Polynomial optimization using MOSEK and Julia

ISMP, Pittsburgh, July 12-17, 2015

Joachim Dahl, MOSEK ApS

collaborators: Martin S. Andersen (DTU), Frank Permenter (MIT)

www.mosek.com
Polyopt.jl
A brief overview.

- Julia package for polynomial optimization (requires Julia 0.4).
- Implements the Lasserre hierarchy of moment relaxations.
- Uses the MOSEK conic optimizer to solve the relaxations.

Installation

Pkg.clone("https://github.com/MOSEK/Polyopt.jl.git")
We consider polynomials optimization problems

\[
\text{minimize} \quad f(x) \\
\text{subject to} \quad g_i(x) \geq 0, \quad i = 1, \ldots, m \\
\quad h_i(x) = 0, \quad i = 1, \ldots, l \\
x \in \mathbb{R}^n
\]

for real polynomials \(f, g_i, h_j : \mathbb{R}^n \rightarrow \mathbb{R} \).

- Solved by a sequence of relaxations.
- An important recent application of semidefinite optimization.
- The relaxations can be difficult to solve numerically.
We consider polynomials optimization problems

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \geq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, l \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

for real polynomials \(f, g_i, h_j : \mathbb{R}^n \mapsto \mathbb{R} \).

- Solved by a sequence of relaxations.
- An important recent application of semidefinite optimization.
- The relaxations can be difficult to solve numerically.
We consider polynomials optimization problems

\[
\begin{align*}
\text{minimize} & \quad f(x) \\
\text{subject to} & \quad g_i(x) \geq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, l \\
& \quad x \in \mathbb{R}^n
\end{align*}
\]

for real polynomials \(f, g_i, h_j : \mathbb{R}^n \mapsto \mathbb{R} \).

- Solved by a sequence of relaxations.
- An important recent application of semidefinite optimization.
- The relaxations can be difficult to solve numerically.
Software packages for polynomial optimization

Why develop a new package?

Other Matlab packages with same functionality exists:

- **GloptiPoly**, standard moment relaxations.
- **SparsePoP**, sparse moment relaxations.
- **SOSTools**, general sum-of-squares problems.
- **Yalmip**, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

- Test and improve the MOSEK semidefinite solver.
- Have full control of the generated semidefinite problems.
- Investigate other approaches for exploiting sparsity.
- Implement it in Julia to remove dependency on Matlab.
Software packages for polynomial optimization

Why develop a new package?

Other Matlab packages with same functionality exists:

- **GloptiPoly**, standard moment relaxations.
- **SparsePoP**, sparse moment relaxations.
- **SOSTools**, general sum-of-squares problems.
- **Yalmip**, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

- Test and improve the MOSEK semidefinite solver.
- Have full control of the generated semidefinite problems.
- Investigate other approaches for exploiting sparsity.
- Implement it in Julia to remove dependency on Matlab.
Software packages for polynomial optimization

Why develop a new package?

Other Matlab packages with same functionality exists:

- **GloptiPoly**, standard moment relaxations.
- **SparsePoP**, sparse moment relaxations.
- **SOSTools**, general sum-of-squares problems.
- **Yalmip**, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

- Test and improve the MOSEK semidefinite solver.
- Have full control of the generated semidefinite problems.
- Investigate other approaches for exploiting sparsity.
- Implement it in Julia to remove dependency on Matlab.
Software packages for polynomial optimization

Why develop a new package?

Other Matlab packages with same functionality exists:

- **GloptiPoly**, standard moment relaxations.
- **SparsePoP**, sparse moment relaxations.
- **SOSTools**, general sum-of-squares problems.
- **Yalmip**, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

- Test and improve the MOSEK semidefinite solver.
- Have full control of the generated semidefinite problems.
- Investigate other approaches for exploiting sparsity.
- Implement it in Julia to remove dependency on Matlab.
Lasserre hierarchy of moment relaxations
Primal and dual formulations

- Standard moment relaxation:
 minimize $p^T y$
 subject to
 $y_0 = 1$
 $M_k(y) \succeq 0$
 $M_{k-d_g}(g_j y) \succeq 0, \ j = 1, \ldots, m$
 $M_{k-d_h}(h_i y) = 0, \ i = 1, \ldots, l.$

- Dual problem (which we feed into MOSEK):
 maximize t
 subject to
 $\sum_{j=1}^m A_0^j \cdot X^j + \sum_{k=1}^l B_0^k \cdot Z^k = p_0 - t$
 $\sum_{j=1}^m A_i^j \cdot X^j + \sum_{k=1}^l B_i^k \cdot Z^k = p_i, \ i = 1, \ldots, r$
 $X^j \succeq 0, \ Z^k$ are free symmetric matrices.
Lasserre hierarchy of moment relaxations
Primal and dual formulations

• Standard moment relaxation:

\[
\text{minimize} \quad p^T y \\
\text{subject to} \quad y_0 = 1 \\
M_k(y) \succeq 0 \\
M_{k-d_g} (g_j y) \succeq 0, \quad j = 1, \ldots, m \\
M_{k-d_h} (h_i y) = 0, \quad i = 1, \ldots, l.
\]

• Dual problem (which we feed into MOSEK):

\[
\text{maximize} \quad t \\
\text{subject to} \quad \sum_{j=1}^{m} A_0^j \bullet X^j + \sum_{k=1}^{l} B_0^k \bullet Z^k = p_0 - t \\
\sum_{j=1}^{m} A_i^j \bullet X^j + \sum_{k=1}^{l} B_i^k \bullet Z^k = p_i, \quad i = 1, \ldots, r \\
X^j \succeq 0, \quad Z^k \text{ are free symmetric matrices.}
\]
How to solve a simple example in Julia

minimize \(-x_1 - x_2\)
subject to \(2x_1^4 - 8x_1^3 + 8x_1^2 - x_2 + 2 \geq 0\)
\(4x_1^4 - 32x_1^3 + 88x_1^2 - 96x_1 - x_2 + 36 \geq 0\)
\(0 \leq x_1 \leq 3, \quad 0 \leq x_2 \leq 4.\)

using Polyopt
x1, x2 = variables(["x1", "x2"])
f = -x1-x2
g = [2*x1^4 - 8*x1^3 + 8*x1^2 - x2 + 2,
 4*x1^4 - 32*x1^3 + 88*x1^2 - 96*x1 - x2 + 36,
 x1, 3-x1,
 x2, 4-x2]
prob = momentprob(4, f, g)
X, Z, t, y, solsta = solve_mosek(prob)

More examples on Github...
Concluding remarks

Package overview:

- Lasserre’s hierarchy of moment relaxations in Julia.
- Correlative sparsity and chordal relaxations by Waki et al.
- No solution extracting method by Henrion and Lasserre; perturb problem to extract a single global optimizer.

Modern features of Julia facilitate lean implementation:

- polynomial.jl 258 lines of code.
- cliques.jl 66 lines of code.
- Polyopt.jl 268 lines of code.
- solver.mosek.jl 134 lines of code.

Important for improving conic solver in upcoming MOSEK 8.0.
Concluding remarks

Package overview:

- Lasserre’s hierarchy of moment relaxations in Julia.
- Correlative sparsity and chordal relaxations by Waki et al.
- No solution extracting method by Henrion and Lasserre; perturb problem to extract a single global optimizer.

Modern features of Julia facilitate lean implementation:

- polynomial.jl 258 lines of code.
- cliques.jl 66 lines of code.
- Polyopt.jl 268 lines of code.
- solver_mosek.jl 134 lines of code.

Important for improving conic solver in upcoming MOSEK 8.0.
Concluding remarks

Package overview:

- Lasserre’s hierarchy of moment relaxations in Julia.
- Correlative sparsity and chordal relaxations by Waki et al.
- No solution extracting method by Henrion and Lasserre; perturb problem to extract a single global optimizer.

Modern features of Julia facilitate lean implementation:

- polynomial.jl 258 lines of code.
- cliques.jl 66 lines of code.
- Polyopt.jl 268 lines of code.
- solver_mosek.jl 134 lines of code.

Important for improving conic solver in upcoming MOSEK 8.0.
Thank you!

Joachim Dahl, MOSEK ApS

collaborators: Martin S. Andersen (DTU), Frank Permenter (MIT)

www.mosek.com