MSEK

Reformulation methods inside a commercial
MIQCQP solver

KTH Royal Institute of Technology
May 20th, 2022

Sven Wiese

www.mosek.com

A software package/library for solving:

® Linear and conic problems.
® Convex quadratic and quadratically constrained problems.
® Also mixed-integer versions of the above.

Current version is MOSEK 10.

A software package/library for solving:

® Linear and conic problems.
® Convex quadratic and quadratically constrained problems.
® Also mixed-integer versions of the above.

Current version is MOSEK 10.

® Currently supported cone types are second-order, exponential,
power, geometric mean and semi-definite.

Consider the problem

min xTQ% 4+ cTx
s.t. XTQkx—l—akTXS by, k=1,....m (P)
I <x<u

x € ZP x R"™P.

N
s

MIQCQP

Consider the problem

min xTQ% 4+ cTx
s.t. XTQkx—l—akTXS by, k=1,....m (P)
I <x<u

x € ZP x R"™P.

® Decisive question: are all involved @-matrices positive
semi-definite (p.s.d.) or not?

® That means, is the model a convex or non-convex MIQCQP?

N

Reformulating quadratic terms

A quadratic term x;x; may be reformulated to linear constraints:

® x;,x;j € {0,1}: substitute x;x; with Xj;, and impose

xi +x; — 1 < Xjj < min{x;, x; }.

Reformulating quadratic terms

A quadratic term x;x; may be reformulated to linear constraints:

® x;,x;j € {0,1}: substitute x;x; with Xj;, and impose

xi +x; — 1 < Xjj < min{x;, x; }.

® x;i € {0,1}, [< xj < uj: xjx; < Xjj, and (special case of
McCormick inequalities):

lixi < Xij < ujx;,
X = uj(1=xi) < Xj < x5 = (1 —x).

Reformulating quadratic terms

A quadratic term x;x; may be reformulated to linear constraints:

® x;,x;j € {0,1}: substitute x;x; with Xj;, and impose

xi +x; — 1 < Xji < min{x;, x; }.

® x;i € {0,1}, [< xj < uj: xjx; < Xjj, and (special case of
McCormick inequalities):

lixi < Xij < ujx;,
X = uj(1 = x) < Xj < xj = (1 = xi)-

[log(ui)]
o 0 < x; < uj integer: x; < Z 2tz and proceed as above.
t=0

Reformulating quadratic terms (cont.)

® A quadratic term may be “just linearized” in this way, i.e.,
qiiXiXj <= qijXjj
or “perturbed”:

ayxixg < (i + ay)xig — 4 X

® Perturbation can be used, e.g., to replace a non-p.s.d.
Q-matrix with a p.s.d. one.

Reformulating quadratic terms (cont.)

® A quadratic term may be “just linearized” in this way, i.e.,
qiiXiXj <= qijXjj
or “perturbed”:

ayxixg < (i + ay)xig — 4 X

® Perturbation can be used, e.g., to replace a non-p.s.d.
Q-matrix with a p.s.d. one.

® These techniques may in principle be applied to both convex
and non-convex MIQCQPs.

Reformulating quadratic terms (cont.)

A quadratic term may be “just linearized” in this way, i.e.,
qiiXiXj <= qijXjj
or “perturbed”:

ayxixg < (i + ay)xig — 4 X

® Perturbation can be used, e.g., to replace a non-p.s.d.
Q-matrix with a p.s.d. one.

® These techniques may in principle be applied to both convex
and non-convex MIQCQPs.

® For simplicity assume all possible products x;x; can be
linearized, i.e., no continuous variables or infinite/huge bounds
(extension possible and implemented in MOSEK).

A family of MIQCQP reformulations

As in [Billionnet et al., 2016], consider reformulations of the form

min xT(Q%+ PO)x + cTx — (P% X)
s.t. xT(QK+ PM)x+alx—(PX. X)< b, k=1,...,m
(x,X) € S,
I <x<u
x € ZP x R"7P,
(Rpo,...pn)
where S, contains all linearization constraints over

Lp = {(i.j) | 3k : pk #0}.

A family of MIQCQP reformulations

As in [Billionnet et al., 2016], consider reformulations of the form

min xT(Q%+ PO)x + cTx — (P% X)
s.t. xT(QK+ PM)x+alx—(PX. X)< b, k=1,...,m
(x,X) € S,
I <x<u
x € ZP x R"7P,
(Rpo,...pn)
where S, contains all linearization constraints over

Lp = {(i.j) | 3k : p #0}.
* (x,X) € S, encodes X = xx", i.e., the products Xj = x;x;.

® We are interested in reformulations (Rpo _pm) that are
convex MIQCQPs.

Reformulation method 1: complete linearization

Setting P¥ = — Q¥ for all k amounts to getting rid of all products.

Reformulation method 1: complete linearization

Setting P¥ = — Q¥ for all k amounts to getting rid of all products.

® Depending on the size of Lp, the problem dimensions may
grow considerably.

® The resulting problem is (almost surely) a MILP, leading to a
technology shift.

Reformulation method 1: complete linearization

Setting PX = —Q* for all k amounts to getting rid of all products.

® Depending on the size of Lp, the problem dimensions may
grow considerably.

® The resulting problem is (almost surely) a MILP, leading to a
technology shift.

® Denote this method by (Rg), see [Glover and Wolsey, 1974]
or [Furini and Traversi, 2019].

Reformulation 2: the eigenvalue-method

Let the eigenvalues of QX be A< < A

® Setting Pk = —\1/ leads to a p.s.d. matrix.

~
N)
s

Reformulation 2: the eigenvalue-method

Let the eigenvalues of QX be A< < An.

® Setting Pk = —\1/ leads to a p.s.d. matrix.

® Originally proposed for 0-1 programming
[Hammer and Rubin, 1970]. Denote this method by (R)).

® Choosing the smallest eigenvalue means the “least convex”
function and a (hopefully) better dual bound.

=t

Reformulation 2: the eigenvalue-method

Let the eigenvalues of QX be A< < An.

® Setting Pk = —\1/ leads to a p.s.d. matrix.

® Originally proposed for 0-1 programming
[Hammer and Rubin, 1970]. Denote this method by (R)).

® Choosing the smallest eigenvalue means the “least convex”
function and a (hopefully) better dual bound.

=t

® The amount of linearization tends to be lower than for a
complete linearization, the resulting problem remains a

MIQCQP.

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find Py = —diag(pa, .. ., tin)
s.t. QX+ P is p.s.d., making the wi possibly large.

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find Py = —diag(pa, .. ., tin)
s.t. QX+ P is p.s.d., making the wi possibly large.

For example, solve

max ,-Z—;M (1-SDP)
st QF—diag(ur, ...) = 0.

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find Py = —diag(pa, .. ., tin)
s.t. QX+ P is p.s.d., making the wi possibly large.

For example, solve

max ,-Z—;M (1-SDP)
st QF—diag(ur, ...) = 0.

® Similar to the eigenvalue-method as for the amount of
linearization, but more “flexible”.

® The resulting problem remains a MIQCQP also here.

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find Py = —diag(pa, .. ., tin)
s.t. QX+ P is p.s.d., making the wi possibly large.

For example, solve

max ,-Z—;M (1-SDP)
st QF—diag(ur, ...) = 0.

® Similar to the eigenvalue-method as for the amount of
linearization, but more “flexible”.

® The resulting problem remains a MIQCQP also here.

® Denote this method by (R,), see also [Dong and Lou, 2018].

MIQCQP’s optimal SDP-relaxation v

A strong SDP-relaxation of (P) can be shown to be

min (Q%, X))+ cTx
(

s.t. QX X) + al x < by, k=1,....,m
Xij < upxi + lix; — ujl; hj=1...,p
XUS/X,'—FU,'XJ'—/J'U,' hj=1,...,p
Xij 2 ujxj + ujxj — uju; ihj=1...,p
Xij = lixi + lix; — [;; ihj=1,...,p (RSDP)
Xii > |xi i=1...,p
I <x<

MIQCQP’s optimal SDP-relaxation

A strong SDP-relaxation of (P) can be shown to be

min (Q% X) +c"x

s.t. (Q, X) + a] x < by, k=1,....,m
Xij < upxi + lix; — ujl; hj=1...,p
XUS/J'X,'—FU,'XJ'—/J'U,' hj=1,...,p
Xij 2 ujxj + ujxj — uju; ihj=1...,p
Xij = lixi + lix; — [;; hj=1...,p (RSDP)
X,','Z’X," izl,...,p
I<x<u

T

[
N\
- X
x
N———
1Y
(e)
3
[0}
[«5)
>
[72]
x
1Y
%
_~|
—+
>
c
[72]
=
LN
()
X.
>
0
x
|
%

MIQCQP’s optimal SDP-relaxation

A strong SDP-relaxation of (P) can be shown to be

min (Q% X) +c"x

s.t. (Q, X) + a] x < by, k=1,....,m
Xij < upxi + lix; — ujl; hj=1...,p
XUS/J'X,'—FU,'XJ'—/J'U,' hj=1,...,p
Xij 2 ujxj + ujxj — uju; ihj=1...,p
Xij = lixi + lix; — [;; ihj=1,...,p (RSDP)
Xu > ’Xi‘ ’*17 y P
I<x<u

X
° <XT)1<> > 0 means X > xx T, thus relaxing X = xx .

® McCormick constraints give the convex hull of Xj; = x;x;.

Reformulation method 4: SDP-relaxation

(RSDP) also gives rise to some reformulation (Rpo pm)
[Billionnet et al., 2016].

® Namely, denote the optimal dual matrix variable of (RSDP)
by <SS-,— ;) and take P° = S — Q% and P¥ = — Q¥ for all
k> 1.

Reformulation method 4: SDP-relaxation

(RSDP) also gives rise to some reformulation (Rpo pm)
[Billionnet et al., 2016].

® Namely, denote the optimal dual matrix variable of (RSDP)
by <SS-,— ;) and take P° = S — Q% and P¥ = — Q¥ for all
k> 1.

® Among all possible reformulations (Rpo _ pm), this one has
the best dual bound.

Reformulation method 4: SDP-relaxation

(RSDP) also gives rise to some reformulation (Rpo pm)
[Billionnet et al., 2016].

® Namely, denote the optimal dual matrix variable of (RSDP)
by <SS-,— ;) and take P° = S — Q% and P¥ = — Q¥ for all
k> 1.

® Among all possible reformulations (Rpo _ pm), this one has
the best dual bound.

® The resulting problem is (almost surely) a MIQP, and the
amount of linearization tends to be higher than for the
eiganvalue- or diagonal-method.

Reformulation method 4: SDP-relaxation

(RSDP) also gives rise to some reformulation (Rpo pm)
[Billionnet et al., 2016].

® Namely, denote the optimal dual matrix variable of (RSDP)
by <SS-,— ;) and take P° = S — Q% and P¥ = — Q¥ for all
k> 1.

® Among all possible reformulations (Rpo _ pm), this one has
the best dual bound.

® The resulting problem is (almost surely) a MIQP, and the
amount of linearization tends to be higher than for the
eiganvalue- or diagonal-method.

e Call this method (Rs).

Practicability of a reformulation v

Practicability of a reformulation

® Performing a reformulation should be fast.

® Especially in a commercial solver setting, excessive
reformulation times are prohibitive.

11 /24

Practicability of a reformulation

MOSEK Version 16.6.13(BETA) (Build date: 2022-4-22 16:00:07)
Copyright (c) MOSEK ApS, Denmark WWW: mosek.com
Platform: Linux/64-X86

Reading started.
Reading terminated. Time: .

Read summary
Type : Q0 (quadratic optimization problem)
objective sense : minimize
Scalar variables : 343
Matrix variables B
Scalar constraints
Affine conic constraints
Disjunctive constraints
Cones
Integers
Time

objective sense : minimize

Type : Q0 (quadratic optimization problen)
Constraints 10

Affine conic cons. e

Disjunctive cons. e

[0

scalar variables : 343

Matrix variables e

Integer variables 1 343

optimizer started.

Practicability of a reformulation

® Performing a reformulation should be fast.

® Especially in a commercial solver setting, excessive
reformulation times are prohibitive.

11 /24

Practicability of a reformulation

® Performing a reformulation should be fast.

® Especially in a commercial solver setting, excessive
reformulation times are prohibitive.

® MOSEK 10 has various work limits on the computational
aspects of the different formulations.

® For example, (Ry) and (R,) are never attempted if matrix
dimensions exceed certain thresholds.

Practicability of solving (RSDP)

The computationally most expensive reformulation is (Rs), even
when imposing McCormick inequalities only on

Lo = {(i.J) | 3k : g # 0}.

Practicability of solving (RSDP)

The computationally most expensive reformulation is (Rs), even
when imposing McCormick inequalities only on

Lq = {(i.j) | 3k: qf # 0},

® On the instance set from [Billionnet et al., 2016], we get the
following reformulation times:

‘ ‘ Re ‘ Rx ‘ Ry ‘ Rs
time (sec.) geo. mean | 0.0048 | 0.0030 | 0.0136 | 0.7254
' shifted | 0.0066 | 0.0035 | 0.0188 | 1.9145

Practicability of solving (RSDP) @

The computationally most expensive reformulation is (Rs), even
when imposing McCormick inequalities only on

Lq = {(i.j) | 3k: qf # 0},

® On the instance set from [Billionnet et al., 2016], we get the
following reformulation times:

‘ ‘ Re ‘ Rx ‘ Ry ‘ Rs
time (sec.) geo. mean | 0.0048 | 0.0030 | 0.0136 | 0.7254
' shifted | 0.0066 | 0.0035 | 0.0188 | 1.9145

® On other test sets, it is sometimes out-of-reach to solve
(RSDP) within hours of computational time.

® |n practice we have to resort to some approximation.

Practicability of solving (RSDP) (cont.)

Solution: Separate McCormick inequalities in rounds, using some
simple violation criteria.

Practicability of solving (RSDP) (cont.)

Solution: Separate McCormick inequalities in rounds, using some
simple violation criteria.

® May result in a series of smaller SDPs being solved.
e Call this (RS).

Practicability of solving (RSDP) (cont.)

Solution: Separate McCormick inequalities in rounds, using some
simple violation criteria.

® May result in a series of smaller SDPs being solved.
e Call this (RS).

Ro R R, Rs Rs
geo. mean | 0.0048 | 0.0030 | 0.0136 | 0.7254 | 0.1013
shifted | 0.0066 | 0.0035 | 0.0188 | 1.9145 | 0.1601
gap (%) geo. mean 22584 | 43.19 21.00 15.34 11.24
shifted | 226.07 43.50 22.38 15.67 14.15

time (sec.)

Practicability of solving (RSDP) (cont.)

Solution: Separate McCormick inequalities in rounds, using some
simple violation criteria.

® May result in a series of smaller SDPs being solved.
e Call this (RS).

Ro R R, Rs Rs
geo. mean | 0.0048 | 0.0030 | 0.0136 | 0.7254 | 0.1013
shifted | 0.0066 | 0.0035 | 0.0188 | 1.9145 | 0.1601
gap (%) geo. mean 22584 | 43.19 21.00 15.34 11.24
shifted | 226.07 43.50 22.38 15.67 14.15

time (sec.)

® Seems to work reasonably in practice.

Computational experiments

® (RQ), (Ry), (R,) and (RS) have been implemented in
MOSEK 10, user param

MSK_TPAR_MIO_QCQO_REFOMRULATION_METHOD.

® Takes care of practicability aspects as above (work limits, ...).

Computational experiments

® (RQ), (Ry), (R,) and (RS) have been implemented in
MOSEK 10, user param

MSK_TPAR_MIO_QCQO_REFOMRULATION_METHOD.

® Takes care of practicability aspects as above (work limits, ...).

® Note that everything is transformed to MISOCP form:
xTQx = ||Fx||5 with Q = FTF.

Computational experiments

(RQ), (Ry), (R,) and (RS) have been implemented in
MOSEK 10, user param

MSK_TPAR_MIO_QCQO_REFOMRULATION_METHOD.

® Takes care of practicability aspects as above (work limits, ...).

Note that everything is transformed to MISOCP form:
xTQx = ||Fx||5 with Q = FTF.

Special interest:

® Interplay between bound and performance?
® SDP-based methods?

Computational experiments

(RQ), (Ry), (R,) and (RS) have been implemented in
MOSEK 10, user param

MSK_TPAR_MIO_QCQO_REFOMRULATION_METHOD.

® Takes care of practicability aspects as above (work limits, ...).

Note that everything is transformed to MISOCP form:
xTQx = ||Fx||5 with Q = FTF.

Special interest:

® Interplay between bound and performance?
® SDP-based methods?

All runs single-threaded, time limit 2h, solving to optimality.

Instances from [Billionnet et al., 2016]

280 non-convex randomly generated MIQCQP instances

no binary variables

® some have m = 0, some m > 0, but structure somewhat
homogeneous

reformulation times always below 1 sec.

Instances from [Billionnet et al., 2016]

280 non-convex randomly generated MIQCQP instances

no binary variables

® some have m = 0, some m > 0, but structure somewhat
homogeneous

reformulation times always below 1 sec.

. no-sdp
R R R RS | virt. best
Q A " s virt. best

solved (193) 104 134 174 188 - -
geo. mean | 353.05 | 222.88 69.69 | 38.20 31.67 151.12
shifted | 512.73 362.5 | 136.82 | 79.67 70.35 275.73

wins 21 11 74 127 - -

t (sec.)

® Best dual bound also wins: 173 / 193

Instances from [Billionnet et al., 2016]

280 non-convex randomly generated MIQCQP instances

no binary variables

® some have m = 0, some m > 0, but structure somewhat
homogeneous

reformulation times always below 1 sec.

. no-sdp
R R R RS | virt. best
Q A " s virt. best

solved (193) 104 134 174 188 - -
geo. mean | 353.05 | 222.88 69.69 | 38.20 31.67 151.12
shifted | 512.73 362.5 | 136.82 | 79.67 70.35 275.73

wins 21 11 74 127 - -

t (sec.)

® Best dual bound also wins: 173 / 193
o

BigMac instances

® 340 non-convex binary quadratic and Max-cut instances
® pure BQPs

e reformulation times always below 5.5 sec.

16 /24

BigMac instances

® 340 non-convex binary quadratic and Max-cut instances
® pure BQPs

® reformulation times always below 5.5 sec.

Ro Ry R. | RS | virt. best Virr;:;z

solved (286) 212 167 230 272 - -

t (sec.) geo. mean | 18.22 | 254.08 50.56 | 17.43 6.54 12.56
' shifted | 76.37 | 499.51 | 115.69 | 47.28 22.43 50.14

wins 202 74 110 176 - -

® Best dual bound also wins: 250 / 286

BigMac instances

® 340 non-convex binary quadratic and Max-cut instances
® pure BQPs

® reformulation times always below 5.5 sec.

Ro Ry R. | RS | virt. best Virr;:;z

solved (286) 212 167 230 272 - -

t (sec.) geo. mean | 18.22 | 254.08 50.56 | 17.43 6.54 12.56
' shifted | 76.37 | 499.51 | 115.69 | 47.28 22.43 50.14

wins 202 74 110 176 - -

® Best dual bound also wins: 250 / 286
.

QPLIB

non-convex

288 non-convex instances, 143 of which allow for some
reformulation, 94 of which allow for all reformulations

= work limits of some method act on 49 instances

quite heterogeneous, mostly binary and few general integer
variables

reformulation times always below 5 sec.

QPLIB non-convex

® 288 non-convex instances, 143 of which allow for some
reformulation, 94 of which allow for all reformulations

e — work limits of some method act on 49 instances

® quite heterogeneous, mostly binary and few general integer
variables

® reformulation times always below 5 sec.

® Further divide the 94 instances 32 into “borderline convex”
instances (all smallest eigenvalues ~ 0):

QPLIB non-convex

® 288 non-convex instances, 143 of which allow for some
reformulation, 94 of which allow for all reformulations

e — work limits of some method act on 49 instances

® quite heterogeneous, mostly binary and few general integer
variables

® reformulation times always below 5 sec.

® Further divide the 94 instances 32 into “borderline convex”
instances (all smallest eigenvalues ~ 0):

c . no-sdp

Rq R R, Rs | virt. best virt. best

solved (31) 1 29 27 25 - -
geo. mean | 7030.89 | 10.23 | 99.85 | 78.17 8.07 10.23

t (sec) shifted | 7030.99 | 29.16 | 134.36 | 169.72 22.77 29.16

wins 0 24 4 12 - -

QPLIB non-convex (cont.)

e ... and 62 “strictly non-convex” instances:

Ro Ry R, RS | virt. best | 1P

solved (22) 18 i1 15 13 - -

¢ (sec) Eeo- mean | 111315 | 237568 | 146620 | 131642 | 54482 | 619.48
: shifted | 1146.72 | 240335 | 149508 | 136153 | 572.06 | 846.94
wins 12 0 6 6 - -

QPLIB non-convex (cont.)

e ... and 62 “strictly non-convex” instances:

Ro Ry R, RS | virt. best | 1P
solved (22) 18 i1 15 13 - -
geo. mean | 1113.18 | 2375.68 | 1466.20 | 131842 | 54482 | 81948
shifted | 1146.72 | 240335 | 149508 | 136153 | 572.06 | 846.94
wins 12 0 6 6 - -

t (sec.)

® Best dual bound also wins:

® borderline convex: 25 / 31
® strictly non-convex 12 / 22, 6 cases where Rg wins despite
worse dual bound (technology shift!)

QPLIB non-convex (cont.)

e ... and 62 “strictly non-convex” instances:

Ro Ry R, RS | virt. best | 1P
solved (22) 18 i1 15 13 - -
geo. mean | 1113.18 | 2375.68 | 1466.20 | 131842 | 54482 | 81948
shifted | 1146.72 | 240335 | 149508 | 136153 | 572.06 | 846.94
wins 12 0 6 6 - -

t (sec.)

® Best dual bound also wins:

® borderline convex: 25 / 31
® strictly non-convex 12 / 22, 6 cases where Rg wins despite
worse dual bound (technology shift!)

° O

Binary least squares

® 51 convex instances with random data
® pure BQPs

e reformulation times always below 0.1 sec.

19 /24

Binary least squares

® 51 convex instances with random data
® pure BQPs

e reformulation times always below 0.1 sec.

refor::.) Re Rx Ru RS | virt. best vir:.obs:s'z

solved (51) 43 23 47 51 50 - -

t (sec.) geo. mean 81.47 | 385.19 | 33.74 | 18.51 | 23.66 18.12 33.74
’ shifted 146.65 | 588.86 | 80.70 | 47.73 | 56.19 46.58 80.70

wins 1 0 11 46 19 - -

® Best dual bound also wins: 19 / 51

Binary least squares

® 51 convex instances with random data
® pure BQPs

e reformulation times always below 0.1 sec.

refor::.) Re Rx Ru RS | virt. best vir:.obs:s'z

solved (51) 43 23 47 51 50 - -

t (sec.) geo. mean 81.47 | 385.19 | 33.74 | 18.51 | 23.66 18.12 33.74
’ shifted 146.65 | 588.86 | 80.70 | 47.73 | 56.19 46.58 80.70

wins 1 0 11 46 19 - -

® Best dual bound also wins: 19 / 51
* O

Public convex instances

® 28 convex instances from public sources (QPLIB, Google
groups, ...)
quite heterogeneous

reformulation times always below 4 sec.

7 borderline convex instances (use Ry!), 21 remaining:

Public convex instances

® 28 convex instances from public sources (QPLIB, Google
groups, ...)

® quite heterogeneous
e reformulation times always below 4 sec.
® 7 borderline convex instances (use Ry!), 21 remaining:
no c . no-sdp
reform. Re Rx Ru Rs | virt-best | it best
solved (18) 7 14 7 13 11 - -
t (sec) BeO- mean | 609.63 | 201.87 | 438.35 | 1259 | 2824 48.08 134.13
' shifted | 953.32 | 424.08 | 752.64 | 244.39 | 550.94 115.94 286.29
wins 0 6 1 7 3 - -

® Best dual bound also wins: 16 / 18, 2 cases where Rg wins
despite worse dual bound

Public convex instances

® 28 convex instances from public sources (QPLIB, Google
groups, ...)

® quite heterogeneous
e reformulation times always below 4 sec.
® 7 borderline convex instances (use Ry!), 21 remaining:
no c . no-sdp
reform. Re Rx Ru Rs | virt-best | it best
solved (18) 7 14 7 13 11 - -
t (sec) BeO- mean | 609.63 | 201.87 | 438.35 | 1259 | 2824 48.08 134.13
' shifted | 953.32 | 424.08 | 752.64 | 244.39 | 550.94 115.94 286.29
wins 0 6 1 7 3 - -

® Best dual bound also wins: 16 / 18, 2 cases where Rg wins
despite worse dual bound

L)

What we have learned :

e Which method works good/best depends on the problem
class, but also on the datal!

What we have learned

e Which method works good/best depends on the problem
class, but also on the datal!

® On borderline convex models use Ry (i.e., a numerical
perturbation).

21/24

What we have learned

e Which method works good/best depends on the problem
class, but also on the datal!

® On borderline convex models use Ry (i.e., a numerical
perturbation).

e Reformulations also interesting for already convex models.

What we have learned

Which method works good/best depends on the problem
class, but also on the datal!

On borderline convex models use Ry (i.e., a numerical
perturbation).

Reformulations also interesting for already convex models.

An SDP-based method can be the method of choice.

A good dual bound is important, but not only.

Automatically choosing a reformulation?

® The best method for a given application may be established
experimentally.

N
N
s

Automatically choosing a reformulation?

® The best method for a given application may be established
experimentally.

® MOSEK 10 also has some heuristic for automatically
choosing a reformulation:

‘ reform Ro ‘ Ry ‘ Ry ‘ RS | virt. best ‘ heur.

[Billionnet et al., 2016] | 51273 3625 | 13682 79.67 70.35 | 79.61
BigMac - 76.37 | 49951 | 115.69 47.28 22.43 96.8

QPLIB non-convex - | 114672 | 240335 | 1495.98 | 1361.53 572.06 | 1000.2
BLS | 146.65 | 588.86 80.70 47.73 56.19 46.58 | 47.83

Public convex 953.32 424.08 752.64 244.39 550.94 115.94 218.33

Automatically choosing a reformulation?

® The best method for a given application may be established
experimentally.

® MOSEK 10 also has some heuristic for automatically
choosing a reformulation:

no

reform. Ro ‘ Ry Ry ‘ RS | virt. best ‘ heur.

[Billionnet et al., 2016] - 512.73 362.5 136.82 79.67 70.35 79.61
BigMac - 76.37 499.51 115.69 47.28 22.43 96.8

QPLIB non-convex - 1146.72 2403.35 1495.98 1361.53 572.06 1000.2
BLS 146.65 588.86 80.70 47.73 56.19 46.58 47.83

Public convex 953.32 424.08 752.64 244.39 550.94 115.94 218.33

® .. but a more sophisticated method for choosing is desirable,
see also [Bonami et al., 2022].

References | '

[Billionnet et al., 2016] Billionnet, A., Elloumi, S., and Lambert,
A. (2016).
Exact quadratic convex reformulations of mixed-integer
quadratically constrained problems.
Math. Programming, 158:235-266.

[Bonami et al., 2022] Bonami, P., Lodi, A., and Zarpellon, G.
(2022).
A classifier to decide on the linearization of mixed-integer
quadratic problems in cplex.
Operations Research.

[Dong and Lou, 2018] Dong, H. and Lou, Y. (2018).
Compact disjunctive approximations to nonconvex quadratically
constrained programs.
Technical report.

References |l :

[Furini and Traversi, 2019] Furini, F. and Traversi, E. (2019).
Theoretical and computational study of several linearisation
techniques for binary quadratic problems.

Annals of Operations Research, 279(1):387-411.

[Glover and Wolsey, 1974] Glover, F. and Wolsey, L. (1974).
Converting the 0-1 polynomial programming problem to a 0-1
linear program.

Oper. Res., 22(1):180-182.

[Hammer and Rubin, 1970] Hammer, P. L. and Rubin, A. (1970).
Some remarks on quadratic programming with 0-1 variables.
RAIRO, 3:67-79.

24 /24

