mosek

Symmetry detection in Mixed-Integer Conic Programming

25th International Symposium on Mathematical Programming July 23th, 2024 Montréal, Canada

Sven Wiese

www.mosek.com

A software package/library for solving:

- Linear and conic problems.
- Convex quadratic and quadratically constrained problems.
- Also mixed-integer versions of the above.

Current version is **MOSEK** 10.2.

(Mixed-Integer) Conic Programming in standard form:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathcal{K} \cap (\mathbb{Z}^p \times \mathbb{R}^{n-p})$

where \mathcal{K} is a convex cone.

Conic building blocks

Typically, $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 \times \cdots \times \mathcal{K}_K$ is a product of lower-dimensional cones:

- the linear cone $\mathbb{R}^{n_k}_+$
- the quadratic cone

$$\mathcal{Q}^{n_k} = \{x \in \mathbb{R}^{n_k} \mid x_1 \ge \left(x_2^2 + \dots + x_{n_k}^2\right)^{1/2} = \|x_{2:n_k}\|_2\}$$

• the exponential cone

$$\mathcal{K}_{exp} := cl\{x \in \mathbb{R}^3 \mid x_1 \ge x_2 \exp(x_3/x_2), x_2 > 0\}$$

What's inside **MOSEK** ?

- Simplex / Interior-point algorithms for continuous problems.
- (Conic) Branch-and-Cut / Outer-approximation algorithms for discrete problems, including heuristics, cuts, and other MIP-solver components...
- ... like symmetry handling!

Focus on formulation symmetries, i.e., permutations!

MILP:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathbb{Z}^p_+ \times \mathbb{R}^{n-p}_+$ (MILP)

Definition (see, e.g., Pfetsch & Rehn, 2019)

 $\pi\in\mathcal{S}_n$ is a formulation symmetry of (MILP) iff $\exists~\sigma\in\mathcal{S}_m$ such that

$$\pi(\{1,\ldots,p\}) = \{1,\ldots,p\}$$
(1)

$$\tau(c) = c \tag{2}$$

$$\sigma(b) = b \tag{3}$$

$$A_{\sigma(i),\pi(j)} = A_{ij}.$$
 (4)

Focus on formulation symmetries, i.e., permutations!

MILP:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathbb{Z}^p_+ \times \mathbb{R}^{n-p}_+$ (MILP)

Definition (see, e.g., Pfetsch & Rehn, 2019)

 $\pi \subset S$ is a formulation symmetry of (MILD) iff $\exists \sigma \subset S$ such

- π is a valid permutation of the variables, if
 - cost and type are preserved for each variable
 - for each constraint, there is an identical one after permuting the variables

For detecting symmetries, (MILP) is represented as a colored graph (the matrix graph):

- Every (color-invariant) graph automorphism corresponds to a formulation symmetry, and vice-versa!
- Software packages for detecting graph automorphisms are nauty, saucy, bliss, ...

Formulation symmetries in MICP

MICP:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathcal{K} \cap (\mathbb{Z}^p \times \mathbb{R}^{n-p})$ (P)

Definition

 $\pi \in S_n$ is a formulation symmetry of (P) iff $\exists \sigma \in S_m$ such that (1) - (4), and $\pi(\mathcal{K}) = \mathcal{K}$.

•
$$\pi(\mathcal{K}) = \mathcal{K}$$
 is rather generic...

 ... but may translate to more concrete conditions when looking at a specific K.

Formulation symmetries in MICP

MICP:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathcal{K} \cap (\mathbb{Z}^p \times \mathbb{R}^{n-p})$ (P)

Definition

 $\pi \in S_n$ is a formulation symmetry of (P) iff $\exists \sigma \in S_m$ such that just as in the linear case, plus $\pi(\mathcal{K}) = \mathcal{K}...$

- $\pi(\mathcal{K}) = \mathcal{K}$ is rather generic...
- ... but may translate to more concrete conditions when looking at a specific K.

For the quadratic cone $\mathcal{K} = \mathcal{Q}^n := \{x \in \mathbb{R}^n \mid x_1 \ge \|x_{2:n}\|_2\}$:

$$\pi(\mathcal{K}) = \mathcal{K} \Longleftrightarrow \pi(1) = 1$$

In other words,

$$\pi(\{1\}) = \{1\} \text{ and } \pi(\{2, \dots, n\}) = \{2, \dots, n\}.$$

Generalize this concept:

Definition

We call a function $h : \{1, ..., n\} \mapsto \mathbb{N}$ a symmetry labeling w.r.t. a cone $\mathcal{K} \subseteq \mathbb{R}^n$, iff for any $\pi \in S_n$ the condition $h(\pi(i)) = h(i) \ \forall i$ implies $\pi(\mathcal{K}) = \mathcal{K}$.

For the quadratic cone $\mathcal{K} = \mathcal{Q}^n := \{x \in \mathbb{R}^n \mid x_1 \ge \|x_{2:n}\|_2\}$:

$$\pi(\mathcal{K}) = \mathcal{K} \Longleftrightarrow \pi(1) = 1$$

In other words,

$$\pi(\{1\}) = \{1\} \text{ and } \pi(\{2, \dots, n\}) = \{2, \dots, n\}.$$

Generalize this concept:

Definition

C

We call a function $h:\{1,\ldots,n\}\mapsto \mathbb{N}$ a symmetry labeling w.r.t. a

Find a partition of the variables in \mathcal{K} , and permute only inside the partition cells!

A cone's symmetry labelings (cont.)

• $\mathcal{K} = \mathcal{Q}^n = \{x \in \mathbb{R}^n \mid x_1 \ge \|x_{2:n}\|_2\}$: a labeling is given by

$$h(i) = \begin{cases} 1, & i = 1 \\ 2, & otherwise. \end{cases}$$

• $\mathcal{K} = \mathbb{R}^n_+$: a labeling is any constant function,

 $h(i) = c \ \forall i.$

• $\mathcal{K} = \mathcal{K}_{exp} = cl\{x \in \mathbb{R}^3 \mid x_1 \ge x_2 \exp(x_3/x_2), x_2 > 0\}$: the only labeling is the identity.

Proposition

 $\pi \in S_n$ is a formulation symmetry of (P) if $\exists \sigma \in S_m$ such that (1) - (4), and \exists a labeling h w.r.t. \mathcal{K} such that $h(\pi(i)) = h(i) \forall i$.

A cone's symmetry labelings (cont.)

• $\mathcal{K} = \mathcal{Q}^n = \{x \in \mathbb{R}^n \mid x_1 \ge \|x_{2:n}\|_2\}$: a labeling is given by

$$h(i) = \begin{cases} 1, & i = 1 \\ 2, & otherwise. \end{cases}$$

• $\mathcal{K} = \mathbb{R}^n_+$: a labeling is any constant function,

 $h(i) = c \ \forall i.$

• $\mathcal{K} = \mathcal{K}_{exp} = cl\{x \in \mathbb{R}^3 \mid x_1 \ge x_2 \exp(x_3/x_2), x_2 > 0\}$: the only labeling is the identity.

Proposition

 $\pi \in S_n$ is a formulation symmetry of (P) if $\exists \sigma \in S_m$ such that (1) - (4), i just as in the linear case, plus the permuted variables have the same label for some labeling w.r.t. \mathcal{K}_{\dots} A (seemingly) bad example

$$(x_1, x_2, x_3, x_4, x_5, x_6)^T \in \mathcal{K} = \mathcal{Q}^3 \times \mathcal{Q}^3$$

• $\pi_1 = (1,4)(2,5)(3,6)$ is a valid formulation symmetry.

• In a labeling, 1 and 4 would have the same label:

h(1)=h(4).

- Then also $\pi_2 = (1, 4)$ would be formulation symmetry.
- But with $x = (1, 0, 0, 2, 1, 1) \in \mathcal{K}$, $\pi_2(x) \notin \mathcal{K}$. \notin

Theorem

Let $\mathcal{K} = \mathcal{K}_1 \times \ldots \times \mathcal{K}_K \subseteq \mathbb{R}^n$ with $\mathcal{K}_k \subseteq \mathbb{R}^{n_k}$. Then $\pi \in S_n$ is a formulation symmetry of (P) if $\exists \sigma \in S_m$ such that (1) - (4), and $\exists \tau \in S_K$ and labelings $h_k : \{1, \ldots, n_k\} \mapsto \mathbb{N}$ w.r.t. \mathcal{K}_k such that

$$\begin{split} \mathcal{K}_{\tau(k)} &= \mathcal{K}_k \\ \pi(\{N_k + 1, \dots, N_{k+1}\}) &= \{N_{\tau(k)} + 1, \dots, N_{\tau(k)+1}\} \\ h_{\tau(k)} &= h_k \\ h_{\tau(k)}(\pi(i) - N_{\tau(k)}) &= h_k(i - N_k) \; \forall i \in \{N_k + 1, \dots, N_{k+1}\}, \end{split}$$
where $N_k = \sum_{l \leq k} n_l, \; N_{K+1} = n.$

The matrix graph construction in **MOSEK** is based on this.

Theorem

Let $\mathcal{K} = \mathcal{K}_1 \times \ldots \times \mathcal{K}_K \subseteq \mathbb{R}^n$ with $\mathcal{K}_k \subseteq \mathbb{R}^{n_k}$. Then $\pi \in S_n$ is a formulation symmetry of (P) if $\exists \sigma \in S_m$ such that (1) - (4), and $\exists \tau \in S_K$ and labelings $h_k : \{1, \ldots, n_k\} \mapsto \mathbb{N}$ w.r.t. \mathcal{K}_k such that

 π is a valid permutation of the variables, if

- bounds, cost and type are preserved for each variable
- for each constraint, there is an identical one after permuting the variables
- for each cone, there is another cone of the same type in which the permuted variables have the same label

The matrix graph construction in **MOSEK** is based on this.

Relation to MINLP

- Labelings may still fail to capture symmetries for certain cones. Example: SDP (instead refer to Hojny & Pfetsch, 2022!)
- Seem to work well for cones coming from epigraphs of convex functions, i.e., MICP reformulations of convex MINLPs.
- Could apply MINLP techniques (Liberti, 2012) to such MICPs, using the expression graph of an instance...
- ... but the matrix graph construction using symmetry labelings is likely be dominant in terms of graph size.

Computational results: disk covering

- MICP formulations with quadratic cones Q^{n_k}
- 64 models:
 - between 1 and 4 symmetry generators per model
 - roughly 47% 99% of variables moved
- conic Branch-and-Cut, symmetry exploitation: orbital fixing

Computational results: disk covering (cont.)

• Time spent in symmetry detection:

det. time	min	max	mean
in millisec.	0.3	4.0	1.3
as % of running time	4.1e-5	0.15	3.6e-3

• Overall performance:

solved			time				nodes		
m	odels	def	sym-0	def	sym-0*	faster	slower	def	sym-0*
$[0,\infty)$	64	64	54	71.6	3.2	61	2	12108	3.0
$[10,\infty)$	56	56	46	112.6	3.6	54	1	18824	3.4
$[100,\infty)$	40	40	30	314.2	3.9	39	0	43613	3.6
$[1000,\infty)$	21	21	11	954.2	4.6	21	0	113533	5.2

• optimize efficiency in data transmission systems with *k* communication channels and *n* users

• data rate requirement for user
$$j$$
: $B\sum_i \log_2(1+p_{ij}/N) \geq d_j$

- has MICP reformulation with exponential cones \mathcal{K}_{exp}
- 62 models
 - between 7 and 14 symmetry generators per model
 - \bullet > 99% of variables moved

Computational results: f-SPARC (cont.)

• Time spent in symmetry detection:

det. time	min	max	mean
in millisec.	1.3	9.1	3.2
as % of running time	9.4e-5	1.2	2.8e-2

• Overall performance:

solved			time				nodes		
m	odels	def	sym-0	def	sym-0*	faster	slower	def	sym-0*
$[0,\infty)$	62	62	29	17.4	73.5	62	0	254	98.3
$[10,\infty)$	57	57	24	21.9	91.1	57	0	309	147.5
$[100,\infty)$	46	46	13	40.2	124.2	46	0	652	305.7
$[1000,\infty)$	43	43	10	45.7	128.9	43	0	583	450.9

• From CBLIB and QPLIB (convex):

	det. time (1e-3 sec.)	% of vars	∦ gen.	factors
achtziger_stolpe07-5.2bflowc	1.6	2.78	1	$\overline{\mathcal{M}(\mathcal{S}_2, 38)}$
netmod_kar1	2.7	2.78	9	1 unknown
netmod_kar2	1.5	100	9	1 unknown
QPLIB_3361	114.9	3.22	1	$\mathcal{M}(\mathcal{S}_2, 64)$
QPLIB_3496	1.3	42.89	6	1 unknown,
				$(\mathcal{M}(\mathcal{S}_2,26))^2,\ \mathcal{M}(\mathcal{S}_2,22)$
QPLIB_3547	21.0	100	30	1 unknown
QPLIB_3643	1.9	49.51	7	1 unknown,
				$(\mathcal{M}(\mathcal{S}_2, 18))^2$
rsyn0810m04h	2.2	1.69	3	$\mathcal{M}(\mathcal{S}_4, 12)$
syn05m04h	0.2	18.18	3	$\mathcal{M}(\mathcal{S}_4, 12)$

Symmetry in public instance libraries (cont.)

• Symmetry occurence:

- CBLIB: 12.5% of analyzed instance groups
- QPLIB (convex): 12.9% of analyzed instances
- MIPLIB2003: 30%
- MIPLIB2010: 42.7%

(numbers taken from Pfetsch & Rehn, 2019)

 \Rightarrow Contribute to CBLIB (or to QPLIB, preferably convex...)! \odot

ightarrow cblib.zib.de/

Further information on **MOSEK**

• Documentation at mosek.com/documentation/

- Modeling cook book / cheat sheet.
- White papers.
- Manuals for interfaces.
- Notebook collection.
- Tutorials and more at github.com/MOSEK/

тозек

