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Montréal, Canada

Sven Wiese

www.mosek.com



MOSEK : from LP to Conic Programming

A software package/library for solving:

• Linear and conic problems.

• Convex quadratic and quadratically constrained problems.

• Also mixed-integer versions of the above.

Current version is MOSEK 10.2.

(Mixed-Integer) Conic Programming in standard form:

minimize cT x
subject to Ax = b

x

where K is a convex cone.

∈ Rn
+K ∩
(
Zp × Rn−p)
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Conic building blocks

Typically, K = K1 ×K2 × · · · × KK is a product of
lower-dimensional cones:

• the linear cone Rnk
+

• the quadratic cone

Qnk = {x ∈ Rnk | x1 ≥
(
x22 + · · ·+ x2nk

)1/2
= ‖x2:nk‖2}

• the exponential cone

Kexp := cl{x ∈ R3 | x1 ≥ x2 exp(x3/x2), x2 > 0}

• ... 2 / 18



What’s inside MOSEK ?

MOSEK

10.2

LP

(rotated)

quadratic

SDP

matrix/vectorized

power

(geo-mean)

exponential

MIP

• Simplex / Interior-point algorithms for continuous problems.

• (Conic) Branch-and-Cut / Outer-approximation algorithms for
discrete problems, including heuristics, cuts, and other MIP-solver
components...

• ... like symmetry handling! 3 / 18



Symmetry handling in MILP

Focus on formulation symmetries, i.e., permutations!

MILP:
minimize cT x
subject to Ax = b

x ∈ Zp
+ × Rn−p

+

(MILP)

Definition (see, e.g., Pfetsch & Rehn, 2019)

π ∈ Sn is a formulation symmetry of (MILP) iff ∃ σ ∈ Sm such
that

π({1, . . . , p}) = {1, . . . , p} (1)

π(c) = c (2)

σ(b) = b (3)

Aσ(i),π(j) = Aij . (4)

π is a valid permutation of the variables, if

• cost and type are preserved for each variable

• for each constraint, there is an identical one after
permuting the variables
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Symmetry detection in MILP

For detecting symmetries, (MILP) is represented as a colored graph
(the matrix graph):

2x1 + 2x2 + 3x3 ≤ 4 −→

x1

x2

x3

a1

a2

c1

• Every (color-invariant) graph automorphism corresponds to a
formulation symmetry, and vice-versa!

• Software packages for detecting graph automorphisms are
nauty, saucy, bliss, ...
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Formulation symmetries in MICP

MICP:
minimize cT x
subject to Ax = b

x ∈ K ∩
(
Zp × Rn−p) (P)

Definition

π ∈ Sn is a formulation symmetry of (P) iff ∃ σ ∈ Sm such that
(1) - (4), and π(K) = K.

just as in the linear case, plus π(K) = K...

• π(K) = K is rather generic...

• ... but may translate to more concrete conditions when
looking at a specific K.
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A cone’s symmetry labelings

For the quadratic cone K = Qn := {x ∈ Rn | x1 ≥ ‖x2:n‖2}:

π(K) = K ⇐⇒ π(1) = 1

In other words,

π({1}) = {1} and π({2, . . . , n}) = {2, . . . , n}.

Generalize this concept:

Definition

We call a function h : {1, . . . , n} 7→ N a symmetry labeling w.r.t. a
cone K ⊆ Rn, iff for any π ∈ Sn the condition h(π(i)) = h(i) ∀i
implies π(K) = K.

Find a partition of the variables in K, and permute only inside
the partition cells!
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A cone’s symmetry labelings (cont.)

• K = Qn = {x ∈ Rn | x1 ≥ ‖x2:n‖2}: a labeling is given by

h(i) =

{
1, i = 1

2, otherwise.

• K = Rn
+: a labeling is any constant function,

h(i) = c ∀i .

• K = Kexp = cl{x ∈ R3 | x1 ≥ x2 exp(x3/x2), x2 > 0}: the only
labeling is the identity.

Proposition

π ∈ Sn is a formulation symmetry of (P) if ∃ σ ∈ Sm such that (1) - (4),
and ∃ a labeling h w.r.t. K such that h(π(i)) = h(i) ∀i .just as in the linear case, plus the permuted variables have the same

label for some labeling w.r.t. K...
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A (seemingly) bad example

(x1, x2, x3, x4, x5, x6)T ∈ K = Q3 ×Q3

• π1 = (1, 4)(2, 5)(3, 6) is a valid formulation symmetry.

• In a labeling, 1 and 4 would have the same label:

h(1) = h(4).

• Then also π2 = (1, 4) would be formulation symmetry.

• But with x = (1, 0, 0, 2, 1, 1) ∈ K, π2(x) /∈ K.  
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Cartesian products are still tractable

Theorem

Let K = K1 × . . .×KK ⊆ Rn with Kk ⊆ Rnk . Then π ∈ Sn is a
formulation symmetry of (P) if ∃ σ ∈ Sm such that (1) - (4), and
∃ τ ∈ SK and labelings hk : {1, . . . , nk} 7→ N w.r.t. Kk such that

Kτ(k) = Kk

π({Nk + 1, . . . ,Nk+1}) = {Nτ(k) + 1, . . . ,Nτ(k)+1}
hτ(k) = hk

hτ(k)(π(i)− Nτ(k)) = hk(i − Nk) ∀i ∈ {Nk + 1, . . . ,Nk+1},

where Nk =
∑
l<k

nl , NK+1 = n.

π is a valid permutation of the variables, if

• bounds, cost and type are preserved for each variable

• for each constraint, there is an identical one after
permuting the variables

• for each cone, there is another cone of the same type in
which the permuted variables have the same label

The matrix graph construction in MOSEK is based on this.
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Relation to MINLP

• Labelings may still fail to capture symmetries for certain
cones. Example: SDP (instead refer to Hojny & Pfetsch,
2022!)

• Seem to work well for cones coming from epigraphs of convex
functions, i.e., MICP reformulations of convex MINLPs.

• Could apply MINLP techniques (Liberti, 2012) to such
MICPs, using the expression graph of an instance...

• ... but the matrix graph construction using symmetry
labelings is likely be dominant in terms of graph size.
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Computational results: disk covering

• MICP formulations with quadratic cones Qnk

• 64 models:
• between 1 and 4 symmetry generators per model
• roughly 47% - 99% of variables moved

• conic Branch-and-Cut, symmetry exploitation: orbital fixing

12 / 18



Computational results: disk covering (cont.)

• Time spent in symmetry detection:

det. time min max mean

in millisec. 0.3 4.0 1.3
as % of running time 4.1e-5 0.15 3.6e-3

• Overall performance:

solved time nodes
models def sym-0 def sym-0* faster slower def sym-0*

[0,∞) 64 64 54 71.6 3.2 61 2 12108 3.0
[10,∞) 56 56 46 112.6 3.6 54 1 18824 3.4
[100,∞) 40 40 30 314.2 3.9 39 0 43613 3.6
[1000,∞) 21 21 11 954.2 4.6 21 0 113533 5.2
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Computational results: f-SPARC

• optimize efficiency in data transmission systems with k
communication channels and n users

• data rate requirement for user j : B
∑
i

log2(1 + pij/N) ≥ dj

• has MICP reformulation with exponential cones Kexp

• 62 models
• between 7 and 14 symmetry generators per model
• > 99% of variables moved
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Computational results: f-SPARC (cont.)

• Time spent in symmetry detection:

det. time min max mean

in millisec. 1.3 9.1 3.2
as % of running time 9.4e-5 1.2 2.8e-2

• Overall performance:

solved time nodes
models def sym-0 def sym-0* faster slower def sym-0*

[0,∞) 62 62 29 17.4 73.5 62 0 254 98.3
[10,∞) 57 57 24 21.9 91.1 57 0 309 147.5
[100,∞) 46 46 13 40.2 124.2 46 0 652 305.7
[1000,∞) 43 43 10 45.7 128.9 43 0 583 450.9
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Symmetry in public instance libraries

• From CBLIB and QPLIB (convex):

det. time

(1e-3 sec.)
% of
vars

# gen. factors

achtziger stolpe07-5.2bflowc 1.6 2.78 1 M(S2, 38)
netmod kar1 2.7 2.78 9 1 unknown
netmod kar2 1.5 100 9 1 unknown
QPLIB 3361 114.9 3.22 1 M(S2, 64)
QPLIB 3496 1.3 42.89 6 1 unknown,

(M(S2, 26))2,
M(S2, 22)

QPLIB 3547 21.0 100 30 1 unknown
QPLIB 3643 1.9 49.51 7 1 unknown,

(M(S2, 18))2
rsyn0810m04h 2.2 1.69 3 M(S4, 12)
syn05m04h 0.2 18.18 3 M(S4, 12)
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Symmetry in public instance libraries (cont.)

• Symmetry occurence:

• CBLIB: 12.5% of analyzed instance groups
• QPLIB (convex): 12.9% of analyzed instances

• MIPLIB2003: 30%
• MIPLIB2010: 42.7%

(numbers taken from Pfetsch & Rehn, 2019)

⇒ Contribute to CBLIB (or to QPLIB, preferably convex...)! ,
→ cblib.zib.de/
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Further information on MOSEK

APIs

C

Julia

Rust

Python
.NET

Java

C++

Matlab

R

Optim
izer

A
P
IT

oo
lb
ox

Rm
osek

Fusion

• Documentation at mosek.com/documentation/
• Modeling cook book / cheat sheet.
• White papers.
• Manuals for interfaces.
• Notebook collection.

• Tutorials and more at
github.com/MOSEK/
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