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e Lagrangian duality theory can be used to derive conic
optimization as the natural extension.



LP C Conic C NLP

e Best practices in MINLP leads to conic optimization.
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1. Migrate to a linear objective function

From Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan?:

minml—i—x% — min z1 + ¢, th%

) Avoid interior solutions (which cannot be separated by cuts).

!Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan (2013):
Mixed-integer nonlinear optimization, Acta Numerica, 22.
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minimize ¢’z
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3. Implement your model using built-in atoms

Lack of callback functions imply:

) Easier to debug the MINLP solver.

) No callback overhead.
) No fear of ill-defined boundary points. For example,

e The value of log(z) near x = 0.
e The gradient of ||z||2 near z = 0.
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3. Implement your model using built-in atoms

Possible atoms:

t <log(x), t> \/37%4-35%,

(hypograph of logarithm), (epigraph of 2-norm).

Use of such built-in atoms imply:
) Solvers can specialize for stability and high performance.

3 You are limited to a predefined set of atoms.



Best practices for MINLP @

minimize ¢’z

subject to Ax =0b,
gi(x(i)) <0, Vi=1,...,k,
g (z™) <o, Vi=1,...,k,
I<x<wu, x;€Z, Vjecl.

3. Implement your model using built-in atoms

Possible atoms:

t <log(x), t> \/37%4-35%,

(hypograph of logarithm), (epigraph of 2-norm).

Use of such built-in atoms imply:
) Solvers can specialize for stability and high performance.

3 You are limited to a predefined set of atoms.



Best practices for MINLP @

minimize ¢ x

subject to Ax = b,
gix(i))go, Vi=1,...,k,
g (z™) <o, Vi=1,...,k,
u

3. Implement your model using built-in atoms

Possible atoms:

t <log(x), t> \/37%4-35%,

(hypograph of logarithm), (epigraph of 2-norm).

Use of such built-in atoms imply:
) Solvers can specialize for stability and high performance.

3 You are limited to a predefined set of atoms.



Best practices for MINLP

minimize ¢’z

subject to Ax = b,
gix(i))go, Vi=1,...,k,
g (z™) <o, Vi=1,...,k,
I<x<wu,x;€Z, Vjel.

3. Implement your model using built-in atoms

To summarize, the set of atoms should be
e Numerically stable,
e Distinguish convexity,
e Versatile (so they can cover a wide range of applications).
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4. Implement solvers to support perspective transformation

e Ceria and Soares! characterized the closed convex hull of the
union of convex sets using perspective transformation.

e E.g., to be used on a disjunction [z < 0] V [z > 1].

Ceria and Soares (1999): Convex programming for disjunctive
optimization, Mathematical Programming, 86.
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4. Implement solvers to support perspective transformation

e Giinliik and Linderoth? tightened a bunch of common sets
with perspective transformation and promoted it as a useful
tool for MINLPs with binary on-off relationships.

2Giinliik and Linderoth (2012): Perspective reformulation and applications,
Mixed Integer Nonlinear Programming, 154.
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Did you notice the abuse of notation?
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minimize ¢’z

subject to Ax = b,
@ e K, Vi=1,...,k,
W e K, Vi=1,...,k,
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Journey complete!

@ Migrate to a linear objective function.

@® Distinguish convexity.
© Implement your model using built-in atoms.

® Implement solvers to support perspective transformation.

—> Mixed-integer general conic optimization.




Resources for mixed-integer conic optimization

e Giinliik and Linderoth (2012): Perspective reformulation and applications,
Mixed Integer Nonlinear Programming, 154.

® Lodi, Tanneau and Vielma (2020): Disjunctive cuts for Mixed-Integer
Conic Optimization.

e Belotti, Goez, Polik, Ralphs and Terlaky (2017): A complete
characterization of disjunctive conic cuts for mixed integer second order
cone optimization, Discrete Optimization, 24.

® Shahabsafa, Goez and Terlaky (2018): On pathological disjunctions and
redundant disjunctive conic cuts. Operations Research Letters, 46(5).

e Coey, Lubin, Vielma (2020): Outer approximation with conic certificates
for mixed-integer convex problems, Mathematical Programming
Computation, 12.
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e Giinliik and Linderoth (2012): Perspective reformulation and applications,
Mixed Integer Nonlinear Programming, 154.

® Lodi, Tanneau and Vielma (2020): Disjunctive cuts for Mixed-Integer
Conic Optimization.

e Belotti, Goez, Polik, Ralphs and Terlaky (2017): A complete
characterization of disjunctive conic cuts for mixed integer second order
cone optimization, Discrete Optimization, 24.

® Shahabsafa, Goez and Terlaky (2018): On pathological disjunctions and
redundant disjunctive conic cuts. Operations Research Letters, 46(5).

e Coey, Lubin, Vielma (2020): Outer approximation with conic certificates
for mixed-integer convex problems, Mathematical Programming
Computation, 12.

) You are limited to a predefined set of atoms.



Important questions

e What cones to support?

e How to decompose nonlinear constraints into conic atoms?
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e Support perspective transformation
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e Numerically stable + distinguish convexity + versatile.

o Suppertperspective-transformation (trivial).
Idea: Convex + low degree of nonlinearity (i.e., quadratic-like),
so Newton-type methods are expected to solve the
relaxations faster.

Seminal work by Nesterov and Todd®

e Coined a property called "self-scaled” .

e Such cones achieve the best known global convergence rate
among Newton-type methods.

e Characterized as the set of symmetric cones.

*Nesterov and Todd (1997): Self-Scaled Barriers and Interior-Point
Methods for Convex Programming, Mathematics of Operations Research, 22.



What cones to support?

The MOSEK selection

3 nonlinear symmetric cones:
e Quadratic: {(t,z) : t > ||z|2}.
e Rotated quadratic: {(t,s,z) : 2ts > ||z||3, t >0, s > 0}.
e Semidefinite: X = 0.

2 nonsymmetric cones:
e Exponential: cl{(t,s,z) : t > sexp(z/s), s > 0}.
o Power: {(t,s,x) : t*s'™* > ||z, t >0, s > 0} for any
parameter 0 < o < 1.

Observation:

e Almost all convex optimization problems appearing in
practice can be formulated using those 5 cones.



What cones to support?

The MOSEK selection

3 nonlinear symmetric cones:
e Quadratic: {(t,z) : t > ||z|2}.
e Rotated quadratic: {(t,s,z) : 2ts > ||z||3, t >0, s > 0}.
e Semidefinite: X = 0.

2 nonsymmetric cones:
e Exponential: cl{(t,s,z) : t > sexp(z/s), s > 0}.
o Power: {(t,s,x) : t*s'™* > ||z, t >0, s > 0} for any
parameter 0 < o < 1.
Observation:

e Lubinet.al.*: all convex instances in MINLPLIB 2.0 (i.e., 333)
are representable using these cones.

4Lubin, Yamangil, Bent and Vielma (2018): Polyhedral approximation in
mixed-integer convex optimization, Mathematical Programming, 172(1).



How to decompose nonlinear constraints?

MOSEK Modeling Cookbook

2018

WWW.mosek.com

Figure: The MOSEK modeling cookbook
(www.mosek.com/documentation)


www.mosek.com/documentation
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Ot<zvVl-z=(2) (VI-2).

® t < y1y2 is not possible.
(Hessian matrix of y1y2 is indefinite everywhere).

© So relation is important, namely:

o= VT=n] & ln=1-18] & [mm =v 4]

01t< \/l—z—(l—x)3/2:r1—r2, where
ri <V1-—ux, 7“22(1733)3/2,

(rotated quadratic cone), (power cone).
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How to decompose nonlinear constraints?

ot< .
r+1

@® t < y1/y2 is not possible.
(Hessian matrix of y1 /y2 is indefinite everywhere).

© So relation is important, namely:

=+l =1 y/yo=1-1/y].

1
thl—m:1—7“,where
S 1
r 9y
T r+1
(rotated quadratic cone),




Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that Q = GDG? for a
signature matrix D. For any a € colspan(G), let Ga = a whereby

1
'Qr+a’z+b = W'Du+ (b — 45LTD5L) ;

1
in terms of u = Gz + §Dd'

using LinearAlgebra, GenericLinearAlgebra
D,G=eigen(Hermitian(BigFloat.(Q)));
nz=(abs. (D) .>1le-12); G=G[:,nz]; D=Diagonal(D[nz]);
Gx=sqrt. (abs.(D)); D=sign. (D);
Qassert (norm(G*D*G'-Q,Inf)<=1e-12)

Julia 1.4
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How to decompose nonlinear constraints?

O zy+yz—zx <O0.
(Hessian matrix of zy + yz — zx is indefinite everywhere, but
we only need a sublevel set!)

[T

| \\\.“ﬂ\.‘.\‘.\',l'ﬁ'.l'e,‘\'~¥'.'¢‘.'l'~‘."'~"‘~
T
\"‘!‘E!g\ﬁ}fv\';\i{\'v‘:ﬁ‘}"‘"“”“'\“‘
Rt

il
(R

TR

DR

R
|
R W i
AR

i

I

i

A




How to decompose nonlinear constraints?

O zy+yz—zx <O0.
(Hessian matrix of zy + yz — zx is indefinite everywhere, but
we only need a sublevel set!)

® The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

1 1
“(z4+y)P+(—rt+y+22)*<

2

wil N

but a more elegant decomposition is

P +yP+ 2 < (v -y +2)°



How to decompose nonlinear constraints?

O zy+yz—zx <O0.
(Hessian matrix of zy + yz — zx is indefinite everywhere, but
we only need a sublevel set!)

® The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

1 1
“(z4+y)P+(—rt+y+22)*<

2

wl N

but a more elegant decomposition is

B+ + 22 < (@ —y+2)°



How to decompose nonlinear constraints?

O zy+yz—zx <O0.
(Hessian matrix of zy + yz — zx is indefinite everywhere, but
we only need a sublevel set!)

® The eigenvalue-based signed sum-of-squares decomposition
reformulates this constraint as

1 1
S(+y)?+ o(—r+y+22)2 <

2
5 G (x—y+2),

wl N

but a more elegant decomposition is
B+ + 22 < (@ —y+2)°

© Ifeitherx —y+2>0o0rx—y+ 2 <0 we can reformulate
using a quadratic cone. Otherwise, you can branch on this
disjunction and reformulate in each child node.
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How to decompose nonlinear constraints?

0t> —mF—
r1 + T2 + X122
® The eigenvalue-based signed sum-of-squares decomposition

reformulates this constraint as

1
t>
(371 + 572)% — (371 — §22)% — 12
<~
71+ (%$1 - %552)2 +12 < (%$1 + %562)2-
(3 r2 >t r2+(§x1 ) +12< (Qxl—i— 19)2.

(power cone), (quadratlc cone).



Summary

e Conic optimization is a sweet-spot in nonlinear optimization.
e Derivable from LP to preserve nice duality theory.

e Derivable from MINLP to avoid computational disadvantages.

e No issues with smoothness and differentiability.

e Models can be solved efficiently. Symmetric cones achieve the
best known global convergence rate among Newton-type
methods.



Further information

The listed references on mixed-integer conic optimization.
The MOSEK Modeling Cookbook.
The MOSEK Optimization Suite (www.mosek.com).

e Trial and free academic license.
o Interfaces to C, Java, .NET, Julia, Matlab, R, Python, ...

The applied optimization tutorials
(www.github.com/MOSEK/Tutorials).



