
MOSEK 10: affine conic constraints, new
cones and more...

Utkarsh Detha
utkarsh.detha@mosek.com

www.mosek.com

MOSEK ApS: all-in on cones

• MOSEK is a solver for large-scale, continuous/mixed-integer
linear and conic programs.

• Established in 1997 by the CEO, Erling D. Andersen.

• Based in Copenhagen, Denmark.

• Version 10 (beta) of MOSEK is now available on the website.

Free MOSEK cookbooks and trial licenses on the other side of this
talk!

1 / 33

Outline

Conic programming speedrun

Conic programming with MOSEK

Exercise in affine conic constraints

Disjunctive constraints

Performance improvements in MOSEK 10

2 / 33

DIY on Google colab

github.com/MOSEK/Tutorials/tree/master/

max-volume-cuboid

3 / 33

github.com/MOSEK/Tutorials/tree/master/max-volume-cuboid
github.com/MOSEK/Tutorials/tree/master/max-volume-cuboid

Section 1

Conic programming speedrun

Linear programs (LPs)

Primal:

min
x

cTx

s.t. Ax ≥ b

Dual:

max
y

bT y

s.t. AT y = c

y ≥ 0

5 / 33

The winning traits of LPs

Theoretical and computational perspective:

• Farkas’ lemma allows certifying infeasibilities.

• Duality theory can prove optimality by the means of zero
duality gap.

• Simplex/interior-point solvers make it easy to solve even
massive LPs.

Modeling perspective:

• Structurally simple and always convex.

• Modeling is “easy as ABC”; essentially amounts to specifying
A, b and c.

6 / 33

Convex optimization programs

min
x

f0(x)

s.t. fi(x) ≤ b ∀i = 1 . . . m

Theoretical/computational perspective:

• Allows nonlinearity insofar as all fi are convex.

• Duality theory can be extended to convex programs.

• Interior-point solvers quite capable at handling these problems.

Modeling perspective:

• Verifying the convexity of a function is NP-hard.

• The structure is too vague.

So, how does one bring over the structural qualities of LPs over to
convex programs? 7 / 33

Orderings of Euclidean spaces and cones [?]

Key idea: “Keep the fi(x)’s linear and introduce nonlinearity in
the inequality sign instead.”

The ordering “≥” between Ax and b has the following properties:

1 Reflexivity: a ≥ a
2 Anti-symmetry: if a ≥ b and b ≥ a, then a = b

3 Transitivity: if a ≥ b and b ≥ c, then a ≥ c
4 Linearity: if a ≥ b and c ≥ d, then αa+ βc ≥ αb+ βd for
α, β ≥ 0.

8 / 33

Orderings of Euclidean spaces and cones [?]

• Element-wise inequality is not the only way to satisfy the
properties.

• a ≥K b is an ordering and K is the subset of Euclidean space
that satisfies this ordering.

• a ≥K b⇔ a− b ≥K 0⇔ a− b ∈ K.

• The ordering is good if K is a convex cone.

9 / 33

Conic programs (CPs)

Primal:

min
x

cTx

s.t. Fx ≥K g

Dual:

max
x

〈g, λ〉

s.t. F ∗λ = c

λ ≥K∗ 0

For a standard LP, K is simply the non-negative orthant, i.e. Rm+ .

10 / 33

Section 2

Conic programming with MOSEK

Interfaces to MOSEK

MOSEK also interfaces with popular third-party modeling tools
such as CVXPY, GAMS, AMPL, Pyomo, JuMP etc.

12 / 33

Optimizer API vs Fusion API

Optimizer API characteristics:

• Matrix oriented interface.

• Data is entered in sparse format allowing huge problems to be
entered and solved easily.

• Lowest over-head out of all interfaces to MOSEK.

Fusion API characteristics:

• Expression oriented interface; code will closely resemble
mathematical formulation.

• Very intuitive and allows fast-prototyping of problems.

• Despite being a layer on top of the Optimizer API, the
performance overhead is minimal.

The performance is close enough that the choice is upto the
use-case.

13 / 33

MOSEK 10 feature: Affine conic constraints

Optimizer API in MOSEK 10 allows restricting affine expressions
to conic domains in CPs:

min
x

cTx

s.t. Fx ≥K g ⇔ Fx+ g ∈ K

Primary advantages:

• Conic slacks are no longer essential.

• The same, simple problem struture as discussed before.

• Simplifies the process of expanding MOSEK’s repertoire as
new cones are included.

14 / 33

Linear cones in MOSEK 10

LPs can be modelled using affine conic constraints restricted to the
following domains:

• Rn

• Rn0 (= 0)

• Rn+ (≥ 0)

• Rn− (≤ 0)

NOTE: The old approach for specifying linear data is required to
use the simplex solver for LPs.

15 / 33

Symmetric nonlinear cones in MOSEK 10

Symmetric cones are self-dual and homogenous.

• Quadratic cone

Qn =

x ∈ Rn : x0 ≥

√√√√n−1∑
j=1

x2j


• Rotated quadratic cone

Qnr =

x ∈ Rn : 2x0x1 ≥
n−1∑
j=2

x2j , x0 ≥ 0, x1 ≥ 0


• Positive semidefinite cone (for variables)
Sr+ =

{
X ∈ Sr : zTXz ≥ 0, ∀z ∈ Rr

}
(Vectorized positive semidefinite cone for ACCs. Think LMIs!)

16 / 33

Non-symmetric nonlinear cones in MOSEK 10

The following non-symmetric cones and their dual cones are
supported in MOSEK 10:

• Primal exponential cone{
x ∈ R3 : x0 ≥ x1 exp(x2/x1), x0, x1 ≥ 0

}
• Primal power cone (n−dimensional)x ∈ Rn :

n`−1∏
i=0

xβii ≥

√√√√ n−1∑
j=n`

x2j , x0 . . . , xn`−1 ≥ 0


• Primal geometric mean conex ∈ Rn :

(
n−2∏
i=0

xi

)1/(n−1)

≥ |xn−1|, x0 . . . , xn−2 ≥ 0


17 / 33

Section 3

Exercise in affine conic constraints

Maximum volume cuboid

Q: How to find the max-volume axis-parallel cuboid inscribed in a
conic representable set, K ∈ Rn, such as a regular icosahedron?
A:

max
x,t,p

t

s.t. (x1 . . . xn)
1
n ≥ t

(p1 + ei1x1, . . . , pn + einxn) ∈ K eij ∈ {0, 1}
x ≥ 0

where,

• p ∈ Rn is the left-most corner of the cuboid.

• xj are edge lengths and tn the volume of the cuboid

• Vectors ej enumerate vertices of the cuboid (Eg.:
{000}, {001}, . . . , {111}) .

19 / 33

Convex hull of polyhedron vertices

If K = conv(vertices), then the second set of constraints becomes:

(p1 + ei1x1, . . . , pn + einxn) = ui1v1 + · · ·+ uimvm ∀i = 1, . . . , 2n

m∑
j=1

uij = 1 ∀i = 1, . . . , 2n

u ≥ 0

where:

• vk (k = 1, . . . ,m) are vertices of the polyhedron, each an
n-vector.

• uij are scalar variables used in the convex combination of the
polyhedron vertices.

• The index i runs from 1, . . . , 2n, corresponding to each cuboid
vertex. 20 / 33

Affine conic constriant formulation

Matrix form of the model conceptually resembles the following:

max
x,t,p,u

t

s.t.

[
I

1

] [
x
t

]
∈ Kn+1

geo

[
Ei 0 I · · · −V
· · · 0 · · · 1

]
x
t
p

ui

+

[
0
−1

]
∈ Rn+1

0 ∀i = 1, . . . , 2n

x, u ≥ 0

where, Ei =

 ei1
. . .

ein

 ; V =

 v11 vm1
... · · ·

...
v1n vmn


21 / 33

Optimizer API implementation

1 Create a MOSEK task object:

MOSEK TASK

task = Task()

task.set_Stream(streamtype.log, streamprinter)

2 Variables: append variables to task and set bounds.

VARIABLES: dim(x) = n; dim(t) = 1; dim(p) = n

task.appendvars(2*n+1)

task.putvarboundsliceconst(0, n, boundkey.lo, 0, inf)

task.putvarboundsliceconst(n,

2*n+1,

boundkey.fr, -inf, inf)

22 / 33

Optimizer API implementation

3 ACCs:

GEOMETRIC MEAN CONE:

1. AFE

task.appendafes(n+1)

task.putafefentrylist(range(n+1),

range(n+1),

[1.0]*(n+1))

2. Domain

geo_cone = task.appendprimalgeomeanconedomain(n+1)

3. AFE \in Domain --> ACC

task.appendacc(geo_cone, range(n+1), None)

CONVEX HULL CONSTRAINTS:

Re-use this domain instance for all ACCs hereafter.

r_zero = task.appendrzerodomain(n+1)

One ACC for each vertex of the cuboid

for i, c_v in enumerate(cuboid):

convexHullConstraint(task, polyhedron, c_v, r_zero)
23 / 33

Optimizer API implementation

3 def convexHullConstraint(task, p_v, c_v, dom):

m, n = len(p_v), len(p_v[0])

nvar, nafe = task.getnumvar(), task.getnumafe()

VARIABLES: dim(u) = m

task.appendvars(m)

task.putvarboundsliceconst(nvar, nvar+m,

boundkey.lo, 0, inf)

Append n+1 affine expressions to the task.

task.appendafes(n+1)

for i in range(n):

task.putafefrow(nafe + i,

[i,i+n+1]+list(range(nvar,nvar+m)),

[c_v[i], 1.0] + list(-p_v[:, i]))

task.putafefrow(nafe + n,

range(nvar, nvar+m),

[1.0]*m)

task.putafeg(nafe + n, -1)

Construct the ACC

task.appendacc(dom, range(nafe, nafe+n+1), None)
24 / 33

task.optimize()

25 / 33

Biggest axis-parallel cuboid

26 / 33

Section 4

Disjunctive constraints

Disjunction of conjunction of ACCs

MOSEK 10 introduces language for stating disjunctive constraints
which are logical-or (optionally logical-and) based combinations of
affine conditions.

Tij = Dijx+ dij ∈ Dij
↓

Ti = Ti1 and Ti2 and · · ·
↓

DJC = T1 or T2 or · · ·

This language is incorporated into both the Optimizer API and the
Fusion API.

28 / 33

Section 5

Performance improvements in MOSEK 10

Pedal to all the metals!

• Native support for Apple silicon.

• Multi-threading support on Linux ARM 64-bit.

• Significantly improved interior-point performance on AMD
CPUs.

• Dramatically better multi-threaded performance on special
SDPs.

30 / 33

Optimizing the optimizer

• Presolve: significant improvements for conic problems and
mixed-integer problems.

• Interior-point solver: better performance on large-scale LPs

• Mixed-integer optimizer: introduced symmetry detection and
reformulation methods for MIQCQPs. Improved cutting-plane
separation.

• Faster file I/O and introduction of the PTF human-readable
file format for CPs and SDPs.

31 / 33

Further information

• Mosek https://mosek.com
• Trial and free academic license.
• Solves linear and conic mixed problems.
• Interfaces C/C++, Java, Julia, Matlab, R, Python, ...

• Documentation at
https://www.mosek.com/documentation/
• Modeling cookbook.
• Portfolio optimization cookbook.
• Modeling cheat sheet.

• Examples
• Tutorials at Github:
https://github.com/MOSEK/Tutorials

• Example + 30 day license: https://github.com/MOSEK/

Tutorials/tree/master/max-volume-cuboid

32 / 33

https://mosek.com
https://www.mosek.com/documentation/
https://github.com/MOSEK/Tutorials
https://github.com/MOSEK/Tutorials/tree/master/max-volume-cuboid
https://github.com/MOSEK/Tutorials/tree/master/max-volume-cuboid

References I

[1] A. Ben-Tal and A. Nemirovski.
Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications.
MPS/SIAM Series on Optimization. SIAM, 2001.

33 / 33

	Conic programming speedrun
	Conic programming with MOSEK
	Exercise in affine conic constraints
	Disjunctive constraints
	Performance improvements in MOSEK 10

