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Conic optimization

Linear cone problem:

minimize ¢’ x

subjectto Ax=b
x €K,

with K = K1 x Ky x --- X K, a product of proper cones.

Dual:
maximize bTy
subjectto c—ATy=s
se K*,

with K* = K{ x K3 x -+ x Kj.



Conic optimization

MOSEK 9 supports the following symmetric cones,
e linear, quadratic and semidefinite cones
and the nonsymmetric cones,

e three-dimensional power cone for 0 < o < 1,

KS . =1{x € R3 | xlaxz(lfa) > |x3|, x1,x2 > 0},

pow

e exponential cone

Kexp = cl{x € R3 | x1 > xpexp(x3/x2), xo > 0}.



Self-concordant barriers

Self-concordant barrier for Keyp:
F(x) = —log(x2 log(x1/x2) — x3) — log x1 — log x2.
Conjugate barrier:
Fi(s) = max{—(x,s) — F(x) : x € int(K)}.
Standard properties:
FU) (7x) = %FW(X) FU (x)[x] = —kFED(x)

— F'(x) € int(K.) — Fi(s) € int(K)
F/(~Fi(s) = —s FI(=Fi(s)) = [FX(s) "



Central path for conic problem

Central path for homogenous model parametrized by p:

Ax,, — br, = p(Ax — br)
Sy + ATyH —cry = p(s+ ATy — cT)
ch# — bTy# + Ky = w(c"x —bTy + k)

su=—pF' (x.), xu=—uF(sy), KuTu=H,

or equivalently

0 A —b Vi 0 Ip
AT 0 c Xy | = | Su | =0 | rd
bT —cT 0 u K g

Sp=—1F' (%), xu=—pF(su),  FuTu = i,

rp = Ax—b1, rq:= CT—ATy—S, rg == /i—ch+bTy, re == x! s+7k.
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Scaling for nonsymmetric cones

Following Tuncel [5] we consider a scaling WT W - 0,
v=Wx=WTs, v=Wix=W"Ts
where X := —F/(s) and 5 := —F'(x). The centrality conditions
X = puX, S=us
can then be written symmetrically as
v = uv,
and we linearize the centrality condition v = uv as

WAx + W™ TAs = pui —v.



An affine search-direction

0 A —b Ay, 0 rp
—AT 0 c Axy | — | Asy | =— | rg
bT  —cT 0 AT, Ak, re

As, + WTWAx, = —s, TAK, + KAT, = —KT,

satisfying
(Ax;)T As, + A, Ak, = 0.

Let a, € (0, 1] denote largest feasible step in the affine direction.

We estimate a centering parameter as

v = (1 —a,)min{(1 — ay)?,1/4}.



A centering search-direction

Let p = (x"s+7k)/(v+ 1),

0 A —b Ay 0 Ip
—AT 0 c Ax. | — | Asc | =(y—=1)| rq
bT  —cT 0 AT JAVS rg

W Ax. + W_TASC =yuv —v, TAkKc+ KATc=yu — KT,

Constant decrease of residuals and complementarity:

AxT — bt = (1 —a(l —9)) - rp,

crt —ATyT —st =(1-a(l1 7)) rq,
BTy — cTxt — it = (1—a(1-7)) -1y,
x)Tst+7kt =1 -a(l —79)) r,

where zt := (z + aAz).



A higher-order corrector term

Derivatives of s, = —puF'(x,):

Su + IU’F”(XM)).(M = *F,(Xu)a

S+ 1F" ()% = —2F" ()% — wF" (5) [0, %]
Using F"(x)x = —F'(x) and F"(x)[x] = —2F"(x) we obtain

8+ " (%)X = F" (%) [, (F//(Xu))_léu]~
We interpret §, ~ —puAs, and x, &~ —pulx,, ie.,

1
Ascor + WTWAXcor = EFW(X)[AXa, (F//(X))_lAsa]a

satisfying
XxTAscor + 5T Axeor = —(Ax,) T As,.



Combined centering-corrector direction

A combined centering-corrector direction:

0 A —b Ay 0 Ip
~AT 0 c Ax | — | As | =(y—1)| rg
bT  —cT 0 AT Ar rg

1
WAx 4+ W~ TAs =yuv — v+ 5 W=TF"(x)[Axa, (F"(x)) " *As],

TAK 4+ KAT =y — Tk — AT, AK,.

All residuals and complementarity decrease by (1 — a(1 — 7)).



Computing the scaling matrix

Theorem (Schnabel [4

Let S, Y € R™P have full rank p. Then there exists H = 0 such
that HS = Y if and only if YT S > 0.

Let
S::(X 5?), Y::(S §)

both be full rank. As a consequence of Thm. 1 (for n = 3),
H=Y(YTS)lyT 4 zzT
where STz =0, z # 0 and
det(YTS) = ((sz) (%T3) - 1/2> >0

vanishing towards the central path.
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Computing the scaling matrix

Expanding the BFGS update [4]
H=Ho+ Y(YTS)'YT — HyS(STHoS) 1S Hy,
for Hy > 0 gives the scaling by Tungel [5] and Myklebust [2], i.e.,
22T = Hy — HoS(ST HpS) 1S Hy.
We choose Hy := uF"(x).
In other words, WT W = H ~ puF"(x) and satisfies

WTWx =s, WTWs =s.
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Tuncel's scaling bounds

Let = (x"s)/v and fi := (X75)/v. Tuncel defines

T2(&:x,8) = {H> 0| Hx = s, H% = §,

H F//(X) < H < f(l/(,uﬂ — 1) + 1) F”()?)}

Ew(pi—1)+1) 1

and shows polynomial convergence for a potential reduction
method if

inf Ta(&x,5) < O(1), Vx € int(K), s € int(K").

For symmetric cones £* < 4/3.
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Bounds for the exponential cone

Given s € int(Kg,,) and p > 0. Let h:=(0,0,vu/s3) and

Xo := h— a(uF'(s) + h).
O x, € Kexp, @ € [0,1/2].

Py <Xayas> _
! / v—-1 1
© 1(F'(xa), Fi(s)) = v —1Da

9 ||Xa||2—MF,ﬁ(s) == (042 — 2OZ)V(V — 1) —+ 1/2.

Conjecture (@bro [3]): For the exponential cone {* ~ 1.2532,
ie.,

(2w 2yv \ T (w-1)P 1 . -
E7(1/—1 \/V—l) < N er— v(vr—1) +1)

-1/2

attained for x,+ with o = v(v(v — 1))
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Implications for the exponential-cone

e F(x) does not have negative curvature, i.e.,

F"(x)[u] 20, Vx € int(Kexp), Vu € Kexp-

e But F” is still bounded, for another reason.

e Tuncel's potential-reduction method for expontial-cones have
polynomial-time complexity.

e No equivalent proof yet for MOSEK's algorithm, even with
optimal scalings.

e The BFGS scaling appears to be bounded as well, and often
coincides with the optimal scaling, leaving more to be proved.

15/19



Comparing MOSEK and ECOS conic solvers
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Iteration counts for different exponential cone problems, comparing
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(with and without proposed corrector) and ECOS.
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Comparing MOSEK and ECOS conic solvers
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Conclusions

e Exponential cone optimization included in MOSEK 9.

e Works very well in practice, especially with the proposed
corrector.

e Solution-time, accuracy, number of iterations on level with
symmetric cone implementation.

e No proof of polynomial-time complexity yet.

e More details can be found in [1].
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