mosek

Reformulation methods inside a commercial MIQCQP solver

KTH Royal Institute of Technology May 20th, 2022

Sven Wiese

www.mosek.com

A software package/library for solving:

- Linear and conic problems.
- Convex quadratic and quadratically constrained problems.
- Also mixed-integer versions of the above.

Current version is **MOSEK** 10.

• Currently supported cone types are second-order, exponential, power, geometric mean and semi-definite.

A software package/library for solving:

- Linear and conic problems.
- Convex quadratic and quadratically constrained problems.
- Also mixed-integer versions of the above.

Current version is **MOSEK** 10.

• Currently supported cone types are second-order, exponential, power, geometric mean and semi-definite.

Consider the problem

min
$$x^T Q^0 x + c^T x$$

s.t. $x^T Q^k x + a_k^T x \le b_k$, $k = 1, ..., m$ (P)
 $l \le x \le u$
 $x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$.

• Decisive question: are all involved *Q*-matrices positive semi-definite (p.s.d.) or not?

• That means, is the model a convex or non-convex MIQCQP?

Consider the problem

min
$$x^T Q^0 x + c^T x$$

s.t. $x^T Q^k x + a_k^T x \le b_k$, $k = 1, ..., m$ (P)
 $l \le x \le u$
 $x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$.

- Decisive question: are all involved *Q*-matrices positive semi-definite (p.s.d.) or not?
- That means, is the model a convex or non-convex MIQCQP?

A quadratic term $x_i x_j$ may be reformulated to linear constraints:

• $x_i, x_j \in \{0, 1\}$: substitute $x_i x_j$ with X_{ij} , and impose

$$x_i + x_j - 1 \leq X_{ij} \leq \min\{x_i, x_j\}.$$

x_i ∈ {0,1}, l_j ≤ x_j ≤ u_j: x_ix_j ← X_{ij}, and (special case of McCormick inequalities):

$$l_j x_i \leq X_{ij} \leq u_j x_i,$$

 $x_j - u_j(1 - x_i) \leq X_{ij} \leq x_j - l_j(1 - x_i).$

•
$$0 \le x_i \le u_i$$
 integer: $x_i \leftarrow \sum_{t=0}^{\lfloor \log(u_i) \rfloor} 2^t z_{ti}$, and proceed as above.

A quadratic term $x_i x_j$ may be reformulated to linear constraints:

• $x_i, x_j \in \{0, 1\}$: substitute $x_i x_j$ with X_{ij} , and impose

$$x_i + x_j - 1 \leq X_{ij} \leq \min\{x_i, x_j\}.$$

x_i ∈ {0,1}, l_j ≤ x_j ≤ u_j: x_ix_j ← X_{ij}, and (special case of McCormick inequalities):

$$egin{aligned} & l_j x_i \leq X_{ij} \leq u_j x_i, \ & x_j - u_j (1-x_i) \leq X_{ij} \leq x_j - l_j (1-x_i). \end{aligned}$$

•
$$0 \le x_i \le u_i$$
 integer: $x_i \leftarrow \sum_{t=0}^{\lfloor \log(u_i) \rfloor} 2^t z_{ti}$, and proceed as above.

A quadratic term $x_i x_j$ may be reformulated to linear constraints:

• $x_i, x_j \in \{0, 1\}$: substitute $x_i x_j$ with X_{ij} , and impose

$$x_i + x_j - 1 \leq X_{ij} \leq \min\{x_i, x_j\}.$$

x_i ∈ {0,1}, l_j ≤ x_j ≤ u_j: x_ix_j ← X_{ij}, and (special case of McCormick inequalities):

$$egin{aligned} & l_j x_i \leq X_{ij} \leq u_j x_i, \ & x_j - u_j (1-x_i) \leq X_{ij} \leq x_j - l_j (1-x_i). \end{aligned}$$

•
$$0 \le x_i \le u_i$$
 integer: $x_i \leftarrow \sum_{t=0}^{\lfloor \log(u_i) \rfloor} 2^t z_{ti}$, and proceed as above.

Reformulating quadratic terms (cont.)

• A quadratic term may be "just linearized" in this way, i.e.,

$$q_{ij}x_ix_j \leftarrow q_{ij}X_{ij},$$

or "perturbed":

$$q_{ij}x_ix_j \leftarrow (q_{ij}+q_{ij}')x_ix_j-q_{ij}'X_{ij}.$$

- Perturbation can be used, e.g., to replace a non-p.s.d. *Q*-matrix with a p.s.d. one.
- These techniques may in principle be applied to both convex and non-convex MIQCQPs.
- For simplicity assume all possible products $x_i x_j$ can be linearized, i.e., no continuous variables or infinite/huge bounds (extension possible and implemented in **MOSEK**).

Reformulating quadratic terms (cont.)

• A quadratic term may be "just linearized" in this way, i.e.,

$$q_{ij}x_ix_j \leftarrow q_{ij}X_{ij},$$

or "perturbed":

$$q_{ij}x_ix_j \leftarrow (q_{ij}+q_{ij}')x_ix_j-q_{ij}'X_{ij}.$$

- Perturbation can be used, e.g., to replace a non-p.s.d. *Q*-matrix with a p.s.d. one.
- These techniques may in principle be applied to both convex and non-convex MIQCQPs.
- For simplicity assume all possible products *x_ix_j* can be linearized, i.e., no continuous variables or infinite/huge bounds (extension possible and implemented in **MOSEK**).

Reformulating quadratic terms (cont.)

• A quadratic term may be "just linearized" in this way, i.e.,

$$q_{ij}x_ix_j \leftarrow q_{ij}X_{ij},$$

or "perturbed":

$$q_{ij}x_ix_j \leftarrow (q_{ij}+q_{ij}')x_ix_j-q_{ij}'X_{ij}.$$

- Perturbation can be used, e.g., to replace a non-p.s.d. *Q*-matrix with a p.s.d. one.
- These techniques may in principle be applied to both convex and non-convex MIQCQPs.
- For simplicity assume all possible products $x_i x_j$ can be linearized, i.e., no continuous variables or infinite/huge bounds (extension possible and implemented in **MOSEK**).

As in [Billionnet et al., 2016], consider reformulations of the form

$$\begin{array}{ll} \min & x^T (Q^0 + P^0) x + c^T x - \langle P^0, X \rangle \\ \text{s.t.} & x^T (Q^k + P^k) x + a_k^T x - \langle P^k, X \rangle \leq b_k, \qquad k = 1, \dots, m \\ & (x, X) \in \mathcal{S}_{L_P} \\ & I \leq x \leq u \\ & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}, \end{array}$$

 $\left(\mathsf{R}_{P^0,\ldots,P^m}\right)$

where S_{L_P} contains all linearization constraints over

$$L_P := \{(i,j) \mid \exists k : p_{ij}^k \neq 0\}.$$

• $(x, X) \in S_{L_P}$ encodes $X = xx^T$, i.e., the products $X_{ij} = x_i x_j$.

 We are interested in reformulations (R_{P⁰,...,P^m}) that are convex MIQCQPs.

As in [Billionnet et al., 2016], consider reformulations of the form

$$\begin{array}{ll} \min & x^T (Q^0 + P^0) x + c^T x - \langle P^0, X \rangle \\ \text{s.t.} & x^T (Q^k + P^k) x + a_k^T x - \langle P^k, X \rangle \leq b_k, \qquad k = 1, \dots, m \\ & (x, X) \in S_{L_P} \\ & I \leq x \leq u \\ & x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}, \end{array}$$

 $\left(\mathsf{R}_{P^0,\ldots,P^m}\right)$

where S_{L_P} contains all linearization constraints over

$$L_P := \{(i,j) \mid \exists k : p_{ij}^k \neq 0\}.$$

• $(x, X) \in S_{L_P}$ encodes $X = xx^T$, i.e., the products $X_{ij} = x_i x_j$.

 We are interested in reformulations (R_{P⁰,...,P^m}) that are convex MIQCQPs.

Setting $P^k = -Q^k$ for all k amounts to getting rid of all products.

- Depending on the size of *L_P*, the problem dimensions may grow considerably.
- The resulting problem is (almost surely) a MILP, leading to a technology shift.
- Denote this method by (R_Q), see [Glover and Wolsey, 1974] or [Furini and Traversi, 2019].

Setting $P^k = -Q^k$ for all k amounts to getting rid of all products.

- Depending on the size of L_P , the problem dimensions may grow considerably.
- The resulting problem is (almost surely) a MILP, leading to a technology shift.
- Denote this method by (R_Q) , see [Glover and Wolsey, 1974] or [Furini and Traversi, 2019].

Setting $P^k = -Q^k$ for all k amounts to getting rid of all products.

- Depending on the size of L_P , the problem dimensions may grow considerably.
- The resulting problem is (almost surely) a MILP, leading to a technology shift.
- Denote this method by (R_Q) , see [Glover and Wolsey, 1974] or [Furini and Traversi, 2019].

Let the eigenvalues of Q^k be $\lambda_1 \leq \ldots \leq \lambda_m$.

- Setting $P^k = -\lambda_1 I$ leads to a p.s.d. matrix.
- Originally proposed for 0-1 programming [Hammer and Rubin, 1970]. Denote this method by (R_λ).
- Choosing the smallest eigenvalue means the "least convex" function and a (hopefully) better dual bound.

 The amount of linearization tends to be lower than for a complete linearization, the resulting problem remains a MIQCQP.

Let the eigenvalues of Q^k be $\lambda_1 \leq \ldots \leq \lambda_m$.

- Setting $P^k = -\lambda_1 I$ leads to a p.s.d. matrix.
- Originally proposed for 0-1 programming [Hammer and Rubin, 1970]. Denote this method by (R_{λ}) .
- Choosing the smallest eigenvalue means the "least convex" function and a (hopefully) better dual bound.

 The amount of linearization tends to be lower than for a complete linearization, the resulting problem remains a MIQCQP.

Let the eigenvalues of Q^k be $\lambda_1 \leq \ldots \leq \lambda_m$.

- Setting $P^k = -\lambda_1 I$ leads to a p.s.d. matrix.
- Originally proposed for 0-1 programming [Hammer and Rubin, 1970]. Denote this method by (R_{λ}) .
- Choosing the smallest eigenvalue means the "least convex" function and a (hopefully) better dual bound.

• The amount of linearization tends to be lower than for a complete linearization, the resulting problem remains a MIQCQP.

Generalize the eigenvalue-method: find $P_k = -\text{diag}(\mu_1, \dots, \mu_n)$ s.t. $Q^k + P^k$ is p.s.d., making the μ_i possibly large.

For example, solve

max
$$\sum_{i=1}^{n} \mu_i$$
 (μ -SDP)
s.t. $Q^k - \operatorname{diag}(\mu_1, \dots, \mu_n) \succeq 0.$

- Similar to the eigenvalue-method as for the amount of linearization, but more "flexible".
- The resulting problem remains a MIQCQP also here.
- Denote this method by (R_{μ}) , see also [Dong and Lou, 2018].

Generalize the eigenvalue-method: find $P_k = -\text{diag}(\mu_1, \dots, \mu_n)$ s.t. $Q^k + P^k$ is p.s.d., making the μ_i possibly large.

For example, solve

$$\begin{array}{ll} \max & \sum_{i=1}^{n} \mu_{i} & (\mu \text{-SDP}) \\ \text{s.t.} & Q^{k} - \operatorname{diag}(\mu_{1}, \dots, \mu_{n}) \succeq 0. \end{array}$$

• Similar to the eigenvalue-method as for the amount of linearization, but more "flexible".

• The resulting problem remains a MIQCQP also here.

• Denote this method by (R_{μ}) , see also [Dong and Lou, 2018].

Generalize the eigenvalue-method: find $P_k = -\operatorname{diag}(\mu_1, \ldots, \mu_n)$ s.t. $Q^k + P^k$ is p.s.d., making the μ_i possibly large.

For example, solve

max
$$\sum_{\substack{i=1\\Q^k}}^n \mu_i$$
 (μ -SDP)
s.t. $Q^k - \operatorname{diag}(\mu_1, \dots, \mu_n) \succeq 0.$

- Similar to the eigenvalue-method as for the amount of linearization, but more "flexible".
- The resulting problem remains a MIQCQP also here.
- Denote this method by (R_{μ}) , see also [Dong and Lou, 2018].

Generalize the eigenvalue-method: find $P_k = -\text{diag}(\mu_1, \dots, \mu_n)$ s.t. $Q^k + P^k$ is p.s.d., making the μ_i possibly large.

For example, solve

max
$$\sum_{\substack{i=1\\Q^k}}^n \mu_i$$
 (μ -SDP)
s.t. $Q^k - \operatorname{diag}(\mu_1, \dots, \mu_n) \succeq 0.$

- Similar to the eigenvalue-method as for the amount of linearization, but more "flexible".
- The resulting problem remains a MIQCQP also here.
- Denote this method by (R_{μ}) , see also [Dong and Lou, 2018].

A strong SDP-relaxation of (P) can be shown to be

min s.t.

$$\begin{array}{ll} & \langle Q^0, X \rangle + c^T x \\ \langle Q^k, X \rangle + a_k^T x \leq b_k, & k = 1, \dots, m \\ & X_{ij} \leq u_j x_i + l_i x_j - u_j l_i & i, j = 1, \dots, p \\ & X_{ij} \leq l_j x_i + u_i x_j - l_j u_i & i, j = 1, \dots, p \\ & X_{ij} \geq u_j x_i + u_i x_j - u_j u_i & i, j = 1, \dots, p \\ & X_{ij} \geq l_j x_i + l_i x_j - l_j l_i & i, j = 1, \dots, p \\ & X_{ii} \geq |x_i| & i = 1, \dots, p \\ & I \leq x \leq u \\ & \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0. \end{array}$$
 (RSDP)

• $\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0$ means $X \succeq xx^T$, thus relaxing $X = xx^T$.

• McCormick constraints give the convex hull of $X_{ij} = x_i x_j$.

A strong SDP-relaxation of (P) can be shown to be

mir s.t.

$$\begin{array}{ll} & \langle Q^0, X \rangle + c^T x \\ & \langle Q^k, X \rangle + a_k^T x \leq b_k, & k = 1, \dots, m \\ & X_{ij} \leq u_j x_i + l_i x_j - u_j l_i & i, j = 1, \dots, p \\ & X_{ij} \leq l_j x_i + u_i x_j - l_j u_i & i, j = 1, \dots, p \\ & X_{ij} \geq u_j x_i + u_i x_j - u_j u_i & i, j = 1, \dots, p \\ & X_{ij} \geq l_j x_i + l_i x_j - l_j l_i & i, j = 1, \dots, p \\ & X_{ii} \geq |x_i| & i = 1, \dots, p \\ & I \leq x \leq u \\ & \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0. \end{array}$$
 (RSDP)

•
$$\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0$$
 means $X \succeq xx^T$, thus relaxing $X = xx^T$.

• McCormick constraints give the convex hull of $X_{ij} = x_i x_j$.

A strong SDP-relaxation of (P) can be shown to be

min s.t.

$$\begin{array}{ll} & \langle Q^0, X \rangle + c^T x \\ \langle Q^k, X \rangle + a_k^T x \leq b_k, & k = 1, \dots, m \\ & X_{ij} \leq u_j x_i + l_i x_j - u_j l_i & i, j = 1, \dots, p \\ & X_{ij} \leq l_j x_i + u_i x_j - l_j u_i & i, j = 1, \dots, p \\ & X_{ij} \geq u_j x_i + u_i x_j - u_j u_i & i, j = 1, \dots, p \\ & X_{ij} \geq l_j x_i + l_i x_j - l_j l_i & i, j = 1, \dots, p \\ & X_{ii} \geq |x_i| & i = 1, \dots, p \\ & I \leq x \leq u \\ & \begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0. \end{array}$$

•
$$\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0$$
 means $X \succeq xx^T$, thus relaxing $X = xx^T$.

• McCormick constraints give the convex hull of $X_{ij} = x_i x_j$.

- Namely, denote the optimal dual matrix variable of (RSDP) by $\begin{pmatrix} S & s \\ s^T & \sigma \end{pmatrix}$, and take $P^0 = S Q^0$ and $P^k = -Q^k$ for all $k \ge 1$.
- Among all possible reformulations (R_{P0,...,Pm}), this one has the best dual bound.
- The resulting problem is (almost surely) a MIQP, and the amount of linearization tends to be higher than for the eiganvalue- or diagonal-method.
- Call this method (*R_S*).

- Namely, denote the optimal dual matrix variable of (RSDP) by $\begin{pmatrix} S & s \\ s^T & \sigma \end{pmatrix}$, and take $P^0 = S Q^0$ and $P^k = -Q^k$ for all $k \ge 1$.
- Among all possible reformulations (R_{P⁰,...,P^m}), this one has the best dual bound.
- The resulting problem is (almost surely) a MIQP, and the amount of linearization tends to be higher than for the eiganvalue- or diagonal-method.
- Call this method (*R_S*).

- Namely, denote the optimal dual matrix variable of (RSDP) by $\begin{pmatrix} S & s \\ s^T & \sigma \end{pmatrix}$, and take $P^0 = S Q^0$ and $P^k = -Q^k$ for all $k \ge 1$.
- Among all possible reformulations (R_{P⁰,...,P^m}), this one has the best dual bound.
- The resulting problem is (almost surely) a MIQP, and the amount of linearization tends to be higher than for the eiganvalue- or diagonal-method.

- Namely, denote the optimal dual matrix variable of (RSDP) by $\begin{pmatrix} S & s \\ s^T & \sigma \end{pmatrix}$, and take $P^0 = S Q^0$ and $P^k = -Q^k$ for all $k \ge 1$.
- Among all possible reformulations (R_{P⁰,...,P^m}), this one has the best dual bound.
- The resulting problem is (almost surely) a MIQP, and the amount of linearization tends to be higher than for the eiganvalue- or diagonal-method.
- Call this method (*R_S*).

- Performing a reformulation should be fast.
- Especially in a commercial solver setting, excessive reformulation times are prohibitive.
- **MOSEK** 10 has various work limits on the computational aspects of the different formulations.
- For example, (R_λ) and (R_μ) are never attempted if matrix dimensions exceed certain thresholds.

- Performing a reformulation should be fast.
- Especially in a commercial solver setting, excessive reformulation times are prohibitive.
- **MOSEK** 10 has various work limits on the computational aspects of the different formulations.
- For example, (R_λ) and (R_μ) are never attempted if matrix dimensions exceed certain thresholds.

Practicability of a reformulation

Reading started.		
Reading terminated. Ti	: 0.00	
Read summary		
	: 00 (quadratic optin	nization problem
Objective sense	: minimize	
Scalar variables	: 343	
Matrix variables		
Scalar constraints	: 0	
Affine conic constra	ts : 0	
Disjunctive constrai	s : 0	
Cones	: 0	
Integers	: 343	
Time	: 0.0	
Problem		
Name		
Objective sense		
Туре	: QO (quadratic optimi:	zation problem)
Constraints		
Affine conic cons.		
Disjunctive cons.		
Cones		
Scalar variables		
Matrix variables		
Integer variables	: 343	

- Performing a reformulation should be fast.
- Especially in a commercial solver setting, excessive reformulation times are prohibitive.
- **MOSEK** 10 has various work limits on the computational aspects of the different formulations.
- For example, (R_λ) and (R_μ) are never attempted if matrix dimensions exceed certain thresholds.

- Performing a reformulation should be fast.
- Especially in a commercial solver setting, excessive reformulation times are prohibitive.
- **MOSEK** 10 has various work limits on the computational aspects of the different formulations.
- For example, (R_{λ}) and (R_{μ}) are never attempted if matrix dimensions exceed certain thresholds.

The computationally most expensive reformulation is (R_S) , even when imposing McCormick inequalities only on

$$L_q = \{(i,j) \mid \exists k : q_{ij}^k \neq 0\}.$$

• On the instance set from [Billionnet et al., 2016], we get the following reformulation times:

		R_Q	R_{λ}	R_{μ}	R_S
time (sec.)	geo. mean	0.0048		0.0136	0.7254
	shifted		0.0035	0.0188	1.9145

- On other test sets, it is sometimes out-of-reach to solve (RSDP) within hours of computational time.
- In practice we have to resort to some approximation.

The computationally most expensive reformulation is (R_S) , even when imposing McCormick inequalities only on

$$L_q = \{(i,j) \mid \exists k : q_{ij}^k \neq 0\}.$$

• On the instance set from [Billionnet et al., 2016], we get the following reformulation times:

		R_Q		R_{μ}	-
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254
	shifted	0.0066	0.0035	0.0188	1.9145

 On other test sets, it is sometimes out-of-reach to solve (RSDP) within hours of computational time.

• In practice we have to resort to some approximation.

The computationally most expensive reformulation is (R_S) , even when imposing McCormick inequalities only on

$$L_q = \{(i,j) \mid \exists k : q_{ij}^k \neq 0\}.$$

• On the instance set from [Billionnet et al., 2016], we get the following reformulation times:

				R_{μ}	-
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254
	shifted	0.0066	0.0035	0.0188	1.9145

- On other test sets, it is sometimes out-of-reach to solve (RSDP) within hours of computational time.
- In practice we have to resort to some approximation.

- May result in a series of smaller SDPs being solved.
- Call this (R_S^c) .

		R_Q	R_{λ}	R_{μ}	R_S	R_S^c
time (sec.)	geo. mean					
	shifted		0.0035	0.0188	1.9145	0.1601
	geo. mean	225.84	43.19	21.00	15.34	11.24
	shifted	226.07	43.50	22.38	15.67	14.15

- May result in a series of smaller SDPs being solved.
- Call this (R_S^c) .

		R_Q	R_{λ}	R_{μ}	R_S	R_S^c
time (sec.)	geo. mean					
	shifted		0.0035	0.0188	1.9145	0.1601
	geo. mean	225.84	43.19	21.00	15.34	11.24
	shifted	226.07	43.50	22.38	15.67	14.15

- May result in a series of smaller SDPs being solved.
- Call this (R_S^c) .

		$ $ R_Q	R_{λ}	R_{μ}	Rs	R_S^c
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254	0.1013
	shifted	0.0066	0.0035	0.0188	1.9145	0.1601
gap (%)	geo. mean	225.84	43.19	21.00	15.34	11.24
	shifted	226.07	43.50	22.38	15.67	14.15

- May result in a series of smaller SDPs being solved.
- Call this (R_S^c) .

		R_Q	R_{λ}	R_{μ}	R_S	R_S^c
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254	0.1013
	shifted	0.0066	0.0035	0.0188	1.9145	0.1601
gap (%)	geo. mean	225.84	43.19	21.00	15.34	11.24
	shifted	226.07	43.50	22.38	15.67	14.15

Computational experiments

• (R_Q) , (R_λ) , (R_μ) and (R_S^c) have been implemented in **MOSEK** 10, user param

MSK_IPAR_MIO_QCQO_REFOMRULATION_METHOD.

- Takes care of practicability aspects as above (work limits, ...).
- Note that everything is transformed to MISOCP form: $x^{T}Qx = ||Fx||_{2}^{2} \text{ with } Q = F^{T}F.$
- Special interest:
 - Interplay between bound and performance?
 - SDP-based methods?
- All runs single-threaded, time limit 2h, solving to optimality.

• (R_Q) , (R_λ) , (R_μ) and (R_S^c) have been implemented in **MOSEK** 10, user param

MSK_IPAR_MIO_QCQO_REFOMRULATION_METHOD.

- Takes care of practicability aspects as above (work limits, ...).
- Note that everything is transformed to MISOCP form:

$$x^T Q x = \|F x\|_2^2$$
 with $Q = F^T F$.

Special interest:

- Interplay between bound and performance?
- SDP-based methods?
- All runs single-threaded, time limit 2h, solving to optimality.

• (R_Q) , (R_λ) , (R_μ) and (R_S^c) have been implemented in **MOSEK** 10, user param

MSK_IPAR_MIO_QCQO_REFOMRULATION_METHOD.

- Takes care of practicability aspects as above (work limits, ...).
- Note that everything is transformed to MISOCP form:

$$x^T Q x = \|F x\|_2^2$$
 with $Q = F^T F$.

- Special interest:
 - Interplay between bound and performance?
 - SDP-based methods?

All runs single-threaded, time limit 2h, solving to optimality.

• (R_Q) , (R_λ) , (R_μ) and (R_S^c) have been implemented in **MOSEK** 10, user param

MSK_IPAR_MIO_QCQO_REFOMRULATION_METHOD.

- Takes care of practicability aspects as above (work limits, ...).
- Note that everything is transformed to MISOCP form:

$$x^T Q x = \|F x\|_2^2$$
 with $Q = F^T F$.

- Special interest:
 - Interplay between bound and performance?
 - SDP-based methods?
- All runs single-threaded, time limit 2h, solving to optimality.

Instances from [Billionnet et al., 2016]

- 280 **non-convex** randomly generated MIQCQP instances
- no binary variables
- some have m = 0, some m > 0, but structure somewhat homogeneous
- reformulation times always below 1 sec.

		R_Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (193)	104	134	174	188		
t (sec.)	geo. mean	353.05	222.88	69.69	38.20	31.67	151.12
t (sec.)	shifted	512.73	362.5	136.82	79.67	70.35	275.73
	wins	21	11	74	127		

• Best dual bound also wins: 173 / 193

• 😁

Instances from [Billionnet et al., 2016]

- 280 **non-convex** randomly generated MIQCQP instances
- no binary variables
- some have m = 0, some m > 0, but structure somewhat homogeneous
- reformulation times always below 1 sec.

		R _Q	R_λ	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (193)	104	134	174	188	-	-
+ (200)	geo. mean	353.05	222.88	69.69	38.20	31.67	151.12
t (sec.)	shifted	512.73	362.5	136.82	79.67	70.35	275.73
	wins	21	11	74	127	-	-

• Best dual bound also wins: 173 / 193

Instances from [Billionnet et al., 2016]

- 280 **non-convex** randomly generated MIQCQP instances
- no binary variables
- some have m = 0, some m > 0, but structure somewhat homogeneous
- reformulation times always below 1 sec.

		R _Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (193)	104	134	174	188	-	-
+ (200)	geo. mean	353.05	222.88	69.69	38.20	31.67	151.12
t (sec.)	shifted	512.73	362.5	136.82	79.67	70.35	275.73
	wins	21	11	74	127	-	-

• Best dual bound also wins: 173 / 193

- 340 non-convex binary quadratic and Max-cut instances
- pure BQPs
- reformulation times always below 5.5 sec.

		R_Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (286)	212	167	230	272		
t (sec.)	geo. mean					6.54	12.56
t (sec.)	shifted	76.37	499.51	115.69	47.28	22.43	50.14
	wins	202	74	110	176		

• Best dual bound also wins: 250 / 286

- 340 non-convex binary quadratic and Max-cut instances
- pure BQPs
- reformulation times always below 5.5 sec.

		R _Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (286)	212	167	230	272	-	-
t (sec.)	geo. mean	18.22	254.08	50.56	17.43	6.54	12.56
t (sec.)	shifted	76.37	499.51	115.69	47.28	22.43	50.14
	wins	202	74	110	176	-	-

 $\bullet\,$ Best dual bound also wins: 250 / 286

• 😁

- 340 non-convex binary quadratic and Max-cut instances
- pure BQPs
- reformulation times always below 5.5 sec.

		R _Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (286)	212	167	230	272	-	-
t (sec.)	geo. mean	18.22	254.08	50.56	17.43	6.54	12.56
t (sec.)	shifted	76.37	499.51	115.69	47.28	22.43	50.14
	wins	202	74	110	176	-	-

- $\bullet\,$ Best dual bound also wins: 250 / 286
- 😂

QPLIB non-convex

- 288 non-convex instances, 143 of which allow for some reformulation, **94** of which allow for all reformulations
- \implies work limits of some method act on 49 instances
- quite heterogeneous, mostly binary and few general integer variables
- reformulation times always below 5 sec.
- Further divide the 94 instances 32 into "borderline convex" instances (all smallest eigenvalues ≈ 0):

		R_Q	R_λ	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best
	solved (31)	1	29	27	25		
+ (coc)	geo. mean	7030.89	10.23	99.85	78.17		10.23
t (sec.)	shifted	7030.99	29.16	134.36	169.72	22.77	29.16
	wins		24	4	12		

QPLIB non-convex

- 288 **non-convex** instances, 143 of which allow for some reformulation, **94** of which allow for all reformulations
- \implies work limits of some method act on 49 instances
- quite heterogeneous, mostly binary and few general integer variables
- reformulation times always below 5 sec.
- Further divide the 94 instances 32 into "borderline convex" instances (all smallest eigenvalues ≈ 0):

		R_Q	R_λ	R_{μ}	R_{s}^{c}	virt. best	no-sdp virt. best
	solved (31)	1	29	27	25		
+ (coc)	geo. mean	7030.89	10.23	99.85	78.17		10.23
t (sec.)	shifted	7030.99	29.16	134.36	169.72	22.77	29.16
	wins		24	4	12		

QPLIB non-convex

- 288 non-convex instances, 143 of which allow for some reformulation, **94** of which allow for all reformulations
- \implies work limits of some method act on 49 instances
- quite heterogeneous, mostly binary and few general integer variables
- reformulation times always below 5 sec.
- Further divide the 94 instances 32 into "borderline convex" instances (all smallest eigenvalues ≈ 0):

		R _Q	R_{λ}	R_{μ}	Rsc	virt. best	no-sdp virt. best
	solved (31)	1	29	27	25	-	
t (sec.)	geo. mean	7030.89	10.23	99.85	78.17	8.07	10.23
t (sec.)	shifted	7030.99	29.16	134.36	169.72	22.77	29.16
	wins	0	24	4	12	-	-/

• ... and **62** "strictly non-convex" instances:

		R_Q	R_λ	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (22)	18	11	15	13	-	-
t (sec.)	geo. mean	1113.18	2375.68	1466.29	1318.42	544.82	819.48
t (sec.)	shifted	1146.72	2403.35	1495.98	1361.53	572.06	846.94
	wins	12	0	6	6	-	-

• Best dual bound also wins:

- borderline convex: 25 / 31
- strictly non-convex 12 / 22, 6 cases where R_Q wins despite worse dual bound (technology shift!)

• ... and **62** "strictly non-convex" instances:

		R _Q	R_{λ}	R_{μ}	R _S ^c	virt. best	no-sdp virt. best
	solved (22)	18	11	15	13	-	-
t (sec.)	geo. mean	1113.18	2375.68	1466.29	1318.42	544.82	819.48
t (sec.)	shifted	1146.72	2403.35	1495.98	1361.53	572.06	846.94
	wins	12	0	6	6	-	-

• Best dual bound also wins:

• 🙂

- borderline convex: 25 / 31
- strictly non-convex 12 / 22, 6 cases where R_Q wins despite worse dual bound (technology shift!)

• ... and **62** "strictly non-convex" instances:

		R_Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (22)	18	11	15	13	-	-
t (sec.)	geo. mean	1113.18	2375.68	1466.29	1318.42	544.82	819.48
t (sec.)	shifted	1146.72	2403.35	1495.98	1361.53	572.06	846.94
	wins	12	0	6	6	-	-

• Best dual bound also wins:

- borderline convex: 25 / 31
- strictly non-convex 12 / 22, 6 cases where R_Q wins despite worse dual bound (technology shift!)

Binary least squares

- 51 convex instances with random data
- pure BQPs
- reformulation times always below 0.1 sec.

		no reform.	R_Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (51)							
t (sec.)		81.47	385.19	33.74	18.51	23.66	18.12	33.74
t (sec.)	shifted	146.65			47.73	56.19	46.58	
	wins	1		11	46	19		

 $\bullet\,$ Best dual bound also wins: 19 / 51

• 🙂

Binary least squares

- 51 convex instances with random data
- pure BQPs
- reformulation times always below 0.1 sec.

		no reform.	R _Q	R_λ	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (51)	43	23	47	51	50	-	-
t (sec.)	geo. mean	81.47	385.19	33.74	18.51	23.66	18.12	33.74
t (sec.)	shifted	146.65	588.86	80.70	47.73	56.19	46.58	80.70
	wins	1	0	11	46	19	-	-

• Best dual bound also wins: 19 / 51

Binary least squares

- 51 convex instances with random data
- pure BQPs
- reformulation times always below 0.1 sec.

		no reform.	R _Q	R_λ	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (51)	43	23	47	51	50	-	-
t (sec.)	geo. mean	81.47	385.19	33.74	18.51	23.66	18.12	33.74
t (sec.)	shifted	146.65	588.86	80.70	47.73	56.19	46.58	80.70
	wins	1	0	11	46	19	-	-

 $\bullet\,$ Best dual bound also wins: 19 / 51

• 🙂

- 28 convex instances from public sources (QPLIB, Google groups, ...)
- quite heterogeneous
- reformulation times always below 4 sec.
- 7 borderline convex instances (use R_{λ} !), 21 remaining:

		no reform.	R_Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (18)		14	7	13	11		
t (sec.)		609.63	201.87	438.35	125.9	282.4	48.08	134.13
t (sec.)			424.08	752.64	244.39	550.94	115.94	286.29
	wins		6	1				

 Best dual bound also wins: 16 / 18, 2 cases where R_Q wins despite worse dual bound

• 😁

- 28 convex instances from public sources (QPLIB, Google groups, ...)
- quite heterogeneous
- reformulation times always below 4 sec.
- 7 borderline convex instances (use R_{λ} !), 21 remaining:

		no reform.	R _Q	R_λ	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (18)	7	14	7	13	11	-	-
t (sec.)	geo. mean	609.63	201.87	438.35	125.9	282.4	48.08	134.13
t (sec.)	shifted	953.32	424.08	752.64	244.39	550.94	115.94	286.29
	wins	0	6	1	7	3	-	-

• Best dual bound also wins: 16 / 18, 2 cases where R_Q wins despite worse dual bound

- 28 convex instances from public sources (QPLIB, Google groups, ...)
- quite heterogeneous
- reformulation times always below 4 sec.
- 7 borderline convex instances (use R_{λ} !), 21 remaining:

		no reform.	R _Q	R_{λ}	R_{μ}	R_S^c	virt. best	no-sdp virt. best
	solved (18)	7	14	7	13	11	-	-
t (sec.)	geo. mean	609.63	201.87	438.35	125.9	282.4	48.08	134.13
t (sec.)	shifted	953.32	424.08	752.64	244.39	550.94	115.94	286.29
	wins	0	6	1	7	3	-	-

• Best dual bound also wins: 16 / 18, 2 cases where R_Q wins despite worse dual bound

• 😂

- Which method works good/best depends on the problem class, **but also on the data**!
- On borderline convex models use R_{λ} (i.e., a numerical perturbation).
- Reformulations also interesting for already convex models.
- An SDP-based method can be the method of choice.
- A good dual bound is important, but not only.

- Which method works good/best depends on the problem class, **but also on the data**!
- On borderline convex models use R_{λ} (i.e., a numerical perturbation).
- Reformulations also interesting for already convex models.
- An SDP-based method can be the method of choice.
- A good dual bound is important, but not only.

- Which method works good/best depends on the problem class, **but also on the data**!
- On borderline convex models use R_{λ} (i.e., a numerical perturbation).
- Reformulations also interesting for already convex models.
- An SDP-based method can be the method of choice.
- A good dual bound is important, but not only.

- Which method works good/best depends on the problem class, **but also on the data**!
- On borderline convex models use R_{λ} (i.e., a numerical perturbation).
- Reformulations also interesting for already convex models.
- An SDP-based method can be the method of choice.
- A good dual bound is important, but not only.

- The best method for a given application may be established experimentally.
- **MOSEK** 10 also has some heuristic for automatically choosing a reformulation:

 ... but a more sophisticated method for choosing is desirable, see also [Bonami et al., 2022].

- The best method for a given application may be established experimentally.
- **MOSEK** 10 also has some heuristic for automatically choosing a reformulation:

	no reform.	R _Q	R_{λ}	R_{μ}	R_S^c	virt. best	heur.
[Billionnet et al., 2016]	-	512.73	362.5	136.82	79.67	70.35	79.61
BiqMac	-	76.37	499.51	115.69	47.28	22.43	96.8
QPLIB non-convex	-	1146.72	2403.35	1495.98	1361.53	572.06	1000.2
BLS	146.65	588.86	80.70	47.73	56.19	46.58	47.83
Public convex	953.32	424.08	752.64	244.39	550.94	115.94	218.33

 ... but a more sophisticated method for choosing is desirable, see also [Bonami et al., 2022].

- The best method for a given application may be established experimentally.
- **MOSEK** 10 also has some heuristic for automatically choosing a reformulation:

	no reform.	R _Q	R_{λ}	R_{μ}	R_S^c	virt. best	heur.
[Billionnet et al., 2016]	-	512.73	362.5	136.82	79.67	70.35	79.61
BiqMac	-	76.37	499.51	115.69	47.28	22.43	96.8
QPLIB non-convex	-	1146.72	2403.35	1495.98	1361.53	572.06	1000.2
BLS	146.65	588.86	80.70	47.73	56.19	46.58	47.83
Public convex	953.32	424.08	752.64	244.39	550.94	115.94	218.33

 ... but a more sophisticated method for choosing is desirable, see also [Bonami et al., 2022].

[Billionnet et al., 2016] Billionnet, A., Elloumi, S., and Lambert, A. (2016).

Exact quadratic convex reformulations of mixed-integer quadratically constrained problems.

Math. Programming, 158:235-266.

[Bonami et al., 2022] Bonami, P., Lodi, A., and Zarpellon, G. (2022).

A classifier to decide on the linearization of mixed-integer quadratic problems in cplex.

Operations Research.

[Dong and Lou, 2018] Dong, H. and Lou, Y. (2018).

Compact disjunctive approximations to nonconvex quadratically constrained programs.

Technical report.

[Furini and Traversi, 2019] Furini, F. and Traversi, E. (2019). Theoretical and computational study of several linearisation techniques for binary quadratic problems. *Annals of Operations Research*, 279(1):387–411.

[Glover and Wolsey, 1974] Glover, F. and Wolsey, L. (1974). Converting the 0-1 polynomial programming problem to a 0-1 linear program.

Oper. Res., 22(1):180-182.

[Hammer and Rubin, 1970] Hammer, P. L. and Rubin, A. (1970). Some remarks on quadratic programming with 0-1 variables. *RAIRO*, 3:67–79.