

Conic Optimization In MOSEK 9: New Cones And Algorithms

INFORMS 2019 Annual Meeting October 20th, Seattle, WA

Sven Wiese

www.mosek.com

(Mixed-Integer) Conic Optimization

We consider problems of the form

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathcal{K} \cap (\mathbb{Z}^p \times \mathbb{R}^{n-p})$,

where K is a convex cone.

- Typically, $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 \times \cdots \times \mathcal{K}_K$ is a product of lower-dimensional cones.
- How can these so-called conic building blocks look like?

What is **MOSEK**?

The software package **MOSEK** can be employed to solve such problems with the following building blocks:



Symmetric cones - supported by MOSEK 8

• the nonnegative orthant

$$\mathbb{R}^n_+ := \{ x \in \mathbb{R}^n \mid x_i \ge 0, \ j = 1, \dots, n \},$$

• the quadratic cone

$$Q^n = \{x \in \mathbb{R}^n \mid x_1 \ge (x_2^2 + \dots + x_n^2)^{1/2} = \|x_{2:n}\|_2\},$$

• the rotated quadratic cone

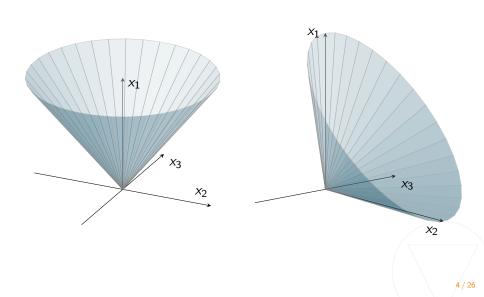
$$Q_r^n = \{x \in \mathbb{R}^n \mid 2x_1x_2 \ge x_3^2 + \dots + x_n^2 = ||x_{3:n}||_2^2, x_1, x_2 \ge 0\}.$$

• the semidefinite matrix cone

$$S^n = \{ x \in \mathbb{R}^{n(n+1)/2} \mid z^T \mathbf{mat}(x) z \ge 0, \ \forall z \},$$

with
$$\mathbf{mat}(x) := \begin{bmatrix} x_1 & x_2/\sqrt{2} & \dots & x_n/\sqrt{2} \\ x_2/\sqrt{2} & x_{n+1} & \dots & x_{2n-1}/\sqrt{2} \\ \vdots & \vdots & & \vdots \\ x_n/\sqrt{2} & x_{2n-1}/\sqrt{2} & \dots & x_{n(n+1)/2} \end{bmatrix}.$$

Quadratic cones in dimension 3



Quadratic-cone use case: unit commitment

We want to schedule the power production of a set of n generators over \mathcal{T} periods.

$$\begin{array}{ll} \text{minimize} & \sum_{i} a_i \sum_{t} p_{i,t}^2 + \sum_{i} b_i \sum_{t} p_{i,t} \\ \text{subject to} & \sum_{i} p_{i,t} \geq d_t, \\ & u_{i,t} p_i^{min} \leq p_{i,t} \leq u_{i,t} p_i^{max}, \\ & u \in U \\ & u_{i,t} \in \{0,1\}. \end{array}$$

First introduce $s_i \geq \sum p_{i,t}^2$ and rewrite the objective as

$$\sum_{i} a_{i} s_{i} + \sum_{i} b_{i} \sum_{t} p_{i,t}.$$

Now
$$s_i \ge \sum p_{i,t}^2 = \|p_{i,\cdot}\|_2^2 \iff (1/2, s_i, p_{i,\cdot}) \in \mathcal{Q}_r^{n+2}.$$

Quadratic-cone use case: convex quadratics

• Every convex (MI)QCP can be reformulated as a (MI)SOCP:

$$t \ge x^T Q x$$
 with Q p.s.d. $\iff t \ge ||Fx||_2^2$ with $Q = F^T F$.

This reformulation can be performed automatically, but F may as well be known explicitly to the modeler.

- In some applications, like least-squares regression, a SOC-formulation is more direct than a QP-formulation.
- The symmetric cones in MOSEK are thus enough to tackle LP, MILP, SDP, QCP and MIQCP.

Non-symmetric cones - supported by MOSEK 9!

• the three-dimensional exponential cone

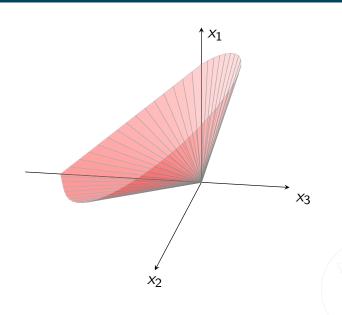
$$\mathcal{K}_{exp} = \operatorname{cl}\{x \in \mathbb{R}^3 \mid x_1 \ge x_2 \exp(x_3/x_2), x_2 > 0\}.$$

• the three-dimensional power cone

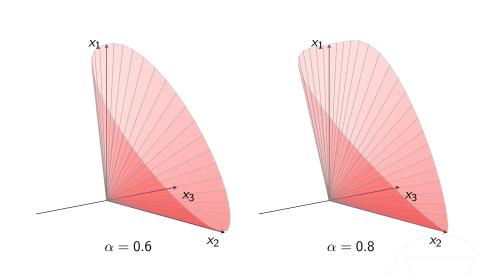
$$\mathcal{P}^{\alpha} = \{x \in \mathbb{R}^3 \mid x_1^{\alpha} x_2^{(1-\alpha)} \ge |x_3|, \ x_1, x_2 \ge 0\},$$
 for $0 < \alpha < 1$.

Symmetric cones are homogeneous and self-dual by definition, and the above lack at least one of these properties.

The exponential cone



The power cone



Exponential-cone use case: logistic regression

Given *n* binary training-points $\{(x_i, y_i)\}$ in \mathbb{R}^{d+1} , we want to determine the classifier

$$h_{\theta}(x) = \frac{1}{1 + \exp(-\theta^T x)}.$$

Training with 2n exponential cones:

minimize
$$\sum_{i} t_{i} + F \cdot |\{j \mid \theta_{j} \neq 0\}|$$
subject to
$$t_{i} \geq \log(1 + \exp(-\theta^{T} x_{i})), \quad y_{i} = 1,$$

$$t_{i} \geq \log(1 + \exp(\theta^{T} x_{i})), \quad y_{i} = 0.$$

We may also consider simultaneous feature selection [10], giving rise to additional d binary variables!

Exponential-cone use case: logistic regression (cont.)

We need to model the so-called softplus function:

$$t \ge \log(1 + e^x) \iff 1 \ge e^{-t} + e^{x-t}$$
 $\iff 1 \ge u + v, \ u \ge e^{-t}, \ v \ge e^{x-t}$
 $\iff 1 > u + v, \ (u, 1, -t), (v, 1, x - t) \in \mathcal{K}_{exp}$

- Other use cases of the exponential cone arise in Geometric Programming, log-exponential convex risk measuring, power allocation in mobile networks, ...
- Use cases of the power cone arise, e.g., in connection with p-norms.

Non-symmetric cones - why?

- The exponential- and power-cone inequalities are tractable with general convex methods, e.g., the convex interface of MOSEK 8.
- Yet, the theoretical foundations for conic interior-point methods are stronger as compared to nonlinear programming.
- Until now, there had simply not been a satisfactory algorithm handling the non-symmetric cones.

A breakthrough!

 Performance and stability are improved, often on level with symmetric-cone implementation.

What about the generality?

 The 5 cones - linear, quadratic, exponential, power and semidefinite- together are highly versatile for modeling.

Continuous Optimization Folklore

"Almost all convex constraints which arise in practice are representable using these cones."

- Lubin et al. [8] show that all convex instances (333) in MINLPLIB2 are conic representable using only 4 types of cones.
- We call modeling with the aforementioned 5 cones extremely disciplined convex programming.

Extremely disciplined convex programming in action

Conic Modeling Cheatsheet

Cones	
Quadratic cone	Q^n
	$x_1 \ge \sqrt{x_2^2 + \cdots + x_n^2}$

Rotated quadratic cone Q_r^n

 $2x_1x_2 \ge x_3^2 + \cdots + x_n^2, \ x_1, x_2 \ge 0$ Power cone $\mathcal{P}_3^{\alpha,1-\alpha}, \ \alpha \in (0,1)$

 $x_1^{\alpha}x_2^{1-\alpha} \ge |x_3|, x_1, x_2 \ge 0$

Exponential cone K_{exp}

 $x_1 \ge x_2 e^{x_3/x_2}, \ x_2 \ge 0$

Simple bounds	
$t \ge x^2$	$(0.5, t, x) \in Q_r^3$
$ t \le \sqrt{x}$	$(0.5, x, t) \in Q_r^3$
$t \ge x $	$(t, x) \in Q^2$
$t \ge 1/x, \ x > 0$	$(x, t, \sqrt{2}) \in Q_r^3$
$t \ge x ^p, p > 1$	$(t, 1, x) \in P_3^{1/p, 1-1/p}$
$t \ge 1/x^p$, $x > 0$, $p > 0$	$(t, x, 1) \in \mathcal{P}_3^{1/(1+p), p/(1+p)}$
$ t \le x^p, x > 0, p \in (0,1)$	$(x \ 1 \ t) \in \mathcal{D}^{p,1-p}$
$t \ge x ^p/y^{p-1}, y \ge 0$	$(t, y, x) \in \mathcal{P}_3^{1/p, 1-1/p}$
p > 1	
$t \ge x^T x/y, y \ge 0$	$(0.5t, y, x) \in Q_r^{n+2}$
$t \ge e^x$	$(t, 1, x) \in K_{exp}$
$t \le \log x$	$(x, 1, t) \in K_{exp}$
$t \ge 1/\log x$, $x > 1$	$(u, t, \sqrt{2}) \in Q_r^3$
	$(x, 1, u) \in K_{exp}$
$t \ge a_1^{x_1} \cdots a_n^{x_n}, \ a_i > 0$	$(t, 1, \sum x_i \log a_i) \in K_{exp}$
$t \ge xe^x$, $x \ge 0$	$(t, x, u) \in K_{exp}$
	$(0.5, u, x) \in Q_r^3$
$t \ge \log(1 + e^x)$	$u + v \le 1$
	$(u, 1, x - t) \in K_{exp}$
	$(v, 1, -t) \in K_{exp}$
$t \ge x ^{3/2}$	$(t, 1, x) \in P_3^{2/3, 1/3}$
$t \ge x^{3/2}, x \ge 0$	$(s, t, x), (x, 1/8, s) \in Q_r^3$
$t \ge 1/x^3$, $x > 0$	$(t, x, 1) \in \mathcal{P}_3^{3/4, 1/4}$
$0 \le t \le x^{2/5}, x \ge 0$	$(x, 1, t) \in P_2^{2/5, 3/5}, t \ge 0$

Means and averaging	ıg
Log-sum-exp	$(z_i, 1, x_i - t) \in K_{exp}$
$t \ge \log(\sum e^{x_i})$	i = 1,, n
	$\sum z_i \le 1$
Harmonic mean	$(z_i, x_i, t) \in Q_r^3$
$0 \le t \le n(\sum x_i^{-1})^{-1}$	i = 1,, n
$x_i > 0$	$\sum z_i = nt/2$
Geometric mean	$(z_i, x_i, z_{i+1}) \in P_3^{1-1/i,1}$
$ t \le (x_1 \cdot \cdot \cdot x_n)^{1/n}$	i = 2,, n
$x_i > 0$	$z_2 = x_1, z_{n+1} = t$
$ t \le \sqrt{xy}, x, y > 0$	$(x, y, \sqrt{2}t) \in Q_r^3$
Weighted geom. mean	$(z_i, x_i, z_{i+1}) \in P_3^{1-\beta_i, \beta_i}$
$ t \le x_1^{\alpha_1} \cdot \cdot \cdot x_n^{\alpha_n}, x_i > 0$	$\beta_i = \alpha_i/(\alpha_1 + \cdots + \alpha_i)$
$\alpha_i > 0, \sum \alpha_i = 1$	i = 2,, n
	$z_2 = x_1, z_{n+1} = t$
$ t \le x^{1/4}y^{5/12}z^{1/3}$	$(s, z, t) \in \mathcal{P}_{3}^{2/3, 1/3}$
$x, y, z \ge 0$	$(x, y, s) \in \mathcal{P}_{3}^{3/8, 5/8}$

Entropy	
$t \le -x \log x$	$(1, x, t) \in K_{exp}$
$t \ge x \log(x/y)$	$(y, x, -t) \in K_{exp}$
$t \ge \log(1 + 1/x)$	$(x + 1, u, \sqrt{2}) \in Q_r^3$
x > 0	$(1 - u, 1, -t) \in K_{exp}$
$t \le \log(1 - 1/x)$	$(x, u, \sqrt{2}) \in Q_r^3$
x > 1	$(1 - u, 1, t) \in K_{exp}$
$t \ge x \log(1 + x/y)$	$(y, x + y, u) \in K_{exp}$
x, y > 0	$(x + y, y, v) \in K_{exp}$
	t + u + v = 0

Convex quadratic pr	
Let $\Sigma \in \mathbb{R}^{n \times n}$, symmetric, p	o.s.d.
Find $\Sigma = LL^T$, $L \in \mathbb{R}^{n \times k}$ (Cholesky factor).	
Then $x^T \Sigma x = L^T x _2^2$.	
$t \ge \frac{1}{2}x^T\Sigma x$	$(1, t, L^T x) \in Q_r^{k+2}$
$t \ge \sqrt{x^T \Sigma x}$	$(t, L^T x) \in Q^{k+1}$
$\frac{1}{2}x^T\Sigma x + p^Tx + q \le 0$	$(1, -p^T x - q, L^T x) \in Q_r^{k+2}$
$\max_x c^T x - \frac{1}{2}x^T \Sigma x$	$\max c^T x - r$
-	$(1, r, L^T x) \in Q_r^{k+2}$
$c^{T}x + d \ge Ax + b _{2}$	$(c^Tx + d, Ax + b) \in Q^{m+1}$

Norms, $x \in \mathbb{R}^n$	
$\ \cdot\ _1, t \ge \sum x_i $	$(z_i, x_i) \in Q^2$, $t = \sum z_i$
$\ \cdot\ _2$, $t \ge (\sum x_i^2)^{1/2}$	$(t, x) \in Q^{n+1}$
$\ \cdot\ _p$, $p > 1$ $t \ge (\sum x_i ^p)^{1/p}$	$(z_i, t, x_i) \in \mathcal{P}_3^{1/p, 1-1/p}$ i = 1,, n
	$\sum z_i = t$

Geometry	
Bounding ball	min r
$\min_x \max_i x - x_i _2$	$(r, x - x_i) \in Q^{n+1}$
Geometric median	$\min \sum t_i$
$\min_x \sum x - x_i _2$	$(t_i, x - x_i) \in Q^{n+1}$
Analytic center	$\max \sum t_i$
$\max_x \sum \log(b_i - a_i^T x)$	$(b_i - \overline{a_i}^T x, 1, t_i) \in K_{exp}$

regression and neu	ng .
Regularized least squares	$\min t + \lambda r$
$\min_{w} Xw - y _2^2 + \lambda w _2^2$	$(0.5, t, Xw - y) \in Q_r^{m+2}$
	$(0.5, r, w) \in Q_r^{n+2}$
Max likelihood	$\max \sum a_i t_i$
$\max_p p_1^{a_1} \cdot \cdot \cdot p_n^{a_n}$	$(p_i, \overline{1, t_i}) \in K_{exp}$
Logistic cost function	$u + v \le 1$
$t \ge -\log(1/(1 + e^{-\theta^T x}))$	$(u, 1, -\theta^T x - t) \in K_{exp}$
	$(v, 1, -t) \in K_{exp}$

Risk-return	
$\Sigma \in \mathbb{R}^{n \times n}$ – covariance, Σ	
$\max_x \alpha^T x$	$\max_x \alpha^T x$
s.t. $x^T \Sigma x \leq \gamma$	$(\sqrt{\gamma}, L^T x) \in Q^{k+1}$
$\max_x \alpha^T x - \delta x^T \Sigma x$	$\max_{x} \alpha^{T} x - \delta r$
	$(0.5, r, L^T x) \in Q^{k+2}$

Risk plus $z^{1,k}$ impact cost $z^{1,k} \geq \Delta z^{k} \sum x + \beta \sum |x_{i}|^{3/2} (0.5, rF^{2}) \geq Q^{k+2}$ $(0.5, t, \sqrt{D}x) \in Q^{k+2}$ $(0.5, t, \sqrt{D}x) \in Q^{k+2}$ $F \in \mathbb{R}^{n+k}$ – factor loads $F \in \mathbb{R}^{n+k}$ – factor $F \in \mathbb{R}$

The computational beauty of Conic Optimization

In continuous optimization, conic (re-)formulations have been highly advocated for quite some time, e.g., by Nemirovski [9].

- Separation of data and structure:
 - Data: *c*, *A* and *b*.
 - Structure: K.
- Structural convexity.
- Duality (almost...).
- No issues with smoothness and differentiability.

Extending MOSEK with non-symmetric cones

MOSEK solves the homogenous model

$$Ax - b\tau = 0$$

$$c\tau - A^{T}y - s = 0$$

$$c^{T}x - b^{T}y + \kappa = 0$$

$$x \in \mathcal{K}, s \in \mathcal{K}^{*}, \tau, \kappa \geq 0.$$

The challenges of its extension to non-symmetric cones include:

- The symmetric cones are equipped with a bilinear product that simplifies the centrality condition of the shifted central path problem. For non-symmetric cones there is no such bilinear product.
- On the symmetric cones, the Nesterov-Todd scaling can be employed, but not on non-symmetric cones.
- Making corrector terms work requires more effort.

Cones in Mixed-Integer Optimization

The exploitation of conic structures in the mixed-integer case is slightly newer, but nonetheless an active research area:

- Outer approximation: Coey et al. [7].
- Lift-and-project cuts: Tanneau and Vielma [11].
- MISOCP:
 - Extended Formulations: Vielma et al. [12].
 - Cutting planes: Andersen and Jensen [1], Kılınç-Karzan and Yıldız [6], Belotti et al. [2], ...
 - Primal heuristics: Çay et al. [3].

Limited structure facilitates the development of various ingredients of modern MINLP-solvers.

Mixed-Integer optimization in MOSEK

MOSEK implements conic (\approx nonlinear) branch-and-cut and conic outer-approximation frameworks.

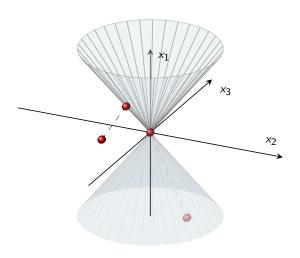
Conic outer approximation is new in MOSEK 9!

- For a cone $\mathcal{K} = \{x \mid a^T x \le 0 \ \forall a \in \mathcal{K}^{\circ} \}$, any point $a \in \mathcal{K}^{\circ}$ separates $\hat{x} \notin \mathcal{K}$: $a^T \hat{x} > 0$.
- If $K = \{x \mid f(x) \le 0\}$, then $a = \nabla f(\hat{x})$ is a separator [7].
- In MOSEK instead, we solve the maximal separation problem

$$\max_{a \in \mathcal{K}^{\circ}, \|a\|_2 \le 1} a^T \hat{x}.$$

• This is the dual of the projection problem $\min_{\mathbf{x} \in \mathcal{K}} \|\mathbf{x} - \hat{\mathbf{x}}\|_2.$

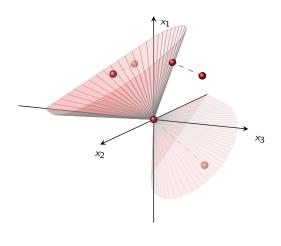
Cone projections



For the symmetric cones, the projection problem can be solved algebraically!

Cone projections (cont.)

For the exponential and power cones, the projection problem is at most a univariate root-finding problem [5, 4].



Wrap-up

- MOSEK 9 adds new modeling power, via the exponential and power cones, to the already existing symmetric cones, giving the possibility to tackle most convex (MI)NLP problems.
- Robust numerical algorithms are available for solving these problems in the continuous and mixed-integer case.
- Consider (Mixed-Integer) Conic Optimization as a research area - there are some fruits to pick!

References I

- [1] Kent Andersen and Anders Nedergaard Jensen.
 - Intersection cuts for mixed integer conic quadratic sets.
 - In Michel Goemans and José Correa, editors, *Integer Programming and Combinatorial Optimization*, pages 37–48, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
- [2] Pietro Belotti, Julio C. Góez, Imre Pólik, Ted K. Ralphs, and Tamás Terlaky.
 - On families of quadratic surfaces having fixed intersections with two hyperplanes.
 - Discrete Appl. Math., 161(16-17):2778–2793, November 2013.
- [3] Sertalp Çay, Imre Pólik, and Tamás Terlaky.
 - The first heuristic specifically for mixed-integer second-order cone optimization.
 - Technical Report 18T-002, Lehigh University, January 2018.

References II

[4] Henrik Alsing Friberg.

Projection onto the exponential cone: a univariate root-finding problem. Technical report, Optimization Online, January 2018.

[5] Le Thi Khanh Hien.

Differential properties of euclidean projection onto power cone. Mathematical Methods of Operations Research, 82(3):265–284, Dec 2015.

[6] F. Kılınç-Karzan and S. Yıldız.

Two-term disjunctions on the second-order cone.

Mathematical Programming, 154(1):463–491, April 2015.

[7] Miles Lubin.

Mixed-integer convex optimization: outer approximation algorithms and modeling power.

PhD thesis, Massachusetts Institute of Technology, 2017.

References III

- [8] M. Lubin and E. Yamangil and R. Bent and J. P. Vielma. Extended Formulations in Mixed-integer Convex Programming. In Q. Louveaux and M. Skutella, editors, *Integer Programming and Combinatorial Optimization*. IPCO 2016. Lecture Notes in Computer Science, Volume 9682, pages 102–113. Springer, Cham, 2016.
- [9] A. Nemirovski.

Advances in convex optimization: Conic programming.

In Marta Sanz-Sol, Javier Soria, Juan L. Varona, and Joan Verdera, editors, *Proceedings of International Congress of Mathematicians, Madrid, August 22-30, 2006, Volume 1*, pages 413–444. EMS - European Mathematical Society Publishing House, April 2007.

[10] Yuichi Takano, Toshiki Sato, Ryuhei Miyashiro, and Akiko Yoshishe. Feature Subset Selection for Logistic Regression via Mixed Integer Optimization.

Talk at Workshop on Advances in Optimization (WAO2016). www.me.titech.ac.jp/~mizu_lab/KAKEN2014/WA02016/takano.pdf, 2016.

References IV

- [11] Mathieu Tanneau and Juan Pablo Vielma. Cutting Planes for Mixed-Integer Conic Programming. Poster session at the 2019 YinzOR Student Conference, 2019.
- [12] J. P. Vielma, I. Dunning, J. Huchette, and M. Lubin. Extended Formulations in Mixed Integer Conic Quadratic Programming. *Mathematical Programming Computation*, 9:369–418, 2017.

Further information on MOSEK

- Documentation at https://www.mosek.com/documentation/
 - Manuals for interfaces.
 - Modeling cook book.
 - White papers.
- Tutorials and more at https://github.com/MOSEK/

