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Motivation



Goals!

• Extend the ideas of disjunctive programming to quadratic problems.

• Derive disjunctive conic cuts for MISOCO:

• Solve the continuous relaxation (a SOCO problem).

• Identify a violated disjunction (fractional variable).

• Design a cut to approximate convex hull of disjunctive set.

• Include cuts in branch and cut algorithm.

• Show that these ideas may be used to derive valid inequalities for

some non-convex quadratic sets.
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Mixed integer second order cone optimization (MISOCO)

min: cT x

s.t.: Ax = b (MISOCO)

x ∈ Ln

x ∈ Zd × Rn−d ,

where:

• A ∈ Rm×n, c ∈ Rn, b ∈ Rm,

• Ln = {x ∈ Rn|x1 ≥ ‖x2:n‖},
• Rows of A are linearly independent.

• Here ‖x‖ denotes Euclidean norm of x .
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Continuous relaxation

min: x1 − 2x2 + x3

s.t.: x1 − 0.1x2 + 0.2x3 = 2.5

x1 ≥

∥∥∥∥∥
[
x2

x3

]∥∥∥∥∥

Feasible set
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MISOCO example: Solve the relaxed problem

Find the optimal solution x∗soco for the continuous relaxation

min: 3x1 +2x2 +2x3 +x4

s.t.: 9x1 +x2 +x3 +x4 = 10

(x1, x2, x3, x4) ∈ L4

x4 ∈ Z.

Relaxing the integrality constraint we get the optimal solution:

x∗soco = (1.36,−0.91,−0.91,−0.45),

with and optimal objective value: z∗ = 0.00.
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MISOCO example: Reformulation

Reformulation of the relaxed problem

min: 1
3 (10 + 5x2 + 5x3 + 2x4)

s.t.:
[
x2 x3 x4

]  8 − 1
10 − 1

10

− 1
10 8 − 1

10

− 1
10 − 1

10 8

x2

x3

x4

 + 2
[
1 1 1

] x2

x3

x4

− 10 ≤ 0

x4 ∈ Z.
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Feasible set of the reformulated problem
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MISOCO example: Find a violated disjunction & cut

The disjunction x4 ≤ −1
∨

x4 ≥ 0 is violated by x∗soco
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Relaxed optimal
solution

x
4
 ≥ 0

x
4
 ≤ −1

(A) Disjunction (B) Disjunctive conic cut

An integer optimal solution is obtained after adding one cut:

x∗misoco = x∗soco = (1.32, −0.93, −0.93, 0.00),

with an optimal objective value: z∗misoco = z∗soco = 0.24.
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Applications

• Computer vision and pattern recognition

• Kumar, Torr, and Zisserman (2006).

• Portfolio optimization with round lot purchasing constraints

• Bonami and Lejeune (2009)

• Location-inventory problems

• Atamtürk, Berenguer, and Shen (2009)

• Joint network optimization and beamforming

• Cheng, Drewes, Philipp, and Pesavento (2012)

• Infrastructure planning for electric vehicles

• Mak, Rong, and Shen (2013)

• Sequencing appointments for service systems

• Mak, Rong, and Zhang (2014)

• The design of service systems with congestion

• Góez and Anjos (2017)
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Related work

• A Complete Characterization of Disjunctive Conic Cuts for Mixed

Integer Second Order Cone Optimization

• Belotti, Góez, Pólik, Ralphs, Terlaky (2017).

• Intersection cuts for nonlinear integer programming: Convexification

techniques for structured sets

• Modaresi, Kılınç, Vielma (2016).

• Two-term disjunctions on the second-order cone

• Kılınç-Karzan, Yıldız (2015).

• Disjunctive cuts for cross-sections of the second-order cone

• Yıldız, Cornuéjols (2015).
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The good



Quadratic sets and disjunctions

Q = {x ∈ Rn | xTPx + 2pT x + ρ ≤ 0}
A = {x ∈ Rn | a>x ≥ α}
B = {x ∈ Rn | b>x ≤ β}

• P ∈ Rn×n with n − 1 positive and exactly one non-positive

eigenvalues, p ∈ Rn, ρ ∈ R.

• ‖a‖ = ‖b‖ = 1 and β < α.

• We denote the boundaries of the half-spaces A and B by A= and

B= respectively.

• The intersection Q∩A∩B results in the disjunctive sets Q∩A and

Q∩ B
• We assume that A= ∩Q 6= ∅, B= ∩Q 6= ∅, and B= ∩ A= ∩Q = ∅.
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A family of quadratic inequalities

Let {Q(τ) | τ ∈ R} be a family of quadratic sets having the same

intersection with A= and B=, with

Q(τ) =
{
x ∈ Rn |

(
x>Px + 2p>x + ρ

)
+ τ

(
a>x − α

) (
b>x − β

)
≤ 0
}

= {x ∈ Rn | x>P(τ)x + 2p(τ)>x + ρ(τ) ≤ 0}.

where

• P(τ) = P + τ ab>+ba>

2

• p(τ) = p − τ βa+αb
2

• ρ(τ) = ρ+ ταβ

11



A family of quadratic inequalities

Sequence of quadrics w>P(τ)w + 2p(τ)>w + ρ(τ) ≤ 0,

for −101 ≤ τ ≤ 100.
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Family of quadrics intersecting two parallel hyperplanes

Range (P(τ), p(τ), ρ(τ))

τ > −8.9875 Ellipsoids

τ̂ = −8.9875 Paraboloid

−9.5903 < τ < −8.9875 Two sheets hyperboloids

τ̄2 = −9.5903 Cone

−101.7697 < τ < −9.5903 One sheet hyperboloids

τ̄1 = −101.7697 Cone

τ < −101.7697 Two sheets hyperboloids

Behavior of the quadrics for different ranges of τ .
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A family of valid quadratic inequalities

Corollary

Given a quadratic set Q and two half spaces A and B, any quadratic set

in the family {Q(τ) | τ ∈ R} is a valid quadratic inequality for

Q∩ (A= ∪ B=).
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A family of valid quadratic inequalities

Theorem

Given a quadratic set Q and two half spaces A and B such that

B= ∩A= ∩Q = ∅, a quadratic set in the family {Q(τ) | τ ∈ R} is a valid

quadratic inequality for Q∩ (A ∪ B) if and only if τ ≤ 0.
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A family of valid quadratic inequalities

Theorem

Consider a quadratic set Q and two half-spaces A and B. If there exists a τ̄

such that Q(τ̄) = Q1(τ̄)∪Q2(τ̄) is a non-convex quadratic cone, and its vertex

v is contained in A or B but not in A∩B, then each branch i = 1, 2 of Q(τ̄) is

a valid quadratic inequality for Q∩ (A=
i (τ̄) ∪ B=

i (τ̄))1, such that

conv(Q∩ (A=
i (τ̄) ∪ B=

i (τ̄))) = conv(Qi (τ̄) ∩ (A=
i (τ̄) ∪ B=

i (τ̄))) ⊆ Qi (τ̄).

1A=
1 (τ̄) = A= ∩Q1(τ̄), A=

2 (τ̄) = A= ∩Q2(τ̄), and similarly we define B=
1 (τ̄), B=

2 (τ̄)
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Parallel hyperplanes

Let {Q(τ) | τ ∈ R} be a family of quadratic sets having the same

intersection with A= and B=, with

Q(τ) =
{
x ∈ Rn |

(
x>Px + 2p>x + ρ

)
+ τ

(
a>x − α

) (
a>x − β

)
≤ 0
}

= {x ∈ Rn | x>P(τ)x + 2p(τ)>x + ρ(τ) ≤ 0}

where

• P(τ) = P + τaa>

• p(τ) = p − τ β+α
2 a

• ρ(τ) = ρ+ ταβ
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Non-convex quadratic cones in the family

Rewrite Q(τ) as:

Q(τ) = {x ∈ Rn |
(
x + P−1(τ)p(τ)

)
P(τ)

(
x + P−1(τ)p(τ)

)
≤ p(τ)P−1(τ)p(τ)− ρ(τ)}

and we obtain

p(τ)>P(τ)−1p(τ)− ρ(τ) =

(
1− 2a2

1

) (α−β)2

4 τ 2 − (ρ(1− 2a2
1) + αβ)τ − ρ

1 + τ(1− 2a2
1)

.

The roots τ̄1 ≤ τ̄2 of the numerator are

2

(
ρ(1− 2a2

1) + αβ ±
√

(ρ(1− 2a2
1) + β2)(ρ(1− 2a2

1) + α2)

(1− 2a2
1)(α− β)2

)
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Non-convex quadratic cones in the family

Lemma

Let Q = Q1 ∪Q2 be one of the quadratic sets in our list. We have the

following cases:

• If a2
1 >

1
2 and the set Q(τ̄2) is a non-convex quadratic cone, then its

vertex v is either in A or B.

• If a2
1 = 1

2 and αβ ≥ 0, then the set Q(− ρ
αβ ) is a non-convex

quadratic cone with its vertex v is either in A or B.

• If a2
1 <

1
2 and the set Q(τ̄1) is a non-convex quadratic cone, then its

vertex v is either in A or B.
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Intersection of an affine space and a second order cone

• Null space representation of the affine space H = {x ∈ Rn | Ax = b}

H := {x ∈ Rn | x = x0 + Hw , ∀w ∈ R`},

where ` = n −m, Ax0 = b, and H ∈ Rn×` is a basis for Null(A).

• There exist a matrix P ∈ R`×`, p ∈ R`, ρ ∈ R, s.t.

F = H ∩ Ln = {x ∈ Rn | ∃w ∈ FQ, x = x0 + Hw},

where

FQ = {w ∈ R` | w>Pw + 2p>w + ρ ≤ 0, x0
1 + H>1: w ≥ 0}
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Intersection of an affine space and a second order cone

Theorem

The matrix P in the definition of the quadratic set FQ has at most one

non-positive eigenvalue, and at least `− 1 positive eigenvalues.

We only need to account for the following possible shapes for FQ:

Ellipsoid. Paraboloid.
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Intersection of an affine space and a second order cone

Theorem

The matrix P in the definition of the quadratic set FQ has at most one

non-positive eigenvalue, and at least `− 1 positive eigenvalues.

We only need to account for the following possible shapes for FQ:

One branch of a hyperboloid. Second order cone.
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Intersection of an affine space and a second order cone

Let A = {w ∈ R` | a>w ≥ α} and B = {w ∈ R` | a>w ≤ β}. Define

FD = {x ∈ Rn | ∃w ∈ FQ ∩ (A ∪ B), x = x0 + Hw}

Lemma

Given a vector x̂ ∈ F and a vector ŵ ∈ FQ such that x̂ = x0 + Hŵ .

Then x̂ 6∈ FD if and only if ŵ 6∈ FQ ∩ (A ∪ B).

Proof.

Note that any x ∈ F is a linear combination of x0 and the columns of H.

Additionally, recall that the columns of H are linearly independent. Then,

the vector ŵ defining x̂ is unique. The result follows.
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Disjunctive conic cuts: General theory

• Study the intersection of a convex set E and a disjunctive set

A = {x ∈ Rn | a>x ≥ α} ∪ B = {x ∈ Rn | b>x ≤ β}2.

• Show that under some mild assumptions conv(E ∩ (A ∪ B)) can be

characterized using a convex cone K.

(A) (B)

2A= = {x ∈ Rn | a>x = α} and B= = {x ∈ Rn | b>x = β}
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Disjunctive conic cuts (DCCs): Definition

Definition

A closed convex cone K ∈ Rn with dim(K) > 1 is called a Disjunctive

Conic Cut (DCC) for E and the disjunctive set A ∪ B if

conv(E ∩ (A ∪ B)) = E ∩ K.

Assumption

The intersection A ∩ B ∩ E is empty.

Assumption

The intersections E ∩ A= and E ∩ B= are nonempty and bounded.

24



Disjunctive conic cuts: Characterization

Proposition

A closed convex cone K ∈ Rn with dim(K) > 1 is a DCC for E and the

disjunctive set A ∪ B, if

K ∩A= = E ∩ A= and K ∩ B= = E ∩ B=.

(A) (B)
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DCCs for MISOCO when intersections are bounded

Theorem

Let A= = {w ∈ R`|a>w = α} and B= = {w ∈ R`|a>w = β} be given.

If the sets A= ∩ FQ and B= ∩ FQ are bounded, then the quadric Q(τ̄2)

contains a DCC for MISOCO.
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DCCs for MISOCO when intersections are unbounded

Theorem

Let A= = {w ∈ R`|a>w = α} and B= = {w ∈ R`|a>w = β} be given.

If P is non-singular and the sets A= ∩ FQ and B= ∩ FQ are unbounded,

then the quadric Q(τ̄1) contains a DCC for MISOCO.
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DCCs for MISOCO when intersections are unbounded

Theorem

Let A= = {w ∈ R` | a>w = α} and B= = {w ∈ R` | a>w = β} be

given. If P is singular and the sets A= ∩ FQ and B= ∩ FQ are

unbounded, then the quadric Q(τ̂) is a DCC for MISOCO.
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What happens if the hyperplanes are non-parallel?

The results for the bounded intersections still hold.
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What happens if the hyperplanes are non-parallel?

The results for the bounded intersections still hold.
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Does this approach work beyond MISOCO?

Let us consider

• Hyperboloids of two sheets and non-convex quadratic cones.

• Hyperboloids of one sheet.
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The sets Q∩A= and Q∩ B= are bounded, a1 > 1
2

Valid conic inequality Q(τ̄2) when both hyperplanes intersecting the same

branch of Q
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The sets Q∩A= and Q∩ B= are bounded, a1 > 1
2

Both hyperplanes intersecting different branches of Q

Valid conic inequality Q(τ̄2) Valid conic inequality Q(τ̄1)
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The sets Q∩A= and Q∩ B= are unbounded, a1 = 1
2

Valid conic inequality Q(τ̄2), in this case

conv(Q1 ∩ (A ∪ B)) = Q1 ∩Q(τ̄)
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The sets Q∩A= and Q∩ B= are unbounded, a1 < 1
2

Valid conic inequality Q(τ̄1), conv(Q1 ∩ (A ∪ B)) = Q1 ∩Q(τ1) and

conv(Q2 ∩ (A ∪ B)) = Q2 ∩Q(τ1)
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The sets Q∩A= and Q∩ B= are bounded, a1 > 1
2

Valid conic inequality Q(τ̄2) Valid conic inequality Q(τ̄1)
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The sets Q∩A= and Q∩ B= are unbounded

β2 ≥ 1− 2a2
1 and α2 ≥ 1− 2a2

1

Valid conic inequality Q(τ̄1), αβ > 0 Valid conic inequality Q(τ̄1), αβ < 0
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The sets Q∩A= and Q∩ B= are unbounded

β2 ≤ 1− 2a2
1 and α2 ≤ 1− 2a2

1

Q(τ̄1) is a cylinder defined by a hyperboloid of one sheet
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Conclusions

• We provided valid inequalities for the cross-sections of a non-convex

quadratic cone.

• Showed that these valid inequalities consider the DCCs for MISOCO.

• Investigate the potential to use the family of quadrics with some

other quadratic sets.
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The bad



Pathological disjunction for MISOCO

Definition (Shahabsafa, G., Terlaky)

Let X ∈ Rn be a closed convex set, and consider the disjunction A ∪ B.

If conv(X ∩ (A∪ B)) = X , then disjunction A∪ B is pathological for the

set X .
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Identification of a redundant DCC for MISOCO

Corollary (Shahabsafa, G., Terlaky)

If the following two conditions are satisfied for the set Q̂ defined, and the

disjunctive set, then we have a redundant DCC:

• the matrix P has exactly n− 1 positive eigenvalues and one negative

eigenvalue, and p>P−1p − ρ = 0;

• the vertex of the cone v = P−1p satisfies either â>v ≥ β̂, or

â>v ≤ α̂.
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Identification of a redundant DCC for MISOCO

Hyperboloid intersection

(Redundant DCC)

‘

Hyperboloid intersection and the

DCC (not a redundant DCC)
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Identification of a redundant DCC for MISOCO

Ellipsoid intersection (Redundant

DCC)

Paraboloid intersection (Redundant

DCC)
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Identification of a redundant DCyC for MISOCO

Corollary (Shahabsafa, G., Terlaky)

Consider the set Q̂, as defined, and a disjunction. We have a cylindrical

redundant DCyC if the following two conditions are satisfied:

• System
[
P p

]>
d = 0, for d 6= 0, has a solution.

• System
[
P p

]
y = â, for y ∈ R`+1, does not have a solution.
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Identification of a redundant DCyC for MISOCO

A cylindrical redundant DCyC Not a cylindrical redundant DCyC
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Conclusions

• We presented two fundamental pathological cases, which help to

identify when a DCC is redundant.

• The identification of the pathological cases is important for an

efficient implementation of DCCs or derivation of them.

• The identification of the pathological cases of DCCs for MISOCO

highlights both the limitations and the opportunities for the efficient

implementation of the DCCs.
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Implementation



Implementation challenges

• Generating DCC may messes up the structure of the problem, the

matrices associated with the cuts are usually dense.

• DCC generation brings numerical challenges.

• Adding DCC may increase the solution time of the linear relaxations.

• No efficient warm start is available for interior point methods.
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Constrained layout problems, Bonami et al. 2008

• Quadratic constraints corresponding to Euclidean-distance

(x1 − 17.5)2 + (x5 − 7)2 + 6814 ∗ b33 ≤ 6850.

• All integer variables are binary, for example in the illustrative

constraint the binary variable is b33.

0203M 0204M 0205M 0303M 0304M 0305M

Var 31 52 81 34 57 86

Binary 18 21 50 21 36 55

Constraints 55 91 136 67 107 156

Quad 24 32 40 36 48 60
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Constrained layout problems, Bonami et al. 2008

CLay Quadratic Constraints DCC cut
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Constrained layout problems, Bonami et al. 2008

This could be done in the preprocessing phase

CLay Quadratic Constraints DCC cut
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COIN-OR framework - Aykut Bulut and Ted Ralphs

• OsiConic: A generic interface class for SOCP solvers. This interface

provides a way to build and solve SOCPs that is uniform across a

variety of solvers, as well as a standard interface for querying the

results.

• OsiXxxxx: Implementations of the interface for various open source

and commercial solvers.

• COLA: A solver for SOCP that implements the cutting-plane

Algorithm.

• CglConic: A library of procedures for generating valid inequalities for

MISOCP.

• DisCO: A solver library for MISOCP that uses all the libraries

mentioned. This library implements classical branch-and-bound type

of algorithm and and outer approximation branch-and-cut algorithm.
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Osi comercial

OsiSolverInterface

OsiConicSolverInterface OsiCpxSolverInterface

OsiCplexSolverInterface

OsiMskSolverInterface

OsiMosekSolverInterface

Interfaces Linear Implementations

Conic Implementations
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CglConic, A Cut Library for MISCOP

CglCutGenerator

CglMixedIntegerRounding

CglConicCutGenerator

CglConicMIR

Linear Case

Conic Case

CglConicGD1
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COLA statistics on Góez’s random instances

instance NC LC NUMLP CPU

r12c15k5i10 5 3 5 0.01

r14c18k3i9 3 6 16 0.01

r17c30k3i12 3 10 74 0.07

r17c20k5i15 5 4 4 0.0

r22c30k10i20 10 3 8 0.02

r22c40k10i20 10 4 22 0.03

r23c45k3i21 3 15 148 0.25

r27c50k5i25 5 10 77 0.11

r32c45k15i30 15 3 6 0.0

r32c60k15i30 15 4 32 0.02

r52c75k5i35 5 15 74 0.15
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Performance Profile of CPU Time using bb-lp with disjunctive

cuts
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Performance Profile of Number of Nodes Processed using bb-lp

with disjunctive cuts
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Conclusions and future work



Conclusions and future work

• We provided an extension of disjunctive programming to MISOCO

problems.

• We were able to provide closed forms for the derivation of DCCs for

MISOCO problems.

• This work gives a full characterization of DCCs for MISOCO

problems when using parallel disjunctions.

• We provided valid inequalities for the cross-sections of a non-convex

quadratic cone and a one sheet hyperboloid.

• Investigate the potential to use the family of quadrics with some

other quadratic sets.

• Investigate the computational potential of this inequalities.
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