mosek

The conic advantage in MINLP

MINLP Virtual Workshop 2021, June 28-29

Henrik A. Friberg

WWW.mosek. com

LP
NLP
$\mathrm{LP} \subseteq$ Conic $\subseteq \mathrm{NLP}$

$\mathrm{LP} \subseteq$ Conic $\subseteq \mathrm{NLP}$

- Lagrangian duality theory can be used to derive conic optimization as the natural extension.

$\mathrm{LP} \subseteq \operatorname{Conic} \subseteq \mathrm{NLP}$

- Best practices in MINLP leads to conic optimization.

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad \forall i=1, \ldots, k, \\
& x_{j} \in \mathbb{Z}, \quad \forall j \in \mathcal{I}
\end{array}
$$

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, \quad \forall i=1, \ldots, k, \\
& x_{j} \in \mathbb{Z}, \quad \forall j \in \mathcal{I}
\end{array}
$$

1. Migrate to a linear objective function

From Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan ${ }^{1}$:

$$
\min x_{1}+x_{2}^{2} \quad \longrightarrow \quad \min x_{1}+t, \quad t \geq x_{2}^{2}
$$

B Avoid interior solutions (which cannot be separated by cuts).
${ }^{1}$ Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan (2013): Mixed-integer nonlinear optimization, Acta Numerica, 22.

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & g_{i}(x) \leq 0, \quad \forall i=1, \ldots, k, \\
& x_{j} \in \mathbb{Z}, \quad \forall j \in \mathcal{I}
\end{array}
$$

1. Migrate to a linear objective function

From Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan ${ }^{1}$:

$$
\min x_{1}+x_{2}^{2} \quad \longrightarrow \quad \min x_{1}+t, \quad t \geq x_{2}^{2}
$$

B Avoid interior solutions (which cannot be separated by cuts).
${ }^{1}$ Belotti, Kirches, Leyffer, Linderoth, Luedtke and Mahajan (2013): Mixed-integer nonlinear optimization, Acta Numerica, 22.

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & g_{i}(x) \leq 0, \quad \forall i=1, \ldots, k, \\
& x_{j} \in \mathbb{Z}, \quad \forall j \in \mathcal{I}
\end{array}
$$

2. Distinguish convexity

B Avoid unnecessary spatial branching.

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & g_{i}(x) \leq 0, \quad \forall i=1, \ldots, k, \\
& g_{i}^{\mathrm{c}}(x) \leq 0, \quad \forall i=1, \ldots, k^{\mathrm{c}}, \\
& x_{j} \in \mathbb{Z}, \quad \forall j \in \mathcal{I}
\end{array}
$$

2. Distinguish convexity

B Avoid unnecessary spatial branching.

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & g_{i}(x) \leq 0, \quad \forall i=1, \ldots, k, \\
& g_{i}^{\mathrm{c}}(x) \leq 0, \quad \forall i=1, \ldots, k^{\mathrm{c}}, \\
& x_{j} \in \mathbb{Z}, \quad \forall j \in \mathcal{I}
\end{array}
$$

3. Implement your model using built-in atoms

Lack of callback functions imply:
\leqslant Easier to debug the MINLP solver.
B No callback overhead.
B No fear of ill-defined boundary points. For example,

- The value of $\log (x)$ near $x=0$.
- The gradient of $\|x\|_{2}$ near $x=0$.

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & g_{i}(x) \leq 0, \quad \forall i=1, \ldots, k, \\
& g_{i}^{\mathrm{c}}(x) \leq 0, \quad \forall i=1, \ldots, k^{\mathrm{c}}, \\
& x_{j} \in \mathbb{Z}, \quad \forall j \in \mathcal{I}
\end{array}
$$

3. Implement your model using built-in atoms

Possible atoms:

$$
\begin{array}{cc}
t \leq \log (x), & t \geq \sqrt{x_{1}^{2}+x_{2}^{2}} \\
\text { (hypograph of logarithm), } & \text { (epigraph of 2-norm). }
\end{array}
$$

Use of such built-in atoms imply:
B Solvers can specialize for stability and high performance.
Y You are limited to a predefined set of atoms.

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

3. Implement your model using built-in atoms

Possible atoms:

$$
t \leq \log (x)
$$

(hypograph of logarithm),

$$
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}}
$$

(epigraph of 2-norm).

Use of such built-in atoms imply:
B Solvers can specialize for stability and high performance.
Y You are limited to a predefined set of atoms.

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I} .
\end{array}
$$

3. Implement your model using built-in atoms

Possible atoms:

$$
t \leq \log (x)
$$

(hypograph of logarithm),

$$
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}}
$$

(epigraph of 2-norm).

Use of such built-in atoms imply:
13 Solvers can specialize for stability and high performance.
Y You are limited to a predefined set of atoms.

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I} .
\end{array}
$$

3. Implement your model using built-in atoms

To summarize, the set of atoms should be

- Numerically stable,
- Distinguish convexity,
- Versatile (so they can cover a wide range of applications).

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

- Ceria and Soares ${ }^{1}$ characterized the closed convex hull of the union of convex sets using perspective transformation.
- E.g., to be used on a disjunction $[x \leq 0] \vee[x \geq 1]$.
${ }^{1}$ Ceria and Soares (1999): Convex programming for disjunctive optimization, Mathematical Programming, 86.

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

- Günlük and Linderoth ${ }^{2}$ tightened a bunch of common sets with perspective transformation and promoted it as a useful tool for MINLPs with binary on-off relationships.
${ }^{2}$ Günlük and Linderoth (2012): Perspective reformulation and applications, Mixed Integer Nonlinear Programming, 154.

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Support $\tilde{g}(x, s)=g(x / s)$ for $s \geq 0$:

$$
t \leq \log (x)
$$

(hypograph of logarithm),

$$
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}}
$$

(epigraph of 2-norm),

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Support $\tilde{g}(x, s)=g(x / s)$ for $s \geq 0$:

$$
t \leq \log (x)
$$

(hypograph of logarithm),

$$
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}}
$$

(epigraph of 2-norm),

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Support $\tilde{g}(x, s)=g(x / s)$ for $s \geq 0$:

$$
t / s \leq \log (x / s)
$$

(hypograph of logarithm),

$$
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}}
$$

(epigraph of 2-norm),

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Support $\tilde{g}(x, s)=g(x / s)$ for $s \geq 0$:

$$
\begin{gathered}
t \leq s \log (x / s) \\
\text { (exponential cone), }
\end{gathered}
$$

$$
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}}
$$

(epigraph of 2-norm),

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Support $\tilde{g}(x, s)=g(x / s)$ for $s \geq 0$:

$$
\begin{gathered}
t \leq s \log (x / s) \\
\text { (exponential cone), }
\end{gathered}
$$

$$
\begin{gathered}
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}} \\
\text { (epigraph of 2-norm) }
\end{gathered}
$$

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Support $\tilde{g}(x, s)=g(x / s)$ for $s \geq 0$:

$$
\begin{aligned}
& t \leq s \log (x / s) \\
& \text { (exponential cone), }
\end{aligned}
$$

$$
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}}
$$

(quadratic cone),

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Support $\tilde{g}(x, s)=g(x / s)$ for $s \geq 0$:

$$
\begin{gathered}
t \leq s \log (x / s) \\
\text { (exponential cone), }
\end{gathered}
$$

$$
t \geq \sqrt{x_{1}^{2}+x_{2}^{2}}
$$

(quadratic cone),

Did you notice the abuse of notation?

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Hence, rather than:

$$
t \leq s g(x / s), s \geq 0
$$

we write:

$$
t \leq s g(x / s), s>0
$$

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Hence, rather than:

$$
t \leq s g(x / s), s \geq 0
$$

we write:

$$
\{(t, s, x): t \leq s g(x / s), s>0\}
$$

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Hence, rather than:

$$
t \leq s g(x / s), s \geq 0
$$

we write:

$$
\operatorname{cl}\{(t, s, x): t \leq s g(x / s), s>0\}
$$

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I}
\end{array}
$$

4. Implement solvers to support perspective transformation

Hence, rather than:

$$
t \leq s g(x / s), s \geq 0
$$

we write:

$$
\mathcal{K}_{g}=\operatorname{cl}\{(t, s, x): t \leq s g(x / s), s>0\}
$$

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& g_{i}\left(x^{(i)}\right) \leq 0, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& g_{i}^{\mathrm{c}}\left(x^{(i)}\right) \leq 0, & \forall j \in \mathcal{I} .
\end{array}
$$

4. Implement solvers to support perspective transformation

Hence, rather than:

$$
t \leq s g(x / s), s \geq 0
$$

we write:

$$
\mathcal{K}_{g}=\operatorname{cl}\{(t, s, x): t \leq s g(x / s), s>0\}
$$

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& x^{(i)} \in \mathcal{K}_{i}, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& x^{(i)} \in \mathcal{K}_{i}^{\mathrm{c}}, & \forall j \in \mathcal{I} .
\end{array}
$$

4. Implement solvers to support perspective transformation

Hence, rather than:

$$
t \leq s g(x / s), s \geq 0
$$

we write:

$$
\mathcal{K}_{g}=\operatorname{cl}\{(t, s, x): t \leq s g(x / s), s>0\}
$$

$$
\begin{array}{lll}
\operatorname{minimize} & c^{T} x & \\
\text { subject to } & A x=b, & \forall i=1, \ldots, k, \\
& x^{(i)} \in \mathcal{K}_{i}, & \forall i=1, \ldots, k^{\mathrm{c}}, \\
& x^{(i)} \in \mathcal{K}_{i}^{\mathrm{c}}, & \forall j \in \mathcal{I} .
\end{array}
$$

Journey complete!

(1) Migrate to a linear objective function.
(2) Distinguish convexity.
(3) Implement your model using built-in atoms.
(4) Implement solvers to support perspective transformation.
\Longrightarrow Mixed-integer general conic optimization.

- Günlük and Linderoth (2012): Perspective reformulation and applications, Mixed Integer Nonlinear Programming, 154.
- Lodi, Tanneau and Vielma (2020): Disjunctive cuts for Mixed-Integer Conic Optimization.
- Belotti, Goez, Polik, Ralphs and Terlaky (2017): A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization, Discrete Optimization, 24.
- Shahabsafa, Goez and Terlaky (2018): On pathological disjunctions and redundant disjunctive conic cuts. Operations Research Letters, 46(5).
- Coey, Lubin, Vielma (2020): Outer approximation with conic certificates for mixed-integer convex problems, Mathematical Programming Computation, 12.
- Günlük and Linderoth (2012): Perspective reformulation and applications, Mixed Integer Nonlinear Programming, 154.
- Lodi, Tanneau and Vielma (2020): Disjunctive cuts for Mixed-Integer Conic Optimization.
- Belotti, Goez, Polik, Ralphs and Terlaky (2017): A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization, Discrete Optimization, 24.
- Shahabsafa, Goez and Terlaky (2018): On pathological disjunctions and redundant disjunctive conic cuts. Operations Research Letters, 46(5).
- Coey, Lubin, Vielma (2020): Outer approximation with conic certificates for mixed-integer convex problems, Mathematical Programming Computation, 12.

R You are limited to a predefined set of atoms.

Important questions

- What cones to support?
- How to decompose nonlinear constraints into conic atoms?

What cones to support?

- Numerically stable + distinguish convexity + versatile.
- Support perspective transformation

What cones to support?

- Numerically stable + distinguish convexity + versatile.
- Support perspective transformation (trivial).

What cones to support?

- Numerically stable + distinguish convexity + versatile.
- Support perspective transformation (trivial).

Idea: Convex + low degree of nonlinearity (i.e., quadratic-like), so Newton-type methods are expected to solve the relaxations faster.

- Numerically stable + distinguish convexity + versatile.
- Support perspective transformation (trivial).

Idea: Convex + low degree of nonlinearity (i.e., quadratic-like), so Newton-type methods are expected to solve the relaxations faster.

Seminal work by Nesterov and Todd ${ }^{3}$

- Coined a property called "self-scaled".
- Such cones achieve the best known global convergence rate among Newton-type methods.
- Characterized as the set of symmetric cones.

[^0]3 nonlinear symmetric cones:

- Quadratic: $\left\{(t, x): t \geq\|x\|_{2}\right\}$.
- Rotated quadratic: $\left\{(t, s, x): 2 t s \geq\|x\|_{2}^{2}, t \geq 0, s \geq 0\right\}$.
- Semidefinite: $X \succeq 0$.

2 nonsymmetric cones:

- Exponential: $\operatorname{cl}\{(t, s, x): t \geq s \exp (x / s), s>0\}$.
- Power: $\left\{(t, s, x): t^{\alpha} s^{1-\alpha} \geq\|x\|_{2}, t \geq 0, s \geq 0\right\}$ for any parameter $0<\alpha<1$.

Observation:

- Almost all convex optimization problems appearing in practice can be formulated using those 5 cones.

3 nonlinear symmetric cones:

- Quadratic: $\left\{(t, x): t \geq\|x\|_{2}\right\}$.
- Rotated quadratic: $\left\{(t, s, x): 2 t s \geq\|x\|_{2}^{2}, t \geq 0, s \geq 0\right\}$.
- Semidefinite: $X \succeq 0$.

2 nonsymmetric cones:

- Exponential: $\operatorname{cl}\{(t, s, x): t \geq s \exp (x / s), s>0\}$.
- Power: $\left\{(t, s, x): t^{\alpha} s^{1-\alpha} \geq\|x\|_{2}, t \geq 0, s \geq 0\right\}$ for any parameter $0<\alpha<1$.

Observation:

- Lubin et. al. ${ }^{4}$: all convex instances in MINLPLIB 2.0 (i.e., 333) are representable using these cones.

[^1]
MOSEK Modeling Cookbook

2018

Figure: The MOSEK modeling cookbook (www.mosek.com/documentation)

How to decompose nonlinear constraints?
(1) $t \leq x \sqrt{1-x}$

(1) $t \leq x \sqrt{1-x}=(x) \cdot(\sqrt{1-x})$.

(1) $t \leq x \sqrt{1-x}=(x) \cdot(\sqrt{1-x})$.
(2) $t \leq y_{1} y_{2}$ is not possible.
(Hessian matrix of $y_{1} y_{2}$ is indefinite everywhere).
(1) $t \leq x \sqrt{1-x}=(x) \cdot(\sqrt{1-x})$.
(2) $t \leq y_{1} y_{2}$ is not possible.
(Hessian matrix of $y_{1} y_{2}$ is indefinite everywhere).
(3) So relation is important, namely:

$$
\left[y_{2}=\sqrt{1-y_{1}}\right] \Leftrightarrow\left[y_{1}=1-y_{2}^{2}\right] \Leftrightarrow\left[y_{1} y_{2}=y_{2}-y_{2}^{3}\right] .
$$

(1) $t \leq x \sqrt{1-x}=(x) \cdot(\sqrt{1-x})$.
(2) $t \leq y_{1} y_{2}$ is not possible.
(Hessian matrix of $y_{1} y_{2}$ is indefinite everywhere).
(3) So relation is important, namely:

$$
\left[y_{2}=\sqrt{1-y_{1}}\right] \Leftrightarrow\left[y_{1}=1-y_{2}^{2}\right] \Leftrightarrow\left[y_{1} y_{2}=y_{2}-y_{2}^{3}\right] .
$$

(4) $t \leq \sqrt{1-x}-(1-x)^{3 / 2}=r_{1}-r_{2}$, where

$$
\begin{array}{cc}
r_{1} \leq \sqrt{1-x}, & r_{2} \geq(1-x)^{3 / 2} \\
\text { (rotated quadratic cone), } & \text { (power cone) }
\end{array}
$$

(1) $t \leq \frac{x}{x+1}$.

(1) $t \leq \frac{x}{x+1}$.
(2) $t \leq y_{1} / y_{2}$ is not possible.
(Hessian matrix of y_{1} / y_{2} is indefinite everywhere).
(1) $t \leq \frac{x}{x+1}$.
(2) $t \leq y_{1} / y_{2}$ is not possible.
(Hessian matrix of y_{1} / y_{2} is indefinite everywhere).
(3) So relation is important, namely:

$$
\left[y_{2}=y_{1}+1\right] \Leftrightarrow\left[y_{1}=y_{2}-1\right] \Leftrightarrow\left[y_{1} / y_{2}=1-1 / y_{2}\right] .
$$

(1) $t \leq \frac{x}{x+1}$.
(2) $t \leq y_{1} / y_{2}$ is not possible.
(Hessian matrix of y_{1} / y_{2} is indefinite everywhere).
(3) So relation is important, namely:

$$
\left[y_{2}=y_{1}+1\right] \Leftrightarrow\left[y_{1}=y_{2}-1\right] \Leftrightarrow\left[y_{1} / y_{2}=1-1 / y_{2}\right] .
$$

(4) $t \leq 1-\frac{1}{x+1}=1-r$, where

$$
r \geq \frac{1}{x+1}
$$

(rotated quadratic cone),

Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that $Q=G D G^{T}$ for a signature matrix D. For any $a \in \operatorname{colspan}(G)$, let $G \tilde{a}=a$ whereby

$$
x^{T} Q x+a^{T} x+b=u^{T} D u+\left(b-\frac{1}{4} \tilde{a}^{T} D \tilde{a}\right),
$$

in terms of $u=G^{T} x+\frac{1}{2} D \tilde{a}$.
using LinearAlgebra, GenericLinearAlgebra D, G=eigen(Hermitian(BigFloat.(Q))); $n z=(a b s .(D) .>1 e-12) ; G=G[:, n z] ; D=D i a g o n a l(D[n z]) ;$
G*=sqrt.(abs.(D)); D=sign.(D);
@assert (norm (G*D*G'-Q, Inf) <=1e-12)

Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that $Q=G D G^{T}$ for a signature matrix D. For any $a \in \operatorname{colspan}(G)$, let $G \tilde{a}=a$ whereby

$$
x^{T} Q x+a^{T} x+b=u^{T} D u+\left(b-\frac{1}{4} \tilde{a}^{T} D \tilde{a}\right),
$$

in terms of $u=G^{T} x+\frac{1}{2} D \tilde{a}$.
using LinearAlgebra, GenericLinearAlgebra D, G=eigen(Hermitian(BigFloat.(Q))); $n z=(a b s .(D) .>1 e-12) ; G=G[:, n z] ; D=D i a g o n a l(D[n z]) ;$
G*=sqrt.(abs.(D)); D=sign.(D);
@assert (norm (G*D*G'-Q, Inf) <=1e-12)

Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that $Q=G D G^{T}$ for a signature matrix D. For any $a \in \operatorname{colspan}(G)$, let $G \tilde{a}=a$ whereby

$$
x^{T} Q x+a^{T} x+b=u^{T} D u+\left(b-\frac{1}{4} \tilde{a}^{T} D \tilde{a}\right),
$$

in terms of $u=G^{T} x+\frac{1}{2} D \tilde{a}$.
using LinearAlgebra, GenericLinearAlgebra D, G=eigen(Hermitian(BigFloat.(Q))); $n z=(a b s .(D) .>1 e-12) ; G=G[:, n z] ; D=D i a g o n a l(D[n z]) ;$
G*=sqrt.(abs.(D)); D=sign.(D);
@assert (norm (G*D*G'-Q, Inf) <=1e-12)

Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that $Q=G D G^{T}$ for a signature matrix D. For any $a \in \operatorname{colspan}(G)$, let $G \tilde{a}=a$ whereby

$$
x^{T} Q x+a^{T} x+b=u^{T} D u+\left(b-\frac{1}{4} \tilde{a}^{T} D \tilde{a}\right)
$$

in terms of $u=G^{T} x+\frac{1}{2} D \tilde{a}$.
using LinearAlgebra, GenericLinearAlgebra D, G=eigen(Hermitian(BigFloat.(Q))); $n z=(a b s .(D) .>1 e-12) ; G=G[:, n z] ; D=D i a g o n a l(D[n z]) ;$
G*=sqrt.(abs.(D)); D=sign.(D);
@assert (norm (G*D*G'-Q, Inf) <=1e-12)

Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that $Q=G D G^{T}$ for a signature matrix D. For any $a \in \operatorname{colspan}(G)$, let $G \tilde{a}=a$ whereby

$$
x^{T} Q x+a^{T} x+b=u^{T} D u+\left(b-\frac{1}{4} \tilde{a}^{T} D \tilde{a}\right),
$$

in terms of $u=G^{T} x+\frac{1}{2} D \tilde{a}$.
using LinearAlgebra, GenericLinearAlgebra D, G=eigen(Hermitian(BigFloat.(Q))); $n z=(a b s .(D) .>1 e-12) ; G=G[:, n z] ; D=D i a g o n a l(D[n z]) ;$
G*=sqrt.(abs.(D)); D=sign.(D);
@assert (norm (G*D*G'-Q, Inf) <=1e-12)

Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that $Q=G D G^{T}$ for a signature matrix D. For any $a \in \operatorname{colspan}(G)$, let $G \tilde{a}=a$ whereby

$$
x^{T} Q x+a^{T} x+b=u^{T} D u+\left(b-\frac{1}{4} \tilde{a}^{T} D \tilde{a}\right),
$$

in terms of $u=G^{T} x+\frac{1}{2} D \tilde{a}$.
using LinearAlgebra, GenericLinearAlgebra D, G=eigen(Hermitian(BigFloat.(Q))); $n z=(a b s .(D) .>1 e-12) ; G=G[:, n z] ; D=D i a g o n a l(D[n z]) ;$
G*=sqrt.(abs.(D)); D=sign.(D);
@assert (norm (G*D*G'-Q, Inf) <=1e-12)

Signed sum-of-squares decomposition

Let Q be a real symmetric matrix, such that $Q=G D G^{T}$ for a signature matrix D. For any $a \in \operatorname{colspan}(G)$, let $G \tilde{a}=a$ whereby

$$
x^{T} Q x+a^{T} x+b=u^{T} D u+\left(b-\frac{1}{4} \tilde{a}^{T} D \tilde{a}\right),
$$

in terms of $u=G^{T} x+\frac{1}{2} D \tilde{a}$.
using LinearAlgebra, GenericLinearAlgebra D, G=eigen(Hermitian(BigFloat.(Q))); $n z=(a b s .(D) .>1 e-12) ; G=G[:, n z] ; D=D i a g o n a l(D[n z]) ;$
G*=sqrt.(abs.(D)); D=sign.(D);
@assert (norm (G*D*G'-Q, Inf) <=1e-12)
(1) $x y+y z-z x \leq 0$.
(Hessian matrix of $x y+y z-z x$ is indefinite everywhere, but we only need a sublevel set!)

(1) $x y+y z-z x \leq 0$.
(Hessian matrix of $x y+y z-z x$ is indefinite everywhere, but we only need a sublevel set!)
(2) The eigenvalue-based signed sum-of-squares decomposition reformulates this constraint as

$$
\frac{1}{2}(x+y)^{2}+\frac{1}{6}(-x+y+2 z)^{2} \leq \frac{2}{3}(x-y+z)^{2}
$$

but a more elegant decomposition is

$$
x^{2}+y^{2}+z^{2} \leq(x-y+z)^{2} .
$$

(1) $x y+y z-z x \leq 0$.
(Hessian matrix of $x y+y z-z x$ is indefinite everywhere, but we only need a sublevel set!)
(2) The eigenvalue-based signed sum-of-squares decomposition reformulates this constraint as

$$
\frac{1}{2}(x+y)^{2}+\frac{1}{6}(-x+y+2 z)^{2} \leq \frac{2}{3}(x-y+z)^{2}
$$

but a more elegant decomposition is

$$
x^{2}+y^{2}+z^{2} \leq(x-y+z)^{2} .
$$

(1) $x y+y z-z x \leq 0$.
(Hessian matrix of $x y+y z-z x$ is indefinite everywhere, but we only need a sublevel set!)
(2) The eigenvalue-based signed sum-of-squares decomposition reformulates this constraint as

$$
\frac{1}{2}(x+y)^{2}+\frac{1}{6}(-x+y+2 z)^{2} \leq \frac{2}{3}(x-y+z)^{2}
$$

but a more elegant decomposition is

$$
x^{2}+y^{2}+z^{2} \leq(x-y+z)^{2} .
$$

(3) If either $x-y+z \geq 0$ or $x-y+z \leq 0$ we can reformulate using a quadratic cone. Otherwise, you can branch on this disjunction and reformulate in each child node.
(1) $t \geq \frac{1}{x_{1}+x_{2}+x_{1} x_{2}}$

(1) $t \geq \frac{1}{x_{1}+x_{2}+x_{1} x_{2}}$
(2) The eigenvalue-based signed sum-of-squares decomposition reformulates this constraint as

$$
t \geq \frac{1}{\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}-\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}-1^{2}}
$$

(1) $t \geq \frac{1}{x_{1}+x_{2}+x_{1} x_{2}}$
(2) The eigenvalue-based signed sum-of-squares decomposition reformulates this constraint as

$$
\begin{gathered}
t \geq \frac{1}{\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}-\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}-1^{2}} \\
\Longleftrightarrow \\
t^{-1}+\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}+1^{2} \leq\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}
\end{gathered}
$$

(1) $t \geq \frac{1}{x_{1}+x_{2}+x_{1} x_{2}}$
(2) The eigenvalue-based signed sum-of-squares decomposition reformulates this constraint as

$$
\begin{gathered}
t \geq \frac{1}{\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}-\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}-1^{2}} \\
\Longleftrightarrow \\
t^{-1}+\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}+1^{2} \leq\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}
\end{gathered}
$$

(1) $t \geq \frac{1}{x_{1}+x_{2}+x_{1} x_{2}}$
(2) The eigenvalue-based signed sum-of-squares decomposition reformulates this constraint as

$$
\begin{gathered}
t \geq \frac{1}{\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}-\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}-1^{2}} \\
\Longleftrightarrow \\
t^{-1}+\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}+1^{2} \leq\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}
\end{gathered}
$$

(3) $r^{2} \geq t^{-1}$,
(power cone),
(1) $t \geq \frac{1}{x_{1}+x_{2}+x_{1} x_{2}}$
(2) The eigenvalue-based signed sum-of-squares decomposition reformulates this constraint as

$$
\begin{gathered}
t \geq \frac{1}{\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}-\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}-1^{2}} \\
\Longleftrightarrow \\
t^{-1}+\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}+1^{2} \leq\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2}
\end{gathered}
$$

(3) $\quad r^{2} \geq t^{-1}$,
(power cone),

$$
\begin{gathered}
r^{2}+\left(\frac{1}{2} x_{1}-\frac{1}{2} x_{2}\right)^{2}+1^{2} \leq\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)^{2} \\
\text { (quadratic cone) }
\end{gathered}
$$

- Conic optimization is a sweet-spot in nonlinear optimization.
- Derivable from LP to preserve nice duality theory.
- Derivable from MINLP to avoid computational disadvantages.
- No issues with smoothness and differentiability.
- Models can be solved efficiently. Symmetric cones achieve the best known global convergence rate among Newton-type methods.
- The listed references on mixed-integer conic optimization.
- The MOSEK Modeling Cookbook.
- The MOSEK Optimization Suite (www.mosek.com).
- Trial and free academic license.
- Interfaces to C, Java, .NET, Julia, Matlab, R, Python, ...
- The applied optimization tutorials (www.github.com/MOSEK/Tutorials).

[^0]: ${ }^{3}$ Nesterov and Todd (1997): Self-Scaled Barriers and Interior-Point Methods for Convex Programming, Mathematics of Operations Research, 22.

[^1]: ${ }^{4}$ Lubin, Yamangil, Bent and Vielma (2018): Polyhedral approximation in mixed-integer convex optimization, Mathematical Programming, 172(1).

