MuSEK

MOSEK 10: affine conic constraints, new
cones and more...

vy

Bethlehem, PA INTERNATIONAL
CONFERENCE

ON CONTINUOUS
OPTIMIZATION

Utkarsh Detha
utkarsh.detha@mosek.com

WWW.mosek.com

MOSEK ApS: all-in on cones

MOSEK is a solver for large-scale, continuous/mixed-integer
linear and conic programs.

Established in 1997 by the CEO, Erling D. Andersen.
Based in Copenhagen, Denmark.
Version 10 (beta) of MOSEK is now available on the website.

Free MOSEK cookbooks and trial licenses on the other side of this
talk!

1/33

Outline

Conic programming speedrun

Conic programming with MOSEK

Exercise in affine conic constraints

Disjunctive constraints

Performance improvements in MOSEK 10

2/33

DIY on Google colab

github.com/MOSEK/Tutorials/tree/master/
max-volume-cuboid

Max-volume axis-parallel cuboid inscribed in a Regular
Icosahedron

ts an exercise in using affine conic constraints and the geometric mean cone (introduced as a standalone domain in v10).
on 4.3.2

This notebook pre:
‘We implement the maximum volume cuboid example di sed in the MOSEK modelling c

Try on Google colab!

3/33

github.com/MOSEK/Tutorials/tree/master/max-volume-cuboid
github.com/MOSEK/Tutorials/tree/master/max-volume-cuboid

Section 1

Linear programs (LPs)

Primal:
min Al
X
s.t. Az >b
Dual:
max bTy
y
s.t. Ay =¢
y=>0

5/33

The winning traits of LPs

Theoretical and computational perspective:
® Farkas' lemma allows certifying infeasibilities.

® Duality theory can prove optimality by the means of zero
duality gap.

® Simplex/interior-point solvers make it easy to solve even
massive LPs.

Modeling perspective:
® Structurally simple and always convex.

® Modeling is “easy as ABC"; essentially amounts to specifying
A, band c.

6/33

Convex optimization programs

min - fo(z)

s.t. filz) <b Vi

I
3

Theoretical /computational perspective:

® Allows nonlinearity insofar as all f; are convex.

® Duality theory can be extended to convex programs.

® |nterior-point solvers quite capable at handling these problems.
Modeling perspective:

® \erifying the convexity of a function is NP-hard.

® The structure is too vague.

So, how does one bring over the structural qualities of LPs over to
convex programs? 7/33

Orderings of Euclidean spaces and cones [?]

Key idea: “Keep the f;(z)’s linear and introduce nonlinearity in
the inequality sign instead.”

The ordering “>" between Ax and b has the following properties:
@ Reflexivity: a > a
® Anti-symmetry: if a > band b > a, thena =10
© Transitivity: if a > band b> ¢, thena > ¢

O Linearity: if a > b and ¢ > d, then aa + B¢ > ab+ [d for
a,B > 0.

8/33

Orderings of Euclidean spaces and cones [?]

Element-wise inequality is not the only way to satisfy the
properties.

® g > bis an ordering and K is the subset of Euclidean space
that satisfies this ordering.

a>ckbesa—-b>2k0sa—-beKk.

The ordering is good if K is a convex cone.

9/33

Conic programs (CPs)

Primal:

min cx

s.t. Fx>rg

Dual:

max (g, \)

s.t. F*lA=c¢
A >+ 0

For a standard LP, K is simply the non-negative orthant, i.e. R'"".

10/33

Section 2

Interfaces to MOSEK

Toolbox

for Rmosek c°';?:!a"d AMPL Fusion API
MATLAB
| \ Python C++ Java .NET
C
Python Java .NET Optimizer API

MOSEK also interfaces with popular third-party modeling tools
such as CVXPY, GAMS, AMPL, Pyomo, JuMP etc.

12/33

Optimizer API vs Fusion API

Optimizer API characteristics:
® Matrix oriented interface.

® Data is entered in sparse format allowing huge problems to be
entered and solved easily.

® |owest over-head out of all interfaces to MOSEK.
Fusion API characteristics:

® Expression oriented interface; code will closely resemble
mathematical formulation.
® \ery intuitive and allows fast-prototyping of problems.
® Despite being a layer on top of the Optimizer API, the
performance overhead is minimal.
The performance is close enough that the choice is upto the

use-case.
13/33

MOSEK 10 feature: Affine conic constraints

Optimizer APl in MOSEK 10 allows restricting affine expressions
to conic domains in CPs:

min L
x

s.t. Fr>xg & Fr+gek

Primary advantages:
® Conic slacks are no longer essential.
® The same, simple problem struture as discussed before.

® Simplifies the process of expanding MOSEK's repertoire as
new cones are included.

14/33

Linear cones in MOSEK 10 v

LPs can be modelled using affine conic constraints restricted to the
following domains:

e R"
Ry (=0)
RY (2 0)
e R"” (<£0)
NOTE: The old approach for specifying linear data is required to
use the simplex solver for LPs.

15/33

Symmetric nonlinear cones in MOSEK 10

Symmetric cones are self-dual and homogenous.

® Quadratic cone

Q"= axecR": 29>

® Rotated quadratic cone
n—1
Qr = xER":2xoxlzzx?, x9g>0, x1>0
Jj=2
¢ Positive semidefinite cone (for variables)

S:_:{XEST:ZTXZZO, VZERT}
(Vectorized positive semidefinite cone for ACCs. Think LMIs!)

16/33

Non-symmetric nonlinear cones in MOSEK 10

The following non-symmetric cones and their dual cones are
supported in MOSEK 10:

® Primal exponential cone
{:U eER?: 20> m exp(za/r1), To,x1 > 0}
® Primal power cone (n—dimensional)

® Primal geometric mean cone

n—2 1/(n-1)
zcR" : (Hmz> > |zp—1|, 0., Tn-2>0
i=0

17/33

Section 3

Maximum volume cuboid

Q: How to find the max-volume axis-parallel cuboid inscribed in a
conic representable set, K € R", such as a regular icosahedron?

A:
max t
z,t,p
s.t. (1)% >t
(pl—i—elajl, copnteéir,) e K eé- €{0,1}
x>0
where,

® pc R" is the left-most corner of the cuboid.
® 1, are edge lengths and t" the volume of the cuboid

e Vectors ¢/ enumerate vertices of the cuboid (Eg.:

{000}, {001},...,{111}) .

19/33

Convex hull of polyhedron vertices

If K' = conv(vertices), then the second set of constraints becomes:

(pl—l—eilxl,...,pn—i—e;xn):u"lv1+---+uﬁnvm Vi=1,...,2"

m
> ub=1 Vi=1,...,2"
j=1
u>0
where:
® v, (k=1,...,m) are vertices of the polyhedron, each an
n-vector.

° u; are scalar variables used in the convex combination of the
polyhedron vertices.

® The index 7 runs from 1,...,2", corresponding to each cuboid

vertex. 20/33

Affine conic constriant formulation

Matrix form of the model conceptually resembles the following:

max t
m’t7p’u

1 x n
[T)[7] em

x
E I — t
HEEN|
U
z,u >0
€1 vl op’
where, B = V= : :
e, v} v

21/33

Optimizer APl implementation

@ Create a MOSEK task object:

MOSEK TASK
task = Task()
task.set_Stream(streamtype.log, streamprinter)

® Variables: append variables to task and set bounds.

VARIABLES: dim(z) = n; dim(t) = 1; dim(p) = n
task.appendvars (2+n+1)
task.putvarboundsliceconst (0, n, boundkey.lo, O, inf)
task.putvarboundsliceconst(n,
2*n+1,
boundkey.fr, -inf, inf)

22/33

Optimizer APl implementation

® ACCs:

GEOMETRIC MEAN CONE:
1. AFE
task.appendafes(n+1)
task.putafefentrylist(range(n+1),
range(n+1),
[1.0]*(n+1))
2. Domain
geo_cone = task.appendprimalgeomeanconedomain(n+1)
3. AFE \in Domain --> ACC
task.appendacc(geo_cone, range(n+1), None)

CONVEX HULL CONSTRAINTS:
Re-use this domain instance for all ACCs hereafter.
r_zero = task.appendrzerodomain(n+1)

One ACC for each wvertex of the cuboid
for i, c_v in enumerate(cuboid):

convexHullConstraint (task, polyhedron, c_v, r_zero) 23/33

Optimizer APl implementation

© def convexHullConstraint(task, p_v, c_v, dom):
m, n = len(p_v), len(p_v[0])
nvar, nafe = task.getnumvar(), task.getnumafe()
VARIABLES: dim(u) = m
task.appendvars (m)
task.putvarboundsliceconst (nvar, nvar+m,
boundkey.lo, O, inf)
Append n+1 affine expressions to the task.
task.appendafes(n+1)
for i in range(n):
task.putafefrow(nafe + i,
[i,i+n+1]+1list(range (nvar,nvar+m)),
[c_v[i], 1.0] + list(-p_v[:, il))
task.putafefrow(nafe + n,
range (nvar, nvar+m),
[1.0]*m)
task.putafeg(nafe + n, -1)
Construct the ACC

task.appendacc(dom, range(nafe, nafe+n+1), None) 233

task optimize()

Objective sense : maximize
: CONIC (conic optimization problem)

Constraints

Affine conic cons. 9

Disjunctive cons. 0

Cones : 0

Scalar variables 1

Matrix variables 0

Integer variables 0

Optimizer - threads : 8

Optimizer - solved problem : the primal

Optimizer - Constraints 133

Optimizer - Cones ;3

Optimizer - Scalar variables 106 conic 1 10
Optimizer - Semi-definite varlables 0 scalarized)

Factor - setup time 1 0.00 dense det. time 1 0.00
Factor - ML order time 1 0.00 GP order time + 0.00
Factor - nonzeros before factor : 345 after factor 1 345
Factor - dense dim. : flops 1 7.46e+03
ITE PFEAS DFEAS GFEAS FRSTATUS POBJ DOBJ MU TIME
0 1.3e+00 1.3e+00 1.0e+00 0.00e+00 ©O. 0 0. 00 1.0e+00 0.01
1 1.0e+00 1.0e+00 7.0e-01 6.38e+00 5.996194085e-01 8.628658378e-02 7.7e-01 0.03
2 6.le-01 6.1e-01 3.9e-01 1.81e+00 1.197930307e+00 7.154515869e-01 4.7e-01 0.03
3 8.8e-02 8.8e-02 1.8e-02 1.21e+00 1.678293298e+00 1.633318388e+00 6.8e-02 0.03
4 4.5e-03 4.5e-03 2.2e-04 1.05e+00 1.741507264e+00 1.738847012e+00 3.5e-03 0.03
5 1.4e-04 1.4e-04 1.le-06 1.00e+00 1.745179991e+00 1.745100951e+00 1.0e-04 0.03
6 3.1e-06 3.1e-06 3.9e-09 1.00e+00 1.745351325e+00 1.745349557e+00 2.4e-06 0.03
7 1.2e-08 1.2e-08 9.7e-13 1.00e+00 1.745355973e+00 1.745355966e+00 9.4e-09 0.03
Optimizer terminated. Time: 0.04

Interior-point solution summary
Problem status : PRIMAL_AND_DUAL_ FEASIBLE
Solution status : OPTIMAL
Primal. obj: 1.7453559726e+00 nrm: 2e+00 Viol. var: 2e-09 acc: 4e-09
Dual. obj: 1.7453559656e+00 nrm: le+00 Viol. wvar: 4e-09 acc: 0e+00

Volume of the inscribed cuboid = 5.3168211243744

25/33

Biggest axis-parallel cuboid

26/33

Section 4

Disjunction of conjunction of ACCs

MOSEK 10 introduces language for stating disjunctive constraints
which are logical-or (optionally logical-and) based combinations of
affine conditions.

Tij = Dijo + d;j € Dij
1
T, =T;1 and T;9 and ---

i
DIC=TiorTyor ---

This language is incorporated into both the Optimizer API and the
Fusion API.

28/33

Section 5

Pedal to all the metals! :

® Native support for Apple silicon.
Multi-threading support on Linux ARM 64-bit.

® Significantly improved interior-point performance on AMD
CPUs.

Dramatically better multi-threaded performance on special
SDPs.

30/33

Optimizing the optimizer

® Presolve: significant improvements for conic problems and
mixed-integer problems.

® |nterior-point solver: better performance on large-scale LPs

® Mixed-integer optimizer: introduced symmetry detection and
reformulation methods for MIQCQPs. Improved cutting-plane
separation.

® Faster file I/O and introduction of the PTF human-readable
file format for CPs and SDPs.

31/33

Further information

® Mosek https://mosek.com
® Trial and free academic license.

® Solves linear and conic mixed problems.
® Interfaces C/C++, Java, Julia, Matlab, R, Python, ...
® Documentation at
https://www.mosek.com/documentation/
® Modeling cookbook.
® Portfolio optimization cookbook.
® Modeling cheat sheet.
® Examples
® Tutorials at Github:
https://github.com/MOSEK/Tutorials
® Example + 30 day license: https://github.com/MOSEK/
Tutorials/tree/master/max-volume-cuboid

32/33

https://mosek.com
https://www.mosek.com/documentation/
https://github.com/MOSEK/Tutorials
https://github.com/MOSEK/Tutorials/tree/master/max-volume-cuboid
https://github.com/MOSEK/Tutorials/tree/master/max-volume-cuboid

References |

[1] A. Ben-Tal and A. Nemirovski.
Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications.
MPS/SIAM Series on Optimization. SIAM, 2001.

33/33

	Conic programming speedrun
	Conic programming with MOSEK
	Exercise in affine conic constraints
	Disjunctive constraints
	Performance improvements in MOSEK 10

