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Mixed-Integer Semidefinite Programming

I Mixed-integer semidefinite program

MISDP

sup bT y

s.t. C −
m∑

i=1

Aiyi � 0,

yi ∈ Z ∀ i ∈ I

for symmetric matrices Ai , C

I Linear constraints, bounds, multiple blocks possible within SDP-constraint

I Efficient solvers for specific applications, but few solvers (and theory) for the
general case
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Classical Example: Max-Cut
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Max-Cut

Find Cut δ(S), with S ⊆ V and {i , j} ∈ δ(S)
iff i ∈ S, j ∈ V \ S, that maximizes∑

{i ,j}∈δ(S)

cij .

Using variables (xi )i∈V ∈ {−1, 1}n with xi = 1 ⇔ i ∈ S, this is equivalent to

Max-Cut MIQP

max
∑
i<j

cij
1− xixj

2

s.t. xi ∈ {−1, 1} ∀ i ≤ n
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Classical Example: Max-Cut

∑
i<j

cij
1− xixj

2
=

1
4

n∑
i=1

 n∑
j=1

cijxixi −
n∑

j=1

cijxixj


=

1
4

xT (Diag(C1)− C)x

With X := xxT (and notation A • B := Tr(AB) =
∑

ij AijBij ), this is equivalent to

Max-Cut Rk1-MISDP [Poljak, Rendl 1995]

max
1
4

(Diag(C1)− C) • X

s.t. diag(X ) = 1

Rank(X ) = 1

X � 0

Xij ∈ {−1, 1}
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Classical Example: Max-Cut

Max-Cut Rk1-MISDP

max
1
4

(Diag(C1)− C) • X

s.t. diag(X ) = 1

Rank(X ) = 1

X � 0

Xij ∈ {−1, 1}

I Relaxation still non-convex because of rank constraint

Theorem [Laurent, Poljak 1995]

Every integral solution satisfies Rank(X ) = 1.
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Compressed Sensing

I Task: find sparsest solution to underdetermined system of linear equations,
i.e. a solution of

`0-Minimization

min ‖x‖0

s.t. Ax = b

x ∈ Rn

where ‖x‖0 := |supp(x)|.

I Under certain conditions on A, this is equivalent to

`1-Minimization

min ‖x‖1

s.t. Ax = b

x ∈ Rn
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Compressed Sensing

One such condition is the (asymmetric) restricted isometry property (RIP):

α2
k‖x‖2

2 ≤ ‖Ax‖2
2 ≤ β2

k‖x‖2
2 ∀x : ‖x‖0 ≤ k

Theorem [Foucart, Lai 2008]

If Ax = b has a solution x with ‖x‖0 ≤ k and the RIP of order 2k holds for

β2
2k

α2
2k
< 4
√

2− 3 ≈ 2.6569,

then x is the unique solution of both the `0- and the `1-optimization problem.
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Compressed Sensing

The optimal constant α2
k (and similarly β2

k ) for

α2
k‖x‖2

2 ≤ ‖Ax‖2
2 ≤ β2

k‖x‖2
2 ∀x : ‖x‖0 ≤ k

can be computed via the following non-convex rank-constrained MISDP:

RIP-Rk1-MISDP

min Tr(AT AX )

s.t. Tr(X ) = 1

−zj ≤ Xjj ≤ zj ∀ j ≤ n
n∑

j=1

zj ≤ k

Rank(X ) =1

X � 0

z ∈{0, 1}n
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Compressed Sensing

RIP-MISDP

min Tr(AT AX )

s.t. Tr(X ) = 1

−zj ≤ Xjj ≤ zj ∀j ≤ n
n∑

j=1

zj ≤ k

Rank(X ) = 1

X � 0

z ∈{0, 1}n

Theorem [G., Pfetsch 2016]

There always exists an optimal solution for (RIP-MISDP) with Rank(X ) = 1.
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Truss Topology Design

I n nodes V =
{

vi ∈ Rd : i = 1, ... , n
}

I nf free nodes Vf ⊂ V
I m possible bars

E ⊆ {{vi , vj} : i 6= j} , |E | = m
I Force f ∈ Rdf for df = d · nf

I Cross-sectional areas x ∈ Rm
+ for

bars that minimize the volume
while creating a “stable” truss

I Stability is measured by the
compliance 1

2 f T u with node
displacements u

ground structure 3x3

optimal structure
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Truss Topology Design

TTD-SDP [Ben-Tal, Nemirovski 1997]

min
∑
e∈E

`exe

s.t.
(

2Cmax f T

f A(x)

)
� 0

xe ≥ 0 ∀e ∈ E

I E : set of possible bars
I `e : length of bar e
I x : cross-sectional areas
I f : external force
I Cmax : upper bound on

compliance
I Ae: bar stiffness matrices

with stiffness matrix A(x) =
∑
e∈E

Ae`exe.
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Truss Topology Design

I In practice, we won’t be able to produce/buy bars of any desired size.

⇒ Only allow cross-sectional areas from a discrete set A.

TTD-MISDP [Kočvara 2010, Mars 2013]

min
∑
e∈E

`e

∑
a∈A

axa
e

s.t.
(

2Cmax f T

f A(x)

)
� 0∑

a∈A
xa

e ≤ 1 ∀e ∈ E

xa
e ∈ {0, 1} ∀e ∈ E , a ∈ A,

where A(x) =
∑
e∈E

∑
a∈A

Ae `e a xa
e .
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Further Applications

I AC power flow
I Transmission switching problems

I Unit commitment problems

I Cardinality-constrained least-squares

I Minimum k -partitioning

I Quadratic assignment problems (including TSP as special case)

I Robustification of physical parameters in gas networks

I Subset selection for eliminating multicollinearity

I . . .
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Outer Approximation / Cutting Planes

I Idea: Solve LP/MIP and enforce SDP-constraint via linear cuts

I Cutting plane approach (Kelley 1960):

I Solve a single MIP

I In each node add cuts to enforce nonlinear constraints and resolve LP

I Outer Approximation (Quesada/Grossmann 1992):

I Solve MIP (without nonlinear constraints) to optimality

I Solve continuous relaxation for fixed integer variables

I If objectives do not agree, update polyhedral approximation

I Resolve MIP and continue iterating
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Enforcing the SDP-Constraint

I For convex MINLP one usually uses gradient cuts

gj (x) +∇gj (x)>(x − x) ≤ 0.

I But function of smallest eigenvalue is not differentiable everywhere.

⇒ Instead use characterization X � 0 ⇔ u>X u ≥ 0 for all u ∈ Rn

I If Z := C −
∑m

i=1 Aiy∗i 6� 0, compute eigenvector v to smallest eigenvalue.
Then

v>Z v ≥ 0

is a valid linear cut that cuts off y∗.
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Cutting Plane Approach: MISOCP vs. MISDP

I Successfully used by many commercial solvers for mixed-integer
second-order cone

I Outer approximation for SOCPs possible with polynomial number of cuts
(Ben-Tal/Nemirovski 2001)

I Outer approximation for SDPs needs exponential number of cuts
(Braun et al. 2015)
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SDP-based Branch-and-Bound

I Relax integrality instead of SDP-constraint

I Need to solve a continuous SDP in each branch-and-bound node

I Relaxations can be solved by problem-specific approaches (e.g. conic bundle
or low-rank methods) or interior-point

I Need to satisfy convergence assumptions of SDP-solvers

January 11, 2018 | Applications and Solution Approaches for Mixed-Integer Semidefinite Programming | Tristan Gally | 20



Strong Duality in SDP

Dual SDP (D)

sup bT y

s.t. C −
m∑

i=1

Aiyi � 0

y ∈ Rm

Primal SDP (P)

inf C • X

s.t. Ai • X = bi ∀ i ≤ m

X � 0

I Strong Duality holds if Slater condition holds for (P) or (D), i.e., there exists a
feasible X � 0 for (P) or y such that C −

∑m
i=1 Aiyi � 0 in (D).

I If Slater holds for (P), optimal objective of (D) is attained and vice versa.

I Existence of a KKT-point is guaranteed if Slater holds for both, usual
assumption of interior-point algorithms for SDP.

I Need to assume this for root node. But is this enough or can these
assumptions be lost through branching?
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Strong Duality in Branch-and-Bound

Theorem [G., Pfetsch, Ulbrich 2016]

Let (D+) be the problem formed by adding a linear constraint to (D). If
I strong duality holds for (P) and (D),
I the set of optimal Z := C −

∑m
i=1 Aiyi in (D) is compact and nonempty,

I the problem (D+) is feasible,

then strong duality also holds for (D+) and (P+) and the set of optimal Z for (D+) is
compact and nonempty.

I Compactness of set of optimal Z also necessary for strong duality
(Friberg 2016)

I Equivalent result for adding linear constraints to (P) with set of optimal X
compact and nonempty and (P+) feasible
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Slater Condition in Branch-and-Bound

Proposition [G., Pfetsch, Ulbrich 2016]

After adding a linear constraint
∑m

i=1 aiyi ≥ c (or ≤ or =) to (D), if (P) satis-
fies the Slater condition and the coefficient vector a satisfies a ∈ Range(A), for
A : Sn → Rm, X 7→ (Ai • X )i∈[m], then the Slater condition also holds for (P+).

I a ∈ Range(A) is implied by linear independence of Ai .

I Dual Slater condition is preserved after adding linear constraint to (P) (without
additional assumptions on the coefficients).
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KKT-condition in Branch-and-Bound

KKT-points may get lost after branching:

(D)

sup 2 y1 − y2

s.t.
(

0.5 −y1

−y1 y2

)
� 0,

(P)

inf 0.5 X11

s.t.
(

X11 1
1 1

)
� 0,

I Strictly feasible solutions given by y = (0, 0.5), X11 = 2

I Optimal objective of 0.5 attained (only) for y = (0.5, 0.5), X11 = 1
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KKT-condition in Branch-and-Bound

After branching on y2 and adding cut y2 ≤ 0:

(D+)

sup 2 y1 − y2

s.t.

 0.5 −y1 0
−y1 y2 0

0 0 −y2

 � 0,

(P+)

inf 0.5 X11

s.t.

X11 1 X13

1 X22 X23

X13 X23 X22 − 1

 � 0,

I Optimal objective 0 attained for y = (0, 0)

I Relative interior of (D+) is empty

I (P+) still has strictly feasible solution X11 = X22 = 2, X13 = X23 = 0

I (P+) has minimizing sequence X11 = 1/k , X22 = k , X13 = X23 = 0

I No longer satisfies assumptions for convergence of interior-point solvers
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Slater Condition in Practice

Dual Slater Primal Slater

Problem 3 7 inf ? 3 7 ?

CLS 55.23 % 3.26 % 41.46 % 0.04 % 99.26 % 0.00 % 0.73 %

Mk -P 3.66 % 65.49 % 30.85 % 0.00 % 99.99 % 0.00 % 0.01 %

TTD 81.99 % 5.96 % 12.02 % 0.03 % 99.37 % 0.00 % 0.63 %

Overall 45.16 % 26.23 % 28.58 % 0.02 % 99.55 % 0.00 % 0.44 %

run on cluster of 40 Intel Xeon E5-1620 3.5 GHz processors with 4 cores and 32GB memory; using SCIP-SDP 3.0.0 and DSDP 5.8; on testset of 194 CBLIB instances
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Checking Infeasibility

I If interior-point solver did not converge for original formulation, solve

Feasibility Check [Mars 2013]

inf r

s.t. C −
m∑

i=1

Aiyi + I r � 0.

If optimum r∗ > 0, original problem is infeasible and node can be cut off.
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Handling Failure of the Dual Slater Condition

I If problem is not infeasible, solve

Penalty Formulation [Benson, Ye 2008]

sup b>y − Γ r

s.t. C −
m∑

i=1

Aiyi + I r � 0,

r ≥ 0

for sufficiently large Γ to compute an upper bound.

I If optimal r∗ = 0, then solution is also optimal for original problem.

I Adds constraint Tr(X ) ≤ Γ to primal problem, for large enough Γ also
preserves primal Slater condition.
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SDP-Solvers depending on Slater Condition

Behavior if Slater condition holds for (P) and (D)

solver default penalty bound unsucc

SDPA 90.78 % 5.50 % 0.00 % 3.73 %
DSDP 99.68 % 0.32 % 0.00 % 0.00 %
MOSEK 99.51 % 0.49 % 0.00 % 0.00 %

Behavior if Slater condition fails for (P) or (D)

solver default penalty bound unsucc

SDPA 56.15 % 1.14 % 13.00 % 29.71 %
DSDP 99.81 % 0.13 % 0.00 % 0.05 %
MOSEK 99.20 % 0.79 % 0.01 % 0.00 %

Behavior if problem is infeasible

solver default feas check bound unsucc

SDPA 46.99 % 39.46 % 4.88 % 8.67 %
DSDP 92.44 % 2.23 % 1.39 % 3.94 %
MOSEK 88.42 % 10.36 % 1.22 % 0.00 %
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Warmstarts

I MIP: Large savings by starting dual simplex from optimal basis of parent node.

I Interior-point solvers: Need X � 0 and Z := C −
∑m

i=1 Aiyi � 0 for initial point.

I Not satisfied by optimal solution of parent node, which will be on boundary.

I Infeasible interior-point methods update Z and y separately, so Z doesn’t
necessarily need to be updated after branching, but has to be positive definite.

⇒ Cannot easily warmstart with unadjusted solution of parent node.
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Warmstarting Techniques

I Starting from Earlier Iterates

I Convex Combination with Strictly Feasible Solution

I Projection onto Positive Definite Cone

I Rounding Problems
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Starting from Earlier Iterates

I Proposed by Gondzio for MIP.

I Store earlier iterate further away from optimum but still sufficiently interior.

I First solve relaxation to sufficiently large gap ε1 (e.g., 10−2), then save current
iterate and continue solving until original tolerance ε2 (e.g., 10−5) is reached.
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Convex Combination with Strictly Feasible
Solution

I First proposed by Helmberg and Rendl, recently revisited by Skajaa,
Andersen and Ye for MIP.

I Take convex combination between optimal solution (X∗, y∗, Z∗) and strictly
feasible (X 0, y0, Z 0).

I Choose (X 0, y0, Z 0) as default initial point like (I, 0, I), possibly scaled either by
maximum entry of primal/dual matrix or maximum of both.

I Also possible to compute analytic center of feasible region once in root node
and use this as strictly feasible solution.
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Projection onto Positive Definite Cone

I Project optimal solution of parent node onto set of positive definite matrices
with λmin ≥ λ > 0.

I For given optimal solution X∗ (equivalently Z∗) of parent node let
VDiag(λ)V> = X∗ be an eigenvector decomposition. Then compute

VDiag((max{λi ,λ})i≤n)V>.
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Rounding Problems

I Proposed by Çay, Pólik and Terlaky for MISOCP based on Jordan Frames
I Fix EV decomposition VDiag(λ∗)V> = X∗ and optimize over eigenvalues

I First solve the linear primal rounding problem

Primal SDP (P)

inf C • X

s.t. Ai • X = bi ∀ i ≤ m

X � 0

Primal Rounding Problem (P-R)

inf C •
(
VDiag(λ)V>

)
s.t. Ai •

(
VDiag(λ)V>

)
= bi ∀ i ≤ m

λi ≥ 0 ∀ i ≤ n

I (P-R) is restriction of (P) to matrices with same eigenvectors as X∗

⇒ optval(P-R) ≥ optval(P) ≥ optval(D)

I (P-R) unbounded ⇒ (D) infeasible
I optval(P-R) ≤ cutoff bound ⇒ (D) not optimal
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Rounding Problems

I If (D) is not cut off, let WDiag(µ∗)W> = Z∗ be an eigenvector decomposition
of the parent node and solve the corresponding linear dual rounding problem

Dual SDP (D)

sup bT y

s.t. C −
m∑

i=1

Aiyi = Z

Z � 0, y ∈ Rm

Dual Rounding Problem (D-R)

sup bT y

s.t. WDiag(µ)W> +
m∑

i=1

Aiyi = C

µi ≥ 0 ∀ i ≤ n, y ∈ Rm

I Since (D-R) is restriction of (D) to matrices with same eigenvectors as Z∗,

optval(D-R) ≤ optval(D) ≤ optval(P) ≤ optval(P-R).

I optval(D-R) = optval(P-R) ⇒ problem solved to optimality

I Otherwise use convex combination to compute strictly feasible initial point.
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Rounding Problems

testset time roundtime statistics for feasible roundingproblems infeasibility
opt cutoff warmstart pfail dfail detected undetected

CLS 229.38 101.19 0.03 0.68 0.03 0.00 1847.37 310.27 841.17
MkP 271.18 6.97 0.00 0.40 0.88 0.12 188.18 1.49 459.83
TT 102.73 17.80 0.02 44.65 284.81 0.00 13,616.42 24.21 1805.33
CS 166.69 86.72 0.17 6022.54 4794.20 0.00 0.02 0.01 0.37

run on cluster of 40 Intel Xeon E5-1620 3.5 GHz processors with 4 cores and 32GB memory; time limit of 3600 seconds; times as shifted geometric means, SDPs solved using SDPA 7.4.0; γ = 0.5
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Comparison of Warmstarting Techniques

settings solved time sdpiter

no warmstart 290 117.85 22,827.93
unadjusted warmstart 126 821.82 –
earlier iterate: gap 0.01 172 396.93 –
earlier iterate: gap 0.5 252 213.88 26,923.91
convcomb: 0.01 scaled (pdsame) id 288 113.60 19,697.25
convcomb: 0.5 scaled (pddiff) id 289 108.60 18,307.29
convcomb: 0.5 scaled (pdsame) id 290 109.92 19,684.70
convcomb: 0.5 analcent 288 140.21 25,351.48
projection 289 112.87 20,195.03
roundingprob 0.5 id 281 180.95 16,955.37
roundingprob inf only 289 159.66 18,521.50

run on cluster of 40 Intel Xeon E5-1620 3.5 GHz processors with 4 cores and 32GB memory; time limit of 3600 seconds; times (and iterations) as
shifted geometric means (over instances solved by all settings except unadjusted warmstart and preoptimal), SDPs solved using SDPA 7.4.0
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Comparison of Warmstarting Techniques

Speedup for conv 0.01 pdsame

testset solved time sdpiter

CLS 0 -11.4 % -19.3 %
MkP +1 -17.2 % -21.3 %
TT -3 +17.5 % +34.0 %
CS 0 -9.4 % -18.3 %

Speedup for conv 0.5 pddiff

testset solved time sdpiter

CLS 0 -6.7 % -12.2 %
MkP +1 -0.1 % -10.2 %
TT -2 +33.5 % +2.8 %
CS 0 -27.2 % -30.5 %

Speedup for conv 0.5 pdsame

testset solved time sdpiter

CLS -1 -9.9 % -19.7 %
MkP +2 -8.6 % +0.5 %
TT -1 +15.4 % -5.3 %
CS 0 -13.3 % -13.8 %

Speedup for projection

testset solved time sdpiter

CLS -1 -1.7 % -6.4 %
MkP +1 +5.7 % +12.2 %
TT -1 +7.9 % -2.7 %
CS 0 -15.8 % -22.1 %

run on cluster of 40 Intel Xeon E5-1620 3.5 GHz processors with 4 cores and 32GB memory; time limit of 3600 seconds; times (and iterations) as
shifted geometric means (over instances solved by all settings except unadjusted warmstart and preoptimal), SDPs solved using SDPA 7.4.0
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Dual Fixing

I Generalization of reduced-cost fixing for MILPs
I Used for interior-point LP-solvers by Mitchell (1997), primal MISDPs by

Helmberg (2000) and general MINLPs by Vigerske (2012)

Theorem [G., Pfetsch, Ulbrich 2016]
I (X , W , V ): Primal feasible solution, where W , V are primal variables

corresponding to variable bounds `, u in the dual
I f : Corresponding primal objective value
I L: Lower bound on the optimal objective value of the MISDP

Then for every optimal solution of the MISDP

yj ≤ `j +
f − L
Wjj

if `j > −∞ and yj ≥ uj −
f − L

Vjj
if uj <∞

I If f − L < Wjj for binary yj , it can be fixed to 0, if f − L < Vjj , then yj = 1.

I 6% reduction of B&B-nodes, 26% speedup
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MISDP-Solvers

Nonlinear branch-and-bound

I SCIP-SDP 3.1 (nonlinear branch-and-bound)
I Our implementation, using SCIP as B&B-framework

I YALMIP-BNB R20170921
I MATLAB toolbox for rapid prototyping

Cutting plane / outer approximation approaches

I SCIP-SDP 3.1 (LP-based cutting planes)
I YALMIP-CUTSDP R20170921

I Pajarito 0.5
I Julia implementation for mixed-integer convex including MISDP
I MIP-solver-drives version (single MIP with SDP solves for stronger cuts)
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Which SDP-Solver to use for the Relaxations?

solver solved time

SDPA 161 136.3
DSDP 175 157.3
MOSEK 187 64.9
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run on cluster of 40 Intel Xeon E5-1620 3.5 GHz processors with 4 cores and 32GB memory; time limit of 3600 seconds, times as shifted geometric means
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Comparison of MISDP-Solvers
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SCIP-SDP(NL-BB)
YALMIP (BNB)

SCIP-SDP(Cut-LP)
YALMIP (CUTSDP)

Pajarito

solver CLS Mk -P TTD Total
solved time solved time solved time solved time

SCIP-SDP(NL-BB) 63 104.3 68 38.3 57 65.2 188 63.9
YALMIP(BNB) 62 195.9 64 61.7 36 537.5 162 181.5
SCIP-SDP(Cut-LP) 65 8.3 31 614.8 39 230.5 135 132.6
YALMIP(CUTSDP) 31 525.1 15 1145.7 22 945.9 68 832.0
Pajarito 65 64.2 13 1577.5 43 220.7 121 303.3

run on 8-core Intel i7-4770 CPU with 3.4 GHz and 16GB memory; time limit of 3600 seconds, times as shifted geometric means, SDPs solved using MOSEK 8.1.0.25, MIPs/LPs using CPLEX 12.6.1
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Conclusion & Outlook

Conclusion

I MISDPs can be solved by generic framework

I Primal Slater condition inherited in MISDP, Dual Slater may get lost

I Warmstarting is possible and can help for some applications

Outlook

I Cutting Planes
I Chvátal-Gomory / knapsack cuts portable to MISDP, but generation less clear

I Facial Reduction
I Project on minimal face of psd-cone if Slater condition fails
I Projection as solution of homogeneous self-dual model
I Optimization over face of psd-cone can again be formulated as SDP
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SCIP-SDP is available in source code at

http://www.opt.tu-darmstadt.de/scipsdp/

Thank you for your attention!
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