
Reformulation methods inside a commercial
MIQCQP solver

KTH Royal Institute of Technology
May 20th, 2022

Sven Wiese

www.mosek.com

MOSEK

A software package/library for solving:

• Linear and conic problems.

• Convex quadratic and quadratically constrained problems.

• Also mixed-integer versions of the above.

Current version is MOSEK 10.

• Currently supported cone types are second-order, exponential,
power, geometric mean and semi-definite.

1 / 24

MOSEK

A software package/library for solving:

• Linear and conic problems.

• Convex quadratic and quadratically constrained problems.

• Also mixed-integer versions of the above.

Current version is MOSEK 10.

• Currently supported cone types are second-order, exponential,
power, geometric mean and semi-definite.

1 / 24

MIQCQP

Consider the problem

min xTQ0x + cT x

s.t. xTQkx + aTk x ≤ bk , k = 1, . . . ,m
l ≤ x ≤ u
x ∈ Zp × Rn−p.

(P)

• Decisive question: are all involved Q-matrices positive
semi-definite (p.s.d.) or not?

• That means, is the model a convex or non-convex MIQCQP?

2 / 24

MIQCQP

Consider the problem

min xTQ0x + cT x

s.t. xTQkx + aTk x ≤ bk , k = 1, . . . ,m
l ≤ x ≤ u
x ∈ Zp × Rn−p.

(P)

• Decisive question: are all involved Q-matrices positive
semi-definite (p.s.d.) or not?

• That means, is the model a convex or non-convex MIQCQP?

2 / 24

Reformulating quadratic terms

A quadratic term xixj may be reformulated to linear constraints:

• xi , xj ∈ {0, 1}: substitute xixj with Xij , and impose

xi + xj − 1 ≤ Xij ≤ min{xi , xj}.

• xi ∈ {0, 1}, lj ≤ xj ≤ uj : xixj ← Xij , and (special case of
McCormick inequalities):

ljxi ≤ Xij ≤ ujxi ,
xj − uj(1− xi) ≤ Xij ≤ xj − lj(1− xi).

• 0 ≤ xi ≤ ui integer: xi ←
blog(ui)c∑

t=0

2tzti , and proceed as above.

3 / 24

Reformulating quadratic terms

A quadratic term xixj may be reformulated to linear constraints:

• xi , xj ∈ {0, 1}: substitute xixj with Xij , and impose

xi + xj − 1 ≤ Xij ≤ min{xi , xj}.

• xi ∈ {0, 1}, lj ≤ xj ≤ uj : xixj ← Xij , and (special case of
McCormick inequalities):

ljxi ≤ Xij ≤ ujxi ,
xj − uj(1− xi) ≤ Xij ≤ xj − lj(1− xi).

• 0 ≤ xi ≤ ui integer: xi ←
blog(ui)c∑

t=0

2tzti , and proceed as above.

3 / 24

Reformulating quadratic terms

A quadratic term xixj may be reformulated to linear constraints:

• xi , xj ∈ {0, 1}: substitute xixj with Xij , and impose

xi + xj − 1 ≤ Xij ≤ min{xi , xj}.

• xi ∈ {0, 1}, lj ≤ xj ≤ uj : xixj ← Xij , and (special case of
McCormick inequalities):

ljxi ≤ Xij ≤ ujxi ,
xj − uj(1− xi) ≤ Xij ≤ xj − lj(1− xi).

• 0 ≤ xi ≤ ui integer: xi ←
blog(ui)c∑

t=0

2tzti , and proceed as above.

3 / 24

Reformulating quadratic terms (cont.)

• A quadratic term may be “just linearized” in this way, i.e.,

qijxixj ← qijXij ,

or “perturbed”:

qijxixj ← (qij + q′ij)xixj − q′ijXij .

• Perturbation can be used, e.g., to replace a non-p.s.d.
Q-matrix with a p.s.d. one.

• These techniques may in principle be applied to both convex
and non-convex MIQCQPs.

• For simplicity assume all possible products xixj can be
linearized, i.e., no continuous variables or infinite/huge bounds
(extension possible and implemented in MOSEK). 4 / 24

Reformulating quadratic terms (cont.)

• A quadratic term may be “just linearized” in this way, i.e.,

qijxixj ← qijXij ,

or “perturbed”:

qijxixj ← (qij + q′ij)xixj − q′ijXij .

• Perturbation can be used, e.g., to replace a non-p.s.d.
Q-matrix with a p.s.d. one.

• These techniques may in principle be applied to both convex
and non-convex MIQCQPs.

• For simplicity assume all possible products xixj can be
linearized, i.e., no continuous variables or infinite/huge bounds
(extension possible and implemented in MOSEK). 4 / 24

Reformulating quadratic terms (cont.)

• A quadratic term may be “just linearized” in this way, i.e.,

qijxixj ← qijXij ,

or “perturbed”:

qijxixj ← (qij + q′ij)xixj − q′ijXij .

• Perturbation can be used, e.g., to replace a non-p.s.d.
Q-matrix with a p.s.d. one.

• These techniques may in principle be applied to both convex
and non-convex MIQCQPs.

• For simplicity assume all possible products xixj can be
linearized, i.e., no continuous variables or infinite/huge bounds
(extension possible and implemented in MOSEK). 4 / 24

A family of MIQCQP reformulations

As in [Billionnet et al., 2016], consider reformulations of the form

min xT (Q0 + P0)x + cT x − 〈P0,X 〉
s.t. xT (Qk + Pk)x + aTk x − 〈Pk ,X 〉 ≤ bk , k = 1, . . . ,m

(x ,X) ∈ SLP
l ≤ x ≤ u
x ∈ Zp × Rn−p,

(RP0,...,Pm)
where SLP contains all linearization constraints over

LP := {(i , j) | ∃k : pkij 6= 0}.

• (x ,X) ∈ SLP encodes X = xxT , i.e., the products Xij = xixj .

• We are interested in reformulations (RP0,...,Pm) that are
convex MIQCQPs. 5 / 24

A family of MIQCQP reformulations

As in [Billionnet et al., 2016], consider reformulations of the form

min xT (Q0 + P0)x + cT x − 〈P0,X 〉
s.t. xT (Qk + Pk)x + aTk x − 〈Pk ,X 〉 ≤ bk , k = 1, . . . ,m

(x ,X) ∈ SLP
l ≤ x ≤ u
x ∈ Zp × Rn−p,

(RP0,...,Pm)
where SLP contains all linearization constraints over

LP := {(i , j) | ∃k : pkij 6= 0}.

• (x ,X) ∈ SLP encodes X = xxT , i.e., the products Xij = xixj .

• We are interested in reformulations (RP0,...,Pm) that are
convex MIQCQPs. 5 / 24

Reformulation method 1: complete linearization

Setting Pk = −Qk for all k amounts to getting rid of all products.

• Depending on the size of LP , the problem dimensions may
grow considerably.

• The resulting problem is (almost surely) a MILP, leading to a
technology shift.

• Denote this method by (RQ), see [Glover and Wolsey, 1974]
or [Furini and Traversi, 2019].

6 / 24

Reformulation method 1: complete linearization

Setting Pk = −Qk for all k amounts to getting rid of all products.

• Depending on the size of LP , the problem dimensions may
grow considerably.

• The resulting problem is (almost surely) a MILP, leading to a
technology shift.

• Denote this method by (RQ), see [Glover and Wolsey, 1974]
or [Furini and Traversi, 2019].

6 / 24

Reformulation method 1: complete linearization

Setting Pk = −Qk for all k amounts to getting rid of all products.

• Depending on the size of LP , the problem dimensions may
grow considerably.

• The resulting problem is (almost surely) a MILP, leading to a
technology shift.

• Denote this method by (RQ), see [Glover and Wolsey, 1974]
or [Furini and Traversi, 2019].

6 / 24

Reformulation 2: the eigenvalue-method

Let the eigenvalues of Qk be λ1 ≤ . . . ≤ λm.

• Setting Pk = −λ1I leads to a p.s.d. matrix.

• Originally proposed for 0-1 programming
[Hammer and Rubin, 1970]. Denote this method by (Rλ).

• Choosing the smallest eigenvalue means the “least convex”
function and a (hopefully) better dual bound.

0 1

• The amount of linearization tends to be lower than for a
complete linearization, the resulting problem remains a
MIQCQP. 7 / 24

Reformulation 2: the eigenvalue-method

Let the eigenvalues of Qk be λ1 ≤ . . . ≤ λm.

• Setting Pk = −λ1I leads to a p.s.d. matrix.

• Originally proposed for 0-1 programming
[Hammer and Rubin, 1970]. Denote this method by (Rλ).

• Choosing the smallest eigenvalue means the “least convex”
function and a (hopefully) better dual bound.

0 1

• The amount of linearization tends to be lower than for a
complete linearization, the resulting problem remains a
MIQCQP. 7 / 24

Reformulation 2: the eigenvalue-method

Let the eigenvalues of Qk be λ1 ≤ . . . ≤ λm.

• Setting Pk = −λ1I leads to a p.s.d. matrix.

• Originally proposed for 0-1 programming
[Hammer and Rubin, 1970]. Denote this method by (Rλ).

• Choosing the smallest eigenvalue means the “least convex”
function and a (hopefully) better dual bound.

0 1

• The amount of linearization tends to be lower than for a
complete linearization, the resulting problem remains a
MIQCQP. 7 / 24

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find Pk = −diag(µ1, . . . , µn)
s.t. Qk + Pk is p.s.d., making the µi possibly large.

For example, solve

max
n∑

i=1

µi

s.t. Qk − diag(µ1, . . . , µn) � 0.

(µ-SDP)

• Similar to the eigenvalue-method as for the amount of
linearization, but more “flexible”.

• The resulting problem remains a MIQCQP also here.

• Denote this method by (Rµ), see also [Dong and Lou, 2018]. 8 / 24

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find Pk = −diag(µ1, . . . , µn)
s.t. Qk + Pk is p.s.d., making the µi possibly large.

For example, solve

max
n∑

i=1

µi

s.t. Qk − diag(µ1, . . . , µn) � 0.

(µ-SDP)

• Similar to the eigenvalue-method as for the amount of
linearization, but more “flexible”.

• The resulting problem remains a MIQCQP also here.

• Denote this method by (Rµ), see also [Dong and Lou, 2018]. 8 / 24

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find Pk = −diag(µ1, . . . , µn)
s.t. Qk + Pk is p.s.d., making the µi possibly large.

For example, solve

max
n∑

i=1

µi

s.t. Qk − diag(µ1, . . . , µn) � 0.

(µ-SDP)

• Similar to the eigenvalue-method as for the amount of
linearization, but more “flexible”.

• The resulting problem remains a MIQCQP also here.

• Denote this method by (Rµ), see also [Dong and Lou, 2018]. 8 / 24

Reformulation 3: the diagonal-method

Generalize the eigenvalue-method: find Pk = −diag(µ1, . . . , µn)
s.t. Qk + Pk is p.s.d., making the µi possibly large.

For example, solve

max
n∑

i=1

µi

s.t. Qk − diag(µ1, . . . , µn) � 0.

(µ-SDP)

• Similar to the eigenvalue-method as for the amount of
linearization, but more “flexible”.

• The resulting problem remains a MIQCQP also here.

• Denote this method by (Rµ), see also [Dong and Lou, 2018]. 8 / 24

MIQCQP’s optimal SDP-relaxation

A strong SDP-relaxation of (P) can be shown to be

min 〈Q0,X 〉+ cT x

s.t. 〈Qk ,X 〉+ aTk x ≤ bk , k = 1, . . . ,m
Xij ≤ ujxi + lixj − uj li i , j = 1, . . . , p
Xij ≤ ljxi + uixj − ljui i , j = 1, . . . , p
Xij ≥ ujxi + uixj − ujui i , j = 1, . . . , p
Xij ≥ ljxi + lixj − lj li i , j = 1, . . . , p
Xii ≥ |xi | i = 1, . . . , p
l ≤ x ≤ u(
X x

xT 1

)
� 0.

(RSDP)

•
(
X x

xT 1

)
� 0 means X � xxT , thus relaxing X = xxT .

• McCormick constraints give the convex hull of Xij = xixj . 9 / 24

MIQCQP’s optimal SDP-relaxation

A strong SDP-relaxation of (P) can be shown to be

min 〈Q0,X 〉+ cT x

s.t. 〈Qk ,X 〉+ aTk x ≤ bk , k = 1, . . . ,m
Xij ≤ ujxi + lixj − uj li i , j = 1, . . . , p
Xij ≤ ljxi + uixj − ljui i , j = 1, . . . , p
Xij ≥ ujxi + uixj − ujui i , j = 1, . . . , p
Xij ≥ ljxi + lixj − lj li i , j = 1, . . . , p
Xii ≥ |xi | i = 1, . . . , p
l ≤ x ≤ u(
X x

xT 1

)
� 0.

(RSDP)

•
(
X x

xT 1

)
� 0 means X � xxT , thus relaxing X = xxT .

• McCormick constraints give the convex hull of Xij = xixj . 9 / 24

MIQCQP’s optimal SDP-relaxation

A strong SDP-relaxation of (P) can be shown to be

min 〈Q0,X 〉+ cT x

s.t. 〈Qk ,X 〉+ aTk x ≤ bk , k = 1, . . . ,m
Xij ≤ ujxi + lixj − uj li i , j = 1, . . . , p
Xij ≤ ljxi + uixj − ljui i , j = 1, . . . , p
Xij ≥ ujxi + uixj − ujui i , j = 1, . . . , p
Xij ≥ ljxi + lixj − lj li i , j = 1, . . . , p
Xii ≥ |xi | i = 1, . . . , p
l ≤ x ≤ u(
X x

xT 1

)
� 0.

(RSDP)

•
(
X x

xT 1

)
� 0 means X � xxT , thus relaxing X = xxT .

• McCormick constraints give the convex hull of Xij = xixj . 9 / 24

Reformulation method 4: SDP-relaxation

(RSDP) also gives rise to some reformulation (RP0,...,Pm)
[Billionnet et al., 2016].

• Namely, denote the optimal dual matrix variable of (RSDP)

by

(
S s

sT σ

)
, and take P0 = S − Q0 and Pk = −Qk for all

k ≥ 1.

• Among all possible reformulations (RP0,...,Pm), this one has
the best dual bound.

• The resulting problem is (almost surely) a MIQP, and the
amount of linearization tends to be higher than for the
eiganvalue- or diagonal-method.

• Call this method (RS).
10 / 24

Reformulation method 4: SDP-relaxation

(RSDP) also gives rise to some reformulation (RP0,...,Pm)
[Billionnet et al., 2016].

• Namely, denote the optimal dual matrix variable of (RSDP)

by

(
S s

sT σ

)
, and take P0 = S − Q0 and Pk = −Qk for all

k ≥ 1.

• Among all possible reformulations (RP0,...,Pm), this one has
the best dual bound.

• The resulting problem is (almost surely) a MIQP, and the
amount of linearization tends to be higher than for the
eiganvalue- or diagonal-method.

• Call this method (RS).
10 / 24

Reformulation method 4: SDP-relaxation

(RSDP) also gives rise to some reformulation (RP0,...,Pm)
[Billionnet et al., 2016].

• Namely, denote the optimal dual matrix variable of (RSDP)

by

(
S s

sT σ

)
, and take P0 = S − Q0 and Pk = −Qk for all

k ≥ 1.

• Among all possible reformulations (RP0,...,Pm), this one has
the best dual bound.

• The resulting problem is (almost surely) a MIQP, and the
amount of linearization tends to be higher than for the
eiganvalue- or diagonal-method.

• Call this method (RS).
10 / 24

Reformulation method 4: SDP-relaxation

(RSDP) also gives rise to some reformulation (RP0,...,Pm)
[Billionnet et al., 2016].

• Namely, denote the optimal dual matrix variable of (RSDP)

by

(
S s

sT σ

)
, and take P0 = S − Q0 and Pk = −Qk for all

k ≥ 1.

• Among all possible reformulations (RP0,...,Pm), this one has
the best dual bound.

• The resulting problem is (almost surely) a MIQP, and the
amount of linearization tends to be higher than for the
eiganvalue- or diagonal-method.

• Call this method (RS).
10 / 24

Practicability of a reformulation

• Performing a reformulation should be fast.

• Especially in a commercial solver setting, excessive
reformulation times are prohibitive.

• MOSEK 10 has various work limits on the computational
aspects of the different formulations.

• For example, (Rλ) and (Rµ) are never attempted if matrix
dimensions exceed certain thresholds.

11 / 24

Practicability of a reformulation

• Performing a reformulation should be fast.

• Especially in a commercial solver setting, excessive
reformulation times are prohibitive.

• MOSEK 10 has various work limits on the computational
aspects of the different formulations.

• For example, (Rλ) and (Rµ) are never attempted if matrix
dimensions exceed certain thresholds.

11 / 24

Practicability of a reformulation

• Performing a reformulation should be fast.

• Especially in a commercial solver setting, excessive
reformulation times are prohibitive.

• MOSEK 10 has various work limits on the computational
aspects of the different formulations.

• For example, (Rλ) and (Rµ) are never attempted if matrix
dimensions exceed certain thresholds.

11 / 24

Practicability of a reformulation

• Performing a reformulation should be fast.

• Especially in a commercial solver setting, excessive
reformulation times are prohibitive.

• MOSEK 10 has various work limits on the computational
aspects of the different formulations.

• For example, (Rλ) and (Rµ) are never attempted if matrix
dimensions exceed certain thresholds.

11 / 24

Practicability of a reformulation

• Performing a reformulation should be fast.

• Especially in a commercial solver setting, excessive
reformulation times are prohibitive.

• MOSEK 10 has various work limits on the computational
aspects of the different formulations.

• For example, (Rλ) and (Rµ) are never attempted if matrix
dimensions exceed certain thresholds.

11 / 24

Practicability of solving (RSDP)

The computationally most expensive reformulation is (RS), even
when imposing McCormick inequalities only on

Lq = {(i , j) | ∃k : qkij 6= 0}.

• On the instance set from [Billionnet et al., 2016], we get the
following reformulation times:

RQ Rλ Rµ RS

time (sec.)
geo. mean 0.0048 0.0030 0.0136 0.7254

shifted 0.0066 0.0035 0.0188 1.9145

• On other test sets, it is sometimes out-of-reach to solve
(RSDP) within hours of computational time.

• In practice we have to resort to some approximation.
12 / 24

Practicability of solving (RSDP)

The computationally most expensive reformulation is (RS), even
when imposing McCormick inequalities only on

Lq = {(i , j) | ∃k : qkij 6= 0}.

• On the instance set from [Billionnet et al., 2016], we get the
following reformulation times:

RQ Rλ Rµ RS

time (sec.)
geo. mean 0.0048 0.0030 0.0136 0.7254

shifted 0.0066 0.0035 0.0188 1.9145

• On other test sets, it is sometimes out-of-reach to solve
(RSDP) within hours of computational time.

• In practice we have to resort to some approximation.
12 / 24

Practicability of solving (RSDP)

The computationally most expensive reformulation is (RS), even
when imposing McCormick inequalities only on

Lq = {(i , j) | ∃k : qkij 6= 0}.

• On the instance set from [Billionnet et al., 2016], we get the
following reformulation times:

RQ Rλ Rµ RS

time (sec.)
geo. mean 0.0048 0.0030 0.0136 0.7254

shifted 0.0066 0.0035 0.0188 1.9145

• On other test sets, it is sometimes out-of-reach to solve
(RSDP) within hours of computational time.

• In practice we have to resort to some approximation.
12 / 24

Practicability of solving (RSDP) (cont.)

Solution: Separate McCormick inequalities in rounds, using some
simple violation criteria.

• May result in a series of smaller SDPs being solved.

• Call this (Rc
S).

RQ Rλ Rµ RS Rc
S

time (sec.)
geo. mean 0.0048 0.0030 0.0136 0.7254 0.1013

shifted 0.0066 0.0035 0.0188 1.9145 0.1601

gap (%)
geo. mean 225.84 43.19 21.00 15.34 11.24

shifted 226.07 43.50 22.38 15.67 14.15

• Seems to work reasonably in practice.

13 / 24

Practicability of solving (RSDP) (cont.)

Solution: Separate McCormick inequalities in rounds, using some
simple violation criteria.

• May result in a series of smaller SDPs being solved.

• Call this (Rc
S).

RQ Rλ Rµ RS Rc
S

time (sec.)
geo. mean 0.0048 0.0030 0.0136 0.7254 0.1013

shifted 0.0066 0.0035 0.0188 1.9145 0.1601

gap (%)
geo. mean 225.84 43.19 21.00 15.34 11.24

shifted 226.07 43.50 22.38 15.67 14.15

• Seems to work reasonably in practice.

13 / 24

Practicability of solving (RSDP) (cont.)

Solution: Separate McCormick inequalities in rounds, using some
simple violation criteria.

• May result in a series of smaller SDPs being solved.

• Call this (Rc
S).

RQ Rλ Rµ RS Rc
S

time (sec.)
geo. mean 0.0048 0.0030 0.0136 0.7254 0.1013

shifted 0.0066 0.0035 0.0188 1.9145 0.1601

gap (%)
geo. mean 225.84 43.19 21.00 15.34 11.24

shifted 226.07 43.50 22.38 15.67 14.15

• Seems to work reasonably in practice.

13 / 24

Practicability of solving (RSDP) (cont.)

Solution: Separate McCormick inequalities in rounds, using some
simple violation criteria.

• May result in a series of smaller SDPs being solved.

• Call this (Rc
S).

RQ Rλ Rµ RS Rc
S

time (sec.)
geo. mean 0.0048 0.0030 0.0136 0.7254 0.1013

shifted 0.0066 0.0035 0.0188 1.9145 0.1601

gap (%)
geo. mean 225.84 43.19 21.00 15.34 11.24

shifted 226.07 43.50 22.38 15.67 14.15

• Seems to work reasonably in practice.

13 / 24

Computational experiments

• (RQ), (Rλ), (Rµ) and (Rc
S) have been implemented in

MOSEK 10, user param

MSK IPAR MIO QCQO REFOMRULATION METHOD.

• Takes care of practicability aspects as above (work limits, ...).

• Note that everything is transformed to MISOCP form:

xTQx = ‖Fx‖22 with Q = FTF .

• Special interest:
• Interplay between bound and performance?
• SDP-based methods?

• All runs single-threaded, time limit 2h, solving to optimality. 14 / 24

Computational experiments

• (RQ), (Rλ), (Rµ) and (Rc
S) have been implemented in

MOSEK 10, user param

MSK IPAR MIO QCQO REFOMRULATION METHOD.

• Takes care of practicability aspects as above (work limits, ...).

• Note that everything is transformed to MISOCP form:

xTQx = ‖Fx‖22 with Q = FTF .

• Special interest:
• Interplay between bound and performance?
• SDP-based methods?

• All runs single-threaded, time limit 2h, solving to optimality. 14 / 24

Computational experiments

• (RQ), (Rλ), (Rµ) and (Rc
S) have been implemented in

MOSEK 10, user param

MSK IPAR MIO QCQO REFOMRULATION METHOD.

• Takes care of practicability aspects as above (work limits, ...).

• Note that everything is transformed to MISOCP form:

xTQx = ‖Fx‖22 with Q = FTF .

• Special interest:
• Interplay between bound and performance?
• SDP-based methods?

• All runs single-threaded, time limit 2h, solving to optimality. 14 / 24

Computational experiments

• (RQ), (Rλ), (Rµ) and (Rc
S) have been implemented in

MOSEK 10, user param

MSK IPAR MIO QCQO REFOMRULATION METHOD.

• Takes care of practicability aspects as above (work limits, ...).

• Note that everything is transformed to MISOCP form:

xTQx = ‖Fx‖22 with Q = FTF .

• Special interest:
• Interplay between bound and performance?
• SDP-based methods?

• All runs single-threaded, time limit 2h, solving to optimality. 14 / 24

Instances from [Billionnet et al., 2016]

• 280 non-convex randomly generated MIQCQP instances

• no binary variables

• some have m = 0, some m > 0, but structure somewhat
homogeneous

• reformulation times always below 1 sec.

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (193) 104 134 174 188 - -

t (sec.)
geo. mean 353.05 222.88 69.69 38.20 31.67 151.12

shifted 512.73 362.5 136.82 79.67 70.35 275.73

wins 21 11 74 127 - -

• Best dual bound also wins: 173 / 193

•
15 / 24

Instances from [Billionnet et al., 2016]

• 280 non-convex randomly generated MIQCQP instances

• no binary variables

• some have m = 0, some m > 0, but structure somewhat
homogeneous

• reformulation times always below 1 sec.

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (193) 104 134 174 188 - -

t (sec.)
geo. mean 353.05 222.88 69.69 38.20 31.67 151.12

shifted 512.73 362.5 136.82 79.67 70.35 275.73

wins 21 11 74 127 - -

• Best dual bound also wins: 173 / 193

•
15 / 24

Instances from [Billionnet et al., 2016]

• 280 non-convex randomly generated MIQCQP instances

• no binary variables

• some have m = 0, some m > 0, but structure somewhat
homogeneous

• reformulation times always below 1 sec.

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (193) 104 134 174 188 - -

t (sec.)
geo. mean 353.05 222.88 69.69 38.20 31.67 151.12

shifted 512.73 362.5 136.82 79.67 70.35 275.73

wins 21 11 74 127 - -

• Best dual bound also wins: 173 / 193

•
15 / 24

BiqMac instances

• 340 non-convex binary quadratic and Max-cut instances

• pure BQPs

• reformulation times always below 5.5 sec.

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (286) 212 167 230 272 - -

t (sec.)
geo. mean 18.22 254.08 50.56 17.43 6.54 12.56

shifted 76.37 499.51 115.69 47.28 22.43 50.14

wins 202 74 110 176 - -

• Best dual bound also wins: 250 / 286

•

16 / 24

BiqMac instances

• 340 non-convex binary quadratic and Max-cut instances

• pure BQPs

• reformulation times always below 5.5 sec.

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (286) 212 167 230 272 - -

t (sec.)
geo. mean 18.22 254.08 50.56 17.43 6.54 12.56

shifted 76.37 499.51 115.69 47.28 22.43 50.14

wins 202 74 110 176 - -

• Best dual bound also wins: 250 / 286

•

16 / 24

BiqMac instances

• 340 non-convex binary quadratic and Max-cut instances

• pure BQPs

• reformulation times always below 5.5 sec.

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (286) 212 167 230 272 - -

t (sec.)
geo. mean 18.22 254.08 50.56 17.43 6.54 12.56

shifted 76.37 499.51 115.69 47.28 22.43 50.14

wins 202 74 110 176 - -

• Best dual bound also wins: 250 / 286

•

16 / 24

QPLIB non-convex

• 288 non-convex instances, 143 of which allow for some
reformulation, 94 of which allow for all reformulations

• =⇒ work limits of some method act on 49 instances

• quite heterogeneous, mostly binary and few general integer
variables

• reformulation times always below 5 sec.

• Further divide the 94 instances 32 into “borderline convex”
instances (all smallest eigenvalues ≈ 0):

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (31) 1 29 27 25 - -

t (sec.)
geo. mean 7030.89 10.23 99.85 78.17 8.07 10.23

shifted 7030.99 29.16 134.36 169.72 22.77 29.16

wins 0 24 4 12 - -

17 / 24

QPLIB non-convex

• 288 non-convex instances, 143 of which allow for some
reformulation, 94 of which allow for all reformulations

• =⇒ work limits of some method act on 49 instances

• quite heterogeneous, mostly binary and few general integer
variables

• reformulation times always below 5 sec.

• Further divide the 94 instances 32 into “borderline convex”
instances (all smallest eigenvalues ≈ 0):

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (31) 1 29 27 25 - -

t (sec.)
geo. mean 7030.89 10.23 99.85 78.17 8.07 10.23

shifted 7030.99 29.16 134.36 169.72 22.77 29.16

wins 0 24 4 12 - -

17 / 24

QPLIB non-convex

• 288 non-convex instances, 143 of which allow for some
reformulation, 94 of which allow for all reformulations

• =⇒ work limits of some method act on 49 instances

• quite heterogeneous, mostly binary and few general integer
variables

• reformulation times always below 5 sec.

• Further divide the 94 instances 32 into “borderline convex”
instances (all smallest eigenvalues ≈ 0):

RQ Rλ Rµ Rc
S virt. best

no-sdp

virt. best

solved (31) 1 29 27 25 - -

t (sec.)
geo. mean 7030.89 10.23 99.85 78.17 8.07 10.23

shifted 7030.99 29.16 134.36 169.72 22.77 29.16

wins 0 24 4 12 - -

17 / 24

QPLIB non-convex (cont.)

• ... and 62 “strictly non-convex” instances:

RQ Rλ Rµ Rc
S virt. best

no-sdp
virt. best

solved (22) 18 11 15 13 - -

t (sec.)
geo. mean 1113.18 2375.68 1466.29 1318.42 544.82 819.48

shifted 1146.72 2403.35 1495.98 1361.53 572.06 846.94
wins 12 0 6 6 - -

• Best dual bound also wins:
• borderline convex: 25 / 31
• strictly non-convex 12 / 22, 6 cases where RQ wins despite

worse dual bound (technology shift!)

•

18 / 24

QPLIB non-convex (cont.)

• ... and 62 “strictly non-convex” instances:

RQ Rλ Rµ Rc
S virt. best

no-sdp
virt. best

solved (22) 18 11 15 13 - -

t (sec.)
geo. mean 1113.18 2375.68 1466.29 1318.42 544.82 819.48

shifted 1146.72 2403.35 1495.98 1361.53 572.06 846.94
wins 12 0 6 6 - -

• Best dual bound also wins:
• borderline convex: 25 / 31
• strictly non-convex 12 / 22, 6 cases where RQ wins despite

worse dual bound (technology shift!)

•

18 / 24

QPLIB non-convex (cont.)

• ... and 62 “strictly non-convex” instances:

RQ Rλ Rµ Rc
S virt. best

no-sdp
virt. best

solved (22) 18 11 15 13 - -

t (sec.)
geo. mean 1113.18 2375.68 1466.29 1318.42 544.82 819.48

shifted 1146.72 2403.35 1495.98 1361.53 572.06 846.94
wins 12 0 6 6 - -

• Best dual bound also wins:
• borderline convex: 25 / 31
• strictly non-convex 12 / 22, 6 cases where RQ wins despite

worse dual bound (technology shift!)

•

18 / 24

Binary least squares

• 51 convex instances with random data

• pure BQPs

• reformulation times always below 0.1 sec.

no
RQ Rλ Rµ Rc

S virt. best
no-sdp

reform. virt. best
solved (51) 43 23 47 51 50 - -

t (sec.)
geo. mean 81.47 385.19 33.74 18.51 23.66 18.12 33.74

shifted 146.65 588.86 80.70 47.73 56.19 46.58 80.70
wins 1 0 11 46 19 - -

• Best dual bound also wins: 19 / 51

•

19 / 24

Binary least squares

• 51 convex instances with random data

• pure BQPs

• reformulation times always below 0.1 sec.

no
RQ Rλ Rµ Rc

S virt. best
no-sdp

reform. virt. best
solved (51) 43 23 47 51 50 - -

t (sec.)
geo. mean 81.47 385.19 33.74 18.51 23.66 18.12 33.74

shifted 146.65 588.86 80.70 47.73 56.19 46.58 80.70
wins 1 0 11 46 19 - -

• Best dual bound also wins: 19 / 51

•

19 / 24

Binary least squares

• 51 convex instances with random data

• pure BQPs

• reformulation times always below 0.1 sec.

no
RQ Rλ Rµ Rc

S virt. best
no-sdp

reform. virt. best
solved (51) 43 23 47 51 50 - -

t (sec.)
geo. mean 81.47 385.19 33.74 18.51 23.66 18.12 33.74

shifted 146.65 588.86 80.70 47.73 56.19 46.58 80.70
wins 1 0 11 46 19 - -

• Best dual bound also wins: 19 / 51

•

19 / 24

Public convex instances

• 28 convex instances from public sources (QPLIB, Google
groups, ...)

• quite heterogeneous

• reformulation times always below 4 sec.

• 7 borderline convex instances (use Rλ!), 21 remaining:

no
RQ Rλ Rµ Rc

S virt. best
no-sdp

reform. virt. best
solved (18) 7 14 7 13 11 - -

t (sec.)
geo. mean 609.63 201.87 438.35 125.9 282.4 48.08 134.13

shifted 953.32 424.08 752.64 244.39 550.94 115.94 286.29
wins 0 6 1 7 3 - -

• Best dual bound also wins: 16 / 18, 2 cases where RQ wins
despite worse dual bound

•
20 / 24

Public convex instances

• 28 convex instances from public sources (QPLIB, Google
groups, ...)

• quite heterogeneous

• reformulation times always below 4 sec.

• 7 borderline convex instances (use Rλ!), 21 remaining:

no
RQ Rλ Rµ Rc

S virt. best
no-sdp

reform. virt. best
solved (18) 7 14 7 13 11 - -

t (sec.)
geo. mean 609.63 201.87 438.35 125.9 282.4 48.08 134.13

shifted 953.32 424.08 752.64 244.39 550.94 115.94 286.29
wins 0 6 1 7 3 - -

• Best dual bound also wins: 16 / 18, 2 cases where RQ wins
despite worse dual bound

•
20 / 24

Public convex instances

• 28 convex instances from public sources (QPLIB, Google
groups, ...)

• quite heterogeneous

• reformulation times always below 4 sec.

• 7 borderline convex instances (use Rλ!), 21 remaining:

no
RQ Rλ Rµ Rc

S virt. best
no-sdp

reform. virt. best
solved (18) 7 14 7 13 11 - -

t (sec.)
geo. mean 609.63 201.87 438.35 125.9 282.4 48.08 134.13

shifted 953.32 424.08 752.64 244.39 550.94 115.94 286.29
wins 0 6 1 7 3 - -

• Best dual bound also wins: 16 / 18, 2 cases where RQ wins
despite worse dual bound

•
20 / 24

What we have learned

• Which method works good/best depends on the problem
class, but also on the data!

• On borderline convex models use Rλ (i.e., a numerical
perturbation).

• Reformulations also interesting for already convex models.

• An SDP-based method can be the method of choice.

• A good dual bound is important, but not only.

21 / 24

What we have learned

• Which method works good/best depends on the problem
class, but also on the data!

• On borderline convex models use Rλ (i.e., a numerical
perturbation).

• Reformulations also interesting for already convex models.

• An SDP-based method can be the method of choice.

• A good dual bound is important, but not only.

21 / 24

What we have learned

• Which method works good/best depends on the problem
class, but also on the data!

• On borderline convex models use Rλ (i.e., a numerical
perturbation).

• Reformulations also interesting for already convex models.

• An SDP-based method can be the method of choice.

• A good dual bound is important, but not only.

21 / 24

What we have learned

• Which method works good/best depends on the problem
class, but also on the data!

• On borderline convex models use Rλ (i.e., a numerical
perturbation).

• Reformulations also interesting for already convex models.

• An SDP-based method can be the method of choice.

• A good dual bound is important, but not only.

21 / 24

Automatically choosing a reformulation?

• The best method for a given application may be established
experimentally.

• MOSEK 10 also has some heuristic for automatically
choosing a reformulation:

no
RQ Rλ Rµ Rc

S virt. best heur.
reform.

[Billionnet et al., 2016] - 512.73 362.5 136.82 79.67 70.35 79.61
BiqMac - 76.37 499.51 115.69 47.28 22.43 96.8

QPLIB non-convex - 1146.72 2403.35 1495.98 1361.53 572.06 1000.2
BLS 146.65 588.86 80.70 47.73 56.19 46.58 47.83

Public convex 953.32 424.08 752.64 244.39 550.94 115.94 218.33

• ... but a more sophisticated method for choosing is desirable,
see also [Bonami et al., 2022].

22 / 24

Automatically choosing a reformulation?

• The best method for a given application may be established
experimentally.

• MOSEK 10 also has some heuristic for automatically
choosing a reformulation:

no
RQ Rλ Rµ Rc

S virt. best heur.
reform.

[Billionnet et al., 2016] - 512.73 362.5 136.82 79.67 70.35 79.61
BiqMac - 76.37 499.51 115.69 47.28 22.43 96.8

QPLIB non-convex - 1146.72 2403.35 1495.98 1361.53 572.06 1000.2
BLS 146.65 588.86 80.70 47.73 56.19 46.58 47.83

Public convex 953.32 424.08 752.64 244.39 550.94 115.94 218.33

• ... but a more sophisticated method for choosing is desirable,
see also [Bonami et al., 2022].

22 / 24

Automatically choosing a reformulation?

• The best method for a given application may be established
experimentally.

• MOSEK 10 also has some heuristic for automatically
choosing a reformulation:

no
RQ Rλ Rµ Rc

S virt. best heur.
reform.

[Billionnet et al., 2016] - 512.73 362.5 136.82 79.67 70.35 79.61
BiqMac - 76.37 499.51 115.69 47.28 22.43 96.8

QPLIB non-convex - 1146.72 2403.35 1495.98 1361.53 572.06 1000.2
BLS 146.65 588.86 80.70 47.73 56.19 46.58 47.83

Public convex 953.32 424.08 752.64 244.39 550.94 115.94 218.33

• ... but a more sophisticated method for choosing is desirable,
see also [Bonami et al., 2022].

22 / 24

References I

[Billionnet et al., 2016] Billionnet, A., Elloumi, S., and Lambert,
A. (2016).
Exact quadratic convex reformulations of mixed-integer
quadratically constrained problems.
Math. Programming, 158:235–266.

[Bonami et al., 2022] Bonami, P., Lodi, A., and Zarpellon, G.
(2022).
A classifier to decide on the linearization of mixed-integer
quadratic problems in cplex.
Operations Research.

[Dong and Lou, 2018] Dong, H. and Lou, Y. (2018).
Compact disjunctive approximations to nonconvex quadratically
constrained programs.
Technical report.

23 / 24

References II

[Furini and Traversi, 2019] Furini, F. and Traversi, E. (2019).
Theoretical and computational study of several linearisation
techniques for binary quadratic problems.
Annals of Operations Research, 279(1):387–411.

[Glover and Wolsey, 1974] Glover, F. and Wolsey, L. (1974).
Converting the 0-1 polynomial programming problem to a 0-1
linear program.
Oper. Res., 22(1):180–182.

[Hammer and Rubin, 1970] Hammer, P. L. and Rubin, A. (1970).
Some remarks on quadratic programming with 0-1 variables.
RAIRO, 3:67–79.

24 / 24

