosek.boundkey.fr
                             };
      double[] blx = { -infinity,
                       -infinity,
                       -infinity
                     };
      double[] bux = { +infinity,
                       +infinity,
                       +infinity
                     };

      double[] c   = { 1.0,
                       1.0,
                       0.0
                     };

      double[] a = { 1.0, 1.0, 1.0 };
      int[] asub = { 0, 1, 2 };
      int[] csub = new int[3];

      // Create a task object.
      using (mosek.Task task = new mosek.Task()) {
        // Directs the log task stream to the user specified
        // method msgclass.streamCB
        task.set_Stream (mosek.streamtype.log, new msgclass (""));

        /* Append 'numcon' empty constraints.
           The constraints will initially have no bounds. */
        task.appendcons(numcon);

        /* Append 'numvar' variables.
           The variables will initially be fixed at zero (x=0). */
        task.appendvars(numvar);

        /* Set up the linear part of the problem */
        task.putcslice(0, numvar, c);
        task.putarow(0, asub, a);
        task.putconbound(0, bkc, blc, buc);
        task.putvarboundslice(0, numvar, bkx, blx, bux);

        /* Add a conic constraint */
        /* Create a 3x3 identity matrix F */
        task.appendafes(3);
        task.putafefentrylist(new long[]{0, 1, 2},         /* Rows */
                              new int[]{0, 1, 2},          /* Columns */
                              new double[]{1.0, 1.0, 1.0});

        /* Exponential cone (x(0),x(1),x(2)) \in EXP  */
        long expdomain  = task.appendprimalexpconedomain();
        task.appendacc(expdomain,               /* Domain */
                       new long[]{0, 1, 2},     /* Rows from F */
                       null);                   /* Unused */
        
        task.putobjsense(mosek.objsense.minimize);
        task.optimize();

        // Print a summary containing information
        // about the solution for debugging purposes
        task.solutionsummary(mosek.streamtype.msg);

        mosek.solsta solsta;
        /* Get status information about the solution */
        task.getsolsta(mosek.soltype.itr, out solsta);

        double[] xx  = task.getxx(mosek.soltype.itr);  // Interior solution

        switch (solsta)
        {
          case mosek.solsta.optimal:
            Console.WriteLine ("Optimal primal solution\n");
            for (int j = 0; j < numvar; ++j)
              Console.WriteLine ("x[{0}]: {1}", j, xx[j]);
            break;
          case mosek.solsta.dual_infeas_cer:
          case mosek.solsta.prim_infeas_cer:
            Console.WriteLine("Primal or dual infeasibility.\n");
            break;
          case mosek.solsta.unknown:
            Console.WriteLine("Unknown solution status.\n");
            break;
          default:
            Console.WriteLine("Other solution status");
            break;
        }
      }
    }
  }
}

concurrent1.cs

Listing 17.6 concurrent1.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:      concurrent1.cs

   Purpose: Demonstrates a simple implementation of a concurrent optimizer.
            
            The concurrent optimizer starts a few parallel optimizations
            of the same problem using different algorithms, and reports
            a solution when the first optimizer is ready.

            This example also demonstrates how to define a simple callback handler
            that stops the optimizer when requested.
*/
using System.Threading.Tasks;
using System;

namespace mosek.example
{
  public class concurrent1
  {
    /** Takes a list of tasks and optimizes then in parallel. The
        response code and termination code from each optimization is
        stored in ``res`` and ``trm``.

        When one task completes with rescode == ok, others are terminated.

        Returns true if some optimizer returned without error. In this case
        ``firstOK`` is the index of the first task that returned
        with rescode == ok. Whether or not this is the task firstOK contains the
        most valuable answer, is for the caller to decide.
     */
    public static bool optimize(mosek.Task[]    tasks,
                                mosek.rescode[] res,
                                mosek.rescode[] trm,
                                out int         firstOK)
    {
      var n = tasks.Length;
      var jobs = new System.Threading.Tasks.Task[n];
      int firstStop = -1;

      // Set a callback function 
      var cb = new CallbackProxy();
      for (var i = 0; i < n; ++i)
        tasks[i].set_Progress(cb);
      
      // Initialize
      for (var i = 0; i < n; ++i) 
      {
        res[i] = mosek.rescode.err_unknown;
        trm[i] = mosek.rescode.err_unknown;
      }

      // Start parallel optimizations, one per task
      for (var i = 0; i < n; ++i)
      {
        int num = i;
        jobs[i] = System.Threading.Tasks.Task.Factory.StartNew( () => {
          try
          {
            trm[num] = tasks[num].optimize();
            res[num] = mosek.rescode.ok;
          }
          catch (mosek.Exception e)
          {
            trm[num] = mosek.rescode.err_unknown;
            res[num] = e.Code;
          }
          finally
          {
            // If this finished with success, inform other tasks to interrupt
            if (res[num] == mosek.rescode.ok)
            {
              if (!cb.Stop) firstStop = num;
              cb.Stop = true;
            }
          }
        } );
      }

      // Join all threads
      foreach (var j in jobs)
        j.Wait();

      // For debugging, print res and trm codes for all optimizers
      for (var i = 0; i < n; ++i)
        Console.WriteLine("Optimizer  {0}  res {1}   trm {2}", i, res[i], trm[i]);

      firstOK = firstStop;
      return cb.Stop;
    }


    /** 
        Given a continuous task, set up jobs to optimize it 
        with a list of different solvers.

        Returns an index, corresponding to the optimization
        task that is returned as winTask. This is the task
        with the best possible status of those that finished.
        If none task is considered successful returns -1.
     */
    public static int  optimizeconcurrent(mosek.Task            task, 
                                          int[]                 optimizers,
                                          out mosek.Task        winTask,
                                          out mosek.rescode     winTrm,
                                          out mosek.rescode     winRes)
    {
      var n = optimizers.Length;
      var tasks = new mosek.Task[n];
      var res   = new mosek.rescode[n];
      var trm   = new mosek.rescode[n];

      // Clone tasks and choose various optimizers
      for (var i = 0; i < n; ++i)
      {
        tasks[i] = new mosek.Task(task);
        tasks[i].putintparam(mosek.iparam.optimizer, optimizers[i]);
      }

      // Solve tasks in parallel
      bool success;
      int firstOK;
      success = optimize(tasks, res, trm, out firstOK);

      if (success) 
      {
        winTask  = tasks[firstOK]; 
        winTrm   = trm[firstOK]; 
        winRes   = res[firstOK];
        return firstOK;
      }
      else
      {
        winTask  = null; 
        winTrm   = 0; 
        winRes   = 0;        
        return -1;
      }
    }

    /** 
        Given a mixed-integer task, set up jobs to optimize it 
        with different values of seed. That will lead to
        different execution paths of the optimizer.

        Returns an index, corresponding to the optimization
        task that is returned as winTask. This is the task
        with the best value of the objective function.
        If none task is considered successful returns -1.

        Typically, the input task would contain a time limit. The two
        major scenarios are:
        1. Some clone ends before time limit - then it has optimum.
        2. All clones reach time limit - pick the one with best objective.
     */
    public static int  optimizeconcurrentMIO(mosek.Task            task, 
                                             int[]                 seeds,
                                             out mosek.Task        winTask,
                                             out mosek.rescode     winTrm,
                                             out mosek.rescode     winRes)
    {
      var n = seeds.Length;
      var tasks = new mosek.Task[n];
      var res   = new mosek.rescode[n];
      var trm   = new mosek.rescode[n];

      // Clone tasks and choose various seeds for the optimizer
      for (var i = 0; i < n; ++i)
      {
        tasks[i] = new mosek.Task(task);
        tasks[i].putintparam(mosek.iparam.mio_seed, seeds[i]);
      }

      // Solve tasks in parallel
      bool success;
      int firstOK;
      success = optimize(tasks, res, trm, out firstOK);

      if (success) 
      {
        // Pick the task that ended with res = ok
        // and contains an integer solution with best objective value
        mosek.objsense sense = task.getobjsense();
        double bestObj = (sense == mosek.objsense.minimize) ? 1.0e+10 : -1.0e+10;
        int bestPos = -1;

        for (var i = 0; i < n; ++i)
          Console.WriteLine("{0}   {1}   ", i, tasks[i].getprimalobj(mosek.soltype.itg));

        for (var i = 0; i < n; ++i)
          if ((res[i] == mosek.rescode.ok) &&
              (tasks[i].getsolsta(mosek.soltype.itg) == mosek.solsta.prim_feas ||
               tasks[i].getsolsta(mosek.soltype.itg) == mosek.solsta.integer_optimal) &&
              ((sense == mosek.objsense.minimize) ? 
                  (tasks[i].getprimalobj(mosek.soltype.itg) < bestObj) :
                  (tasks[i].getprimalobj(mosek.soltype.itg) > bestObj)   )   )
          {
            bestObj = tasks[i].getprimalobj(mosek.soltype.itg);
            bestPos = i;
          }

        if (bestPos != -1)
        {
          winTask  = tasks[bestPos]; 
          winTrm   = trm[bestPos]; 
          winRes   = res[bestPos];
          return bestPos;
        }
      }

      winTask  = null; 
      winTrm   = 0; 
      winRes   = 0;        
      return -1;
    }

    /** 
       This is an example of how one can use the methods
           optimizeconcurrent
           optimizeconcurrentMIO

       argv[0] : name of file with input problem
       argv[1]: (optional) time limit
     */
    public static void Main(string[] argv)
    {
      using (var env = new mosek.Env())
      {
        using (var task = new mosek.Task(env))
        {
          if (argv.Length >= 1) 
          {
            task.readdata(argv[0]);
          }
          else
          {
            task.readdata("../data/25fv47.mps");
          }

          mosek.rescode res, trm;
          mosek.Task    t;
          int           idx;
          int           numint;
          task.getnumintvar(out numint);

          // Optional time limit
          if (argv.Length >= 2) 
          {
            double timeLimit = double.Parse(argv[1]);
            task.putdouparam(mosek.dparam.optimizer_max_time, timeLimit);
          }

          if (numint == 0) 
          {
            /* If the problem is continuous
               optimize it with three continuous optimizers.
              (Simplex will fail for non-linear problems)
            */
            int[] optimizers = { 
              mosek.optimizertype.conic,
              mosek.optimizertype.dual_simplex,
              mosek.optimizertype.primal_simplex
            };

            idx = optimizeconcurrent(task, optimizers, out t, out trm, out res);
          }          
          else
          {
            /* Mixed-integer problem.
               Try various seeds.
            */
            int[] seeds = { 42, 13, 71749373 };

            idx = optimizeconcurrentMIO(task, seeds, out t, out trm, out res);
          }          

          // Check results and print the best answer
          if (idx >= 0) 
          {
            Console.WriteLine("Result from optimizer with index {0}: res {1}  trm {2}", idx, res, trm);
            t.set_Stream(mosek.streamtype.log, new msgclass(""));
            t.optimizersummary(mosek.streamtype.log);
            t.solutionsummary(mosek.streamtype.log);
          }
          else 
          {
            Console.WriteLine("All optimizers failed.");
          }
        }
      }
    }


    /**
       Defines a Mosek callback function whose only function
       is to indicate if the optimizer should be stopped.
     */
    private class CallbackProxy : mosek.Progress
    {
      private bool stop;
      public CallbackProxy()
      {
        stop = false;
      }

      public override int progressCB(mosek.callbackcode caller)
      {
        // Return non-zero implies terminate the optimizer
        return stop ? 1 : 0;
      }

      public bool Stop
      {
        get { return stop; }
        set { stop = value; }
      }
    }

    /**
       A simple stream handler.
     */
    class msgclass : mosek.Stream
    {
      public msgclass (string prfx) { }
      public override void streamCB (string msg)
      {
        Console.Write("{0}", msg);
      }
    }
  }
}

cqo1.cs

Listing 17.7 cqo1.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:      cqo1.cs

  Purpose:   Demonstrates how to solve a small conic quadratic
             optimization problem using the MOSEK API.
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class cqo1
  {
    public static void Main ()
    {
      const int numcon = 1;
      const int numvar = 6;

      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;

      mosek.boundkey[] bkc    = { mosek.boundkey.fx };
      double[] blc = { 1.0 };
      double[] buc = { 1.0 };

      mosek.boundkey[] bkx = {mosek.boundkey.lo,
                              mosek.boundkey.lo,
                              mosek.boundkey.lo,
                              mosek.boundkey.fr,
                              mosek.boundkey.fr,
                              mosek.boundkey.fr
                             };
      double[] blx = { 0.0,
                       0.0,
                       0.0,
                       -infinity,
                       -infinity,
                       -infinity
                     };
      double[] bux = { +infinity,
                       +infinity,
                       +infinity,
                       +infinity,
                       +infinity,
                       +infinity
                     };

      double[] c   = { 0.0,
                       0.0,
                       0.0,
                       1.0,
                       1.0,
                       1.0
                     };

      double[][] aval = {
              new double[] {1.0},
              new double[] {1.0},
              new double[] {2.0}
      };

      int[][] asub = {
            new int[] {0},
            new int[] {0},
            new int[] {0}
      };

      int[] csub = new int[3];

      // Create a task object.
      using (mosek.Task task = new mosek.Task()) {
        // Directs the log task stream to the user specified
        // method msgclass.streamCB
        task.set_Stream (mosek.streamtype.log, new msgclass (""));

        /* Append 'numcon' empty constraints.
           The constraints will initially have no bounds. */
        task.appendcons(numcon);

        /* Append 'numvar' variables.
           The variables will initially be fixed at zero (x=0). */
        task.appendvars(numvar);

        for (int j = 0; j < numvar; ++j)
        {
          /* Set the linear term c_j in the objective.*/
          task.putcj(j, c[j]);
          /* Set the bounds on variable j.
                 blx[j] <= x_j <= bux[j] */
          task.putvarbound(j, bkx[j], blx[j], bux[j]);
        }

        for (int j = 0; j < aval.Length; ++j)
          /* Input column j of A */
          task.putacol(j,          /* Variable (column) index.*/
                       asub[j],     /* Row index of non-zeros in column j.*/
                       aval[j]);    /* Non-zero Values of column j. */

        /* Set the bounds on constraints.
             for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */
        for (int i = 0; i < numcon; ++i)
          task.putconbound(i, bkc[i], blc[i], buc[i]);

        /* Create a matrix F such that F * x = [x(3),x(0),x(1),x(4),x(5),x(2)] */
        task.appendafes(6);
        task.putafefentrylist(new long[]{0, 1, 2, 3, 4, 5},         /* Rows */
                              new int[]{3, 0, 1, 4, 5, 2},          /* Columns */
                              new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0});

        /* Quadratic cone (x(3),x(0),x(1)) \in QUAD_3  */
        long quadcone  = task.appendquadraticconedomain(3);
        task.appendacc(quadcone,                /* Domain */
                       new long[]{0, 1, 2},     /* Rows from F */
                       null);                   /* Unused */

        /* Rotated quadratic cone (x(4),x(5),x(2)) \in RQUAD_3  */
        long rquadcone = task.appendrquadraticconedomain(3);
        task.appendacc(rquadcone,               /* Domain */
                       new long[]{3, 4, 5},     /* Rows from F */
                       null);                   /* Unused */
        
        task.putobjsense(mosek.objsense.minimize);
        task.optimize();

        // Print a summary containing information
        //   about the solution for debugging purposes
        task.solutionsummary(mosek.streamtype.msg);
        
        /* Get status information about the solution */
        mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

        double[] xx = task.getxx(mosek.soltype.itr); // Interior point solution

        switch (solsta)
        {
          case mosek.solsta.optimal:
            Console.WriteLine ("Optimal primal solution\n");
            for (int j = 0; j < numvar; ++j)
              Console.WriteLine ("x[{0}]: {1}", j, xx[j]);
            break;
          case mosek.solsta.dual_infeas_cer:
          case mosek.solsta.prim_infeas_cer:
            Console.WriteLine("Primal or dual infeasibility.\n");
            break;
          case mosek.solsta.unknown:
            Console.WriteLine("Unknown solution status.\n");
            break;
          default:
            Console.WriteLine("Other solution status");
            break;
        }
      }
    }
  }
}

djc1.cs

Listing 17.8 djc1.cs Click here to download.
////
//   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
//
//   File:      djc1.cs
//
//   Purpose: Demonstrates how to solve the problem with two disjunctions:
//
//      minimize    2x0 + x1 + 3x2 + x3
//      subject to   x0 + x1 + x2 + x3 >= -10
//                  (x0-2x1<=-1 and x2=x3=0) or (x2-3x3<=-2 and x1=x2=0)
//                  x0=2.5 or x1=2.5 or x2=2.5 or x3=2.5
////
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class djc1
  {
    public static void Main ()
    {
      // Since the value of infinity is ignored, we define it solely
      // for symbolic purposes
      const double inf = 0;

      try
      {
        // Make mosek environment.
        using (mosek.Env env = new mosek.Env())
        {
          // Create a task object.
          using (mosek.Task task = new mosek.Task(env, 0, 0))
          {
            // Append free variables
            int numvar = 4;
            task.appendvars(numvar);
            task.putvarboundsliceconst(0, numvar, mosek.boundkey.fr, -inf, inf);

            // The linear part: the linear constraint
            task.appendcons(1);
            task.putarow(0, new int[]{0, 1, 2, 3}, new double[]{1, 1, 1, 1});
            task.putconbound(0, mosek.boundkey.lo, -10.0, -10.0);

            // The linear part: objective
            task.putobjsense(mosek.objsense.minimize);
            task.putclist(new int[]{0, 1, 2, 3}, new double[]{2, 1, 3, 1});

            // Fill in the affine expression storage F, g
            long numafe = 10;
            task.appendafes(numafe);

            long[]   fafeidx = new long[]{0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};
            int[]    fvaridx = new int[]{0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};
            double[] fval    = new double[]{1.0, -2.0, 1.0, -3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
            double[] g       = new double[]{1.0, 2.0, 0.0, 0.0, 0.0, 0.0, -2.5, -2.5, -2.5, -2.5};

            task.putafefentrylist(fafeidx, fvaridx, fval);
            task.putafegslice(0, numafe, g);

            // Create domains
            long zero1   = task.appendrzerodomain(1);
            long zero2   = task.appendrzerodomain(2);
            long rminus1 = task.appendrminusdomain(1);

            // Append disjunctive constraints
            long numdjc = 2;
            task.appenddjcs(numdjc);

            // First disjunctive constraint
            task.putdjc(0,                                           // DJC index
                        new long[]{rminus1, zero2, rminus1, zero2},  // Domains     (domidxlist)
                        new long[]{0, 4, 5, 1, 2, 3},                // AFE indices (afeidxlist)
                        null,                                        // Unused
                        new long[]{2, 2} );                          // Term sizes  (termsizelist)

            // Second disjunctive constraint
            task.putdjc(1,                                        // DJC index
                        new long[]{zero1, zero1, zero1, zero1},   // Domains     (domidxlist)
                        new long[]{6, 7, 8, 9},                   // AFE indices (afeidxlist)
                        null,                                     // Unused
                        new long[]{1, 1, 1, 1} );                 // Term sizes  (termidxlist)

            // Useful for debugging
            task.writedata("djc.ptf");
            // Directs the log task stream to the user specified
            // method msgclass.streamCB
            task.set_Stream (mosek.streamtype.log, new msgclass (""));

            // Solve the problem
            task.optimize();

            // Print a summary containing information
            // about the solution for debugging purposes
            task.solutionsummary(mosek.streamtype.msg);

            // Get status information about the solution
            mosek.solsta solsta = task.getsolsta(mosek.soltype.itg);

            switch (solsta)
            {
              case mosek.solsta.integer_optimal:
                double[] xx  =  task.getxx(mosek.soltype.itg);

                Console.WriteLine ("Optimal primal solution\n");
                for (int j = 0; j < numvar; ++j)
                  Console.WriteLine ("x[{0}]: {1}", j, xx[j]);
                break;
              default:
                Console.WriteLine("Another solution status");
                break;
            }
          }
        }
      }
      catch (mosek.Exception e) {
        mosek.rescode res = e.Code;
        Console.WriteLine("Response code {0}\nMessage       {1}", res, e.Message);
      }
    }
  }
}

feasrepairex1.cs

Listing 17.9 feasrepairex1.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:      feasrepairex1.cs

  Purpose:    To demonstrate how to use the MSK_relaxprimal function to
              locate the cause of an infeasibility.

  Syntax: On command line
          feasrepairex1 feasrepair.lp
          feasrepair.lp is located in mosek\<version>\tools\examples.
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    public msgclass () {}

    public override void streamCB (string msg)
    {
      Console.Write ("{1}", msg);
    }
  }

  public class feasrepairex1
  {
    public static void Main (String[] args)
    {
      string filename = "../data/feasrepair.lp";
      if (args.Length >= 1) filename = args[0];

      using (mosek.Env env = new mosek.Env())
      {
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          task.set_Stream (mosek.streamtype.log, new msgclass());

          task.readdata(filename);

          task.putintparam(mosek.iparam.log_feas_repair, 3);

          task.primalrepair(null, null, null, null);

          double sum_viol = task.getdouinf(mosek.dinfitem.primal_repair_penalty_obj);

          Console.WriteLine("Minimized sum of violations = %{0}", sum_viol);

          task.optimize();
          task.solutionsummary(mosek.streamtype.msg);
        }
      }
    }
  }
}

gp1.cs

Listing 17.10 gp1.cs Click here to download.
//
//   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
//
//   File:      gp1.cs
//
//   Purpose:   Demonstrates how to solve a simple Geometric Program (GP)
//              cast into conic form with exponential cones and log-sum-exp.
//
//              Example from
//                https://gpkit.readthedocs.io/en/latest/examples.html//maximizing-the-volume-of-a-box
//
using System;
using mosek;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class gp1
  {
    // Since the value of infinity is ignored, we define it solely
    // for symbolic purposes
    static double inf = 0.0;

    // maximize     h*w*d
    // subjecto to  2*(h*w + h*d) <= Awall
    //              w*d <= Afloor
    //              alpha <= h/w <= beta
    //              gamma <= d/w <= delta
    //
    // Variable substitutions:  h = exp(x), w = exp(y), d = exp(z).
    //
    // maximize     x+y+z
    // subject      log( exp(x+y+log(2/Awall)) + exp(x+z+log(2/Awall)) ) <= 0
    //                              y+z <= log(Afloor)
    //              log( alpha ) <= x-y <= log( beta )
    //              log( gamma ) <= z-y <= log( delta )
    public static double[] max_volume_box(double Aw, double Af, 
                                          double alpha, double beta, double gamma, double delta)
    {
      // Basic dimensions of our problem
      int numvar    = 3;  // Variables in original problem
      int x=0, y=1, z=2;  // Indices of variables
      int numcon    = 3;  // Linear constraints in original problem

      // Linear part of the problem
      double[] cval  = {1, 1, 1};
      int[]    asubi = {0, 0, 1, 1, 2, 2};
      int[]    asubj = {y, z, x, y, z, y};
      double[] aval  = {1.0, 1.0, 1.0, -1.0, 1.0, -1.0};
      boundkey[] bkc = {boundkey.up, boundkey.ra, boundkey.ra};
      double[] blc   = {-inf, Math.Log(alpha), Math.Log(gamma)};
      double[] buc   = {Math.Log(Af), Math.Log(beta), Math.Log(delta)};

      using (Env env = new Env())
      {
        using (Task task = new Task(env, 0, 0))
        {
          // Directs the log task stream to the user specified
          // method task_msg_obj.stream
          task.set_Stream (mosek.streamtype.log, new msgclass (""));

          // Add variables and constraints
          task.appendvars(numvar);
          task.appendcons(numcon);

          // Objective is the sum of three first variables
          task.putobjsense(objsense.maximize);
          task.putcslice(0, numvar, cval);
          task.putvarboundsliceconst(0, numvar, boundkey.fr, -inf, inf);

          // Add the three linear constraints
          task.putaijlist(asubi, asubj, aval);
          task.putconboundslice(0, numvar, bkc, blc, buc);

          // Affine expressions appearing in affine conic constraints
          // in this order:
          // u1, u2, x+y+log(2/Awall), x+z+log(2/Awall), 1.0, u1+u2-1.0
          long numafe    = 6;
          int u1 = 3, u2 = 4;     // Indices of slack variables
          long[]   afeidx = {0, 1, 2, 2, 3, 3, 5, 5};
          int[]    varidx = {u1, u2, x, y, x, z, u1, u2};
          double[] fval   = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
          double[] gfull  = {0, 0, Math.Log(2/Aw), Math.Log(2/Aw), 1.0, -1.0};

          // New variables u1, u2
          task.appendvars(2);
          task.putvarboundsliceconst(u1, u2+1, boundkey.fr, -inf, inf);

          // Append affine expressions
          task.appendafes(numafe);
          task.putafefentrylist(afeidx, varidx, fval);
          task.putafegslice(0, numafe, gfull);

          // Two affine conic constraints
          long expdom = task.appendprimalexpconedomain();

          // (u1, 1, x+y+log(2/Awall)) \in EXP
          task.appendacc(expdom, new long[]{0, 4, 2}, null);

          // (u2, 1, x+z+log(2/Awall)) \in EXP
          task.appendacc(expdom, new long[]{1, 4, 3}, null);     

          // The constraint u1+u2-1 \in \ZERO is added also as an ACC
          task.appendacc(task.appendrzerodomain(1), new long[]{5}, null);

          // Solve and map to original h, w, d
          task.optimize();

          double[] xyz = task.getxxslice(soltype.itr, 0, numvar);
          double[] hwd = new double[numvar];
          for(int i = 0; i < numvar; i++) hwd[i] = Math.Exp(xyz[i]);
          return hwd;
        }
      }
    }
    
    public static void Main(String[] args)
    {
      double Aw    = 200.0;
      double Af    = 50.0;
      double alpha = 2.0;
      double beta  = 10.0;
      double gamma = 2.0;
      double delta = 10.0;
      
      double[] hwd = max_volume_box(Aw, Af, alpha, beta, gamma, delta);

      Console.WriteLine("h={0:f4} w={1:f4} d={2:f4}", hwd[0], hwd[1], hwd[2]);
    }
  }
}

helloworld.cs

Listing 17.11 helloworld.cs Click here to download.
////
//  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
//
//  File:      helloworld.cs
//
//  The most basic example of how to get started with MOSEK.

using mosek;
using System;

public class helloworld {
  public static void Main() {

    double[] x = new double[1];

    using (Env env = new Env()) {                // Create Environment
      using (Task task = new Task(env, 0, 1)) {  // Create Task

        task.appendvars(1);                          // 1 variable x
        task.putcj(0, 1.0);                          // c_0 = 1.0
        task.putvarbound(0, boundkey.ra, 2.0, 3.0);  // 2.0 <= x <= 3.0
        task.putobjsense(objsense.minimize);         // minimize

        task.optimize();                      // Optimize

        task.getxx(soltype.itr, x);                  // Get solution
        Console.WriteLine("Solution x = " + x[0]);   // Print solution
      }
    }
  }
}

lo1.cs

Listing 17.12 lo1.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:      lo1.cs

   Purpose:   Demonstrates how to solve small linear
              optimization problem using the MOSEK C# API.
 */

using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class lo1
  {
    public static void Main ()
    {
      const int numcon = 3;
      const int numvar = 4;

      // Since the value of infinity is ignored, we define it solely
      // for symbolic purposes
      double infinity = 0;

      double[] c    = {3.0, 1.0, 5.0, 1.0};
      int[][]  asub = { 
            new int[] {0, 1},
            new int[] {0, 1, 2},
            new int[] {0, 1},
            new int[] {1, 2}
      };
      double[][] aval = { 
               new double[] {3.0, 2.0},
               new double[] {1.0, 1.0, 2.0},
               new double[] {2.0, 3.0},
               new double[] {1.0, 3.0}
      };

      mosek.boundkey[] bkc  = {mosek.boundkey.fx,
                               mosek.boundkey.lo,
                               mosek.boundkey.up
                              };

      double[] blc  = {30.0,
                       15.0,
                       -infinity
                      };
      double[] buc  = {30.0,
                       +infinity,
                       25.0
                      };
      mosek.boundkey[]  bkx  = {mosek.boundkey.lo,
                                mosek.boundkey.ra,
                                mosek.boundkey.lo,
                                mosek.boundkey.lo
                               };
      double[]  blx  = {0.0,
                        0.0,
                        0.0,
                        0.0
                       };
      double[]  bux  = { +infinity,
                         10.0,
                         +infinity,
                         +infinity
                       };

      try {
        // Create a task object.
        using (mosek.Task task = new mosek.Task())
        {
          // Directs the log task stream to the user specified
          // method msgclass.streamCB
          task.set_Stream (mosek.streamtype.log, new msgclass (""));

          // Append 'numcon' empty constraints.
          // The constraints will initially have no bounds.
          task.appendcons(numcon);

          // Append 'numvar' variables.
          // The variables will initially be fixed at zero (x=0).
          task.appendvars(numvar);

          for (int j = 0; j < numvar; ++j)
          {
            // Set the linear term c_j in the objective.
            task.putcj(j, c[j]);

            // Set the bounds on variable j.
            // blx[j] <= x_j <= bux[j]
            task.putvarbound(j, bkx[j], blx[j], bux[j]);

            // Input column j of A
            task.putacol(j,                     /* Variable (column) index.*/
                         asub[j],               /* Row index of non-zeros in column j.*/
                         aval[j]);              /* Non-zero Values of column j. */
          }

          // Set the bounds on constraints.
          // blc[i] <= constraint_i <= buc[i]
          for (int i = 0; i < numcon; ++i)
            task.putconbound(i, bkc[i], blc[i], buc[i]);

          // Input the objective sense (minimize/maximize)
          task.putobjsense(mosek.objsense.maximize);

          // Solve the problem
          task.optimize();

          // Print a summary containing information
          // about the solution for debugging purposes
          task.solutionsummary(mosek.streamtype.msg);

          // Get status information about the solution
          mosek.solsta solsta;
          task.getsolsta(mosek.soltype.bas, out solsta);

          switch (solsta)
          {
            case mosek.solsta.optimal:
              double[] xx  = new double[numvar];
              task.getxx(mosek.soltype.bas, // Request the basic solution.
                         xx);

              Console.WriteLine ("Optimal primal solution\n");
              for (int j = 0; j < numvar; ++j)
                Console.WriteLine ("x[{0}]: {1}", j, xx[j]);
              break;
            case mosek.solsta.dual_infeas_cer:
            case mosek.solsta.prim_infeas_cer:
              Console.WriteLine("Primal or dual infeasibility certificate found.\n");
              break;
            case mosek.solsta.unknown:
              Console.WriteLine("Unknown solution status.\n");
              break;
            default:
              Console.WriteLine("Other solution status");
              break;
          }
        }
      }
      catch (mosek.Exception e) {
        mosek.rescode res = e.Code;
        Console.WriteLine("Response code {0}\nMessage       {1}", res, e.Message);
      }
    }
  }
}

lo1.vb

Listing 17.13 lo1.vb Click here to download.
'   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
'
'   File:    lo1.vb
'
'   Purpose: Demonstrates how to solve small linear
'            optimization problem using the MOSEK .net API.
'
Imports System, mosek


Public Class MsgTest
    Inherits mosek.Stream
    Dim name As String

    Public Sub New(ByVal e As mosek.Env, ByVal n As String)
        '        MyBase.New ()
        name = n
    End Sub

    Public Overrides Sub streamCB(ByVal msg As String)
        Console.Write("{0}: {1}", name, msg)
    End Sub
End Class

Module Module1
    Sub Main()
        Dim infinity As Double = 0.0
        Dim numcon As Integer = 3
        Dim numvar As Integer = 4

        Dim bkc As boundkey() = {boundkey.fx, boundkey.lo, boundkey.up}
        Dim bkx As boundkey() = {boundkey.lo, boundkey.ra, boundkey.lo, boundkey.lo}
        Dim asub(numvar)() As Integer
        asub(0) = New Integer() {0, 1}
        asub(1) = New Integer() {0, 1, 2}
        asub(2) = New Integer() {0, 1}
        asub(3) = New Integer() {1, 2}

        Dim blc As Double() = {30.0, 15.0, -infinity}
        Dim buc As Double() = {30.0, infinity, 25.0}
        Dim cj As Double() = {3.0, 1.0, 5.0, 1.0}
        Dim blx As Double() = {0.0, 0.0, 0.0, 0, 0}
        Dim bux As Double() = {infinity, 10, infinity, infinity}

        Dim aval(numvar)() As Double
        aval(0) = New Double() {3.0, 2.0}
        aval(1) = New Double() {1.0, 1.0, 2.0}
        aval(2) = New Double() {2.0, 3.0}
        aval(3) = New Double() {1.0, 3.0}

        Dim xx As Double() = {0, 0, 0, 0, 0}

        Dim msg As MsgTest
        Dim i As Integer
        Dim j As Integer

        Try
            Using env As New mosek.Env()
                Using task As New mosek.task(env, 0, 0)
                    msg = New MsgTest(env, "msg")
                    task.set_Stream(streamtype.log, msg)

                    'Append 'numcon' empty constraints.
                    'The constraints will initially have no bounds. 
                    Call task.appendcons(numcon)

                    'Append 'numvar' variables.
                    ' The variables will initially be fixed at zero (x=0). 

                    Call task.appendvars(numvar)

                    For j = 0 To numvar - 1
                        'Set the linear term c_j in the objective.
                        Call task.putcj(j, cj(j))

                        ' Set the bounds on variable j.
                        'blx[j] <= x_j <= bux[j] 
                        Call task.putvarbound(j, bkx(j), blx(j), bux(j))
                        'Input column j of A 
                        Call task.putacol(j, asub(j), aval(j))
                    Next j

                    ' for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] 
                    For i = 0 To numcon - 1
                        Call task.putconbound(i, bkc(i), blc(i), buc(i))
                    Next i

                    Call task.putobjsense(mosek.objsense.maximize)

                    Call task.optimize()
                    ' Print a summary containing information
                    '   about the solution for debugging purposes
                    Call task.solutionsummary(mosek.streamtype.msg)

                    Dim solsta As mosek.solsta
                    ' Get status information about the solution 

                    Call task.getsolsta(mosek.soltype.bas, solsta)

                    task.getxx(soltype.bas, xx)

                    For j = 0 To numvar - 1
                        Console.WriteLine("x[{0}]:{1}", j, xx(j))
                    Next

                    Console.WriteLine("Finished optimization")
                End Using
            End Using
        Catch e As mosek.Exception
            Console.WriteLine("MosekException caught, {0}", e)
            Throw (e)
        End Try
    End Sub
End Module

lo2.cs

Listing 17.14 lo2.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:    lo2.cs

   Purpose: Demonstrates how to solve small linear
            optimization problem using the MOSEK C# API.
 */

using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class lo2
  {
    public static void Main ()
    {
      const int numcon = 3;
      const int numvar = 4;

      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double
      infinity = 0;

      double[] c    = {3.0, 1.0, 5.0, 1.0};
      int[][]  asub = {
            new int[] {0, 1, 2},
            new int[] {0, 1, 2, 3},
            new int[] {1, 3}
      };
      double[][] aval = {
            new double[] {3.0, 1.0, 2.0},
            new double[] {2.0, 1.0, 3.0, 1.0},
            new double[] {2.0, 3.0}
      };


      mosek.boundkey[] bkc  = {mosek.boundkey.fx,
                               mosek.boundkey.lo,
                               mosek.boundkey.up
                              };

      double[] blc  = {30.0,
                       15.0,
                       -infinity
                      };
      double[] buc  = {30.0,
                       +infinity,
                       25.0
                      };
      mosek.boundkey[]  bkx  = {mosek.boundkey.lo,
                                mosek.boundkey.ra,
                                mosek.boundkey.lo,
                                mosek.boundkey.lo
                               };
      double[]  blx  = {0.0,
                        0.0,
                        0.0,
                        0.0
                       };
      double[]  bux  = { +infinity,
                         10.0,
                         +infinity,
                         +infinity
                       };

      mosek.Task task = null;
      mosek.Env  env  = null;

      double[] xx  = new double[numvar];

      try
      {
        // Make mosek environment.
        env  = new mosek.Env ();
        // Create a task object linked with the environment env.
        task = new mosek.Task (env, 0, 0);
        // Directs the log task stream to the user specified
        // method task_msg_obj.streamCB
        task.set_Stream (mosek.streamtype.log, new msgclass (""));

        /* Give MOSEK an estimate of the size of the input data.
              This is done to increase the speed of inputting data.
              However, it is optional. */
        /* Append 'numcon' empty constraints.
              The constraints will initially have no bounds. */
        task.appendcons(numcon);

        /* Append 'numvar' variables.
              The variables will initially be fixed at zero (x=0). */
        task.appendvars(numvar);

        /* Optionally add a constant term to the objective. */
        task.putcfix(0.0);

        for (int j = 0; j < numvar; ++j)
        {
          /* Set the linear term c_j in the objective.*/
          task.putcj(j, c[j]);
          /* Set the bounds on variable j.
                    blx[j] <= x_j <= bux[j] */
          task.putvarbound(j, bkx[j], blx[j], bux[j]);
        }
        /* Set the bounds on constraints.
                for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */
        for (int i = 0; i < numcon; ++i)
        {
          task.putconbound(i, bkc[i], blc[i], buc[i]);

          /* Input row i of A */
          task.putarow(i,                     /* Row index.*/
                       asub[i],               /* Column indexes of non-zeros in row i.*/
                       aval[i]);              /* Non-zero Values of row i. */
        }

        task.putobjsense(mosek.objsense.maximize);
        task.optimize();

        // Print a summary containing information
        //   about the solution for debugging purposes
        task.solutionsummary(mosek.streamtype.msg);

        mosek.solsta solsta;
        /* Get status information about the solution */
        task.getsolsta(mosek.soltype.bas, out solsta);
        task.getxx(mosek.soltype.bas, // Basic solution.
                   xx);

        switch (solsta)
        {
          case mosek.solsta.optimal:
            Console.WriteLine ("Optimal primal solution\n");
            for (int j = 0; j < numvar; ++j)
              Console.WriteLine ("x[{0}]: {1}", j, xx[j]);
            break;
          case mosek.solsta.dual_infeas_cer:
          case mosek.solsta.prim_infeas_cer:
            Console.WriteLine("Primal or dual infeasibility.\n");
            break;
          case mosek.solsta.unknown:
            Console.WriteLine("Unknown solution status.\n");
            break;
          default:
            Console.WriteLine("Other solution status");
            break;
        }
      }
      catch (mosek.Exception e)
      {
        Console.WriteLine (e.Code);
        Console.WriteLine (e);
        throw;
      }
      finally
      {
        if (task != null) task.Dispose ();
        if (env  != null)  env.Dispose ();
      }
    }
  }
}

logistic.cs

Listing 17.15 logistic.cs Click here to download.
////
//  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.
//
//  File:      logistic.cs
//
// Purpose: Implements logistic regression with regulatization.
//
//          Demonstrates using the exponential cone and log-sum-exp in Optimizer API.

using System;
using mosek;

namespace mosek.example
{
  public class logistic {
    public static double inf = 0.0;

    // Adds ACCs for t_i >= log ( 1 + exp((1-2*y[i]) * theta' * X[i]) )
    // Adds auxiliary variables, AFE rows and constraints
    public static void softplus(Task task, int d, int n, int theta, int t, double[,] X, bool[] y)
    {
      int nvar = task.getnumvar();
      int ncon = task.getnumcon();
      long nafe = task.getnumafe();
      task.appendvars(2*n);   // z1, z2
      task.appendcons(n);     // z1 + z2 = 1
      task.appendafes(4*n);   //theta * X[i] - t[i], -t[i], z1[i], z2[i]
      int z1 = nvar, z2 = nvar+n;
      int zcon = ncon;
      long thetaafe = nafe, tafe = nafe+n, z1afe = nafe+2*n, z2afe = nafe+3*n;
      int k = 0;

      // Linear constraints
      int[]    subi = new int[2*n];
      int[]    subj = new int[2*n];
      double[] aval = new double[2*n];

      for(int i = 0; i < n; i++)
      {
        // z1 + z2 = 1
        subi[k] = zcon+i;  subj[k] = z1+i;  aval[k] = 1;  k++;
        subi[k] = zcon+i;  subj[k] = z2+i;  aval[k] = 1;  k++;
      }
      task.putaijlist(subi, subj, aval);
      task.putconboundsliceconst(zcon, zcon+n, boundkey.fx, 1, 1);
      task.putvarboundsliceconst(nvar, nvar+2*n, boundkey.fr, -inf, inf);

      // Affine conic expressions
      long[]   afeidx = new long[d*n+4*n];
      int[]    varidx = new int[d*n+4*n];
      double[] fval   = new double[d*n+4*n];
      k = 0;

      // Thetas
      for(int i = 0; i < n; i++) {
        for(int j = 0; j < d; j++) {
          afeidx[k] = thetaafe + i; varidx[k] = theta + j; 
          fval[k] = ((y[i]) ? -1 : 1) * X[i,j];
          k++;
        }
      }

      // -t[i]
      for(int i = 0; i < n; i++) {
        afeidx[k] = thetaafe + i; varidx[k] = t + i; fval[k] = -1; k++;
        afeidx[k] = tafe + i;     varidx[k] = t + i; fval[k] = -1; k++;
      }

      // z1, z2
      for(int i = 0; i < n; i++) {
        afeidx[k] = z1afe + i; varidx[k] = z1 + i; fval[k] = 1; k++;
        afeidx[k] = z2afe + i; varidx[k] = z2 + i; fval[k] = 1; k++;
      }

      // Add the expressions
      task.putafefentrylist(afeidx, varidx, fval);

      // Add a single row with the constant expression "1.0"
      long oneafe = task.getnumafe();
      task.appendafes(1);
      task.putafeg(oneafe, 1.0);

      // Add an exponential cone domain
      long expdomain = task.appendprimalexpconedomain();
      
      // Conic constraints
      for(int i = 0; i < n; i++)
      {
        task.appendacc(expdomain, new long[]{z1afe+i, oneafe, thetaafe+i}, null);
        task.appendacc(expdomain, new long[]{z2afe+i, oneafe, tafe+i}, null);
      }
    }

    // Model logistic regression (regularized with full 2-norm of theta)
    // X - n x d matrix of data points
    // y - length n vector classifying training points
    // lamb - regularization parameter
    public static double[] logisticRegression(Env        env,
                                              double[,]  X, 
                                              bool[]     y,
                                              double     lamb)
    {
      int n = X.GetLength(0);
      int d = X.GetLength(1);       // num samples, dimension

      using (Task task = new Task(env, 0, 0))
      {    
        // Variables [r; theta; t]
        int nvar = 1+d+n;
        task.appendvars(nvar);
        task.putvarboundsliceconst(0, nvar, boundkey.fr, -inf, inf);
        int r = 0, theta = 1, t = 1+d;

        // Objective lambda*r + sum(t)
        task.putobjsense(mosek.objsense.minimize);
        task.putcj(r, lamb);
        for(int i = 0; i < n; i++) 
          task.putcj(t+i, 1.0);

        // Softplus function constraints
        softplus(task, d, n, theta, t, X, y);

        // Regularization
        // Append a sequence of linear expressions (r, theta) to F
        long numafe = task.getnumafe();
        task.appendafes(1+d);
        task.putafefentry(numafe, r, 1.0);
        for(int i = 0; i < d; i++)
          task.putafefentry(numafe + i + 1, theta + i, 1.0);

        // Add the constraint
        task.appendaccseq(task.appendquadraticconedomain(1+d), numafe, null);

        // Solution
        task.optimize();
        return task.getxxslice(soltype.itr, theta, theta+d);
      }
    }

    public static void Main(String[] args)
    {
      Env env = new Env();
      
      // Test: detect and approximate a circle using degree 2 polynomials
      int n = 30;
      double[,] X = new double[n*n, 6];
      bool[] Y     = new bool[n*n];

      for(int i=0; i<n; i++) 
      for(int j=0; j<n; j++)
      {
        int k = i*n+j;
        double x = -1 + 2.0*i/(n-1);
        double y = -1 + 2.0*j/(n-1);
        X[k,0] = 1.0; X[k,1] = x; X[k,2] = y; X[k,3] = x*y;
        X[k,4] = x*x; X[k,5] = y*y;
        Y[k] = (x*x+y*y>=0.69);
      }

      double[] theta = logisticRegression(env, X, Y, 0.1);

      for(int i=0;i<6;i++)
        Console.WriteLine(theta[i]);
    }
  }
}

mico1.cs

Listing 17.16 mico1.cs Click here to download.
/*
   Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File :      mico1.cs

   Purpose :   Demonstrates how to solve a small mixed
               integer conic optimization problem.

               minimize    x^2 + y^2
               subject to  x >= e^y + 3.8
                           x, y - integer
*/
using System;

namespace mosek.example
{
  public class MsgClass : mosek.Stream
  {
    public MsgClass () {}
    public override void streamCB (string msg)
    {
      Console.Write ("{0}", msg);
    }
  }

  public class mico1
  {
    public static void Main ()
    {
      mosek.Env env  = new mosek.Env ();
      mosek.Task task = new mosek.Task(env, 0, 0);
     
      // Directs the log task stream to the user specified
      // method task_msg_obj.streamCB
      MsgClass task_msg_obj = new MsgClass ();
      task.set_Stream (mosek.streamtype.log, task_msg_obj);

      task.appendvars(3);   // x, y, t
      int x=0, y=1, t=2;
      task.putvarboundsliceconst(0, 3, mosek.boundkey.fr, -0.0, 0.0);

      // Integrality constraints for x, y
      task.putvartypelist(new int[]{x,y}, 
                          new mosek.variabletype[]{mosek.variabletype.type_int, mosek.variabletype.type_int});

      // Set up the affine expressions
      // x, x-3.8, y, t, 1.0
      task.appendafes(5);
      task.putafefentrylist(new long[]{0,1,2,3},
                            new int[]{x,x,y,t},
                            new double[]{1,1,1,1});
      task.putafegslice(0, 5, new double[]{0, -3.8, 0, 0, 1.0});

      // Add constraint (x-3.8, 1, y) \in \EXP
      task.appendacc(task.appendprimalexpconedomain(), new long[]{1, 4, 2}, null);

      // Add constraint (t, x, y) \in \QUAD
      task.appendacc(task.appendquadraticconedomain(3), new long[]{3, 0, 2}, null);      
   
      // Objective
      task.putobjsense(mosek.objsense.minimize);
      task.putcj(t, 1);

      // Optimize the task
      task.optimize();
      task.solutionsummary(mosek.streamtype.msg);

      double[] xx = task.getxxslice(mosek.soltype.itg, 0, 2);

      Console.WriteLine ("x = {0}, y = {1}", xx[0], xx[1]);
    }
  }
}

milo1.cs

Listing 17.17 milo1.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:    milo1.cs

   Purpose:  Demonstrates how to solve a small mixed
             integer linear optimization problem using the MOSEK C# API.
 */

using System;

namespace mosek.example
{
  public class MsgClass : mosek.Stream
  {
    public MsgClass ()
    {
      /* Construct the object */
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}", msg);
    }
  }

  public class milo1
  {
    public static void Main ()
    {
      const int numcon = 2;
      const int numvar = 2;

      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;


      mosek.boundkey[] bkc = { mosek.boundkey.up,
                               mosek.boundkey.lo
                             };
      double[] blc = { -infinity,
                       -4.0
                     };
      double[] buc = { 250.0,
                       infinity
                     };

      mosek.boundkey[] bkx = { mosek.boundkey.lo,
                               mosek.boundkey.lo
                             };
      double[] blx = { 0.0,
                       0.0
                     };
      double[] bux = { infinity,
                       infinity
                     };

      double[] c   = {1.0, 0.64 };
      int[][] asub    = { new int[]  {0,   1},  new int[] {0,    1}   };
      double[][] aval = { new double[] {50.0, 3.0}, new double[] {31.0, -2.0} };

      double[] xx  = new double[numvar];

      try {
        // Create a task object linked with the environment env.
        using (var task = new mosek.Task ()) {
          // Directs the log task stream to the user specified
          // method task_msg_obj.streamCB
          MsgClass task_msg_obj = new MsgClass ();
          task.set_Stream (mosek.streamtype.log, task_msg_obj);

          /* Give MOSEK an estimate of the size of the input data.
             This is done to increase the speed of inputting data.
             However, it is optional. */
          /* Append 'numcon' empty constraints.
             The constraints will initially have no bounds. */
          task.appendcons(numcon);

          /* Append 'numvar' variables.
             The variables will initially be fixed at zero (x=0). */
          task.appendvars(numvar);

          /* Optionally add a constant term to the objective. */
          task.putcfix(0.0);

          for (int j = 0; j < numvar; ++j)
          {
              /* Set the linear term c_j in the objective.*/
              task.putcj(j, c[j]);
              /* Set the bounds on variable j.
                 blx[j] <= x_j <= bux[j] */
              task.putvarbound(j, bkx[j], blx[j], bux[j]);
              /* Input column j of A */
              task.putacol(j,                     /* Variable (column) index.*/
                           asub[j],               /* Row index of non-zeros in column j.*/
                           aval[j]);              /* Non-zero Values of column j. */
          }
          /* Set the bounds on constraints.
             for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */
          for (int i = 0; i < numcon; ++i)
              task.putconbound(i, bkc[i], blc[i], buc[i]);

          /* Specify integer variables. */
          for (int j = 0; j < numvar; ++j)
              task.putvartype(j, mosek.variabletype.type_int);
          task.putobjsense(mosek.objsense.maximize);

          /* Set max solution time */
          task.putdouparam(mosek.dparam.mio_max_time, 60.0);

          task.optimize();


          // Print a summary containing information
          //   about the solution for debugging purposes
          task.solutionsummary(mosek.streamtype.msg);

          mosek.solsta solsta;
          /* Get status information about the solution */
          task.getsolsta(mosek.soltype.itg, out solsta);
          task.getxx(mosek.soltype.itg, // Integer solution.
                     xx);

          switch (solsta)
          {
              case mosek.solsta.optimal:
                  Console.WriteLine ("Optimal primal solution\n");
                  for (int j = 0; j < numvar; ++j)
                      Console.WriteLine ("x[{0}]:", xx[j]);
                  break;
              case mosek.solsta.prim_feas:
                  Console.WriteLine ("Feasible primal solution\n");
                  for (int j = 0; j < numvar; ++j)
                      Console.WriteLine ("x[{0}]:", xx[j]);
                  break;
              case mosek.solsta.unknown:
                  mosek.prosta prosta;
                  task.getprosta(mosek.soltype.itg, out prosta);
                  switch (prosta)
                  {
                      case mosek.prosta.prim_infeas_or_unbounded:
                          Console.WriteLine("Problem status Infeasible or unbounded");
                          break;
                      case mosek.prosta.prim_infeas:
                          Console.WriteLine("Problem status Infeasible.");
                          break;
                      case mosek.prosta.unknown:
                          Console.WriteLine("Problem status unknown.");
                          break;
                      default:
                          Console.WriteLine("Other problem status.");
                          break;
                  }
                  break;
              default:
                  Console.WriteLine("Other solution status");
                  break;
          }
        }
      }
      catch (mosek.Exception e)
      {
        Console.WriteLine (e.Code);
        Console.WriteLine (e);
        throw;
      }
    }
  }
}

mioinitsol.cs

Listing 17.18 mioinitsol.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:      mioinitsol.cs

   Purpose:   Demonstrates how to solve a MIP with a start guess.

 */
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class mioinitsol
  {
    public static void Main ()
    {
      mosek.Env env = null;
      mosek.Task task = null;
      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;

      int numvar = 4;
      int numcon = 1;
      int NUMINTVAR = 3;

      double[] c = { 7.0, 10.0, 1.0, 5.0 };

      mosek.boundkey[] bkc = {mosek.boundkey.up};
      double[] blc = { -infinity};
      double[] buc = {2.5};
      mosek.boundkey[] bkx = {mosek.boundkey.lo,
                              mosek.boundkey.lo,
                              mosek.boundkey.lo,
                              mosek.boundkey.lo
                             };
      double[] blx = {0.0,
                      0.0,
                      0.0,
                      0.0
                     };
      double[] bux = {infinity,
                      infinity,
                      infinity,
                      infinity
                     };

      int[] ptrb = {0, 1, 2, 3};
      int[] ptre = {1, 2, 3, 4};
      double[] aval = {1.0, 1.0, 1.0, 1.0};
      int[] asub = {0, 0, 0, 0};
      int[] intsub = {0, 1, 2};
      double[] xx  = new double[numvar];

      try
      {
        // Make mosek environment.
        env  = new mosek.Env ();
        // Create a task object linked with the environment env.
        task = new mosek.Task (env, numcon, numvar);
        // Directs the log task stream to the user specified
        // method task_msg_obj.streamCB
        task.set_Stream (mosek.streamtype.log, new msgclass ("[task]"));
        task.inputdata(numcon, numvar,
                       c,
                       0.0,
                       ptrb,
                       ptre,
                       asub,
                       aval,
                       bkc,
                       blc,
                       buc,
                       bkx,
                       blx,
                       bux);

        for (int j = 0 ; j < NUMINTVAR ; ++j)
          task.putvartype(intsub[j], mosek.variabletype.type_int);
        task.putobjsense(mosek.objsense.maximize);

        // Assign values to integer variables.
        // We only set a slice of xx
        double[] values = {1.0, 1.0, 0.0};
        task.putxxslice(mosek.soltype.itg, 0, 3, values);

        // Request constructing the solution from integer variable values
        task.putintparam(mosek.iparam.mio_construct_sol, mosek.onoffkey.on);

        try
        {
          task.optimize();
          task.solutionsummary(mosek.streamtype.log);
        }
        catch (mosek.Warning w)
        {
          Console.WriteLine("Mosek warning:");
          Console.WriteLine (w.Code);
          Console.WriteLine (w);
        }
        
        task.getxx(mosek.soltype.itg, xx);

        Console.WriteLine("Solution:");
        for (int j = 0; j < numvar; ++j)
          Console.WriteLine ("x[{0}]:{1}", j, xx[j]);

        // Was the initial solution used?
        int constr = task.getintinf(mosek.iinfitem.mio_construct_solution);
        double constrVal = task.getdouinf(mosek.dinfitem.mio_construct_solution_obj);
        Console.WriteLine("Construct solution utilization: " + constr);
        Console.WriteLine("Construct solution objective: " +  constrVal);
      }
      catch (mosek.Exception e)
      {
        Console.WriteLine (e.Code);
        Console.WriteLine (e);
        throw;
      }

      if (task != null) task.Dispose ();
      if (env  != null)  env.Dispose ();
    }
  }
}

opt_server_async.cs

Listing 17.19 opt_server_async.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:       opt_server_async.cs

   Purpose :   Demonstrates how to use MOSEK OptServer
               to solve optimization problem asynchronously

*/
using System;
using System.Threading;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    public override void streamCB (string msg)
    {
      Console.Write ("{0}", msg);
    }
  }

  public class opt_server_async
  {
    public static void Main (string[] args)
    {
      if (args.Length == 0) {
        Console.WriteLine ("Missing argument, syntax is:");
        Console.WriteLine ("  opt_server inputfile host:port numpolls [cert]");
      }
      else {

        string inputfile = args[0];
        string addr      = args[1];
        int    numpolls  = Convert.ToInt32(args[2]);
        String cert      = args.Length < 4 ? null : args[3];

        using (mosek.Env env = new mosek.Env())
        {

          string token;

          using (mosek.Task task = new mosek.Task(env))
          {
            task.readdata (inputfile);
            if (cert != null)
              task.putstrparam(sparam.remote_tls_cert_path,cert);
            token = task.asyncoptimize (addr,"");
          }

          using (mosek.Task task = new mosek.Task(env))
          {
            task.readdata (inputfile);
            if (cert != null)
              task.putstrparam(sparam.remote_tls_cert_path,cert);
            task.set_Stream (mosek.streamtype.log, new msgclass ());
            Console.WriteLine("Starting polling loop...");

            int i = 0;

            while ( true )
            {
              Thread.Sleep(500);
              Console.WriteLine("poll {0}...\n", i);

              mosek.rescode trm;
              mosek.rescode resp;

              bool respavailable = task.asyncpoll( addr,
                                                   "",
                                                   token,
                                                   out resp,
                                                   out trm);


              Console.WriteLine("polling done");

              if (respavailable)
              {
                Console.WriteLine("solution available!");

                task.asyncgetresult(addr,
                                    "",
                                    token,
                                    out resp,
                                    out trm);

                task.solutionsummary (mosek.streamtype.log);
                break;
              }

              if (i == numpolls)
              {
                Console.WriteLine("max num polls reached, stopping host.");
                task.asyncstop (addr,"", token);
                break;
              }
              i++;
            }

          }
        }
      }
    }
  }
}

opt_server_sync.cs

Listing 17.20 opt_server_sync.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:    opt_server_sync.cs

  Purpose :   Demonstrates how to use MOSEK OptServer
              to solve optimization problem synchronously
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    public override void streamCB (string msg)
    {
      Console.Write ("{0}", msg);
    }
  }

  public class simple
  {
    public static void Main (string[] args)
    {
      if (args.Length == 0)
      {
        Console.WriteLine ("Missing arguments, syntax is:");
        Console.WriteLine ("  opt_server_sync inputfile addr [certpath]");
      }
      else
      {
        String inputfile = args[0];
        String addr      = args[1];
        String cert      = args.Length < 3 ? null : args[2];

        mosek.rescode trm;

        using (mosek.Env env = new mosek.Env())
        {
          using (mosek.Task task = new mosek.Task(env))
          {
            task.set_Stream (mosek.streamtype.log, new msgclass ());

            // Load some data into the task
            task.readdata (inputfile);

            // Set OptServer URL
            task.putoptserverhost(addr);

            // Path to certificate, if any
            if (cert != null)
              task.putstrparam(sparam.remote_tls_cert_path, cert);

            // Optimize remotely, no access token
            task.optimize (out trm);

            task.solutionsummary (mosek.streamtype.log);
          }
        }
      }
    }
  }
}

parallel.cs

Listing 17.21 parallel.cs Click here to download.
/*
  File : parallel.cs

  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  Description :  Demonstrates parallel optimization
                 using optimizebatch()
*/
using System.Threading.Tasks;
using System;

namespace mosek.example
{
  public class Parallel
  {
   /** Example of how to use env.optimizebatch(). 
       Optimizes tasks whose names were read from command line.
    */
    public static void Main(string[] argv)
    {
      int n = argv.Length;
      mosek.Task[] tasks      = new mosek.Task[n];
      mosek.rescode[] res     = new mosek.rescode[n];
      mosek.rescode[] trm     = new mosek.rescode[n];
  
      /* Size of thread pool available for all tasks */
      int threadpoolsize = 6; 

      using (var env = new mosek.Env())
      {
        /* Create an example list of tasks to optimize */
        for(int i = 0; i < n; i++) 
        {
          tasks[i] = new mosek.Task(env);
          tasks[i].readdata(argv[i]);
          // We can set the number of threads for each task
          tasks[i].putintparam(mosek.iparam.num_threads, 2);
        }

        // Optimize all the given tasks in parallel
        env.optimizebatch(false,          // No race
                          -1.0,           // No time limit
                          threadpoolsize,
                          tasks,          // Array of tasks to optimize
                          trm,
                          res);
        
        for(int i = 0; i < n; i++) 
          Console.WriteLine("Task  {0}  res {1}   trm {2}   obj_val  {3}  time {4}", 
            i, 
            res[i], 
            trm[i],  
            tasks[i].getdouinf(mosek.dinfitem.intpnt_primal_obj),
            tasks[i].getdouinf(mosek.dinfitem.optimizer_time));
      }
    }
  }
}

parameters.cs

Listing 17.22 parameters.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:      parameters.cs

 Purpose: Demonstrates a very simple example about how to get/set
 parameters with MOSEK .NET API

*/

using System;

namespace mosek.example
{
  public class parameters
  {
    public static void Main()
    {
      using (mosek.Env env = new mosek.Env())
      {
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          Console.WriteLine("Test MOSEK parameter get/set functions");

          // Set log level (integer parameter)
          task.putintparam(mosek.iparam.log, 1);
          // Select interior-point optimizer... (integer parameter)
          task.putintparam(mosek.iparam.optimizer, mosek.optimizertype.intpnt);
          // ... without basis identification (integer parameter)
          task.putintparam(mosek.iparam.intpnt_basis, mosek.basindtype.never);
          // Set relative gap tolerance (double parameter)
          task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, 1.0e-7);

          // The same using explicit string names 
          task.putparam     ("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7");      
          task.putnadouparam("MSK_DPAR_INTPNT_CO_TOL_REL_GAP",  1.0e-7 );      

          // Incorrect value
          try 
          {
            task.putdouparam(mosek.dparam.intpnt_co_tol_rel_gap, -1.0);
          } 
          catch (mosek.Error) 
          {
            Console.WriteLine("Wrong parameter value"); 
          }


          double param = task.getdouparam(mosek.dparam.intpnt_co_tol_rel_gap);
          Console.WriteLine("Current value for parameter intpnt_co_tol_rel_gap = " + param);

          /* Define and solve an optimization problem here */
          /* task.optimize() */
          /* After optimization: */

          Console.WriteLine("Get MOSEK information items");

          double tm = task.getdouinf(mosek.dinfitem.optimizer_time);
          int  iter = task.getintinf(mosek.iinfitem.intpnt_iter);     
           
          Console.WriteLine("Time: " + tm);
          Console.WriteLine("Iterations: " + iter);         
        }
      }
    }
  }
}

pinfeas.cs

Listing 17.23 pinfeas.cs Click here to download.
//  File : pinfeas.cs
//
//  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
//
//  Purpose: Demonstrates how to fetch a primal infeasibility certificate
//           for a linear problem
//
using System;

namespace mosek.example {
  class msgclass : mosek.Stream {
    public msgclass () {}
    public override void streamCB (string msg) {
      Console.Write (msg);
    }
  }

  public class pinfeas {
    static double inf = 0.0; // Infinity for symbolic purposes

    // Set up a simple linear problem from the manual for test purposes
    public static mosek.Task testProblem() {
      mosek.Task task = new mosek.Task();
      task.appendvars(7);
      task.appendcons(7);
      task.putclist(new int[]{0,1,2,3,4,5,6}, new double[]{1,2,5,2,1,2,1});
      task.putaijlist(new int[]{0,0,1,1,2,2,2,3,3,4,5,5,6,6},
                      new int[]{0,1,2,3,4,5,6,0,4,1,2,5,3,6},
                      new double[]{1,1,1,1,1,1,1,1,1,1,1,1,1,1});
      mosek.boundkey up = mosek.boundkey.up,
                     fx = mosek.boundkey.fx,
                     lo = mosek.boundkey.lo;
      task.putconboundslice(0, 7, new mosek.boundkey[]{up,up,up,fx,fx,fx,fx},
                                  new double[]{-inf, -inf, -inf, 1100, 200, 500, 500},
                                  new double[]{200, 1000, 1000, 1100, 200, 500, 500});
      task.putvarboundsliceconst(0, 7, lo, 0, +inf);
      return task;
    }

    // Analyzes and prints infeasibility contributing elements
    // sl - dual values for lower bounds
    // su - dual values for upper bounds
    // eps - tolerance for when a nunzero dual value is significant
    public static void analyzeCertificate(double[] sl, double[] su, double eps) {
      for(int i = 0; i < sl.Length; i++) {
        if (Math.Abs(sl[i]) > eps)
          Console.WriteLine("#{0}, lower,  dual = {1}", i, sl[i]);
        if (Math.Abs(su[i]) > eps)
          Console.WriteLine("#{0}, upper,  dual = {1}", i, su[i]);
      }
    }

    public static void Main () {
      // In this example we set up a simple problem
      // One could use any task or a task read from a file
      mosek.Task task = testProblem();

      // Useful for debugging
      task.writedata("pinfeas.ptf");                          // Write file in human-readable format
      // Attach a log stream printer to the task
      task.set_Stream (mosek.streamtype.log, new msgclass ());      
      
      // Perform the optimization.
      task.optimize();
      task.solutionsummary(mosek.streamtype.log);

      // Check problem status, we use the interior point solution
      if (task.getprosta(soltype.itr) == prosta.prim_infeas) {
        // Set the tolerance at which we consider a dual value as essential
        double eps = 1e-7;

        Console.WriteLine("Variable bounds important for infeasibility: ");
        analyzeCertificate(task.getslx(soltype.itr), task.getsux(soltype.itr), eps);
          
        Console.WriteLine("Constraint bounds important for infeasibility: ");
        analyzeCertificate(task.getslc(soltype.itr), task.getsuc(soltype.itr), eps);
      }
      else {
        Console.WriteLine("The problem is not primal infeasible, no certificate to show");
      }
    }
  }
}

portfolio_1_basic.cs

Listing 17.24 portfolio_1_basic.cs Click here to download.
/*
  File : portfolio_1_basic.cs

  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  Description :  Implements a basic portfolio optimization model.
*/
using System;
using mosek;

namespace mosek.example
{
  /* Log handler class */
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx) { prefix = prfx; }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class portfolio_1_basic
  {
    public static void Main (String[] args)
    {
      // Since the value infinity is never used, we define
      // 'infinity' for symbolic purposes only
      double infinity = 0.0;
      int n = 8;
      double gamma = 36.0;
      double[]  mu = {0.07197349, 0.15518171, 0.17535435, 0.0898094 , 0.42895777, 0.39291844, 0.32170722, 0.18378628};
      double[,] GT = {
          {0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
          {0.0,     0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
          {0.0,     0.0,     0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
          {0.0,     0.0,     0.0,     0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
          {0.0,     0.0,     0.0,     0.0,     0.36096, 0.12574, 0.10157, 0.0571 },
          {0.0,     0.0,     0.0,     0.0,     0.0,     0.21552, 0.05663, 0.06187},
          {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.22514, 0.03327},
          {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.2202 }
      };
      int   k = GT.GetLength(0);
      double[] x0 = {8.0, 5.0, 3.0, 5.0, 2.0, 9.0, 3.0, 6.0};
      double   w = 59;
      double   totalBudget;

      //Offset of variables into the API variable.
      int numvar = n;
      int voff_x = 0;

      // Constraints offsets
      int numcon = 1;
      int coff_bud = 0;

      // Make mosek environment.
      using (mosek.Env env = new mosek.Env())
      {
        // Create a task object.
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          // Directs the log task stream
          task.set_Stream(mosek.streamtype.log, new msgclass (""));

          // Holding variable x of length n
          // No other auxiliary variables are needed in this formulation
          task.appendvars(numvar);
      
          // Setting up variable x 
          for (int j = 0; j < n; ++j)
          {
            /* Optionally we can give the variables names */
            task.putvarname(voff_x + j, "x[" + (j + 1) + "]");
            /* No short-selling - x^l = 0, x^u = inf */
            task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
          }

          // One linear constraint: total budget
          task.appendcons(1);
          task.putconname(coff_bud, "budget");
          for (int j = 0; j < n; ++j)
          {
            /* Coefficients in the first row of A */
            task.putaij(coff_bud, voff_x + j, 1.0);
          }
          totalBudget = w;
          for (int i = 0; i < n; ++i)
          {
            totalBudget += x0[i];
          }
          task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

          // Input (gamma, GTx) in the AFE (affine expression) storage
          // We need k+1 rows
          task.appendafes(k + 1);
          // The first affine expression = gamma
          task.putafeg(0, gamma);
          // The remaining k expressions comprise GT*x, we add them row by row
          // In more realisic scenarios it would be better to extract nonzeros and input in sparse form
          int[] vslice_x = new int[n];
          double[] GT_row = new double[n];
          for (int i = 0; i < n; ++i)
          {
            vslice_x[i] = voff_x + i;
          } 
          for (int i = 0; i < k; ++i)
          {
            for (int j = 0; j < n; ++j) GT_row[j] = GT[i, j];
            task.putafefrow(i + 1, vslice_x, GT_row);
          }

          // Input the affine conic constraint (gamma, GT*x) \in QCone
          // Add the quadratic domain of dimension k+1
          long qdom = task.appendquadraticconedomain(k + 1);
          // Add the constraint
          task.appendaccseq(qdom, 0, null);
          task.putaccname(0, "risk");

          // Objective: maximize expected return mu^T x
          for (int j = 0; j < n; ++j)
          {
            task.putcj(voff_x + j, mu[j]);
          }
          task.putobjsense(mosek.objsense.maximize);

          task.optimize();

          /* Display solution summary for quick inspection of results */
          task.solutionsummary(mosek.streamtype.log);

          // Check if the interior point solution is an optimal point
          solsta solsta = task.getsolsta(mosek.soltype.itr);
          if (solsta != mosek.solsta.optimal)
          {
            // See https://docs.mosek.com/latest/dotnetapi/accessing-solution.html about handling solution statuses.
            throw new Exception(rescode.err_unhandled_solution_status, String.Format("Unexpected solution status: {0}", solsta));
          }

          task.writedata("dump.ptf");

          /* Read the results */
          double expret = 0.0;
          double[] xx = new double[n];

          task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n, xx);
          for (int j = 0; j < n; ++j)
            expret += mu[j] * xx[j + voff_x];

          Console.WriteLine("\nExpected return {0:E} for gamma {1:E}", expret, gamma);
        }
      }
    }
  }
}

portfolio_2_frontier.cs

Listing 17.25 portfolio_2_frontier.cs Click here to download.
/*
  File : portfolio_2_frontier.cs

  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  Description :  Implements a basic portfolio optimization model.
                 Computes points on the efficient frontier.
*/
using System;

namespace mosek.example 
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class portfolio_2_frontier
  {
    public static void Main (String[] args)
    {
      double infinity = 0;
      int n = 8;
      double[]   mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.18379};
      double[,]  GT = {
          {0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
          {0.0,     0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
          {0.0,     0.0,     0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
          {0.0,     0.0,     0.0,     0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
          {0.0,     0.0,     0.0,     0.0,     0.36096, 0.12574, 0.10157, 0.0571 },
          {0.0,     0.0,     0.0,     0.0,     0.0,     0.21552, 0.05663, 0.06187},
          {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.22514, 0.03327},
          {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.2202 }
      };
      int   k = GT.GetLength(0);
      double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
      double   w = 1.0;
      double[] alphas = {0.0, 0.01, 0.1, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 10.0};
      int numalphas = 15; 
      double   totalBudget;

      // Offset of variables into the API variable.
      int numvar = n + 1;
      int voff_x = 0;
      int voff_s = n;

      // Offset of constraints
      int coff_bud = 0;

      // Make mosek environment.
      using (mosek.Env env = new mosek.Env())
      {
        // Create a task object.
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          // Directs the log task stream to the user specified
          // method msgclass.streamCB
          task.set_Stream (mosek.streamtype.log, new msgclass (""));

          task.appendvars(numvar);

          // Setting up variable x 
          for (int j = 0; j < n; ++j)
          {
            /* Optionally we can give the variables names */
            task.putvarname(voff_x + j, "x[" + (j + 1) + "]");
            /* No short-selling - x^l = 0, x^u = inf */
            task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
          }
          task.putvarname(voff_s, "s");
          task.putvarbound(voff_s, mosek.boundkey.fr, -infinity, infinity);

          // One linear constraint: total budget
          task.appendcons(1);
          task.putconname(coff_bud, "budget");
          for (int j = 0; j < n; ++j)
          {
            /* Coefficients in the first row of A */
            task.putaij(coff_bud, voff_x + j, 1.0);
          }
          totalBudget = w;
          for (int i = 0; i < n; ++i)
          {
            totalBudget += x0[i];
          }
          task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

          // Input (gamma, GTx) in the AFE (affine expression) storage
          // We build the following F and g for variables [x, s]:
          //     [0, 1]      [0  ]
          // F = [0, 0], g = [0.5]
          //     [GT,0]      [0  ]
          // We need k+2 rows
          task.appendafes(k + 2);
          // The first affine expression is variable s (last variable, index n)
          task.putafefentry(0, n, 1.0);        
          // The second affine expression is constant 0.5
          task.putafeg(1, 0.5);
          // The remaining k expressions comprise GT*x, we add them row by row
          // In more realisic scenarios it would be better to extract nonzeros and input in sparse form
          int[] vslice_x = new int[n];
          double[] GT_row = new double[n];
          for (int i = 0; i < n; ++i)
          {
            vslice_x[i] = voff_x + i;
          } 
          for (int i = 0; i < k; ++i)
          {
            for (int j = 0; j < n; ++j) GT_row[j] = GT[i, j];
            task.putafefrow(i + 2, vslice_x, GT_row);
          }

          // Input the affine conic constraint (gamma, GT*x) \in QCone
          // Add the quadratic domain of dimension k+1
          long rqdom = task.appendrquadraticconedomain(k + 2);
          // Add the constraint
          task.appendaccseq(rqdom, 0, null);            
          task.putaccname(0, "risk");

          // Objective: maximize expected return mu^T x
          for (int j = 0; j < n; ++j)
          {
            task.putcj(voff_x + j, mu[j]);
          }
          task.putobjsense(mosek.objsense.maximize);

          task.writedata("dump.ptf");

          //Turn all log output off.
          task.putintparam(mosek.iparam.log, 0);

          Console.WriteLine("{0,-15}{1,-15}{2,-15}", "alpha", "exp ret", "std. dev.");

          for (int i = 0; i < numalphas; ++i)
          {
            task.putcj(voff_s, -alphas[i]);

            task.optimize();

            task.solutionsummary(mosek.streamtype.log);

            // Check if the interior point solution is an optimal point
            solsta solsta = task.getsolsta(mosek.soltype.itr);
            if (solsta != mosek.solsta.optimal)
            {
              // See https://docs.mosek.com/latest/dotnetapi/accessing-solution.html about handling solution statuses.
              throw new Exception(rescode.err_unhandled_solution_status, String.Format("Unexpected solution status: {0}", solsta));
            }

            double expret = 0.0;
            double[] xx = new double[numvar];

            task.getxx(mosek.soltype.itr, xx);

            for (int j = 0; j < n; ++j)
              expret += mu[j] * xx[j + voff_x];

            Console.WriteLine("{0:E6}  {1:E}  {2:E}", alphas[i], expret, Math.Sqrt(xx[voff_s]));

          }
          Console.WriteLine("\n");
        }
      }
    }
  }
}

portfolio_3_impact.cs

Listing 17.26 portfolio_3_impact.cs Click here to download.
/*
  File : portfolio_3_impact.cs

  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  Description :  Implements a basic portfolio optimization model
                 with transaction costs of type x^(3/2)
*/
using System;

namespace mosek.example {
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }
  
  public class portfolio_3_impact
  {
    public static void Main (String[] args)
    {
      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;
      int n = 8;
      double[]   mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.18379};
      double[,] GT = {
        {0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
        {0.0,     0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
        {0.0,     0.0,     0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
        {0.0,     0.0,     0.0,     0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
        {0.0,     0.0,     0.0,     0.0,     0.36096, 0.12574, 0.10157, 0.0571 },
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.21552, 0.05663, 0.06187},
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.22514, 0.03327},
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.2202 }
      };
      int   k = GT.GetLength(0);
      double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
      double   w = 1.0;
      double gamma = 0.36;
      double   totalBudget;

      double[] m = new double[n];
      for (int i = 0; i < n; ++i)
      {
        m[i] = 0.01;
      } 

      // Offset of variables into the API variable.
      int numvar = 3 * n;
      int voff_x = 0;
      int voff_c = n;
      int voff_z = 2 * n;

      // Offset of constraints.
      int numcon = 2 * n + 1;
      int coff_bud = 0;
      int coff_abs1 = 1; 
      int coff_abs2 = 1 + n;

      // Make mosek environment.
      using (mosek.Env env = new mosek.Env())
      {
        // Create a task object.
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          // Directs the log task stream to the user specified
          // method msgclass.streamCB
          task.set_Stream(mosek.streamtype.log, new msgclass(""));

          // Variables (vector of x, c, z)
          task.appendvars(numvar);
          for (int j = 0; j < n; ++j)
          {
            /* Optionally we can give the variables names */
            task.putvarname(voff_x + j, "x[" + (j + 1) + "]");
            task.putvarname(voff_c + j, "c[" + (j + 1) + "]");
            task.putvarname(voff_z + j, "z[" + (j + 1) + "]");
            /* Apply variable bounds (x >= 0, c and z free) */
            task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
            task.putvarbound(voff_c + j, mosek.boundkey.fr, -infinity, infinity);
            task.putvarbound(voff_z + j, mosek.boundkey.fr, -infinity, infinity);
          }

          // Linear constraints
          // - Total budget
          task.appendcons(1);
          task.putconname(coff_bud, "budget");
          for (int j = 0; j < n; ++j)
          {
            /* Coefficients in the first row of A */
            task.putaij(coff_bud, voff_x + j, 1.0);
            task.putaij(coff_bud, voff_c + j, m[j]);
          }
          totalBudget = w;
          for (int i = 0; i < n; ++i)
          {
            totalBudget += x0[i];
          }
          task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);

          // - Absolute value
          task.appendcons(2 * n);
          for (int i = 0; i < n; ++i)
          {
            task.putconname(coff_abs1 + i, "zabs1[" + (1 + i) + "]");
            task.putaij(coff_abs1 + i, voff_x + i, -1.0);
            task.putaij(coff_abs1 + i, voff_z + i, 1.0);
            task.putconbound(coff_abs1 + i, mosek.boundkey.lo, -x0[i], infinity);
            task.putconname(coff_abs2 + i, "zabs2[" + (1 + i) + "]");
            task.putaij(coff_abs2 + i, voff_x + i, 1.0);
            task.putaij(coff_abs2 + i, voff_z + i, 1.0);
            task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);          
          }

          // ACCs
          int aoff_q = 0;
          int aoff_pow = k + 1;
          // - (gamma, GTx) in Q(k+1)
          // The part of F and g for variable x:
          //     [0,  0, 0]      [gamma]
          // F = [GT, 0, 0], g = [0    ]    
          task.appendafes(k + 1);
          task.putafeg(aoff_q, gamma);
          int[] vslice_x = new int[n];
          double[] GT_row = new double[n];
          for (int i = 0; i < n; ++i)
          {
            vslice_x[i] = voff_x + i;
          } 
          for (int i = 0; i < k; ++i)
          {
            for (int j = 0; j < n; ++j) GT_row[j] = GT[i, j];
            task.putafefrow(aoff_q + i + 1, vslice_x, GT_row);
          }
          long qdom = task.appendquadraticconedomain(k + 1);
          task.appendaccseq(qdom, aoff_q, null);
          task.putaccname(aoff_q, "risk");

          // - (c_j, 1, z_j) in P3(2/3, 1/3)
          // The part of F and g for variables [c, z]:
          //     [0, I, 0]      [0]
          // F = [0, 0, I], g = [0]
          //     [0, 0, 0]      [1]
          task.appendafes(2 * n + 1);
          for (int i = 0; i < n; ++i)
          {
            task.putafefentry(aoff_pow + i, voff_c + i, 1.0);
            task.putafefentry(aoff_pow + n + i, voff_z + i, 1.0);
          }
          task.putafeg(aoff_pow + 2 * n, 1.0);
          // We use one row from F and g for both c_j and z_j, and the last row of F and g for the constant 1.
          // NOTE: Here we reuse the last AFE and the power cone n times, but we store them only once.
          double[] exponents = {2, 1};
          long powdom = task.appendprimalpowerconedomain(3, exponents);
          long[] flat_afe_list = new long[3 * n];
          long[] dom_list = new long[n];
          for (int i = 0; i < n; ++i)
          {
            flat_afe_list[3 * i + 0] = aoff_pow + i;
            flat_afe_list[3 * i + 1] = aoff_pow + 2 * n;
            flat_afe_list[3 * i + 2] = aoff_pow + n + i;
            dom_list[i] = powdom;
          }
          task.appendaccs(dom_list, flat_afe_list, null);
          for (int i = 0; i < n; ++i)
          {
            task.putaccname(i + 1, "market_impact[" + i + "]");
          }
                    
          // Objective: maximize expected return mu^T x
          for (int j = 0; j < n; ++j)
          {
            task.putcj(voff_x + j, mu[j]);
          }
          task.putobjsense(mosek.objsense.maximize);
          

          //Turn all log output off.
          //task.putintparam(mosek.iparam.log,0);

          task.writedata("dump.ptf");
          /* Solve the problem */
          task.optimize();

          task.solutionsummary(mosek.streamtype.log);

          // Check if the interior point solution is an optimal point
          solsta solsta = task.getsolsta(mosek.soltype.itr);
          if (solsta != mosek.solsta.optimal)
          {
            // See https://docs.mosek.com/latest/dotnetapi/accessing-solution.html about handling solution statuses.
            throw new Exception(rescode.err_unhandled_solution_status, String.Format("Unexpected solution status: {0}", solsta));
          }

          double expret = 0.0;
          double[] xx = new double[numvar];

          task.getxx(mosek.soltype.itr, xx);

          for (int j = 0; j < n; ++j)
            expret += mu[j] * xx[j + voff_x];

          Console.WriteLine("Expected return {0:E6} for gamma {1:E6}\n\n", expret, gamma);
        }
      }
    }
  }
}

portfolio_4_transcost.cs

Listing 17.27 portfolio_4_transcost.cs Click here to download.
/*
  File : portfolio_4_transcost.cs

  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  Description :  Implements a basic portfolio optimization model
                 with fixed setup costs and transaction costs
                 as a mixed-integer problem.
*/
using System;

namespace mosek.example {
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }
  
  public class portfolio_4_transcost
  {
    public static void Main (String[] args)
    {
      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;
      int n = 8;
      double[]   mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.18379};
      double[,] GT = {
        {0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
        {0.0,     0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
        {0.0,     0.0,     0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
        {0.0,     0.0,     0.0,     0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
        {0.0,     0.0,     0.0,     0.0,     0.36096, 0.12574, 0.10157, 0.0571 },
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.21552, 0.05663, 0.06187},
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.22514, 0.03327},
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.2202 }
      };
      int   k = GT.GetLength(0);
      double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
      double   w = 1.0;
      double gamma = 0.36;
      double   totalBudget;     

      double[] f = new double[n];
      double[] g = new double[n];
      for (int i = 0; i < n; ++i)
      {
        f[i] = 0.01;
        g[i] = 0.001;
      } 

      // Offset of variables.
      int numvar = 3 * n;
      int voff_x = 0;
      int voff_z = n;
      int voff_y = 2 * n;

      // Offset of constraints.
      int numcon = 3 * n + 1;
      int coff_bud = 0;
      int coff_abs1 = 1;
      int coff_abs2 = 1 + n;
      int coff_swi = 1 + 2 * n; 

      // Make mosek environment.
      using (mosek.Env env = new mosek.Env())
      {
        // Create a task object.
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          // Directs the log task stream to the user specified
          // method msgclass.streamCB
          task.set_Stream(mosek.streamtype.log, new msgclass(""));

          // Variables (vector of x, z, y)
          task.appendvars(numvar);
          for (int j = 0; j < n; ++j)
          {
            /* Optionally we can give the variables names */
            task.putvarname(voff_x + j, "x[" + (j + 1) + "]");
            task.putvarname(voff_z + j, "z[" + (j + 1) + "]");
            task.putvarname(voff_y + j, "y[" + (j + 1) + "]");
            /* Apply variable bounds (x >= 0, z free, y binary) */
            task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
            task.putvarbound(voff_z + j, mosek.boundkey.fr, -infinity, infinity);
            task.putvarbound(voff_y + j, mosek.boundkey.ra, 0.0, 1.0);
            task.putvartype(voff_y + j, mosek.variabletype.type_int);
          }
          
          // Linear constraints
          // - Total budget
          task.appendcons(1);
          task.putconname(coff_bud, "budget");
          for (int j = 0; j < n; ++j)
          {
            /* Coefficients in the first row of A */
            task.putaij(coff_bud, voff_x + j, 1.0);
            task.putaij(coff_bud, voff_z + j, g[j]);
            task.putaij(coff_bud, voff_y + j, f[j]);
          }
          double U = w;
          for (int i = 0; i < n; ++i)
          {
            U += x0[i];
          }
          task.putconbound(coff_bud, mosek.boundkey.fx, U, U);

          // - Absolute value
          task.appendcons(2 * n);
          for (int i = 0; i < n; ++i)
          {
            task.putconname(coff_abs1 + i, "zabs1[" + (1 + i) + "]");
            task.putaij(coff_abs1 + i, voff_x + i, -1.0);
            task.putaij(coff_abs1 + i, voff_z + i, 1.0);
            task.putconbound(coff_abs1 + i, mosek.boundkey.lo, -x0[i], infinity);
            task.putconname(coff_abs2 + i, "zabs2[" + (1 + i) + "]");
            task.putaij(coff_abs2 + i, voff_x + i, 1.0);
            task.putaij(coff_abs2 + i, voff_z + i, 1.0);
            task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);          
          }

          // - Switch 
          task.appendcons(n);
          for (int i = 0; i < n; ++i)
          {
            task.putconname(coff_swi + i, "switch[" + (1 + i) + "]");
            task.putaij(coff_swi + i, voff_z + i, 1.0);         
            task.putaij(coff_swi + i, voff_y + i, -U);
            task.putconbound(coff_swi + i, mosek.boundkey.up, -infinity, 0.0);
          }      

          // ACCs
          int aoff_q = 0;
          // - (gamma, GTx) in Q(k+1)
          // The part of F and g for variable x:
          //     [0,  0, 0]      [gamma]
          // F = [GT, 0, 0], g = [0    ]
          task.appendafes(k + 1);
          task.putafeg(aoff_q, gamma);
          int[] vslice_x = new int[n];
          double[] GT_row = new double[n];
          for (int i = 0; i < n; ++i)
          {
            vslice_x[i] = voff_x + i;
          } 
          for (int i = 0; i < k; ++i)
          {
            for (int j = 0; j < n; ++j) GT_row[j] = GT[i, j];
            task.putafefrow(aoff_q + i + 1, vslice_x, GT_row);
          }
          long qdom = task.appendquadraticconedomain(k + 1);
          task.appendaccseq(qdom, aoff_q, null);
          task.putaccname(aoff_q, "risk");

          // Objective: maximize expected return mu^T x
          for (int j = 0; j < n; ++j)
          {
            task.putcj(voff_x + j, mu[j]);
          }
          task.putobjsense(mosek.objsense.maximize);
          //Turn all log output off.
          //task.putintparam(mosek.iparam.log,0);

          task.writedata("dump.ptf");
          /* Solve the problem */
          task.optimize();

          task.solutionsummary(mosek.streamtype.log);

          // Check if the interior point solution is an optimal point
          solsta solsta = task.getsolsta(mosek.soltype.itg);
          if (solsta != mosek.solsta.integer_optimal)
          {
            // See https://docs.mosek.com/latest/dotnetapi/accessing-solution.html about handling solution statuses.
            throw new Exception(rescode.err_unhandled_solution_status, String.Format("Unexpected solution status: {0}", solsta));
          }

          double expret = 0.0;
          double[] xx = new double[numvar];

          task.getxx(mosek.soltype.itg, xx);

          for (int j = 0; j < n; ++j)
            expret += mu[j] * xx[j + voff_x];

          Console.WriteLine("Expected return {0:E6} for gamma {1:E6}\n\n", expret, gamma);
        }
      }
    }
  }
}

portfolio_5_card.cs

Listing 17.28 portfolio_5_card.cs Click here to download.
/*
  File : portfolio_5_card.cs

  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  Description :  Implements a basic portfolio optimization model
                 with cardinality constraints on number of assets traded.
*/
using System;

namespace mosek.example {
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }
  
  public class portfolio_5_card
  {
    public static double[] markowitz_with_card(int        n,
                                               int        k,
                                               double[]   x0,
                                               double     w,
                                               double     gamma,
                                               double[]   mu,
                                               double[,]  GT,
                                               int        K) 
    {
      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;

      // Offset of variables.
      int numvar = 3 * n;
      int voff_x = 0; 
      int voff_z = n;
      int voff_y = 2 * n;

      // Offset of constraints.
      int numcon = 3 * n + 2;
      int coff_bud = 0;
      int coff_abs1 = 1;
      int coff_abs2 = 1 + n;
      int coff_swi = 1 + 2 * n;
      int coff_card = 1 + 3 * n;  

      // Make mosek environment.
      using (mosek.Env env = new mosek.Env())
      {
        // Create a task object.
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          // Directs the log task stream to the user specified
          // method msgclass.streamCB
          task.set_Stream(mosek.streamtype.log, new msgclass(""));

          // Variables (vector of x, z, y)
          task.appendvars(numvar);
          for (int j = 0; j < n; ++j)
          {
            /* Optionally we can give the variables names */
            task.putvarname(voff_x + j, "x[" + (j + 1) + "]");
            task.putvarname(voff_z + j, "z[" + (j + 1) + "]");
            task.putvarname(voff_y + j, "y[" + (j + 1) + "]");
            /* Apply variable bounds (x >= 0, z free, y binary) */
            task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
            task.putvarbound(voff_z + j, mosek.boundkey.fr, -infinity, infinity);
            task.putvarbound(voff_y + j, mosek.boundkey.ra, 0.0, 1.0);
            task.putvartype(voff_y + j, mosek.variabletype.type_int);
          }

          // Linear constraints
          // - Total budget
          task.appendcons(1);
          task.putconname(coff_bud, "budget");
          for (int j = 0; j < n; ++j)
          {
            /* Coefficients in the first row of A */
            task.putaij(coff_bud, voff_x + j, 1.0);
          }
          double U = w;
          for (int i = 0; i < n; ++i)
          {
            U += x0[i];
          }
          task.putconbound(coff_bud, mosek.boundkey.fx, U, U);

          // - Absolute value
          task.appendcons(2 * n);
          for (int i = 0; i < n; ++i)
          {
            task.putconname(coff_abs1 + i, "zabs1[" + (1 + i) + "]");
            task.putaij(coff_abs1 + i, voff_x + i, -1.0);
            task.putaij(coff_abs1 + i, voff_z + i, 1.0);
            task.putconbound(coff_abs1 + i, mosek.boundkey.lo, -x0[i], infinity);
            task.putconname(coff_abs2 + i, "zabs2[" + (1 + i) + "]");
            task.putaij(coff_abs2 + i, voff_x + i, 1.0);
            task.putaij(coff_abs2 + i, voff_z + i, 1.0);
            task.putconbound(coff_abs2 + i, mosek.boundkey.lo, x0[i], infinity);          
          }

          // - Switch 
          task.appendcons(n);
          for (int i = 0; i < n; ++i)
          {
            task.putconname(coff_swi + i, "switch[" + (1 + i) + "]");
            task.putaij(coff_swi + i, voff_z + i, 1.0);         
            task.putaij(coff_swi + i, voff_y + i, -U);
            task.putconbound(coff_swi + i, mosek.boundkey.up, -infinity, 0.0);
          }      
          
          // - Cardinality
          task.appendcons(1);
          task.putconname(coff_card, "cardinality");
          for (int i = 0; i < n; ++i)
          {
            task.putaij(coff_card, voff_y + i, 1.0);
          }
          task.putconbound(coff_card, mosek.boundkey.up, -infinity, K);

          // ACCs
          int aoff_q = 0;
          // - (gamma, GTx) in Q(k+1)
          // The part of F and g for variable x:
          //     [0,  0, 0]      [gamma]
          // F = [GT, 0, 0], g = [0    ]
          task.appendafes(k + 1);
          task.putafeg(aoff_q, gamma);
          int[] vslice_x = new int[n];
          double[] GT_row = new double[n];
          for (int i = 0; i < n; ++i)
          {
            vslice_x[i] = voff_x + i;
          } 
          for (int i = 0; i < k; ++i)
          {
              for (int j = 0; j < n; ++j) GT_row[j] = GT[i, j];
              task.putafefrow(aoff_q + i + 1, vslice_x, GT_row);
          }
          long qdom = task.appendquadraticconedomain(k + 1);
          task.appendaccseq(qdom, aoff_q, null);
          task.putaccname(aoff_q, "risk");

          // Objective: maximize expected return mu^T x
          for (int j = 0; j < n; ++j)
          {
            task.putcj(voff_x + j, mu[j]);
          }
          task.putobjsense(mosek.objsense.maximize);
          //Turn all log output off.
          task.putintparam(mosek.iparam.log,0);

          //task.writedata("dump.ptf");
          /* Solve the problem */
          task.optimize();
          task.solutionsummary(mosek.streamtype.log);

          // Check if the interior point solution is an optimal point
          solsta solsta = task.getsolsta(mosek.soltype.itg);
          if (solsta != mosek.solsta.integer_optimal)
          {
            // See https://docs.mosek.com/latest/dotnetapi/accessing-solution.html about handling solution statuses.
            throw new Exception(rescode.err_unhandled_solution_status, String.Format("Unexpected solution status: {0}", solsta));
          }

          double[] xx = task.getxxslice(mosek.soltype.itg, voff_x, voff_x + n);
          return xx;
        }
      }
    }

    public static void Main (String[] args)
    {
      int n = 8;
      double[]   mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.18379};
      double[,] GT = {
        {0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638},
        {0.0,     0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506},
        {0.0,     0.0,     0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914},
        {0.0,     0.0,     0.0,     0.20876, 0.04933, 0.03651, 0.09381, 0.07742},
        {0.0,     0.0,     0.0,     0.0,     0.36096, 0.12574, 0.10157, 0.0571 },
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.21552, 0.05663, 0.06187},
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.22514, 0.03327},
        {0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.0,     0.2202 }
      };
      int   k = GT.GetLength(0);
      double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
      double   w = 1.0;
      double gamma = 0.25;  

      for (int K = 1; K <= n; K++)
      {
        double[] xx = markowitz_with_card(n, k, x0, w, gamma, mu, GT, K);
        double expret = 0;
        Console.Write("Bound:  {0:d}  x =  ", K);
        for(int i=0; i<n; i++)
        { 
          Console.Write("{0:f5} ", xx[i]);
          expret += xx[i]*mu[i];
        }
        Console.WriteLine("  Return:  {0:f5}", expret);
      }      
    }
  }
}

portfolio_6_factor.cs

Listing 17.29 portfolio_6_factor.cs Click here to download.
/*
  File : portfolio_6_factor.cs

  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  Description : Implements a portfolio optimization model using factor model.
*/
using System;

namespace mosek.example
{
  /* Log handler class */
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx) { prefix = prfx; }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class portfolio_6_factor
  {
    public static double sum(double[] x)
    {
      double r = 0.0;
      for (int i = 0; i < x.Length; ++i) r += x[i];
      return r;
    }

    public static double dot(double[] x, double[] y)
    {
      double r = 0.0;
      for (int i = 0; i < x.Length; ++i) r += x[i] * y[i];
      return r;
    }

    // Vectorize matrix (column-major order)
    public static double[] mat_to_vec_c(double[,] m) 
    {
      int ni = m.GetLength(0);
      int nj = m.GetLength(1);
      double[] c = new double[nj * ni];  
      
      for (int j = 0; j < nj; ++j) 
      {
        for (int i = 0; i < ni; ++i) 
        {
          c[j * ni + i] = m[i, j];
        }
      }
      return c;
    }

    // Reshape vector to matrix (column-major order)
    public static double[,] vec_to_mat_c(double[] c, int ni, int nj) 
    {
      double[,] m = new double[ni, nj];
      
      for (int j = 0; j < nj; ++j) 
      {
        for (int i = 0; i < ni; ++i) 
        {
          m[i, j] = c[j * ni + i];
        }
      }
      return m;
    }

    public static double[,] cholesky(double[,] m) 
    {
      int n = m.GetLength(0);
      double[] vecs = mat_to_vec_c(m);
      LinAlg.potrf(mosek.uplo.lo, n, vecs);
      double[,] s = vec_to_mat_c(vecs, n, n);

      // Zero out upper triangular part (LinAlg.Potrf does not use it, original matrix values remain there)
      for (int i = 0; i < n; ++i) 
      {
        for (int j = i+1; j < n; ++j) 
        {
          s[i, j] = 0.0;
        }
      }
      return s;
    }

    public static double[,] matrix_mul(double[,] a, double[,] b) 
    {
      int na = a.GetLength(0);
      int nb = b.GetLength(1);
      int k = b.GetLength(0);

      double[] vecm = new double[na * nb];
      Array.Clear(vecm, 0, vecm.Length);
      LinAlg.gemm(mosek.transpose.no, mosek.transpose.no, na, nb, k, 1.0, mat_to_vec_c(a), mat_to_vec_c(b), 1.0, vecm);
      double[,] m = vec_to_mat_c(vecm, na, nb);     
      
      return m;
    }
 
    public static void Main (String[] args)
    {
      // Since the value infinity is never used, we define
      // 'infinity' for symbolic purposes only          
      double infinity = 0;
      int n = 8;
      double   w = 1.0;
      double[]   mu = {0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.18379};
      double[] x0 = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
      // Factor exposure matrix
      double[,] B = 
      {
        {0.4256, 0.1869},
        {0.2413, 0.3877},
        {0.2235, 0.3697},
        {0.1503, 0.4612},
        {1.5325, -0.2633},
        {1.2741, -0.2613},
        {0.6939, 0.2372},
        {0.5425, 0.2116}
      };

      // Factor covariance matrix
      double[,] S_F = 
      {
        {0.0620, 0.0577},
        {0.0577, 0.0908}
      };

      // Specific risk components
      double[] theta = {0.0720, 0.0508, 0.0377, 0.0394, 0.0663, 0.0224, 0.0417, 0.0459};

      double[,] P = cholesky(S_F);
      double[,] G_factor = matrix_mul(B, P);  

      int   k = G_factor.GetLength(1);
      double[]   gammas = {0.24, 0.28, 0.32, 0.36, 0.4, 0.44, 0.48};
      double   totalBudget;

      //Offset of variables into the API variable.
      int numvar = n;
      int voff_x = 0;

      // Constraint offset
      int coff_bud = 0;

      // Make mosek environment.
      using (mosek.Env env = new mosek.Env())
      {
        // Create a task object.
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          // Directs the log task stream
          task.set_Stream(mosek.streamtype.log, new msgclass (""));

          // Constraints.
          task.appendvars(numvar);
    
          // Setting up variable x 
          for (int j = 0; j < n; ++j)
          {
            /* Optionally we can give the variables names */
            task.putvarname(voff_x + j, "x[" + (j + 1) + "]");
            /* No short-selling - x^l = 0, x^u = inf */
            task.putvarbound(voff_x + j, mosek.boundkey.lo, 0.0, infinity);
          }

          // One linear constraint: total budget
          task.appendcons(1);
          task.putconname(coff_bud, "budget");
          for (int j = 0; j < n; ++j)
          {
            /* Coefficients in the first row of A */
            task.putaij(coff_bud, voff_x + j, 1.0);
          }
          totalBudget = w;
          for (int i = 0; i < n; ++i)
          {
            totalBudget += x0[i];
          }
          task.putconbound(coff_bud, mosek.boundkey.fx, totalBudget, totalBudget);
         
          // Input (gamma, G_factor_T x, diag(sqrt(theta))*x) in the AFE (affine expression) storage
          // We need k+n+1 rows and we fill them in in three parts
          task.appendafes(k + n + 1);
          // 1. The first affine expression = gamma, will be specified later
          // 2. The next k expressions comprise G_factor_T*x, we add them row by row
          //    transposing the matrix G_factor on the fly 
          int[] vslice_x = new int[n];
          double[] G_factor_T_row = new double[n];
          for (int i = 0; i < n; ++i)
          {
            vslice_x[i] = voff_x + i;
          } 
          for (int i = 0; i < k; ++i)
          {
              for (int j = 0; j < n; ++j) G_factor_T_row[j] = G_factor[j, i];
              task.putafefrow(i + 1, vslice_x, G_factor_T_row);
          }         
          // 3. The remaining n rows contain sqrt(theta) on the diagonal
          for (int i = 0; i < n; ++i)
          {
            task.putafefentry(k + 1 + i, voff_x + i, Math.Sqrt(theta[i]));
          }

          // Input the affine conic constraint (gamma, G_factor_T x, diag(sqrt(theta))*x) \in QCone
          // Add the quadratic domain of dimension k+n+1
          long qdom = task.appendquadraticconedomain(k + n + 1);
          // Add the constraint
          task.appendaccseq(qdom, 0, null);            
          task.putaccname(0, "risk");
        
          // Objective: maximize expected return mu^T x
          for (int j = 0; j < n; ++j)
          {
            task.putcj(voff_x + j, mu[j]);
          }
          task.putobjsense(mosek.objsense.maximize);

          for (int i = 0; i < gammas.Length; i++)
          { 
            double gamma = gammas[i];

            // Specify gamma in ACC
            task.putafeg(0, gamma);
      
            task.optimize();

            /* Display solution summary for quick inspection of results */
            task.solutionsummary(mosek.streamtype.log);

            // Check if the interior point solution is an optimal point
            solsta solsta = task.getsolsta(mosek.soltype.itr);
            if (solsta != mosek.solsta.optimal)
            {
              // See https://docs.mosek.com/latest/dotnetapi/accessing-solution.html about handling solution statuses.
             throw new Exception(rescode.err_unhandled_solution_status, String.Format("Unexpected solution status: {0}", solsta));
            }

            task.writedata("dump.ptf");

            /* Read the results */
            double expret = 0.0;
            double[] xx = new double[n];

            task.getxxslice(mosek.soltype.itr, voff_x, voff_x + n, xx);
            for (int j = 0; j < n; ++j)
              expret += mu[j] * xx[j + voff_x];

            Console.WriteLine("\nExpected return {0:E} for gamma {1:E}", expret, gamma);
          }
        }
      }
    }
  }
}

pow1.cs

Listing 17.30 pow1.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:      pow1.cs

  Purpose: Demonstrates how to solve the problem

    maximize x^0.2*y^0.8 + z^0.4 - x
          st x + y + 0.5z = 2
             x,y,z >= 0
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class ceo1
  {
    public static void Main ()
    {
      const int numcon = 1;
      const int numvar = 5;   // x,y,z and 2 auxiliary variables for conic constraints

      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double infinity = 0;

      double[] val   = { 1.0, 1.0, -1.0 };
      int[]    sub   = { 3, 4, 0 };

      double[] aval  = { 1.0, 1.0, 0.5 };
      int[]    asub  = { 0, 1, 2 };

      int i;

      // Create a task object.
      using (mosek.Task task = new mosek.Task()) {
        // Directs the log task stream to the user specified
        // method msgclass.streamCB
        task.set_Stream (mosek.streamtype.log, new msgclass (""));

        /* Append 'numcon' empty constraints.
           The constraints will initially have no bounds. */
        task.appendcons(numcon);

        /* Append 'numvar' variables.
           The variables will initially be fixed at zero (x=0). */
        task.appendvars(numvar);

        /* Set up the linear part of the problem */
        task.putclist(sub, val);
        task.putarow(0, asub, aval);
        task.putconbound(0, mosek.boundkey.fx, 2.0, 2.0);
        task.putvarboundsliceconst(0,numvar,mosek.boundkey.fr,-infinity,infinity);

        /* Add conic constraints */
        /* Append two power cone domains */
        long pc1 = task.appendprimalpowerconedomain(3, new double[]{0.2, 0.8});
        long pc2 = task.appendprimalpowerconedomain(3, new double[]{4.0, 6.0});

        /* Create data structures F,g so that

           F * x + g = (x(0), x(1), x(3), x(2), 1.0, x(4)) 
        */
        task.appendafes(6);
        task.putafefentrylist(new long[]{0, 1, 2, 3, 5},         /* Rows */
                              new int[]{0, 1, 3, 2, 4},          /* Columns */
                              new double[]{1.0, 1.0, 1.0, 1.0, 1.0});
        task.putafeg(4, 1.0);

        /* Append the two conic constraints */
        task.appendacc(pc1,                     /* Domain */
                       new long[]{0, 1, 2},     /* Rows from F */
                       null);                   /* Unused */
        task.appendacc(pc2,                     /* Domain */
                       new long[]{3, 4, 5},     /* Rows from F */
                       null);                   /* Unused */

        task.putobjsense(mosek.objsense.maximize);
        task.optimize();

        // Print a summary containing information
        // about the solution for debugging purposes
        task.solutionsummary(mosek.streamtype.msg);

        /* Get status information about the solution */
        mosek.solsta solsta = task.getsolsta(mosek.soltype.itr);

        double[] xx  = task.getxx(mosek.soltype.itr); // Interior point solution.

        switch (solsta)
        {
          case mosek.solsta.optimal:
            Console.WriteLine ("Optimal primal solution\n");
            for (int j = 0; j < 3; ++j)
              Console.WriteLine ("x[{0}]: {1}", j, xx[j]);
            break;
          case mosek.solsta.dual_infeas_cer:
          case mosek.solsta.prim_infeas_cer:
            Console.WriteLine("Primal or dual infeasibility.\n");
            break;
          case mosek.solsta.unknown:
            Console.WriteLine("Unknown solution status.\n");
            break;
          default:
            Console.WriteLine("Other solution status");
            break;
        }
      }
    }
  }
}

qcqo1.cs

Listing 17.31 qcqo1.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:      qcqo1.cs

   Purpose:   Demonstrate how to solve a quadratic
              optimization problem using the MOSEK API.

              minimize  x0^2 + 0.1 x1^2 +  x2^2 - x0 x2 - x1
              s.t 1 <=  x0 + x1 + x2 - x0^2 - x1^2 - 0.1 x2^2 + 0.2 x0 x2
              x >= 0
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class qcqo1
  {
    public static void Main ()
    {
      const double inf = 0.0; /* We don't actually need any value for infinity */

      const int numcon = 1;   /* Number of constraints.             */
      const int numvar = 3;   /* Number of variables.               */

      mosek.boundkey[]
      bkc = { mosek.boundkey.lo },
      bkx = { mosek.boundkey.lo, mosek.boundkey.lo, mosek.boundkey.lo };
      int[][]  asub  = { new int[] {0}, new int[] {0}, new int[] {0} };
      double[][] aval  = { new double[]{1.0}, new double[]{1.0}, new double[]{1.0} };

      double[]
      blc  = { 1.0 },
      buc  = { inf },
      c    = { 0.0, -1.0, 0.0 },
      blx  = { 0.0, 0.0, 0.0 },
      bux  = { inf, inf, inf },
      xx   = new double[numvar];
      try
      {
        using (mosek.Env env = new mosek.Env())
        {
          using (mosek.Task task = new mosek.Task(env))
          {
            task.set_Stream (mosek.streamtype.log, new msgclass (""));

            /* Give MOSEK an estimate of the size of the input data.
                 This is done to increase the speed of inputting data.
                 However, it is optional. */

            /* Append 'numcon' empty constraints.
                 The constraints will initially have no bounds. */
            task.appendcons(numcon);

            /* Append 'numvar' variables.
                 The variables will initially be fixed at zero (x=0). */
            task.appendvars(numvar);

            for (int j = 0; j < numvar; ++j)
            {
              /* Set the linear term c_j in the objective.*/
              task.putcj(j, c[j]);
              /* Set the bounds on variable j.
                       blx[j] <= x_j <= bux[j] */
              task.putvarbound(j, bkx[j], blx[j], bux[j]);
              /* Input column j of A */
              task.putacol(j,                     /* Variable (column) index.*/
                           asub[j],               /* Row index of non-zeros in column j.*/
                           aval[j]);              /* Non-zero Values of column j. */
            }
            /* Set the bounds on constraints.
                   for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */
            for (int i = 0; i < numcon; ++i)
              task.putconbound(i, bkc[i], blc[i], buc[i]);
            /*
             * The lower triangular part of the Q
             * matrix in the objective is specified.
             */

            {
              int[]
              qsubi = { 0, 1, 2, 2 },
              qsubj = { 0, 1, 0, 2 };
              double[]
              qval = { 2.0, 0.2, -1.0, 2.0 };

              /* Input the Q for the objective. */

              task.putqobj(qsubi, qsubj, qval);
            }
            /*
             * The lower triangular part of the Q^0
             * matrix in the first constraint is specified.
             * This corresponds to adding the term
             *  - x0^2 - x1^2 - 0.1 x2^2 + 0.2 x0 x2
             */
            {
              int[]
              qsubi = { 0, 1, 2, 2 },
              qsubj = { 0, 1, 2, 0 };
              double[]
              qval = { -2.0, -2.0, -0.2, 0.2 };

              /* put Q^0 in constraint with index 0. */

              task.putqconk (0,
                             qsubi,
                             qsubj,
                             qval);
            }

            task.putobjsense(mosek.objsense.minimize);

            task.optimize();

            // Print a summary containing information
            //   about the solution for debugging purposes
            task.solutionsummary(mosek.streamtype.msg);

            mosek.solsta solsta;
            /* Get status information about the solution */
            task.getsolsta(mosek.soltype.itr, out solsta);

            task.getxx(mosek.soltype.itr, // Basic solution.
                       xx);

            switch (solsta)
            {
              case mosek.solsta.optimal:
                Console.WriteLine ("Optimal primal solution\n");
                for (int j = 0; j < numvar; ++j)
                  Console.WriteLine ("x[{0}]:", xx[j]);
                break;
              case mosek.solsta.dual_infeas_cer:
              case mosek.solsta.prim_infeas_cer:
                Console.WriteLine("Primal or dual infeasibility.\n");
                break;
              case mosek.solsta.unknown:
                Console.WriteLine("Unknown solution status.\n");
                break;
              default:
                Console.WriteLine("Other solution status");
                break;
            }
          }
        }
      }
      catch (mosek.Exception e)
      {
        Console.WriteLine (e);
        throw;
      }

    } /* Main */
  }
}

qo1.cs

Listing 17.32 qo1.cs Click here to download.
/*
  File : qo1.cs

  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  Purpose: Demonstrate how to solve a quadratic
           optimization problem using the MOSEK .NET API.
*/
using System;

namespace mosek.example
{
  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }

  public class qo1
  {
    public static void Main ()
    {
      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      const double infinity = 0;
      const int numcon = 1;   /* Number of constraints.             */
      const int numvar = 3;   /* Number of variables.               */

      double[] c = {0.0, -1.0, 0.0};

      mosek.boundkey[]  bkc   = {mosek.boundkey.lo};
      double[] blc = {1.0};
      double[] buc = {infinity};

      mosek.boundkey[]  bkx   = {mosek.boundkey.lo,
                                 mosek.boundkey.lo,
                                 mosek.boundkey.lo
                                };
      double[] blx  = {0.0,
                       0.0,
                       0.0
                      };
      double[] bux  = { +infinity,
                        +infinity,
                        +infinity
                      };

      int[][]    asub  = { new int[] {0},   new int[] {0},   new int[] {0}};
      double[][] aval  = { new double[] {1.0}, new double[] {1.0}, new double[] {1.0}};

      double[] xx  = new double[numvar];
      try {
        // Create a task object linked with the environment env.
        using (var task = new mosek.Task ()) {
            // Directs the log task stream to the user specified
            // method task_msg_obj.streamCB
            task.set_Stream (mosek.streamtype.log, new msgclass (""));

            /* Give MOSEK an estimate of the size of the input data.
               This is done to increase the speed of inputting data.
               However, it is optional. */
            /* Append 'numcon' empty constraints.
               The constraints will initially have no bounds. */
            task.appendcons(numcon);

            /* Append 'numvar' variables.
               The variables will initially be fixed at zero (x=0). */
            task.appendvars(numvar);

            for (int j = 0; j < numvar; ++j)
            {
                /* Set the linear term c_j in the objective.*/
                task.putcj(j, c[j]);
                /* Set the bounds on variable j.
                   blx[j] <= x_j <= bux[j] */
                task.putvarbound(j, bkx[j], blx[j], bux[j]);
                /* Input column j of A */
                task.putacol(j,                     /* Variable (column) index.*/
                             asub[j],               /* Row index of non-zeros in column j.*/
                             aval[j]);              /* Non-zero Values of column j. */
            }
            /* Set the bounds on constraints.
               for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */
            for (int i = 0; i < numcon; ++i)
                task.putconbound(i, bkc[i], blc[i], buc[i]);

            /*
             * The lower triangular part of the Q
             * matrix in the objective is specified.
             */

            int[]    qsubi = {0,   1,    2,   2  };
            int[]    qsubj = {0,   1,    0,   2  };
            double[] qval =  {2.0, 0.2, -1.0, 2.0};

            /* Input the Q for the objective. */

            task.putobjsense(mosek.objsense.minimize);

            task.putqobj(qsubi, qsubj, qval);

            task.optimize();

            // Print a summary containing information
            //   about the solution for debugging purposes
            task.solutionsummary(mosek.streamtype.msg);

            mosek.solsta solsta;
            /* Get status information about the solution */
            task.getsolsta(mosek.soltype.itr, out solsta);
            switch (solsta)
            {
                case mosek.solsta.optimal:
                    task.getxx(mosek.soltype.itr, // Interior point solution.
                               xx);

                    Console.WriteLine ("Optimal primal solution\n");
                    for (int j = 0; j < numvar; ++j)
                        Console.WriteLine ("x[{0}]:", xx[j]);
                    break;
                case mosek.solsta.dual_infeas_cer:
                case mosek.solsta.prim_infeas_cer:
                    Console.WriteLine("Primal or dual infeasibility.\n");
                    break;
                case mosek.solsta.unknown:
                    Console.WriteLine("Unknown solution status.\n");
                    break;
                default:
                    Console.WriteLine("Other solution status");
                    break;
            }
        }
      }
      catch (mosek.Exception e)
      {
        Console.WriteLine (e);
        throw;
      }
    } /* Main */
  }
}

reoptimization.cs

Listing 17.33 reoptimization.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:      reoptimization.cs

   Purpose:   Demonstrates how to solve a  linear
              optimization problem using the MOSEK API
              and modify and re-optimize the problem.
*/

using System;

namespace mosek.example
{
  public class reoptimization
  {
    public static void Main ()
    {
      // Since the value infinity is never used, we define
      // 'infinity' symbolic purposes only
      double
      infinity = 0;

      int numcon = 3;
      int numvar = 3;

      double[] c            = {1.5,
                               2.5,
                               3.0
                              };
      mosek.boundkey[] bkc  = {mosek.boundkey.up,
                               mosek.boundkey.up,
                               mosek.boundkey.up
                              };
      double[] blc          = { -infinity,
                                -infinity,
                                -infinity
                              };
      double[] buc          =  {100000,
                                50000,
                                60000
                               };
      mosek.boundkey[] bkx  = {mosek.boundkey.lo,
                               mosek.boundkey.lo,
                               mosek.boundkey.lo
                              };
      double[] blx           = {0.0,
                                0.0,
                                0.0
                               };
      double[] bux           = { +infinity,
                                 +infinity,
                                 +infinity
                               };

      int[][] asub = new int[numvar][];
      asub[0] = new int[] {0, 1, 2};
      asub[1] = new int[] {0, 1, 2};
      asub[2] = new int[] {0, 1, 2};

      double[][] aval   = new double[numvar][];
      aval[0] = new double[] { 2.0, 3.0, 2.0 };
      aval[1] = new double[] { 4.0, 2.0, 3.0 };
      aval[2] = new double[] { 3.0, 3.0, 2.0 };

      double[] xx  = new double[numvar];

      mosek.Task task = null;
      mosek.Env  env  = null;

      try
      {
        // Create mosek environment.
        env  = new mosek.Env ();
        // Create a task object linked with the environment env.
        task = new mosek.Task (env, numcon, numvar);

        /* Append the constraints. */
        task.appendcons(numcon);

        /* Append the variables. */
        task.appendvars(numvar);

        /* Put C. */
        task.putcfix(0.0);
        for (int j = 0; j < numvar; ++j)
          task.putcj(j, c[j]);

        /* Put constraint bounds. */
        for (int i = 0; i < numcon; ++i)
          task.putconbound(i, bkc[i], blc[i], buc[i]);

        /* Put variable bounds. */
        for (int j = 0; j < numvar; ++j)
          task.putvarbound(j, bkx[j], blx[j], bux[j]);

        /* Put A. */
        if ( numcon > 0 )
        {
          for (int j = 0; j < numvar; ++j)
            task.putacol(j,
                         asub[j],
                         aval[j]);
        }

        task.putobjsense(mosek.objsense.maximize);

        try
        {
          task.optimize();
        }
        catch (mosek.Warning w)
        {
          Console.WriteLine("Mosek warning:");
          Console.WriteLine (w.Code);
          Console.WriteLine (w);
        }

        task.getxx(mosek.soltype.bas, // Request the basic solution.
                   xx);
        
        for (int j = 0; j < numvar; ++j)
          Console.WriteLine ("x[{0}]:{1}", j, xx[j]);

        /********************** Make a change to the A matrix ********************/
        task.putaij(0, 0, 3.0);
        task.optimize();
        task.getxx(mosek.soltype.bas, // Request the basic solution.
                   xx);

        for (int j = 0; j < numvar; ++j)
          Console.WriteLine ("x[{0}]:{1}", j, xx[j]);

        /********************** Add a new variable ********************/
        /* Get index of new variable. */
        int varidx;
        task.getnumvar(out varidx);

        /* Append a new varaible x_3 to the problem */
        task.appendvars(1);
        numvar++;

        /* Set bounds on new varaible */
        task.putvarbound(varidx,
                         mosek.boundkey.lo,
                         0,
                         +infinity);

        /* Change objective */
        task.putcj(varidx, 1.0);

        /* Put new values in the A matrix */
        int[] acolsub    =  new int[] {0,   2};
        double[] acolval =  new double[] {4.0, 1.0};

        task.putacol(varidx, /* column index */
                     acolsub,
                     acolval);
        /* Change optimizer to simplex free and reoptimize */
        task.putintparam(mosek.iparam.optimizer, mosek.optimizertype.free_simplex);
        task.optimize();

        xx = new double[numvar];
        task.getxx(mosek.soltype.bas, // Request the basic solution.
                   xx);

        for (int j = 0; j < numvar; ++j)
          Console.WriteLine ("x[{0}]:{1}", j, xx[j]);


        /********************** Add a new constraint ********************/
        /* Get index of new constraint */
        int conidx;
        task.getnumcon(out conidx);

        /* Append a new constraint */
        task.appendcons(1);
        numcon++;

        /* Set bounds on new constraint */
        task.putconbound(conidx,
                      mosek.boundkey.up,
                      -infinity,
                      30000);

        /* Put new values in the A matrix */
        int[] arowsub = new int[] {0, 1, 2, 3};
        double[] arowval = new double[]  {1.0, 2.0, 1.0, 1.0};

        task.putarow(conidx, /* row index */
                     arowsub,
                     arowval);

        task.optimize();

        task.getxx(mosek.soltype.bas, // Request the basic solution.
                   xx);

        for (int j = 0; j < numvar; ++j)
          Console.WriteLine ("x[{0}]:{1}", j, xx[j]);


        /********************** Change constraint bounds ********************/
        mosek.boundkey[] newbkc  = {mosek.boundkey.up,
                                    mosek.boundkey.up,
                                    mosek.boundkey.up,
                                    mosek.boundkey.up
                                   };
        double[] newblc          = { -infinity,
                                     -infinity,
                                     -infinity,
                                     -infinity
                                   };
        double[] newbuc          = { 80000, 40000, 50000, 22000 };

        task.putconboundslice(0, numcon, newbkc, newblc, newbuc);

        task.optimize();

        task.getxx(mosek.soltype.bas, // Request the basic solution.
                   xx);

        for (int j = 0; j < numvar; ++j)
          Console.WriteLine ("x[{0}]:{1}", j, xx[j]);
      }
      catch (mosek.Exception e)
      {
        Console.WriteLine (e.Code);
        Console.WriteLine (e);
      }

      if (task != null) task.Dispose ();
      if (env  != null)  env.Dispose ();
    }
  }
}

response.cs

Listing 17.34 response.cs Click here to download.
/*
  Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File:      response.cs

  Purpose:   This example demonstrates proper response handling
             for problems solved with the interior-point optimizers.
*/
using System;
using mosek;
using System.Text;

namespace mosek.example
{
  // A log handler class
  class msgclass : mosek.Stream
  {
    public msgclass () {}
    public override void streamCB (string msg) { Console.Write ("{0}", msg); }
  }

  public class response
  {
    public static void Main(string[] argv)
    {
      StringBuilder symname = new StringBuilder();
      StringBuilder desc = new StringBuilder();

      string filename;
      if (argv.Length >= 1) filename = argv[0];
      else                  filename = "../data/cqo1.mps";

      // Define environment and task
      using (Env env = new Env())
      {
        using (Task task = new Task(env, 0, 0))
        {
          try 
          {
            // (Optionally) set a log handler
            // task.set_Stream (streamtype.log, new msgclass ());

            // (Optionally) uncomment this to get solution status unknown
            // task.putintparam(iparam.intpnt_max_iterations, 1);

            // In this example we read data from a file
            task.readdata(filename);

            // Perform optimization
            rescode trm = task.optimize();
            task.solutionsummary(streamtype.log);

            // Handle solution status. We expect Optimal
            solsta solsta = task.getsolsta(soltype.itr);

            switch ( solsta )
            {
              case solsta.optimal:
                // Optimal solution. Print variable values
                Console.WriteLine("An optimal interior-point solution is located.");
                int numvar = task.getnumvar();
                double[] xx = new double[numvar];
                task.getxx(soltype.itr, xx);
                for(int i = 0; i < numvar; i++) 
                  Console.WriteLine("x[" + i + "] = " + xx[i]);
                break;

              case solsta.dual_infeas_cer:
                Console.WriteLine("Dual infeasibility certificate found.");
                break;

              case solsta.prim_infeas_cer:
                Console.WriteLine("Primal infeasibility certificate found.");
                break;

              case solsta.unknown:
                /* The solutions status is unknown. The termination code
                   indicates why the optimizer terminated prematurely. */
                Console.WriteLine("The solution status is unknown.");
                Env.getcodedesc(trm, symname, desc);
                Console.WriteLine("  Termination code: {0} {1}", symname, desc);
                break;

              default:
                Console.WriteLine("An unexpected solution status " + solsta);
                break;
            }
          }
          catch (mosek.Error e)
          {
            Console.WriteLine("Unexpected optimization error ({0}) {1}", e.Code, e.Message);
          }
        }
      }
    }
  }
}

sdo1.cs

Listing 17.35 sdo1.cs Click here to download.
/*
   Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved.

   File:      sdo1.cs

   Purpose:   Solves the following small semidefinite optimization problem
              using the MOSEK API.

     minimize    Tr [2, 1, 0; 1, 2, 1; 0, 1, 2]*X + x0

     subject to  Tr [1, 0, 0; 0, 1, 0; 0, 0, 1]*X + x0           = 1
                 Tr [1, 1, 1; 1, 1, 1; 1, 1, 1]*X      + x1 + x2 = 0.5
                 (x0,x1,x2) \in Q,  X \in PSD
*/
using System;

namespace mosek.example
{
  public class sdo1
  {
    public static void Main(string[] args)
    {
      int    numcon    = 2;  /* Number of constraints.              */
      int    numvar    = 3;  /* Number of conic quadratic variables */
      int[]  dimbarvar = { 3 };         /* Dimensions of semidefinite cones */
      int[]  lenbarvar = { 3 * (3 + 1) / 2 }; /* Number of scalar SD variables  */

      mosek.boundkey[] bkc = { mosek.boundkey.fx, mosek.boundkey.fx };
      double[]     blc     = { 1.0, 0.5 };
      double[]     buc     = { 1.0, 0.5 };

      int[]        barc_i  = { 0,   1,   1,   2,   2 },
                   barc_j  = { 0,   0,   1,   1,   2 };
      double[]     barc_v  = { 2.0, 1.0, 2.0, 1.0, 2.0 };

      int[][]      asub    = { new int[] {0},   new int[] {1, 2}}; /* column subscripts of A */
      double[][]   aval    = { new double[] {1.0}, new double[] {1.0, 1.0}};

      int[][]      bara_i  = { new int[] {0,   1,   2},   new int[] {0,   1 ,  2,   1,   2,   2 } },
                   bara_j  = { new int[] {0,   1,   2},   new int[] {0,   0 ,  0,   1,   1,   2 } };
      double[][]   bara_v  = { new double[] {1.0, 1.0, 1.0}, new double[] {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}};

      using (mosek.Env env = new mosek.Env())
      {
        // Create a task object.
        using (mosek.Task task = new mosek.Task(env, 0, 0))
        {
          // Directs the log task stream to the user specified
          // method msgclass.streamCB
          task.set_Stream (mosek.streamtype.log, new msgclass (""));
          /* Append 'NUMCON' empty constraints.
             The constraints will initially have no bounds. */
          task.appendcons(numcon);

          /* Append 'NUMVAR' variables.
             The variables will initially be fixed at zero (x=0). */
          task.appendvars(numvar);

          /* Append 'NUMBARVAR' semidefinite variables. */
          task.appendbarvars(dimbarvar);

          /* Optionally add a constant term to the objective. */
          task.putcfix(0.0);

          /* Set the linear term c_j in the objective.*/
          task.putcj(0, 1.0);

          for (int j = 0; j < numvar; ++j)
            task.putvarbound(j, mosek.boundkey.fr, -0.0, 0.0);

          /* Set the linear term barc_j in the objective.*/
          {
            long[] idx = new long[1];
            double[] falpha = { 1.0 };
            idx[0] = task.appendsparsesymmat(dimbarvar[0],
                                             barc_i,
                                             barc_j,
                                             barc_v);
            task.putbarcj(0, idx, falpha);
          }

          /* Set the bounds on constraints.
            for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */

          for (int i = 0; i < numcon; ++i)
            task.putconbound(i,           /* Index of constraint.*/
                             bkc[i],      /* Bound key.*/
                             blc[i],      /* Numerical value of lower bound.*/
                             buc[i]);     /* Numerical value of upper bound.*/

          /* Input A row by row */
          for (int i = 0; i < numcon; ++i)
            task.putarow(i,
                         asub[i],
                         aval[i]);

          /* Append the conic quadratic constraint */
          task.appendafes(3);
          // Diagonal F matrix
          task.putafefentrylist(new long[]{0,1,2}, new int[]{0,1,2}, new double[]{1.0,1.0,1.0});
          task.appendaccseq(task.appendquadraticconedomain(3), 0, null);

          /* Add the first row of barA */
          {
            long[] idx = new long[1];
            double[] falpha = {1.0};
            task.appendsparsesymmat(dimbarvar[0],
                                    bara_i[0],
                                    bara_j[0],
                                    bara_v[0],
                                    out idx[0]);

            task.putbaraij(0, 0, idx, falpha);
          }

          {
            long[] idx = new long[1];
            double[] falpha = {1.0};
            /* Add the second row of barA */
            task.appendsparsesymmat(dimbarvar[0],
                                    bara_i[1],
                                    bara_j[1],
                                    bara_v[1],
                                    out idx[0]);

            task.putbaraij(1, 0, idx, falpha);
          }

          /* Run optimizer */
          task.optimize();

          /* Print a summary containing information
             about the solution for debugging purposes*/
          task.solutionsummary (mosek.streamtype.msg);

          mosek.solsta solsta = task.getsolsta (mosek.soltype.itr);

          switch (solsta)
          {
            case mosek.solsta.optimal:            
              double[] xx = task.getxx(mosek.soltype.itr);
              double[] barx = task.getbarxj(mosek.soltype.itr, 0);   /* Request the interior solution. */
              Console.WriteLine("Optimal primal solution");
              for (int i = 0; i < numvar; ++i)
                Console.WriteLine("x[{0}]   : {1}", i, xx[i]);

              for (int i = 0; i < lenbarvar[0]; ++i)
                Console.WriteLine("barx[{0}]: {1}", i, barx[i]);
              break;
            case mosek.solsta.dual_infeas_cer:
            case mosek.solsta.prim_infeas_cer:
              Console.WriteLine("Primal or dual infeasibility certificate found.");
              break;
            case mosek.solsta.unknown:
              Console.WriteLine("The status of the solution could not be determined.");
              break;
            default:
              Console.WriteLine("Other solution status.");
              break;
          }
        }
      }
    }
  }



  class msgclass : mosek.Stream
  {
    string prefix;
    public msgclass (string prfx)
    {
      prefix = prfx;
    }

    public override void streamCB (string msg)
    {
      Console.Write ("{0}{1}", prefix, msg);
    }
  }
}

sdo2.cs

Listing 17.36 sdo2.cs Click here to download.
/*
  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.

  File :      sdo2.cs

  Purpose :   Solves the semidefinite problem with two symmetric variables:

                 min   <C1,X1> + <C2,X2>
                 st.   <A1,X1> + <A2,X2> = b
                             (X2)_{1,2} <= k
                
                 where X1, X2 are symmetric positive semidefinite,

                 C1, C2, A1, A2 are assumed to be constant symmetric matrices,
                 and b, k are constants.
*/
using System;

namespace mosek.example
{
  public class sdo1
  {
    public static void Main(string[] args)
    {
      /* Input data */
      int    numcon      = 2;              /* Number of constraints. */
      int    numbarvar   = 2;
      int[]    dimbarvar = {3, 4};         /* Dimension of semidefinite variables */

      /* Objective coefficients concatenated */
      int[]    Cj = { 0, 0, 1, 1, 1, 1 };   /* Which symmetric variable (j) */
      int[]    Ck = { 0, 2, 0, 1, 1, 2 };   /* Which entry (k,l)->v */
      int[]    Cl = { 0, 2, 0, 0, 1, 2 };
      double[] Cv = { 1.0, 6.0, 1.0, -3.0, 2.0, 1.0 };

      /* Equality constraints coefficients concatenated */
      int[]    Ai = { 0, 0, 0, 0, 0, 0 };   /* Which constraint (i = 0) */
      int[]    Aj = { 0, 0, 0, 1, 1, 1 };   /* Which symmetric variable (j) */
      int[]    Ak = { 0, 2, 2, 1, 1, 3 };   /* Which entry (k,l)->v */
      int[]    Al = { 0, 0, 2, 0, 1, 3 };
      double[] Av = { 1.0, 1.0, 2.0, 1.0, -1.0, -3.0 };

      /* The second constraint - one-term inequality */
      int[]    A2i = { 1 };                        /* Which constraint (i = 1) */
      int[]    A2j = { 1 };                        <