моseк

Reformulation methods inside a commercial MIQCQP solver

KTH Royal Institute of Technology
May 20th, 2022

Sven Wiese

WWW.mosek. com

A software package/library for solving:

- Linear and conic problems.
- Convex quadratic and quadratically constrained problems.
- Also mixed-integer versions of the above.

Current version is MOSEK 10.

- Currently supported cone types are second-order, exponential, power, geometric mean and semi-definite.

A software package/library for solving:

- Linear and conic problems.
- Convex quadratic and quadratically constrained problems.
- Also mixed-integer versions of the above.

Current version is MOSEK 10.

- Currently supported cone types are second-order, exponential, power, geometric mean and semi-definite.

Consider the problem

$$
\begin{array}{ll}
\min & x^{T} Q^{0} x+c^{T} x \\
\text { s.t. } & x^{T} Q^{k} x+a_{k}^{T} x \leq b_{k}, \quad k=1, \ldots, m \\
& l \leq x \leq u \\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
\end{array}
$$

- Decisive question: are all involved Q-matrices positive semi-definite (p.s.d.) or not?

Consider the problem

$$
\begin{array}{ll}
\min & x^{T} Q^{0} x+c^{T} x \\
\text { s.t. } & x^{T} Q^{k} x+a_{k}^{T} x \leq b_{k}, \quad k=1, \ldots, m \\
& l \leq x \leq u \tag{P}\\
& x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p} .
\end{array}
$$

- Decisive question: are all involved Q-matrices positive semi-definite (p.s.d.) or not?
- That means, is the model a convex or non-convex MIQCQP?

A quadratic term $x_{i} x_{j}$ may be reformulated to linear constraints:

- $x_{i}, x_{j} \in\{0,1\}$: substitute $x_{i} x_{j}$ with $X_{i j}$, and impose

$$
x_{i}+x_{j}-1 \leq X_{i j} \leq \min \left\{x_{i}, x_{j}\right\}
$$

A quadratic term $x_{i} x_{j}$ may be reformulated to linear constraints:

- $x_{i}, x_{j} \in\{0,1\}$: substitute $x_{i} x_{j}$ with $X_{i j}$, and impose

$$
x_{i}+x_{j}-1 \leq X_{i j} \leq \min \left\{x_{i}, x_{j}\right\}
$$

- $x_{i} \in\{0,1\}, l_{j} \leq x_{j} \leq u_{j}: x_{i} x_{j} \leftarrow X_{i j}$, and (special case of McCormick inequalities):

$$
\begin{aligned}
l_{j} x_{i} & \leq X_{i j} \leq u_{j} x_{i} \\
x_{j}-u_{j}\left(1-x_{i}\right) & \leq X_{i j} \leq x_{j}-l_{j}\left(1-x_{i}\right) .
\end{aligned}
$$

- $0 \leq x_{i} \leq u_{i}$ integer:

A quadratic term $x_{i} x_{j}$ may be reformulated to linear constraints:

- $x_{i}, x_{j} \in\{0,1\}$: substitute $x_{i} x_{j}$ with $X_{i j}$, and impose

$$
x_{i}+x_{j}-1 \leq X_{i j} \leq \min \left\{x_{i}, x_{j}\right\}
$$

- $x_{i} \in\{0,1\}, l_{j} \leq x_{j} \leq u_{j}: x_{i} x_{j} \leftarrow X_{i j}$, and (special case of McCormick inequalities):

$$
\begin{aligned}
l_{j} x_{i} & \leq X_{i j} \leq u_{j} x_{i} \\
x_{j}-u_{j}\left(1-x_{i}\right) & \leq X_{i j} \leq x_{j}-l_{j}\left(1-x_{i}\right) .
\end{aligned}
$$

- $0 \leq x_{i} \leq u_{i}$ integer: $x_{i} \leftarrow \sum_{t=0}^{\left\lfloor\log \left(u_{i}\right)\right\rfloor} 2^{t} z_{t i}$, and proceed as above.
- A quadratic term may be "just linearized" in this way, i.e.,

$$
q_{i j} x_{i} x_{j} \leftarrow q_{i j} x_{i j}
$$

or "perturbed":

$$
q_{i j} x_{i} x_{j} \leftarrow\left(q_{i j}+q_{i j}^{\prime}\right) x_{i} x_{j}-q_{i j}^{\prime} x_{i j}
$$

- Perturbation can be used, e.g., to replace a non-p.s.d. Q-matrix with a p.s.d. one.
- These techniques may in principle be applied to both convex and non-convex MIQCQPs.
- For simplicity assume all possible products $x_{i} x_{j}$ can be linearized i.e no continuous variables or infinite/huge bounds (extension possible and implemented in MOSEK).
- A quadratic term may be "just linearized" in this way, i.e.,

$$
q_{i j} x_{i} x_{j} \leftarrow q_{i j} x_{i j}
$$

or "perturbed":

$$
q_{i j} x_{i} x_{j} \leftarrow\left(q_{i j}+q_{i j}^{\prime}\right) x_{i} x_{j}-q_{i j}^{\prime} x_{i j}
$$

- Perturbation can be used, e.g., to replace a non-p.s.d. Q-matrix with a p.s.d. one.
- These techniques may in principle be applied to both convex and non-convex MIQCQPs.
- For simplicity assume all possible products $x_{i} x_{j}$ can be linearized, ie, no continuous variables or infinite/huge bounds (extension possible and implemented in MOSEK)
- A quadratic term may be "just linearized" in this way, i.e.,

$$
q_{i j} x_{i} x_{j} \leftarrow q_{i j} x_{i j}
$$

or "perturbed":

$$
q_{i j} x_{i} x_{j} \leftarrow\left(q_{i j}+q_{i j}^{\prime}\right) x_{i} x_{j}-q_{i j}^{\prime} x_{i j}
$$

- Perturbation can be used, e.g., to replace a non-p.s.d. Q-matrix with a p.s.d. one.
- These techniques may in principle be applied to both convex and non-convex MIQCQPs.
- For simplicity assume all possible products $x_{i} x_{j}$ can be linearized, i.e., no continuous variables or infinite/huge bounds (extension possible and implemented in MOSEK).

As in [Billionnet et al., 2016], consider reformulations of the form $\min \quad x^{T}\left(Q^{0}+P^{0}\right) x+c^{T} x-\left\langle P^{0}, X\right\rangle$
s.t.

$$
x^{T}\left(Q^{k}+P^{k}\right) x+a_{k}^{T} x-\left\langle P^{k}, X\right\rangle \leq b_{k}, \quad k=1, \ldots, m
$$

$$
(x, X) \in S_{L_{P}}
$$

$$
l \leq x \leq u
$$

$$
x \in \mathbb{Z}^{\bar{p}} \times \mathbb{R}^{n-p}
$$

$$
\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)
$$

where $S_{L_{P}}$ contains all linearization constraints over

$$
L_{P}:=\left\{(i, j) \mid \exists k: p_{i j}^{k} \neq 0\right\}
$$

- $(x, X) \in S_{L_{P}}$ encodes $X=x x^{T}$, i.e., the products $X_{i j}=$
- We are interested in reformulations $\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)$ that are

As in [Billionnet et al., 2016], consider reformulations of the form $\min \quad x^{T}\left(Q^{0}+P^{0}\right) x+c^{T} x-\left\langle P^{0}, X\right\rangle$
s.t.

$$
x^{T}\left(Q^{k}+P^{k}\right) x+a_{k}^{T} x-\left\langle P^{k}, X\right\rangle \leq b_{k}, \quad k=1, \ldots, m
$$

$$
(x, X) \in S_{L_{P}}
$$

$$
l \leq x \leq u
$$

$$
x \in \mathbb{Z}^{p} \times \mathbb{R}^{n-p}
$$

$$
\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)
$$

where $S_{L_{P}}$ contains all linearization constraints over

$$
L_{P}:=\left\{(i, j) \mid \exists k: p_{i j}^{k} \neq 0\right\}
$$

- $(x, X) \in S_{L_{p}}$ encodes $X=x x^{T}$, i.e., the products $X_{i j}=x_{i} x_{j}$.
- We are interested in reformulations $\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)$ that are convex MIQCQPs.

Reformulation method 1: complete linearization

Setting $P^{k}=-Q^{k}$ for all k amounts to getting rid of all products.

- Depending on the size of L_{P}, the problem dimensions may grow considerably.
- The resulting problem is (almost surely) a MILP, leading to a technology shift.
- Denote this method by $\left(R_{Q}\right)$, see [Glover and Wolsey, 1974] or [Furini and Traversi, 2019]

Setting $P^{k}=-Q^{k}$ for all k amounts to getting rid of all products.

- Depending on the size of L_{P}, the problem dimensions may grow considerably.
- The resulting problem is (almost surely) a MILP, leading to a technology shift.
- Denote this method by $\left(R_{Q}\right)$, see [Glover and Wolsey, 1974] or [Furini and Traversi, 2019]

Setting $P^{k}=-Q^{k}$ for all k amounts to getting rid of all products.

- Depending on the size of L_{P}, the problem dimensions may grow considerably.
- The resulting problem is (almost surely) a MILP, leading to a technology shift.
- Denote this method by $\left(R_{Q}\right)$, see [Glover and Wolsey, 1974] or [Furini and Traversi, 2019].

Reformulation 2: the eigenvalue-method

Let the eigenvalues of Q^{k} be $\lambda_{1} \leq \ldots \leq \lambda_{m}$.

- Setting $P^{k}=-\lambda_{1} /$ leads to a p.s.d. matrix.
- Originally proposed for 0-1 programming
[Hammer and Rubin, 1970]. Denote this method by $\left(R_{\lambda}\right)$
- Choosing the smallest eigenvalue means the "least convex" function and a (hopefully) better dual bound.
- The amount of linearization tends to be lower than for a complete linearization, the resulting problem remains a MIQCQP

Let the eigenvalues of Q^{k} be $\lambda_{1} \leq \ldots \leq \lambda_{m}$.

- Setting $P^{k}=-\lambda_{1} /$ leads to a p.s.d. matrix.
- Originally proposed for 0-1 programming [Hammer and Rubin, 1970]. Denote this method by $\left(R_{\lambda}\right)$.
- Choosing the smallest eigenvalue means the "least convex" function and a (hopefully) better dual bound.

- The amount of linearization tends to be lower than for a complete linearization, the resulting problem remains a MIQCQP.

Let the eigenvalues of Q^{k} be $\lambda_{1} \leq \ldots \leq \lambda_{m}$.

- Setting $P^{k}=-\lambda_{1} /$ leads to a p.s.d. matrix.
- Originally proposed for 0-1 programming [Hammer and Rubin, 1970]. Denote this method by $\left(R_{\lambda}\right)$.
- Choosing the smallest eigenvalue means the "least convex" function and a (hopefully) better dual bound.

- The amount of linearization tends to be lower than for a complete linearization, the resulting problem remains a MIQCQP.

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find $P_{k}=-\boldsymbol{\operatorname { d i a g }}\left(\mu_{1}, \ldots, \mu_{n}\right)$ s.t. $Q^{k}+P^{k}$ is p.s.d., making the μ_{i} possibly large.

For example, solve

- Similar to the eigenvalue-method as for the amount of linearization, but more "flexible"
- The resulting problem remains a MIQCQP also here.

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find $P_{k}=-\boldsymbol{d i a g}\left(\mu_{1}, \ldots, \mu_{n}\right)$ s.t. $Q^{k}+P^{k}$ is p.s.d., making the μ_{i} possibly large.

For example, solve

max	$\sum_{i=1}^{n} \mu_{i}$	
s.t.	$Q^{k}-\boldsymbol{\operatorname { d i a g }}\left(\mu_{1}, \ldots, \mu_{n}\right) \succeq 0$.	$(\mu-$ SDP $)$

- Similar to the eigenvalue-method as for the amount of linearization, but more "flexible"
- The resulting problem remains a MIQCQP also here.

Generalize the eigenvalue-method: find $P_{k}=-\boldsymbol{d i a g}\left(\mu_{1}, \ldots, \mu_{n}\right)$ s.t. $Q^{k}+P^{k}$ is p.s.d., making the μ_{i} possibly large.

For example, solve

- Similar to the eigenvalue-method as for the amount of linearization, but more "flexible".
- The resulting problem remains a MIQCQP also here.

Generalize the eigenvalue-method: find $P_{k}=-\boldsymbol{d i a g}\left(\mu_{1}, \ldots, \mu_{n}\right)$ s.t. $Q^{k}+P^{k}$ is p.s.d., making the μ_{i} possibly large.

For example, solve

- Similar to the eigenvalue-method as for the amount of linearization, but more "flexible".
- The resulting problem remains a MIQCQP also here.
- Denote this method by $\left(R_{\mu}\right)$, see also [Dong and Lou, 2018].

A strong SDP-relaxation of (P) can be shown to be

$$
\begin{array}{lll}
\min & \left\langle Q^{0}, X\right\rangle+c^{T} x & \\
\text { s.t. } & \left\langle Q^{k}, X\right\rangle+a_{k}^{T} x \leq b_{k}, & k=1, \ldots, m \\
& X_{i j} \leq u_{j} x_{i}+l_{i} x_{j}-u_{j} l_{i} & i, j=1, \ldots, p \\
& X_{i j} \leq I_{j} x_{i}+u_{i} x_{j}-I_{j} u_{i} & i, j=1, \ldots, p \\
& X_{i j} \geq u_{j} x_{i}+u_{i} x_{j}-u_{j} u_{i} & i, j=1, \ldots, p \\
& X_{i j} \geq I_{j} x_{i}+l_{i} x_{j}-l_{j} l_{i} & i, j=1, \ldots, p \\
& X_{i i} \geq\left|x_{i}\right| & i=1, \ldots, p \\
& I \leq x \leq u & \tag{RSDP}\\
& \left(\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right) \succeq 0 . &
\end{array}
$$

A strong SDP-relaxation of (P) can be shown to be

$$
\begin{array}{lll}
\min & \left\langle Q^{0}, X\right\rangle+c^{T} x & \\
\text { s.t. } & \left\langle Q^{k}, X\right\rangle+a_{k}^{T} x \leq b_{k}, & k=1, \ldots, m \\
& X_{i j} \leq u_{j} x_{i}+l_{i} x_{j}-u_{j} l_{i} & i, j=1, \ldots, p \\
& X_{i j} \leq I_{j} x_{i}+u_{i} x_{j}-I_{j} u_{i} & i, j=1, \ldots, p \\
& X_{i j} \geq u_{j} x_{i}+u_{i} x_{j}-u_{j} u_{i} & i, j=1, \ldots, p \\
& X_{i j} \geq I_{j} x_{i}+l_{i} x_{j}-l_{j} l_{i} & i, j=1, \ldots, p \tag{RSDP}\\
& X_{i i} \geq\left|x_{i}\right| & i=1, \ldots, p
\end{array}
$$

- $\left(\begin{array}{cc}X & x \\ x^{T} & 1\end{array}\right) \succeq 0$ means $X \succeq x x^{T}$, thus relaxing $X=x x^{T}$.

A strong SDP-relaxation of (P) can be shown to be

$$
\begin{array}{lll}
\min & \left\langle Q^{0}, X\right\rangle+c^{T} x & \\
\text { s.t. } & \left\langle Q^{k}, X\right\rangle+a_{k}^{T} x \leq b_{k}, & k=1, \ldots, m \\
& X_{i j} \leq u_{j} x_{i}+I_{i} x_{j}-u_{j} l_{i} & i, j=1, \ldots, p \\
& X_{i j} \leq I_{j} x_{i}+u_{i} x_{j}-I_{j} u_{i} & i, j=1, \ldots, p \\
& X_{i j} \geq u_{j} x_{i}+u_{i} x_{j}-u_{j} u_{i} & i, j=1, \ldots, p \\
& X_{i j} \geq I_{j} x_{i}+I_{i} x_{j}-l_{j} I_{i} & i, j=1, \ldots, p \tag{RSDP}\\
& X_{i i} \geq\left|x_{i}\right| & i=1, \ldots, p \\
& I \leq x \leq u & \\
& \left(\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right) \succeq 0 . &
\end{array}
$$

- $\left(\begin{array}{cc}X & x \\ x^{T} & 1\end{array}\right) \succeq 0$ means $X \succeq x x^{T}$, thus relaxing $X=x x^{T}$.
- McCormick constraints give the convex hull of $X_{i j}=x_{i} x_{j}$.
(RSDP) also gives rise to some reformulation $\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)$ [Billionnet et al., 2016].
- Namely, denote the optimal dual matrix variable of (RSDP)
by $\left(\begin{array}{cc}S & s \\ s^{T} & \sigma\end{array}\right)$, and take $P^{0}=S-Q^{0}$ and $P^{k}=-Q^{k}$ for all $k \geq 1$.
- Among all possible reformulations $\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)$, this one has the best dual bound.
- The resulting problem is (almost surely) a MIQP, and the amount of linearization tends to be higher than for the eiganvalue- or diagonal-method.
(RSDP) also gives rise to some reformulation $\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)$ [Billionnet et al., 2016].
- Namely, denote the optimal dual matrix variable of (RSDP) by $\left(\begin{array}{cc}S & s \\ s^{T} & \sigma\end{array}\right)$, and take $P^{0}=S-Q^{0}$ and $P^{k}=-Q^{k}$ for all $k \geq 1$.
- Among all possible reformulations $\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)$, this one has the best dual bound.
- The resulting problem is (almost surely) a MIQP, and the amount of linearization tends to be higher than for the eiganvalue- or diagonal-method.
(RSDP) also gives rise to some reformulation ($\mathrm{R}_{P^{0}, \ldots, P^{m}}$)
[Billionnet et al., 2016].
- Namely, denote the optimal dual matrix variable of (RSDP) by $\left(\begin{array}{cc}S & s \\ s^{T} & \sigma\end{array}\right)$, and take $P^{0}=S-Q^{0}$ and $P^{k}=-Q^{k}$ for all $k \geq 1$.
- Among all possible reformulations $\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)$, this one has the best dual bound.
- The resulting problem is (almost surely) a MIQP, and the amount of linearization tends to be higher than for the eiganvalue- or diagonal-method.
(RSDP) also gives rise to some reformulation ($\mathrm{R}_{P_{0}, \ldots, P_{m}}$)
[Billionnet et al., 2016].
- Namely, denote the optimal dual matrix variable of (RSDP) by $\left(\begin{array}{cc}S & s \\ s^{T} & \sigma\end{array}\right)$, and take $P^{0}=S-Q^{0}$ and $P^{k}=-Q^{k}$ for all $k \geq 1$.
- Among all possible reformulations $\left(\mathrm{R}_{P^{0}, \ldots, P^{m}}\right)$, this one has the best dual bound.
- The resulting problem is (almost surely) a MIQP, and the amount of linearization tends to be higher than for the eiganvalue- or diagonal-method.
- Call this method $\left(R_{S}\right)$.

Practicability of a reformulation

- Performing a reformulation should be fast.
- Especially in a commercial solver setting, excessive reformulation times are prohibitive.
- MOSEK 10 has various work limits on the computational aspects of the different formulations.
- For example, $\left(R_{\lambda}\right)$ and $\left(R_{\mu}\right)$ are never attempted if matrix dimensions exceed certain thresholds.
- Performing a reformulation should be fast.
- Especially in a commercial solver setting, excessive reformulation times are prohibitive.
- MOSEK 10 has various work limits on the computational aspects of the different formulations.
- For example, $\left(R_{\lambda}\right)$ and $\left(R_{\mu}\right)$ are never attempted if matrix dimensions exceed certain thresholds.

```
MOSEK Verston 10.0.13(BETA) (Butld date: 2022-4-22 16:00:07)
Copyright (c) MOSEK ApS, Denmark WWW: mosek.com
Platform: Linux/64-X86
Reading started.
Reading terminated. Time: 0.00
Read summary
    Type : QO (quadratic optimization problem)
    Objective sense : mintmize
    Scalar variables : 343
    Matrix variables : 0
    Scalar constraints : 0
    Affine conic constraints : 0
    Disjunctive constraints : 0
    Cones
    Integers
    Time : 0.0
Problem
    Name :
    Objective sense : minimize
    Type : 00
    Constraints : 0
    Affine conic cons. : 0
    Disjunctive cons. : 0
    Cones
    : 0
    Scalar variables : 343
    Matrix variables : 0
    Integer variables : }34
Optimizer started.
```

- Performing a reformulation should be fast.
- Especially in a commercial solver setting, excessive reformulation times are prohibitive.
- MOSEK 10 has various work limits on the computational aspects of the different formulations.
- For example, $\left(R_{\lambda}\right)$ and $\left(R_{\mu}\right)$ are never attempted if matrix dimensions exceed certain thresholds.
- Performing a reformulation should be fast.
- Especially in a commercial solver setting, excessive reformulation times are prohibitive.
- MOSEK 10 has various work limits on the computational aspects of the different formulations.
- For example, $\left(R_{\lambda}\right)$ and $\left(R_{\mu}\right)$ are never attempted if matrix dimensions exceed certain thresholds.

The computationally most expensive reformulation is $\left(R_{S}\right)$, even when imposing McCormick inequalities only on

$$
L_{q}=\left\{(i, j) \mid \exists k: q_{i j}^{k} \neq 0\right\} .
$$

- On the instance set from [Billionnet et al., 2016], we get the following reformulation times:

		R_{Q}	R_{λ}	R_{μ}	R_{S}
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254
	shifted	0.0066	0.0035	0.0188	1.9145

- On other test sets, it is sometimes out-of-reach to solve (RSDP) within hours of computational time.

The computationally most expensive reformulation is $\left(R_{S}\right)$, even when imposing McCormick inequalities only on

$$
L_{q}=\left\{(i, j) \mid \exists k: q_{i j}^{k} \neq 0\right\} .
$$

- On the instance set from [Billionnet et al., 2016], we get the following reformulation times:

		R_{Q}	R_{λ}	R_{μ}	R_{S}
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254
	shifted	0.0066	0.0035	0.0188	1.9145

- On other test sets, it is sometimes out-of-reach to solve (RSDP) within hours of computational time.

The computationally most expensive reformulation is $\left(R_{S}\right)$, even when imposing McCormick inequalities only on

$$
L_{q}=\left\{(i, j) \mid \exists k: q_{i j}^{k} \neq 0\right\}
$$

- On the instance set from [Billionnet et al., 2016], we get the following reformulation times:

		R_{Q}	R_{λ}	R_{μ}	R_{S}
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254
	shifted	0.0066	0.0035	0.0188	1.9145

- On other test sets, it is sometimes out-of-reach to solve (RSDP) within hours of computational time.
- In practice we have to resort to some approximation.

Solution: Separate McCormick inequalities in rounds, using some simple violation criteria.

- May result in a series of smaller SDPs being solved.

- Seems to work reasonably in practice.

Solution: Separate McCormick inequalities in rounds, using some simple violation criteria.

- May result in a series of smaller SDPs being solved.
- Call this $\left(R_{S}^{c}\right)$.

- Seems to work reasonably in practice.

Solution: Separate McCormick inequalities in rounds, using some simple violation criteria.

- May result in a series of smaller SDPs being solved.
- Call this $\left(R_{S}^{c}\right)$.

		R_{Q}	R_{λ}	R_{μ}	R_{S}	R_{S}^{c}
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254	0.1013
	shifted	0.0066	0.0035	0.0188	1.9145	0.1601
gap (\%)	geo. mean	225.84	43.19	21.00	15.34	11.24
	shifted	226.07	43.50	22.38	15.67	14.15

- Seems to work reasonably in practice.

Solution: Separate McCormick inequalities in rounds, using some simple violation criteria.

- May result in a series of smaller SDPs being solved.
- Call this $\left(R_{S}^{c}\right)$.

		R_{Q}	R_{λ}	R_{μ}	R_{S}	R_{S}^{c}
time (sec.)	geo. mean	0.0048	0.0030	0.0136	0.7254	0.1013
	shifted	0.0066	0.0035	0.0188	1.9145	0.1601
gap (\%)	geo. mean	225.84	43.19	21.00	15.34	11.24
	shifted	226.07	43.50	22.38	15.67	14.15

- Seems to work reasonably in practice.
- $\left(R_{Q}\right),\left(R_{\lambda}\right),\left(R_{\mu}\right)$ and $\left(R_{S}^{c}\right)$ have been implemented in MOSEK 10, user param

MSK_IPAR_MIO_QCQO_REFOMRULATION_METHOD.

- Takes care of practicability aspects as above (work limits, ...).
- Note that everything is transformed to MISOCP form:

$$
x^{\top} Q_{x}=\left\|F_{x}\right\|_{2}^{2} \text { with } Q=F^{T} F
$$

- Special interest:
- Interplay between bound and performance?
- SDP-based methods?
- $\left(R_{Q}\right),\left(R_{\lambda}\right),\left(R_{\mu}\right)$ and $\left(R_{S}^{c}\right)$ have been implemented in MOSEK 10, user param

MSK_IPAR_MIO_QCQO_REFOMRULATION_METHOD.

- Takes care of practicability aspects as above (work limits, ...).
- Note that everything is transformed to MISOCP form:

$$
x^{T} Q x=\|F x\|_{2}^{2} \text { with } Q=F^{T} F
$$

- Special interest:
- Interplay between bound and performance?
- SDP-based methods?
- $\left(R_{Q}\right),\left(R_{\lambda}\right),\left(R_{\mu}\right)$ and $\left(R_{S}^{c}\right)$ have been implemented in MOSEK 10, user param

MSK_IPAR_MIO_QCQO_REFOMRULATION_METHOD.

- Takes care of practicability aspects as above (work limits, ...).
- Note that everything is transformed to MISOCP form:

$$
x^{T} Q x=\|F x\|_{2}^{2} \text { with } Q=F^{T} F
$$

- Special interest:
- Interplay between bound and performance?
- SDP-based methods?
- $\left(R_{Q}\right),\left(R_{\lambda}\right),\left(R_{\mu}\right)$ and $\left(R_{S}^{c}\right)$ have been implemented in MOSEK 10, user param

MSK_IPAR_MIO_QCQO_REFOMRULATION_METHOD.

- Takes care of practicability aspects as above (work limits, ...).
- Note that everything is transformed to MISOCP form:

$$
x^{T} Q x=\|F x\|_{2}^{2} \text { with } Q=F^{T} F
$$

- Special interest:
- Interplay between bound and performance?
- SDP-based methods?
- All runs single-threaded, time limit $2 h$, solving to optimality.
- 280 non-convex randomly generated MIQCQP instances
- no binary variables
- some have $m=0$, some $m>0$, but structure somewhat homogeneous
- reformulation times always below 1 sec .

- Best dual bound also wins: 173 / 193

- 280 non-convex randomly generated MIQCQP instances
- no binary variables
- some have $m=0$, some $m>0$, but structure somewhat homogeneous
- reformulation times always below 1 sec .

		R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best
	no-sdp virt. best					
	solved (193)	104	134	174	188	-
t (sec.)	geo. mean shifted	353.05	222.88	69.69	38.20	31.67
	512.73	362.5	136.82	79.67	70.35	275.73
wins	21	11	74	127	-	-

- Best dual bound also wins: 173 / 193
- 280 non-convex randomly generated MIQCQP instances
- no binary variables
- some have $m=0$, some $m>0$, but structure somewhat homogeneous
- reformulation times always below 1 sec .

		R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best
	no-sdp virt. best					
	solved (193)	104	134	174	188	-
t (sec.)	geo. mean shifted	353.05	222.88	69.69	38.20	31.67
	512.73	362.5	136.82	79.67	70.35	275.73
wins	21	11	74	127	-	-

- Best dual bound also wins: 173 / 193
-)
- 340 non-convex binary quadratic and Max-cut instances
- pure BQPs
- reformulation times always below 5.5 sec .

	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best
solved (286)	212	167	230	272	-	-
t (sec.)geo. mean shifted 18.22 76.37 254.08 ven 50.56$\quad 17.43$	6.54	12.56				
wins	202	74	110	176	-	-

- Best dual bound also wins: 250 / 286
- 340 non-convex binary quadratic and Max-cut instances
- pure BQPs
- reformulation times always below 5.5 sec .

	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best
	solved (286)	212	167	230	272	-
t (sec.)	geo. mean	18.22	254.08	50.56	17.43	6.54
shifted	76.37	499.51	115.69	47.28	22.43	50.56
wins	202	74	110	176	-	-

- Best dual bound also wins: 250 / 286
- 340 non-convex binary quadratic and Max-cut instances
- pure BQPs
- reformulation times always below 5.5 sec .

	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best
	solved (286)	212	167	230	272	-
t (sec.)	geo. mean	18.22	254.08	50.56	17.43	6.54
shifted	76.37	499.51	115.69	47.28	22.43	50.56
wins	202	74	110	176	-	-

- Best dual bound also wins: 250 / 286
-)
- 288 non-convex instances, 143 of which allow for some reformulation, 94 of which allow for all reformulations
- \Longrightarrow work limits of some method act on 49 instances
- quite heterogeneous, mostly binary and few general integer variables
- reformulation times always below 5 sec .
- Further divide the 94 instances 32 into
"borderline convex" instances (all smallest eigenvalues ≈ 0)

- 288 non-convex instances, 143 of which allow for some reformulation, 94 of which allow for all reformulations
- \Longrightarrow work limits of some method act on 49 instances
- quite heterogeneous, mostly binary and few general integer variables
- reformulation times always below 5 sec .
- Further divide the 94 instances $\mathbf{3 2}$ into "borderline convex" instances (all smallest eigenvalues ≈ 0):

- 288 non-convex instances, 143 of which allow for some reformulation, 94 of which allow for all reformulations
- \Longrightarrow work limits of some method act on 49 instances
- quite heterogeneous, mostly binary and few general integer variables
- reformulation times always below 5 sec .
- Further divide the 94 instances $\mathbf{3 2}$ into "borderline convex" instances (all smallest eigenvalues ≈ 0):

	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best
	solved (31)	1	29	27	25	-
t (sec.)	geo. mean	7030.89	10.23	99.85	78.17	8.07
	7030.99	29.16	134.36	169.72	22.77	29.23
wins	0	24	4	12	-	-

- ... and 62 "strictly non-convex" instances:

	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best	
	solved (22)	18	11	15	13	-	-
t (sec.)	geo. mean	1113.18	2375.68	1466.29	1318.42	544.82	819.48
	1146.72	2403.35	1495.98	1361.53	572.06	846.94	
	wins	12	0	6	6	-	-

- Best dual bound also wins:
- borderline convex: 25 / 31
- strictly non-convex 12 / 22, 6 cases where R_{Q} wins despite worse dual bound (technology shift!)
- ... and 62 "strictly non-convex" instances:

	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best	
	solved (22)	18	11	15	13	-	-
t (sec.)	geo. mean	1113.18	2375.68	1466.29	1318.42	544.82	819.48
	1146.72	2403.35	1495.98	1361.53	572.06	846.94	
	wins	12	0	6	6	-	-

- Best dual bound also wins:
- borderline convex: 25 / 31
- strictly non-convex 12 / 22, 6 cases where R_{Q} wins despite worse dual bound (technology shift!)
- ... and 62 "strictly non-convex" instances:

	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best	
	solved (22)	18	11	15	13	-	-
t (sec.)	geo. mean	1113.18	2375.68	1466.29	1318.42	544.82	819.48
	1146.72	2403.35	1495.98	1361.53	572.06	846.94	
	wins	12	0	6	6	-	-

- Best dual bound also wins:
- borderline convex: 25 / 31
- strictly non-convex 12 / 22, 6 cases where R_{Q} wins despite worse dual bound (technology shift!)
- ${ }^{-}$

Binary least squares

- 51 convex instances with random data
- pure BQPs
- reformulation times always below 0.1 sec .
- Best dual bound also wins: 19 / 51
- 51 convex instances with random data
- pure BQPs
- reformulation times always below 0.1 sec .

	$\begin{array}{r} \text { no } \\ \text { reform. } \end{array}$	R_{Q}	R_{λ}	R_{μ}	R_{S}^{C}	virt. best	no-sdp virt. best
solved (51)	43	23	47	51	50	-	-
t (sec) geo. mean	81.47	385.19	33.74	18.51	23.66	18.12	33.74
t (sec.) shifted	146.65	588.86	80.70	47.73	56.19	46.58	80.70
wins	1	0	11	46	19	-	-

- Best dual bound also wins: 19 / 51
- 51 convex instances with random data
- pure BQPs
- reformulation times always below 0.1 sec .

	$\begin{array}{r} \text { no } \\ \text { reform. } \end{array}$	R_{Q}	R_{λ}	R_{μ}	R_{S}^{C}	virt. best	no-sdp virt. best
solved (51)	43	23	47	51	50	-	-
t (sec) geo. mean	81.47	385.19	33.74	18.51	23.66	18.12	33.74
t (sec.) shifted	146.65	588.86	80.70	47.73	56.19	46.58	80.70
wins	1	0	11	46	19	-	-

- Best dual bound also wins: 19 / 51
- ©
- 28 convex instances from public sources (QPLIB, Google groups, ...)
- quite heterogeneous
- reformulation times always below 4 sec .
- 7 borderline convex instances (use R_{λ} !), 21 remaining:
- Best dual bound also wins: $16 / 18,2$ cases where R_{Q} wins despite worse dual bound
- 28 convex instances from public sources (QPLIB, Google groups, ...)
- quite heterogeneous
- reformulation times always below 4 sec .
- 7 borderline convex instances (use R_{λ} !), 21 remaining:

	no 	reform.	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best
	solved (18)	7	14	7	13	11	-	-
t (sec.)	geo. mean	609.63	201.87	438.35	125.9	282.4	48.08	134.13
shifted	953.32	424.08	752.64	244.39	550.94	115.94	286.29	
	wins	0	6	1	7	3	-	-

- Best dual bound also wins: $16 / 18,2$ cases where R_{Q} wins despite worse dual bound
- 28 convex instances from public sources (QPLIB, Google groups, ...)
- quite heterogeneous
- reformulation times always below 4 sec .
- 7 borderline convex instances (use R_{λ} !), 21 remaining:

	no 	reform.	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	no-sdp virt. best
	solved (18)	7	14	7	13	11	-	-
t (sec.)	geo. mean	609.63	201.87	438.35	125.9	282.4	48.08	134.13
shifted	953.32	424.08	752.64	244.39	550.94	115.94	286.29	
	wins	0	6	1	7	3	-	-

- Best dual bound also wins: $16 / 18,2$ cases where R_{Q} wins despite worse dual bound
-)

What we have learned

- Which method works good/best depends on the problem class, but also on the data!
- On borderline convex models use R_{λ} (i.e., a numerical perturbation).
- Reformulations also interesting for already convex models.
- An SDP-based method can be the method of choice.
- A good dual bound is important, but not only.
- Which method works good/best depends on the problem class, but also on the data!
- On borderline convex models use R_{λ} (i.e., a numerical perturbation).
- Reformulations also interesting for already convex models.
- An SDP-based method can be the method of choice.
- A good dual bound is important, but not only.
- Which method works good/best depends on the problem class, but also on the data!
- On borderline convex models use R_{λ} (i.e., a numerical perturbation).
- Reformulations also interesting for already convex models.
- An SDP-based method can be the method of choice.
- A good dual bound is important, but not only.
- Which method works good/best depends on the problem class, but also on the data!
- On borderline convex models use R_{λ} (i.e., a numerical perturbation).
- Reformulations also interesting for already convex models.
- An SDP-based method can be the method of choice.
- A good dual bound is important, but not only.

Automatically choosing a reformulation?

- The best method for a given application may be established experimentally.
- MOSEK 10 also has some heuristic for automatically choosing a reformulation:

Automatically choosing a reformulation?

- The best method for a given application may be established experimentally.
- MOSEK 10 also has some heuristic for automatically choosing a reformulation:

	no reform.	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	heur.
[Billionnet et al., 2016]	-	512.73	362.5	136.82	79.67	70.35	79.61
BiqMac	-	76.37	499.51	115.69	47.28	22.43	96.8
QPLIB non-convex	-	1146.72	2403.35	1495.98	1361.53	572.06	1000.2
BLS	146.65	588.86	80.70	47.73	56.19	46.58	47.83
Public convex	953.32	424.08	752.64	244.39	550.94	115.94	218.33

- ... but a more sophisticated method for choosing is desirable, see also [Bonami et al., 2022]

Automatically choosing a reformulation?

- The best method for a given application may be established experimentally.
- MOSEK 10 also has some heuristic for automatically choosing a reformulation:

	no reform.	R_{Q}	R_{λ}	R_{μ}	R_{S}^{c}	virt. best	heur.
[Billionnet et al., 2016]	-	512.73	362.5	136.82	79.67	70.35	79.61
BiqMac	-	76.37	499.51	115.69	47.28	22.43	96.8
QPLIB non-convex	-	1146.72	2403.35	1495.98	1361.53	572.06	1000.2
BLS	146.65	588.86	80.70	47.73	56.19	46.58	47.83
Public convex	953.32	424.08	752.64	244.39	550.94	115.94	218.33

- ... but a more sophisticated method for choosing is desirable, see also [Bonami et al., 2022].
[Billionnet et al., 2016] Billionnet, A., Elloumi, S., and Lambert, A. (2016).

Exact quadratic convex reformulations of mixed-integer quadratically constrained problems.
Math. Programming, 158:235-266.
[Bonami et al., 2022] Bonami, P., Lodi, A., and Zarpellon, G. (2022).

A classifier to decide on the linearization of mixed-integer quadratic problems in cplex.
Operations Research.
[Dong and Lou, 2018] Dong, H. and Lou, Y. (2018).
Compact disjunctive approximations to nonconvex quadratically constrained programs.
Technical report.
[Furini and Traversi, 2019] Furini, F. and Traversi, E. (2019).
Theoretical and computational study of several linearisation techniques for binary quadratic problems.
Annals of Operations Research, 279(1):387-411.
[Glover and Wolsey, 1974] Glover, F. and Wolsey, L. (1974).
Converting the $0-1$ polynomial programming problem to a $0-1$ linear program.
Oper. Res., 22(1):180-182.
[Hammer and Rubin, 1970] Hammer, P. L. and Rubin, A. (1970). Some remarks on quadratic programming with 0-1 variables. RAIRO, 3:67-79.

