
The conic advantage in MINLP

MINLP Virtual Workshop 2021, June 28-29

Henrik A. Friberg

www.mosek.com







• Lagrangian duality theory can be used to derive conic
optimization as the natural extension.



• Best practices in MINLP leads to conic optimization.



Best practices for MINLP

minimize f(x)
subject to gi(x) ≤ 0, ∀i = 1, . . . , k,

xj ∈ Z, ∀j ∈ I.

1. Migrate to a linear objective function

From Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan:

min x1 + x22 −→ min x1 + t, t ≥ x22

- Avoid interior solutions (which cannot be separated by cuts).



Best practices for MINLP

minimize f(x)
subject to gi(x) ≤ 0, ∀i = 1, . . . , k,

xj ∈ Z, ∀j ∈ I.

1. Migrate to a linear objective function

From Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan1:

min x1 + x22 −→ min x1 + t, t ≥ x22

- Avoid interior solutions (which cannot be separated by cuts).

1Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan (2013):
Mixed-integer nonlinear optimization, Acta Numerica, 22.



Best practices for MINLP

minimize cTx
subject to gi(x) ≤ 0, ∀i = 1, . . . , k,

xj ∈ Z, ∀j ∈ I.

1. Migrate to a linear objective function

From Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan1:

min x1 + x22 −→ min x1 + t, t ≥ x22

- Avoid interior solutions (which cannot be separated by cuts).

1Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan (2013):
Mixed-integer nonlinear optimization, Acta Numerica, 22.



Best practices for MINLP

minimize cTx
subject to gi(x) ≤ 0, ∀i = 1, . . . , k,

xj ∈ Z, ∀j ∈ I.

2. Distinguish convexity

- Avoid unnecessary spatial branching.



Best practices for MINLP

minimize cTx
subject to gi(x) ≤ 0, ∀i = 1, . . . , k,

gci (x) ≤ 0, ∀i = 1, . . . , kc,
xj ∈ Z, ∀j ∈ I.

2. Distinguish convexity

- Avoid unnecessary spatial branching.



Best practices for MINLP

minimize cTx
subject to gi(x) ≤ 0, ∀i = 1, . . . , k,

gci (x) ≤ 0, ∀i = 1, . . . , kc,
xj ∈ Z, ∀j ∈ I.

3. Implement your model using built-in atoms

Lack of callback functions imply:

- Easier to debug the MINLP solver.

- No callback overhead.

- No fear of ill-defined boundary points. For example,
• The value of log(x) near x = 0.
• The gradient of ‖x‖2 near x = 0.



Best practices for MINLP

minimize cTx
subject to gi(x) ≤ 0, ∀i = 1, . . . , k,

gci (x) ≤ 0, ∀i = 1, . . . , kc,
xj ∈ Z, ∀j ∈ I.

3. Implement your model using built-in atoms

Possible atoms:

t ≤ log(x), t ≥
√
x21 + x22,

(hypograph of logarithm), (epigraph of 2-norm).

Use of such built-in atoms imply:

- Solvers can specialize for stability and high performance.

, You are limited to a predefined set of atoms.



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

3. Implement your model using built-in atoms

Possible atoms:

t ≤ log(x), t ≥
√
x21 + x22,

(hypograph of logarithm), (epigraph of 2-norm).

Use of such built-in atoms imply:

- Solvers can specialize for stability and high performance.

, You are limited to a predefined set of atoms.



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

3. Implement your model using built-in atoms

Possible atoms:

t ≤ log(x), t ≥
√
x21 + x22,

(hypograph of logarithm), (epigraph of 2-norm).

Use of such built-in atoms imply:

- Solvers can specialize for stability and high performance.

, You are limited to a predefined set of atoms.



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

3. Implement your model using built-in atoms

To summarize, the set of atoms should be

• Numerically stable,

• Distinguish convexity,

• Versatile (so they can cover a wide range of applications).



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

• Ceria and Soares1 characterized the closed convex hull of the
union of convex sets using perspective transformation.

• E.g., to be used on a disjunction [x ≤ 0] ∨ [x ≥ 1].

1Ceria and Soares (1999): Convex programming for disjunctive
optimization, Mathematical Programming, 86.



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

• Günlük and Linderoth2 tightened a bunch of common sets
with perspective transformation and promoted it as a useful
tool for MINLPs with binary on-off relationships.

2Günlük and Linderoth (2012): Perspective reformulation and applications,
Mixed Integer Nonlinear Programming, 154.



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Support g̃(x, s) = g(x/s) for s ≥ 0:

Did you notice the abuse of notation?

t ≤ log(x),

(hypograph of logarithm),

t ≥
√
x21 + x22,

(epigraph of 2-norm),



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Support g̃(x, s) = g(x/s) for s ≥ 0:

Did you notice the abuse of notation?

t ≤ log(x),

(hypograph of logarithm),

t ≥
√
x21 + x22,

(epigraph of 2-norm),



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Support g̃(x, s) = g(x/s) for s ≥ 0:

Did you notice the abuse of notation?

t/s ≤ log(x/s),

(hypograph of logarithm),

t ≥
√
x21 + x22,

(epigraph of 2-norm),



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Support g̃(x, s) = g(x/s) for s ≥ 0:

Did you notice the abuse of notation?

t ≤ s log(x/s),
(exponential cone),

t ≥
√
x21 + x22,

(epigraph of 2-norm),



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Support g̃(x, s) = g(x/s) for s ≥ 0:

Did you notice the abuse of notation?

t ≤ s log(x/s),
(exponential cone),

t ≥
√
x21 + x22,

(epigraph of 2-norm),



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Support g̃(x, s) = g(x/s) for s ≥ 0:

Did you notice the abuse of notation?

t ≤ s log(x/s),
(exponential cone),

t ≥
√
x21 + x22,

(quadratic cone),



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Support g̃(x, s) = g(x/s) for s ≥ 0:

Did you notice the abuse of notation?

t ≤ s log(x/s),
(exponential cone),

t ≥
√
x21 + x22,

(quadratic cone),



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Hence, rather than:
t ≤ s g(x/s), s ≥ 0

we write:

Kg = cl {(t, s, x) :

t ≤ s g(x/s), s > 0

}



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Hence, rather than:
t ≤ s g(x/s), s ≥ 0

we write:

Kg = cl

{(t, s, x) : t ≤ s g(x/s), s > 0}



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Hence, rather than:
t ≤ s g(x/s), s ≥ 0

we write:

Kg =

cl {(t, s, x) : t ≤ s g(x/s), s > 0}



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Hence, rather than:
t ≤ s g(x/s), s ≥ 0

we write:
Kg = cl {(t, s, x) : t ≤ s g(x/s), s > 0}



Best practices for MINLP

minimize cTx
subject to Ax = b,

gi(x
(i)) ≤ 0, ∀i = 1, . . . , k,

gci (x
(i)) ≤ 0, ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Hence, rather than:
t ≤ s g(x/s), s ≥ 0

we write:
Kg = cl {(t, s, x) : t ≤ s g(x/s), s > 0}



Best practices for MINLP

minimize cTx
subject to Ax = b,

x(i) ∈ Ki, ∀i = 1, . . . , k,

x(i) ∈ Kc
i , ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

4. Implement solvers to support perspective transformation

Hence, rather than:
t ≤ s g(x/s), s ≥ 0

we write:
Kg = cl {(t, s, x) : t ≤ s g(x/s), s > 0}



Best practices for MINLP

minimize cTx
subject to Ax = b,

x(i) ∈ Ki, ∀i = 1, . . . , k,

x(i) ∈ Kc
i , ∀i = 1, . . . , kc,

l ≤ x ≤ u, xj ∈ Z, ∀j ∈ I.

Journey complete!

1 Migrate to a linear objective function.

2 Distinguish convexity.

3 Implement your model using built-in atoms.

4 Implement solvers to support perspective transformation.

=⇒ Mixed-integer general conic optimization.



Resources for mixed-integer conic optimization

• Günlük and Linderoth (2012): Perspective reformulation and applications,
Mixed Integer Nonlinear Programming, 154.

• Lodi, Tanneau and Vielma (2020): Disjunctive cuts for Mixed-Integer
Conic Optimization.

• Belotti, Goez, Polik, Ralphs and Terlaky (2017): A complete
characterization of disjunctive conic cuts for mixed integer second order
cone optimization, Discrete Optimization, 24.

• Shahabsafa, Goez and Terlaky (2018): On pathological disjunctions and
redundant disjunctive conic cuts. Operations Research Letters, 46(5).

• Coey, Lubin, Vielma (2020): Outer approximation with conic certificates
for mixed-integer convex problems, Mathematical Programming
Computation, 12.

, You are limited to a predefined set of atoms.



Resources for mixed-integer conic optimization

• Günlük and Linderoth (2012): Perspective reformulation and applications,
Mixed Integer Nonlinear Programming, 154.

• Lodi, Tanneau and Vielma (2020): Disjunctive cuts for Mixed-Integer
Conic Optimization.

• Belotti, Goez, Polik, Ralphs and Terlaky (2017): A complete
characterization of disjunctive conic cuts for mixed integer second order
cone optimization, Discrete Optimization, 24.

• Shahabsafa, Goez and Terlaky (2018): On pathological disjunctions and
redundant disjunctive conic cuts. Operations Research Letters, 46(5).

• Coey, Lubin, Vielma (2020): Outer approximation with conic certificates
for mixed-integer convex problems, Mathematical Programming
Computation, 12.

, You are limited to a predefined set of atoms.



Important questions

• What cones to support?

• How to decompose nonlinear constraints into conic atoms?



What cones to support?

• Numerically stable + distinguish convexity + versatile.

• Support perspective transformation

Idea: Convex+ low degree of nonlinearity (i.e., quadratic-like),
so Newton-type methods are expected to solve the
relaxations faster.

Seminal work by Nesterov and Todd

• Coined a property called ”self-scaled”.

• Such cones achieve the best known global convergence rate
among Newton-type methods.

• Characterized as the set of symmetric cones.



What cones to support?

• Numerically stable + distinguish convexity + versatile.

• Support perspective transformation (trivial).

Idea: Convex+ low degree of nonlinearity (i.e., quadratic-like),
so Newton-type methods are expected to solve the
relaxations faster.

Seminal work by Nesterov and Todd

• Coined a property called ”self-scaled”.

• Such cones achieve the best known global convergence rate
among Newton-type methods.

• Characterized as the set of symmetric cones.



What cones to support?

• Numerically stable + distinguish convexity + versatile.

• Support perspective transformation (trivial).

Idea: Convex+ low degree of nonlinearity (i.e., quadratic-like),
so Newton-type methods are expected to solve the
relaxations faster.

Seminal work by Nesterov and Todd

• Coined a property called ”self-scaled”.

• Such cones achieve the best known global convergence rate
among Newton-type methods.

• Characterized as the set of symmetric cones.



What cones to support?

• Numerically stable + distinguish convexity + versatile.

• Support perspective transformation (trivial).

Idea: Convex+ low degree of nonlinearity (i.e., quadratic-like),
so Newton-type methods are expected to solve the
relaxations faster.

Seminal work by Nesterov and Todd3

• Coined a property called ”self-scaled”.

• Such cones achieve the best known global convergence rate
among Newton-type methods.

• Characterized as the set of symmetric cones.

3Nesterov and Todd (1997): Self-Scaled Barriers and Interior-Point
Methods for Convex Programming, Mathematics of Operations Research, 22.



What cones to support?
The MOSEK selection

3 nonlinear symmetric cones:

• Quadratic: {(t, x) : t ≥ ‖x‖2}.
• Rotated quadratic: {(t, s, x) : 2ts ≥ ‖x‖22, t ≥ 0, s ≥ 0}.
• Semidefinite: X � 0.

2 nonsymmetric cones:

• Exponential: cl{(t, s, x) : t ≥ s exp(x/s), s > 0}.
• Power: {(t, s, x) : tαs1−α ≥ ‖x‖2, t ≥ 0, s ≥ 0} for any

parameter 0 < α < 1.

Observation:

• Almost all convex optimization problems appearing in
practice can be formulated using those 5 cones.



What cones to support?
The MOSEK selection

3 nonlinear symmetric cones:

• Quadratic: {(t, x) : t ≥ ‖x‖2}.
• Rotated quadratic: {(t, s, x) : 2ts ≥ ‖x‖22, t ≥ 0, s ≥ 0}.
• Semidefinite: X � 0.

2 nonsymmetric cones:

• Exponential: cl{(t, s, x) : t ≥ s exp(x/s), s > 0}.
• Power: {(t, s, x) : tαs1−α ≥ ‖x‖2, t ≥ 0, s ≥ 0} for any

parameter 0 < α < 1.

Observation:

• Lubin et. al.4: all convex instances in MINLPLIB 2.0 (i.e., 333)
are representable using these cones.

4
Lubin, Yamangil, Bent and Vielma (2018): Polyhedral approximation in

mixed-integer convex optimization, Mathematical Programming, 172(1).



How to decompose nonlinear constraints?

Figure: The MOSEK modeling cookbook
(www.mosek.com/documentation)

www.mosek.com/documentation


How to decompose nonlinear constraints?

1 t ≤ x
√
1− x

=
(
x
)
·
(√

1− x
)
.

2 t ≤ y1y2 is not possible.
(Hessian matrix of y1y2 is indefinite everywhere).

3 So relation is important, namely:[
y2 =

√
1− y1

]
⇔
[
y1 = 1− y22

]
⇔
[
y1y2 = y2 − y32

]
.

4 t ≤
√
1− x− (1− x)3/2 = r1 − r2, where

r1 ≤
√
1− x,

(rotated quadratic cone),
r2 ≥ (1− x)3/2,

(power cone).



How to decompose nonlinear constraints?

1 t ≤ x
√
1− x =

(
x
)
·
(√

1− x
)
.

2 t ≤ y1y2 is not possible.
(Hessian matrix of y1y2 is indefinite everywhere).

3 So relation is important, namely:[
y2 =

√
1− y1

]
⇔
[
y1 = 1− y22

]
⇔
[
y1y2 = y2 − y32

]
.

4 t ≤
√
1− x− (1− x)3/2 = r1 − r2, where

r1 ≤
√
1− x,

(rotated quadratic cone),
r2 ≥ (1− x)3/2,

(power cone).



How to decompose nonlinear constraints?

1 t ≤ x
√
1− x =

(
x
)
·
(√

1− x
)
.

2 t ≤ y1y2 is not possible.
(Hessian matrix of y1y2 is indefinite everywhere).

3 So relation is important, namely:[
y2 =

√
1− y1

]
⇔
[
y1 = 1− y22

]
⇔
[
y1y2 = y2 − y32

]
.

4 t ≤
√
1− x− (1− x)3/2 = r1 − r2, where

r1 ≤
√
1− x,

(rotated quadratic cone),
r2 ≥ (1− x)3/2,

(power cone).



How to decompose nonlinear constraints?

1 t ≤ x
√
1− x =

(
x
)
·
(√

1− x
)
.

2 t ≤ y1y2 is not possible.
(Hessian matrix of y1y2 is indefinite everywhere).

3 So relation is important, namely:[
y2 =

√
1− y1

]
⇔
[
y1 = 1− y22

]
⇔
[
y1y2 = y2 − y32

]
.

4 t ≤
√
1− x− (1− x)3/2 = r1 − r2, where

r1 ≤
√
1− x,

(rotated quadratic cone),
r2 ≥ (1− x)3/2,

(power cone).



How to decompose nonlinear constraints?

1 t ≤ x
√
1− x =

(
x
)
·
(√

1− x
)
.

2 t ≤ y1y2 is not possible.
(Hessian matrix of y1y2 is indefinite everywhere).

3 So relation is important, namely:[
y2 =

√
1− y1

]
⇔
[
y1 = 1− y22

]
⇔
[
y1y2 = y2 − y32

]
.

4 t ≤
√
1− x− (1− x)3/2 = r1 − r2, where

r1 ≤
√
1− x,

(rotated quadratic cone),
r2 ≥ (1− x)3/2,

(power cone).



How to decompose nonlinear constraints?

1 t ≤ x

x+ 1
.

2 t ≤ y1/y2 is not possible.
(Hessian matrix of y1/y2 is indefinite everywhere).

3 So relation is important, namely:

[y2 = y1 + 1]⇔ [y1 = y2 − 1]⇔ [y1/y2 = 1− 1/y2] .

4 t ≤ 1− 1

x+ 1
= 1− r, where

r ≥ 1

x+ 1
,

(rotated quadratic cone),



How to decompose nonlinear constraints?

1 t ≤ x

x+ 1
.

2 t ≤ y1/y2 is not possible.
(Hessian matrix of y1/y2 is indefinite everywhere).

3 So relation is important, namely:

[y2 = y1 + 1]⇔ [y1 = y2 − 1]⇔ [y1/y2 = 1− 1/y2] .

4 t ≤ 1− 1

x+ 1
= 1− r, where

r ≥ 1

x+ 1
,

(rotated quadratic cone),



How to decompose nonlinear constraints?

1 t ≤ x

x+ 1
.

2 t ≤ y1/y2 is not possible.
(Hessian matrix of y1/y2 is indefinite everywhere).

3 So relation is important, namely:

[y2 = y1 + 1]⇔ [y1 = y2 − 1]⇔ [y1/y2 = 1− 1/y2] .

4 t ≤ 1− 1

x+ 1
= 1− r, where

r ≥ 1

x+ 1
,

(rotated quadratic cone),



How to decompose nonlinear constraints?

1 t ≤ x

x+ 1
.

2 t ≤ y1/y2 is not possible.
(Hessian matrix of y1/y2 is indefinite everywhere).

3 So relation is important, namely:

[y2 = y1 + 1]⇔ [y1 = y2 − 1]⇔ [y1/y2 = 1− 1/y2] .

4 t ≤ 1− 1

x+ 1
= 1− r, where

r ≥ 1

x+ 1
,

(rotated quadratic cone),



Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that Q = GDGT for a
signature matrix D. For any a ∈ colspan(G), let Gã = a whereby

xTQx+ aTx+ b = uTDu+

(
b− 1

4
ãTDã

)
,

in terms of u = GTx+
1

2
Dã.

using LinearAlgebra, GenericLinearAlgebra

D,G=eigen(Hermitian(BigFloat.(Q)));

nz=(abs.(D).>1e-12); G=G[:,nz]; D=Diagonal(D[nz]);

G*=sqrt.(abs.(D)); D=sign.(D);

@assert(norm(G*D*G'-Q,Inf)<=1e-12) Julia 1.4



Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that Q = GDGT for a
signature matrix D. For any a ∈ colspan(G), let Gã = a whereby

xTQx+ aTx+ b = uTDu+

(
b− 1

4
ãTDã

)
,

in terms of u = GTx+
1

2
Dã.

using LinearAlgebra, GenericLinearAlgebra

D,G=eigen(Hermitian(BigFloat.(Q)));

nz=(abs.(D).>1e-12); G=G[:,nz]; D=Diagonal(D[nz]);

G*=sqrt.(abs.(D)); D=sign.(D);

@assert(norm(G*D*G'-Q,Inf)<=1e-12) Julia 1.4



Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that Q = GDGT for a
signature matrix D. For any a ∈ colspan(G), let Gã = a whereby

xTQx+ aTx+ b = uTDu+

(
b− 1

4
ãTDã

)
,

in terms of u = GTx+
1

2
Dã.

using LinearAlgebra, GenericLinearAlgebra

D,G=eigen(Hermitian(BigFloat.(Q)));

nz=(abs.(D).>1e-12); G=G[:,nz]; D=Diagonal(D[nz]);

G*=sqrt.(abs.(D)); D=sign.(D);

@assert(norm(G*D*G'-Q,Inf)<=1e-12) Julia 1.4



Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that Q = GDGT for a
signature matrix D. For any a ∈ colspan(G), let Gã = a whereby

xTQx+ aTx+ b = uTDu+

(
b− 1

4
ãTDã

)
,

in terms of u = GTx+
1

2
Dã.

using LinearAlgebra, GenericLinearAlgebra

D,G=eigen(Hermitian(BigFloat.(Q)));

nz=(abs.(D).>1e-12); G=G[:,nz]; D=Diagonal(D[nz]);

G*=sqrt.(abs.(D)); D=sign.(D);

@assert(norm(G*D*G'-Q,Inf)<=1e-12) Julia 1.4



Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that Q = GDGT for a
signature matrix D. For any a ∈ colspan(G), let Gã = a whereby

xTQx+ aTx+ b = uTDu+

(
b− 1

4
ãTDã

)
,

in terms of u = GTx+
1

2
Dã.

using LinearAlgebra, GenericLinearAlgebra

D,G=eigen(Hermitian(BigFloat.(Q)));

nz=(abs.(D).>1e-12); G=G[:,nz]; D=Diagonal(D[nz]);

G*=sqrt.(abs.(D)); D=sign.(D);

@assert(norm(G*D*G'-Q,Inf)<=1e-12) Julia 1.4



Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that Q = GDGT for a
signature matrix D. For any a ∈ colspan(G), let Gã = a whereby

xTQx+ aTx+ b = uTDu+

(
b− 1

4
ãTDã

)
,

in terms of u = GTx+
1

2
Dã.

using LinearAlgebra, GenericLinearAlgebra

D,G=eigen(Hermitian(BigFloat.(Q)));

nz=(abs.(D).>1e-12); G=G[:,nz]; D=Diagonal(D[nz]);

G*=sqrt.(abs.(D)); D=sign.(D);

@assert(norm(G*D*G'-Q,Inf)<=1e-12) Julia 1.4



Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that Q = GDGT for a
signature matrix D. For any a ∈ colspan(G), let Gã = a whereby

xTQx+ aTx+ b = uTDu+

(
b− 1

4
ãTDã

)
,

in terms of u = GTx+
1

2
Dã.

using LinearAlgebra, GenericLinearAlgebra

D,G=eigen(Hermitian(BigFloat.(Q)));

nz=(abs.(D).>1e-12); G=G[:,nz]; D=Diagonal(D[nz]);

G*=sqrt.(abs.(D)); D=sign.(D);

@assert(norm(G*D*G'-Q,Inf)<=1e-12) Julia 1.4



How to decompose nonlinear constraints?

1 xy + yz − zx ≤ 0.
(Hessian matrix of xy + yz − zx is indefinite everywhere, but
we only need a sublevel set!)

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

1

2
(x+ y)2 +

1

6
(−x+ y + 2z)2 ≤ 2

3
(x− y + z)2,

but a more elegant decomposition is

x2 + y2 + z2 ≤ (x− y + z)2.

3 If either x− y + z ≥ 0 or x− y + z ≤ 0 we can reformulate
using a quadratic cone. Otherwise, you can branch on this
disjunction and reformulate in each child node.



How to decompose nonlinear constraints?

1 xy + yz − zx ≤ 0.
(Hessian matrix of xy + yz − zx is indefinite everywhere, but
we only need a sublevel set!)

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

1

2
(x+ y)2 +

1

6
(−x+ y + 2z)2 ≤ 2

3
(x− y + z)2,

but a more elegant decomposition is

x2 + y2 + z2 ≤ (x− y + z)2.

3 If either x− y + z ≥ 0 or x− y + z ≤ 0 we can reformulate
using a quadratic cone. Otherwise, you can branch on this
disjunction and reformulate in each child node.



How to decompose nonlinear constraints?

1 xy + yz − zx ≤ 0.
(Hessian matrix of xy + yz − zx is indefinite everywhere, but
we only need a sublevel set!)

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

1

2
(x+ y)2 +

1

6
(−x+ y + 2z)2 ≤ 2

3
(x− y + z)2,

but a more elegant decomposition is

x2 + y2 + z2 ≤ (x− y + z)2.

3 If either x− y + z ≥ 0 or x− y + z ≤ 0 we can reformulate
using a quadratic cone. Otherwise, you can branch on this
disjunction and reformulate in each child node.



How to decompose nonlinear constraints?

1 xy + yz − zx ≤ 0.
(Hessian matrix of xy + yz − zx is indefinite everywhere, but
we only need a sublevel set!)

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

1

2
(x+ y)2 +

1

6
(−x+ y + 2z)2 ≤ 2

3
(x− y + z)2,

but a more elegant decomposition is

x2 + y2 + z2 ≤ (x− y + z)2.

3 If either x− y + z ≥ 0 or x− y + z ≤ 0 we can reformulate
using a quadratic cone. Otherwise, you can branch on this
disjunction and reformulate in each child node.



How to decompose nonlinear constraints?

1 t ≥ 1

x1 + x2 + x1x2

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

t ≥ 1

(12x1 +
1
2x2)

2 − (12x1 −
1
2x2)

2 − 12

⇐⇒

t−1 + (12x1 −
1
2x2)

2 + 12 ≤ (12x1 +
1
2x2)

2.



How to decompose nonlinear constraints?

1 t ≥ 1

x1 + x2 + x1x2

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

t ≥ 1

(12x1 +
1
2x2)

2 − (12x1 −
1
2x2)

2 − 12

⇐⇒

t−1 + (12x1 −
1
2x2)

2 + 12 ≤ (12x1 +
1
2x2)

2.



How to decompose nonlinear constraints?

1 t ≥ 1

x1 + x2 + x1x2

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

t ≥ 1

(12x1 +
1
2x2)

2 − (12x1 −
1
2x2)

2 − 12

⇐⇒

t−1 + (12x1 −
1
2x2)

2 + 12 ≤ (12x1 +
1
2x2)

2.



How to decompose nonlinear constraints?

1 t ≥ 1

x1 + x2 + x1x2

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

t ≥ 1

(12x1 +
1
2x2)

2 − (12x1 −
1
2x2)

2 − 12

⇐⇒

t−1 + (12x1 −
1
2x2)

2 + 12 ≤ (12x1 +
1
2x2)

2.



How to decompose nonlinear constraints?

1 t ≥ 1

x1 + x2 + x1x2

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

t ≥ 1

(12x1 +
1
2x2)

2 − (12x1 −
1
2x2)

2 − 12

⇐⇒

t−1 + (12x1 −
1
2x2)

2 + 12 ≤ (12x1 +
1
2x2)

2.

3 r2 ≥ t−1,
(power cone),

r2 + (12x1 −
1
2x2)

2 + 12 ≤ (12x1 +
1
2x2)

2.
(quadratic cone).



How to decompose nonlinear constraints?

1 t ≥ 1

x1 + x2 + x1x2

2 The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

t ≥ 1

(12x1 +
1
2x2)

2 − (12x1 −
1
2x2)

2 − 12

⇐⇒

t−1 + (12x1 −
1
2x2)

2 + 12 ≤ (12x1 +
1
2x2)

2.

3 r2 ≥ t−1,
(power cone),

r2 + (12x1 −
1
2x2)

2 + 12 ≤ (12x1 +
1
2x2)

2.
(quadratic cone).



Summary

• Conic optimization is a sweet-spot in nonlinear optimization.

• Derivable from LP to preserve nice duality theory.

• Derivable from MINLP to avoid computational disadvantages.

• No issues with smoothness and differentiability.

• Models can be solved efficiently. Symmetric cones achieve the
best known global convergence rate among Newton-type
methods.



Further information

• The listed references on mixed-integer conic optimization.

• The MOSEK Modeling Cookbook.

• The MOSEK Optimization Suite (www.mosek.com).

• Trial and free academic license.
• Interfaces to C, Java, .NET, Julia, Matlab, R, Python, ...

• The applied optimization tutorials
(www.github.com/MOSEK/Tutorials).


