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MOSEK

A software package/library for solving:

• Linear and conic problems.

• Convex quadratically constrained problems.

• Also mixed-integer versions of the above.

Current version: 9.3.

Conic optimization in standard form:

minimize cT x
subject to Ax = b

x ∈ K

maximize bT y

subject to c − AT y ∈ (K)∗

K is a nonempty pointed convex cone, (K)∗ its dual.
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The cones available in MOSEK

• the nonnegative orthant

Rn
+ := {x ∈ Rn | xj ≥ 0, j = 1, . . . , n}

• the quadratic cone

Qn = {x ∈ Rn | x1 ≥
(
x22 + · · ·+ x2n

)1/2
= ‖x2:n‖2}

• the rotated quadratic cone

Qn
r = {x ∈ Rn | 2x1x2 ≥ x23 + · · ·+ x2n = ‖x3:n‖22, x1, x2 ≥ 0}

• the semidefinite matrix cone

Sn = {X ∈ Rn×n | zTXz ≥ 0, ∀z ∈ Rn}
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The cones available in MOSEK

MOSEK also supports some non-symmetric cones:

• the three-dimensional exponential cone

Kexp = cl{x ∈ R3 | x1 ≥ x2 exp(x3/x2), x2 > 0}.

• the three-dimensional power cone

Pα = {x ∈ R3 | xα1 x
(1−α)
2 ≥ |x3|, x1, x2 ≥ 0},

for 0 < α < 1.

These 5 cones together are highly versatile for convex modeling!
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Interfaces to MOSEK

The C API (this talk) is the core of MOSEK and all other APIs
are built on top of that.
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Challenge: (Re-)Design an interface

MOSEK version 9:
(x5; x6; x8) ∈ Q3

• In principle general: Use artificial variables.

• Example: t ≥ ‖Wx − d‖2 ⇐⇒ (t; s) ∈ Qp+1, s = Wx − d .

• Cumbersome to use at least for some models.

• Want to easily specify an affine expression of the variables
belonging to a cone.
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Challenge: (Re-)Design an interface

Hence, handle the constraint type

F kx + f k ∈ Kk + gk .

• How to build an interface for this type of constraint?

• That works in a low level language like C?

• Efficient, i.e. low space and computational overhead?

• Extensible to new cone types?

Why the g? Reason: reuse of affine expressions:

2 ≤ x + y + 1 and x + y + 1 ≤ 6.
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New: the affine expressions storage

Define
Fx + f ,

a storage/dictionary of affine expressions.

• F is sparse matrix and f is a dense vector.

• Affine expressions can be appended but never deleted.

• Variables can be appended to and deleted from x .

• Affine expressions can be modified.
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New: the affine expressions storage

With that,
F kx + f k = FI,:x + fI

where I is an ordered list of indexes.

• F k and f k are not provided explicitly.

• Represented by a list of indexes into the affine expression
storage.
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Also new: the domains storage

Introduce
D = (D1,D2, . . .),

a list of domains.

A domain

• Has a dimension d .

• Has a type, e.g. the exponential cone type.

• Has potentially some associated parameters, e.g. α for the
power cone.

• Can never be deleted.
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An affine conic constraint

An affine conic constraint in MOSEK 10 consists of:

• An ordered list of affine expressions indexes.

• A domain index k.

• A g vector.

and represents
FI,:x + fI ∈ Dk + g .

• Affine conic constraints can be appended, deleted and
modified.

• Dimension checking is easy.

• Easily extensible with new cone types.

• Everything is easily implementable in C.

• Can be implemented efficiently.
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Another novelty: disjunctive constraints

A disjunctive constraint is of the form

[D1x ≤ b1] ∨ [D2x ≤ b2] ∨ ... ∨ [D lx ≤ bl ].

• Can model semi-continuous variables: [x = 0] ∨ [l ≤ x ≤ u].

• Complementarity constraints: s · t = 0⇐⇒ [s = 0] ∨ [t = 0].

• Piecewise linear functions:

[f = x , 0 ≤ x ≤ 1]∨ [f = 1−2x , 1 ≤ x ≤ 2]∨ [f = −3, 2 ≤ x ].

• Indicator constraints: [z = 0] ∨
[
dT x ≤ b

]
.

• Many more...
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Use the affine expressions and domain storages!

A disjunctive constraint in MOSEK 10 consists of:

• An ordered list of affine expression indexes.

• An ordered list of domain indexes (only linear ones for now!).

• A g vector.

• A list of term sizes t1, . . . , tl :

OR
Dk1 t1
Dk2 t2

OR
Dk3

FI,:x + fI − g ∈ Dk4 t3

OR

...

...

OR

...

...
tlDks
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Summary

• Described how to specify affine conic constraints in MOSEK
10.
• Efficient yet quite general when implemented in C.
• Easy to extend to new cone types.

• Described how to specify disjunctive constraints in MOSEK
10.
• Generalize many special constructs such semi-continuous

variables, indicator constraints, etc.
• Make it possible to get rid of big-Ms.

• Documentation at mosek.com/documentation/
• Modeling cook book / cheat sheet.
• Manuals for interfaces.
• Notebook collection.

• Tutorials and more at
github.com/MOSEK/ 13 / 13
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