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(Mixed-Integer) Conic Optimization

We consider problems of the form
minimize ¢’ x
subjectto Ax=0b
xeXN (ZPXR’H”),
where K is a convex cone.

e Typically, K =K1 x Ky x -+ x Kk is a product of
lower-dimensional cones.

® How can these so-called conic building blocks look like?



What is MOSEK 7

The software package MOSEK can be employed to solve such
problems with the following building blocks:
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Symmetric cones - supported by MOSEK 8

® the nonnegative orthant

RY :={xeR"|x;>0,j=1,...,n},

the quadratic cone

1/2
Q"= {xeR" | x1 > (Z ++x2) "> = anla),

the rotated quadratic cone

Qf = {X € R” | 2x1Xp > X§ + - +X,3 = HX3;n||§, X1, X2 > 0}

the semidefinite matrix cone
S" = {x e R""D/2 | zTmat(x)z > 0, Vz},

X1 x2/V2 L xa/V2
X/V2  Xpi1 ce Xono1/V2

with mat(x) :=

Xn/\/i X2n71/\[2 <o Xn(nt1)/2
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Quadratic cones in dimension 3




Quadratic-cone use case: unit commitment

We want to schedule the power production of a set of n generators
over T periods.
minimize Z aj Z p,-27t + Z b; Z Pit
i t i t
subject to Zp,-,t > d;,

I .
ui ™ < pie < ujep™,
ue U
U,‘7t € {O, ]_}

First introduce s; > Zp,-%t and rewrite the objective as
t

daisi+ > by pie
i i t

Now s; > Zp,%t =|pi.l3 <= (1/2,s,pi.) € Q"
t



Quadratic-cone use case: convex quadratics

® Every convex (MI)QCP can be reformulated as a (MI)SOCP:
t>x' Qx with Q p.s.d. <=t > ||Fx|3 with @ = FTF.

This reformulation can be performed automatically, but F
may as well be known explicitly to the modeler.

® |n some applications, like least-squares regression, a
SOC-formulation is more direct than a QP-formulation.

® The symmetric cones in MOSEK are thus enough to tackle
LP, MILP, SDP, QCP and MIQCP.



Non-symmetric cones - supported by MOSEK 9! v

® the three-dimensional exponential cone

Kexp =cl{x € R3 | x; > xo exp(x3/x2), x2 > 0}.

® the three-dimensional power cone
« 3 a (1-a)
P = {x e B | x5 > |, 1.2 > 0},

for0 < a < 1.

Symmetric cones are homogeneous and self-dual by definition, and
the above lack at least one of these properties.



The exponential cone
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The power cone
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Exponential-cone use case: logistic regression

Given n binary training-points {(x;, y;)} in RY™, we want to
determine the classifier

1

0 T e

Training with 2n exponential cones:
minimize Zt,- + F-|{j| 6 #0}
i

subject to t; > log(1 + exp(—QTXi)), yi=1,
tj > log(1+exp(07x;)), yi=0.

We may also consider simultaneous feature selection [10], giving
rise to additional d binary variables!



Exponential-cone use case: logistic regression (cont.) v

We need to model the so-called softplus function:

t>log(l+e") <« 1>e 4t
= 1>u+4v,u>et v>et
= 1>u+v, (u,1,-t),(v,1,x — t) € Keyp-

® QOther use cases of the exponential cone arise in Geometric
Programming, log-exponential convex risk measuring, power
allocation in mobile networks, ...

® Use cases of the power cone arise, e.g., in connection with
p-norms.



Non-symmetric cones - why?

® The exponential- and power-cone inequalities are tractable
with general convex methods, e.g., the convex interface of
MOSEK 8.

® Yet, the theoretical foundations for conic interior-point
methods are stronger as compared to nonlinear programming.

® Until now, there had simply not been a satisfactory algorithm
handling the non-symmetric cones.

A breakthrough!

® Performance and stability are improved, often on level with
symmetric-cone implementation.



What about the generality?

® The 5 cones - linear, quadratic, exponential, power and
semidefinite- together are highly versatile for modeling.

Continuous Optimization Folklore

“"Almost all convex constraints which arise in practice are
representable using these cones.”

® Lubin et al. [8] show that all convex instances (333) in
MINLPLIB2 are conic representable using only 4 types of
cones.

® We call modeling with the aforementioned 5 cones extremely
disciplined convex programming.
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The computational beauty of Conic Optimization

In continuous optimization, conic (re-)formulations have been
highly advocated for quite some time, e.g., by Nemirovski [9].

® Separation of data and structure:

® Data: ¢, Aand b.
® Structure: K.

e Structural convexity.
¢ Duality (almost...).

® No issues with smoothness and differentiability.



Extending MOSEK with non-symmetric cones

MOSEK solves the homogenous model

Ax —br =0
cr—Aly—s=0
c"x—bTy+k=0

xeK, se K, ,6>0.

The challenges of its extension to non-symmetric cones include:
® The symmetric cones are equipped with a bilinear product
that simplifies the centrality condition of the shifted central
path problem. For non-symmetric cones there is no such
bilinear product.

® On the symmetric cones, the Nesterov-Todd scaling can be
employed, but not on non-symmetric cones.

® Making corrector terms work requires more effort.



Cones in Mixed-Integer Optimization

The exploitation of conic structures in the mixed-integer case is
slightly newer, but nonetheless an active research area:

® Outer approximation: Coey et al. [7].

e Lift-and-project cuts: Tanneau and Vielma [11].
e MISOCP:

® Extended Formulations: Vielma et al. [12].

® Cutting planes: Andersen and Jensen [1], Kiling-Karzan and
Yildiz [6], Belotti et al. [2], ...

® Primal heuristics: Cay et al. [3].

Limited structure facilitates the development of various ingredients
of modern MINLP-solvers.



Mixed-Integer optimization in MOSEK

MOSEK implements conic (& nonlinear) branch-and-cut and
conic outer-approximation frameworks.

Conic outer approximation is new in MOSEK 9!

® Foracone K= {x|a'x<0VaeK°}, any point a € K°
separates & ¢ K: a’ £ > 0.

o If L ={x | f(x) <0}, then a= V£(X) is a separator [7].

® In MOSEK instead, we solve the maximal separation problem

max al .

acke,||all2<1

® This is the dual of the projection problem mier1 lIx — X||2.
NS



Cone projections

]

For the symmetric cones, the projection problem can be solved
algebraically!



Cone projections (cont.)

For the exponential and power cones, the projection problem is at
most a univariate root-finding problem [5, 4].

X1
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® MOSEK 9 adds new modeling power, via the exponential and
power cones, to the already existing symmetric cones, giving
the possibility to tackle most convex (MI)NLP problems.

® Robust numerical algorithms are available for solving these
problems in the continuous and mixed-integer case.

¢ Consider (Mixed-Integer) Conic Optimization as a research
area - there are some fruits to pick!
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Further information on MOSEK

® Documentation at
https://wuw.mosek.com/documentation/
® Manuals for interfaces.
® Modeling cook book.
® White papers.

® Tutorials and more at &

https://github.com/MOSEK/ Julia
C++ @Python ‘

Java .NET

maosek
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