mosek

Mixed-integer conic optimization using MOSEK

January 11th 2018

joachim.dahl@mosek.com

www.mosek.com

(Extremely) disciplined convex programming

- Proving (or disproving) convexity of a general nonlinear optimization problem is difficult.
- Disciplined convex programming (DCP) (Grant & Boyd) gives a rule-set for combining convex operators that maintain convexity. Models are mostly converted to symmetric conic form.
- Lubin [1] shows all convex instances (85) in the MINLPLIB2 library are conic representable using only 5 cones (some of them nonsymmetric).
- Using the nonsymmetric conic formulation leads to *extremely disciplined convex programming*. Simple, yet flexible for modeling, with efficient numerical algorithms.

Linear cone problem:

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \in \mathcal{K}, \end{array}$$

with $\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 \times \cdots \times \mathcal{K}_{\mathcal{K}}$ a product of proper cones.

Dual:

$$\begin{array}{ll} \text{maximize} & b^T y \\ \text{subject to} & c - A^T y = s \\ & s \in \mathcal{K}^*, \end{array}$$

with $\mathcal{K}^* = \mathcal{K}_1^* \times \mathcal{K}_2^* \times \cdots \times \mathcal{K}_{\mathcal{K}}^*$.

Symmetric cones (supported by MOSEK 8)

• the nonnegative orthant

$$\mathcal{K}_l^n := \{ x \in \mathbb{R}^n \mid x_j \ge 0, \, j = 1, \ldots, n \},\$$

• the quadratic cone

$$\mathcal{K}_{q}^{n} = \{x \in \mathbb{R}^{n} \mid x_{1} \ge (x_{2}^{2} + \dots + x_{n}^{2})^{1/2}\},\$$

• the rotated quadratic cone

$$\mathcal{K}_r^n = \{ x \in \mathbb{R}^n \mid 2x_1x_2 \ge x_3^2 + \dots x_n^2, x_1, x_2 \ge 0 \}.$$

• the semidefinite matrix cone

$$\mathcal{K}_{s}^{n} = \{ x \in \mathbb{R}^{n(n+1)/2} \mid z^{T} \max(x) z \ge 0, \forall z \},$$

with $\max(x) := \begin{bmatrix} x_{1} & x_{2}/\sqrt{2} & \dots & x_{n}/\sqrt{2} \\ x_{2}/\sqrt{2} & x_{n+1} & \dots & x_{2n-1}/\sqrt{2} \\ \vdots & \vdots & \vdots \\ x_{n}/\sqrt{2} & x_{2n-1}/\sqrt{2} & \dots & x_{n(n+1)/2} \end{bmatrix}$

Nonsymmetric cones (in next MOSEK release)

• the three-dimensional power cone

$$\mathcal{K}_{p}^{\alpha} = \{ x \in \mathbb{R}^{3} \mid x_{1}^{\alpha} x_{2}^{(1-\alpha)} \ge |x_{3}|, \ x_{1}, x_{2} > 0 \},$$

for $0 < \alpha < 1$.

• the exponential cone

$$\mathcal{K}_e = \mathrm{cl}\{x \in \mathbb{R}^3 \mid x_1 \ge x_2 \exp(x_3/x_2), x_2 > 0\}.$$

IPMs for nonsymmetric cones are less studied, and less mature.

Examples of quadratic cones

• Absolute value:

$$|x| \leq t \quad \Longleftrightarrow \quad (t,x) \in \mathcal{K}_q^2.$$

• Euclidean norm:

$$\|x\|_2 \leq t \quad \Longleftrightarrow \quad (t,x) \in \mathcal{K}_q^{n-1},$$

• Second-order cone inequality:

$$\|Ax+b\|_2 \leq c^T x + d \quad \Longleftrightarrow \quad (c^T x + d, Ax + b) \in \mathcal{K}_q^{m+1}.$$

• Squared Euclidean norm:

$$\|x\|_2^2 \leq t \quad \Longleftrightarrow \quad (1/2,t,x) \in \mathcal{K}_r^{n+2}.$$

• Convex quadratic inequality:

$$(1/2)x^T Qx \le c^T x + d \iff (1/2, c^T x + d, F^T x) \in \mathcal{K}_r^{k+2}$$

with $Q = F^T F$, $F \in \mathbb{R}^{n \times k}$.

Examples of rotated quadratic cones

• Convex hyperbolic function:

$$\frac{1}{x} \leq t, \ x > 0 \quad \Longleftrightarrow \quad (x, t, \sqrt{2}) \in \mathcal{K}_r^3.$$

• Convex negative rational power:

$$rac{1}{x^2} \leq t, \, x > 0 \quad \Longleftrightarrow \quad (t, rac{1}{2}, s), (x, s, \sqrt{2}) \in \mathcal{K}^3_r.$$

Square roots:

$$\sqrt{x} \ge t, x \ge 0 \quad \Longleftrightarrow \quad (\frac{1}{2}, x, t) \in \mathcal{K}_r^3.$$

• Convex positive rational power:

 $x^{3/2} \leq t, x \geq 0 \quad \Longleftrightarrow \quad (s,t,x), (x,1/8,s) \in \mathcal{K}^3_r.$

- Models many quadratic cone examples more succinctly.
- Powers:

$$t\geq |x|^{p} \quad \Longleftrightarrow \quad (t,1,x)\in \mathcal{K}_{p}^{1/p}$$

$$t \geq \|x\|_p \quad \Longleftrightarrow \quad \sum r_i = t, \ (r_i, t, x_i) \in \mathcal{K}_p^{1/p}, \ i = 1, \ldots, n.$$

Examples of exponential cones

• Expontial:

$$e^x \leq t \quad \Longleftrightarrow \quad (t,1,x) \in \mathcal{K}_e.$$

• Logarithm:

$$\log x \geq t \quad \Longleftrightarrow \quad (x,1,t) \in \mathcal{K}_e.$$

• Entropy:

$$-x \log x \ge t \quad \Longleftrightarrow \quad (1, x, t) \in \mathcal{K}_e.$$

• Softplus function:

 $\log(1+e^x) \leq t \quad \Longleftrightarrow \quad (u,1,x-t), (v,1,-t) \in \mathcal{K}_e, \ u+v \leq 1.$

Log-sum-exp:

$$\log(\sum_{i} e^{x_i}) \leq t \iff \sum u_i \leq 1, (u_i, 1, x_i - t) \in \mathcal{K}_e, i = 1, \dots, n.$$

The homogeneous model for conic problems

Solution to the homogenous model

$$Ax - b\tau = 0$$

$$c\tau - A^{T}y - s = 0$$

$$c^{T}x - b^{T}y + \kappa = 0$$

$$x \in \mathcal{K}, \ s \in \mathcal{K}^{*}, \ \tau, \kappa \ge 0.$$

encapsulates different duality cases:

• If
$$\tau > 0$$
, $\kappa = 0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,
 $Ax = b\tau, \quad c\tau - A^T y = s, \quad c^T x - b^T y = 0.$

• If $\tau = 0$, $\kappa > 0$ then the problem is infeasible,

$$Ax = 0, \quad -A^T y = s, \quad c^T x - b^T y < 0.$$

• If $\tau = 0$, $\kappa = 0$ then the problem is ill-posed.

Shifted central-path for cone problems

Central-path for interior point $(x^0, s^0, y^0, \tau^0, \kappa^0)$:

$$\begin{aligned} Ax_{\mu} - b\tau_{\mu} &= \mu (Ax^{0} - b\tau^{0}) \\ s_{\mu} + A^{T}y_{\mu} - c\tau_{\mu} &= \mu (s^{0} + A^{T}y^{0} - c\tau^{0}) \\ c^{T}x_{\mu} - b^{T}y_{\mu} + \kappa_{\mu} &= \mu (c^{T}x^{0} - b^{T}y^{0} + \kappa^{0}) \\ s_{\mu} &= -\mu F'(x_{\mu}), \quad x_{\mu} = -\mu F'_{*}(s_{\mu}), \quad \kappa_{\mu}\tau_{\mu} = \mu, \end{aligned}$$

parametrized by $\mu.$ Equivalently we have

$$\begin{bmatrix} 0 & A & -b \\ -A^{T} & 0 & c \\ b^{T} & -c^{T} & 0 \end{bmatrix} \begin{bmatrix} y_{\mu} \\ x_{\mu} \\ \tau_{\mu} \end{bmatrix} - \begin{bmatrix} 0 \\ s_{\mu} \\ \kappa_{\mu} \end{bmatrix} = \mu \begin{bmatrix} r_{p}^{0} \\ r_{d}^{0} \\ r_{g}^{0} \end{bmatrix}$$
$$s_{\mu} = -\mu F'(x_{\mu}), \quad x_{\mu} = -\mu F'_{*}(s_{\mu}), \quad \kappa_{\mu}\tau_{\mu} = \mu,$$

where

$$r_p^0 = Ax^0 - b,$$
 $r_d^0 = c\tau^0 - A^T y^0 - s^0,$ $r_g^0 = b^T y^0 - c^T x^0 - \kappa^0.$

Symmetric cones are a convex cones with a bilinear product:

1
$$u \circ v = v \circ u$$
,
2 $u \circ (u^2 \circ v) = u^2 \circ (u \circ v)$
3 $u^T (v \circ w) = (u \circ v)^T w$.

Defines roots, inverses, etc.,

$$u^{1/2} \circ u^{1/2} = u, \quad u^{-1} \circ u = u \circ u^{-1} = e.$$

- Nonnegative orthant: $u \circ v = \operatorname{diag}(u)v$, $e = (1, 1, \dots, 1)$.
- Second-order cone:

$$u \circ v = \begin{bmatrix} u^T v \\ u_1 v_{2:n} + v_1 u_{2:n} \end{bmatrix}, e = (1, 0, \dots, 0)$$

• Semidefinite cone:

 $u \circ v = (1/2) \operatorname{vec}(\operatorname{mat}(u) \operatorname{mat}(v) + \operatorname{mat}(v) \operatorname{mat}(u)), e = \operatorname{vec}(I).$

For the symmetric cones, we have

$$F'(x) = -x^{-1}$$

(using the inverse defined by the product), so the centrality condition becomes

$$s = -\mu F'(x) = \mu x^{-1},$$

or equivalently

$$x \circ s = \mu e.$$

Properties of Nesterov-Todd scaling W:

• maps x and s to the same scaling point λ ,

$$\lambda = W x = W^{-1} s,$$

• leaves the cone invariant,

$$x, s \succeq_{\mathcal{K}} 0 \iff \lambda \succeq_{\mathcal{K}} 0,$$

preserves the central path,

$$x \circ s = \mu e \iff \lambda \circ \lambda = \mu e.$$

Linearized scaled centrality:

$$\lambda \circ (W\Delta x + W^{-1}\Delta s) = \mu e - \lambda^2.$$

Following Tunçel [4] we consider a scaling $W^T W \succ 0$,

$$\lambda = W \mathbf{x} = W^{-T} \mathbf{s}, \qquad \tilde{\lambda} = W \tilde{\mathbf{x}} = W^{-T} \tilde{\mathbf{s}}$$

where $\tilde{x} := -F'_*(s)$ and $\tilde{s} := -F'(x)$. The centrality conditions

$$x = \mu \tilde{x}, \quad s = \mu \tilde{s}$$

can then be written symmetrically as

$$\lambda = \mu \tilde{\lambda},$$

and we linearize the centrality condition $v = \mu \tilde{v}$ as

$$W\Delta x + W^{-T}\Delta s = -\lambda + \mu \tilde{\lambda}.$$

Search-direction with centering parameter γ :

$$\begin{bmatrix} 0 & A & -b \\ -A^{T} & 0 & c \\ b^{T} & -c^{T} & 0 \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta \tau \end{bmatrix} - \begin{bmatrix} 0 \\ \Delta s \\ \Delta \kappa \end{bmatrix} = (\gamma - 1) \begin{bmatrix} r_{p}^{0} \\ r_{d}^{0} \\ r_{g}^{0} \end{bmatrix}$$
$$W\Delta x + W^{-1}\Delta s = \gamma \mu \tilde{\lambda} - \lambda, \quad \tau \Delta \kappa + \kappa \Delta \tau = \gamma \mu - \tau \kappa.$$

Constant decrease of residuals:

$$A(x + \alpha \Delta x) = (1 - \alpha(1 - \gamma))r_p^0$$

$$c(\tau + \alpha \Delta \tau) - A^T(y + \alpha \Delta y) - (s + \alpha \Delta s) = (1 - \alpha(1 - \gamma))r_d^0$$

$$b^T(y + \alpha \Delta y) - c^T(x + \alpha \Delta x) - (\kappa + \alpha \Delta \kappa) = (1 - \alpha(1 - \gamma))r_g^0.$$

Complementarity:

$$(x+\alpha\Delta x)^{T}(s+\alpha\Delta s)+(\tau+\alpha\Delta \tau)(\kappa+\alpha\Delta \kappa)=(1-\alpha(1-\gamma))(x^{T}s+\tau\kappa).$$

Theorem (Schnabel [3])

Let $S, Y \in \mathbb{R}^{n \times p}$ have full rank p. Then there exists $H \succ 0$ such that HS = Y if and only if $Y^T S \succ 0$.

As a consequence

$$H = Y(Y^T S)^{-1} Y^T + Z Z^T$$

where $Z^T S = 0$, $\operatorname{rank}(Z) = n - p$. We have n = 3, p = 2 and $S := \begin{pmatrix} x & \tilde{x} \end{pmatrix}, \quad Y := \begin{pmatrix} s & \tilde{s} \end{pmatrix},$

with

$$\boldsymbol{\chi}^{\mathsf{T}}\boldsymbol{S} = \begin{bmatrix} \boldsymbol{x}^{\mathsf{T}}\boldsymbol{s} & \boldsymbol{\theta} \\ \boldsymbol{\theta} & \tilde{\boldsymbol{x}}^{\mathsf{T}}\tilde{\boldsymbol{s}} \end{bmatrix}$$

and

$$\det(Y^{\mathsf{T}}S) = \theta^2\left((x^{\mathsf{T}}s/\theta)(\tilde{x}^{\mathsf{T}}\tilde{s}/\theta) - 1\right) = \theta^2(\mu\tilde{\mu} - 1) \ge 0,$$

(equality only on the central path).

The scaling for n = 3 satisfies

$$W^{T}W = Y(Y^{T}S)^{-1}Y^{T} + zz^{T}$$

= $\frac{1}{\theta(\mu\tilde{\mu} - 1)} \left(\tilde{\mu}ss^{T} + \mu\tilde{s}\tilde{s}^{T} - s\tilde{s}^{T} - \tilde{s}s^{T}\right) + zz^{T},$

with $\begin{pmatrix} x & \tilde{x} \end{pmatrix}^T z = 0.$

Expanding the BFGS update [3]

$$H^+ = H + Y(Y^TS)^{-1}Y^T - HS(S^THS)^{-1}S^TH,$$

for $H \succ 0$ gives the scaling by Tunçel [4] and Myklebust [2], *i.e.*,

$$zz^{\mathsf{T}} = H - HS(S^{\mathsf{T}}HS)^{-1}S^{\mathsf{T}}H.$$

• As shown in [4, 2], we have polynomial-time complexity if

$$\xi^{-1}F''(x) \preceq W^{\mathsf{T}}W \preceq \xi F_*''(s)^{-1}$$

is bounded, *i.e.*, if $\xi = O(1)$. We have no proof of this.

- Optimal scaling matrix. Currently we use a BFGS update.
- Higher-order Mehrotra-type corrector terms are illusive. We currently use

$$\Delta s + W^T W \Delta x = -s - \mu F'(x) - \frac{\mu}{2} F'''(x) [\Delta x_{\text{aff}}, \Delta x_{\text{aff}}],$$

where Δx_{aff} is an affine-like search-step.

Given *n* binary training-points $\{(x_i, y_i)\}$.

Training:

$$\begin{array}{ll} \text{minimize} & \sum_{i} t_{i} + \lambda r \\ \text{subject to} & t_{i} \geq \log(1 + \exp(-\theta^{\mathsf{T}} x_{i})), \quad y_{i} = 1, \\ & t_{i} \geq \log(1 + \exp(\theta^{\mathsf{T}} x_{i})), \quad y_{i} = 0, \\ & r \geq \|\theta\|_{2}, \end{array}$$

2n exponential cones + 1 quadratic cone.

Classifier:

$$h_ heta(z) = rac{1}{1+\exp(- heta^ op z)}.$$

from mosek.fusion import *

theta = M.variable(d)
t = M.variable(n)
reg = M.variable()

```
M.objective(ObjectiveSense.Minimize, Expr.add(Expr.sum(t), Expr.mul(lamb,reg)))
M.constraint(Var.vstack(reg, theta), Domain.inQCone())
```

```
for i in range(n):
    dot = Expr.dot(X[i], theta)
    if y[i]==1:
        softplus(M, t.index(i), Expr.neg(dot))
    else:
        softplus(M, t.index(i), dot)
```

Logistic regression example

Decision regions for different regularizations. Data lifted to the space of degree 6 polynomials.

Logistic regression example

Optimizer - threads : 20								
Opt	imizer -	solved p	roblem	: the	primal			
Opt	imizer -	Constrai	nts	: 236				
Opt	imizer -	Cones		: 237				
Opt	imizer -	Scalar v	ariables	: 855		conic	: 737	
Opt	imizer -	Semi-def	inite var	iables: 0		scalarized	: 0	
Fac	tor -	setup ti	me	: 0.0	10	dense det. time	: 0.00	
Fac	tor -	ML order	time	: 0.0	10	GP order time	: 0.00	
Fac	tor -	nonzeros	before f	actor : 725	7	after factor	: 7257	
Fac	tor -	dense di	m.	: 0		flops	: 9.66e	+05
ITE	PFEAS	DFEAS	GFEAS	PRSTATUS	POBJ	DOBJ	MU	TIME
0	1.6e+00	1.3e+00	9.9e+01	0.00e+00	9.768593109e+	0.00000000e+00	1.0e+00	0.00
1	8.1e-01	6.6e-01	6.8e+01	6.60e-01	9.011469440e+	01 3.552297591e+01	5.4e-01	0.01
2	3.2e-01	2.6e-01	4.3e+01	8.10e-01	7.052557003e+	01 4.814005503e+01	2.2e-01	0.01
3	1.6e-01	1.3e-01	3.0e+01	9.51e-01	5.716944320e+	01 4.630260918e+01	1.1e-01	0.01
4	7.2e-02	5.9e-02	2.0e+01	9.28e-01	4.754032019e+	01 4.248014972e+01	5.2e-02	0.01
5	4.2e-02	3.4e-02	1.5e+01	8.70e-01	4.269747692e+	01 3.971483592e+01	3.1e-02	0.01
6	2.5e-02	2.0e-02	1.1e+01	8.15e-01	3.929422749e+	01 3.748825666e+01	1.9e-02	0.01
7	1.6e-02	1.3e-02	8.6e+00	7.54e-01	3.712558491e+	01 3.593418437e+01	1.2e-02	0.01
8	9.3e-03	7.6e-03	6.4e+00	7.23e-01	3.535772247e+	01 3.462356155e+01	7.5e-03	0.02
9	6.4e-03	5.2e-03	5.2e+00	7.14e-01	3.443934016e+	01 3.391733535e+01	5.4e-03	0.02
10	5.0e-03	4.1e-03	4.6e+00	7.48e-01	3.396250049e+	01 3.355009827e+01	4.3e-03	0.02
11	3.3e-03	2.7e-03	3.6e+00	7.22e-01	3.331083099e+	01 3.303323369e+01	2.9e-03	0.02
12	2.7e-03	2.2e-03	3.2e+00	7.28e-01	3.302865568e+	01 3.280278682e+01	2.4e-03	0.02
13	2.2e-03	1.8e-03	2.9e+00	7.56e-01	3.282977819e+	01 3.264128094e+01	2.0e-03	0.02
14	1.5e-03	1.2e-03	2.3e+00	6.97e-01	3.247818711e+	01 3.234470459e+01	1.5e-03	0.02
15	1.1e-03	8.9e-04	1.8e+00	6.52e-01	3.221441130e+	01 3.211463097e+01	1.1e-03	0.02
16	9.3e-04	7.6e-04	1.6e+00	6.00e-01	3.210593508e+	01 3.201793882e+01	9.4e-04	0.03
17	7.0e-04	5.7e-04	1.3e+00	5.24e-01	3.191120208e+	01 3.184089496e+01	7.4e-04	0.03
18	5.3e-04	4.4e-04	1.1e+00	4.64e-01	3.174702006e+	01 3.168994262e+01	5.8e-04	0.03
19	3.5e-04	2.9e-04	8.0e-01	4.37e-01	3.153180306e+	01 3.149066395e+01	4.0e-04	0.03
20	2.4e-04	1.9e-04	6.1e-01	4.88e-01	3.136835364e+	01 3.133901910e+01	2.8e-04	0.03
21	1.5e-04	1.3e-04	4.6e-01	5.95e-01	3.123979806e+	01 3.122013885e+01	1.9e-04	0.03
22	8.1e-05	6.6e-05	3.1e-01	6.43e-01	3.110705011e+	01 3.109619585e+01	1.0e-04	0.03
23	5.2e-05	4.3e-05	2.4e-01	7.72e-01	3.104953216e+	01 3.104241448e+01	6.9e-05	0.04
24	3.3e-05	2.7e-05	1.8e-01	8.40e-01	3.100710801e+	01 3.100267855e+01	4.4e-05	0.04
25	1.7e-05	1.4e-05	1.3e-01	8.85e-01	3.097269722e+	01 3.097037756e+01	2.4e-05	0.04
26	4.1e-06	3.4e-06	5.8e-02	9.39e-01	3.094182106e+	01 3.094128534e+01	6.0e-06	0.04
27	1.1e-06	9.1e-07	3.0e-02	9.84e-01	3.093399109e+	01 3.093384551e+01	1.6e-06	0.04
28	8.5e-08	6.9e-08	8.1e-03	9.97e-01	3.093131789e+	01 3.093130706e+01	1.3e-07	0.04
29	2.1e-08	1.7e-08	4.0e-03	1.00e+00	3.093115672e+	01 3.093115404e+01	3.1e-08	0.04
30	5.7e-09	4.6e-09	2.1e-03	1.00e+00	3.093112004e+	01 3.093111935e+01	8.8e-09	0.05
31	1.6e-09	5.4e-10	7.4e-04	1.00e+00	3.093110805e+	01 3.093110797e+01	1.1e-09	0.05

- Nonsymmetric conic solver extended with branch-and-bound.
- Preliminary work.
- Integer exp-cone test instances from CBLIB by Miles Lubin.

Mixed-integer exponential-cone instances I

Successfully solved instances

	Time	Obj. value	# nodes
syn40m04h	6.58	-901.75	476
syn40m03h	2.31	-395.15	276
syn40m02h	0.43	-388.77	14
syn40h	0.19	-67.713	16
syn30m04h	3.27	-865.72	450
syn30m03h	1.11	-654.16	165
syn30m02m	1091.4	-399.68	348085
syn30m02h	0.44	-399.68	58
syn30m	9.98	-138.16	7849
syn30h	0.13	-138.16	11
syn20m04m	1833.48	-3532.7	534769
syn20m04h	0.55	-3532.7	27
syn20m03m	300.47	-2647	118089
syn20m03h	0.37	-2647	25
syn20m02m	28.21	-1752.1	14321
syn20m02h	0.19	-1752.1	11
syn20m	0.63	-924.26	645
syn20h	0.09	-924.26	11
syn15m04m	16.59	-4937.5	5567
syn15m04h	0.33	-4937.5	7
syn15m03m	4.77	-3850.2	1907
syn15m03h	0.19	-3850.2	5
syn15m02m	1.24	-2832.7	751
syn15m02h	0.11	-2832.7	5
syn15m	0.12	-853.28	85
syn15h	0.04	-853.28	3
syn10m04m	2.99	-4557.1	1983
syn10m04h	0.16	-4557.1	5

Mixed-integer exponential-cone instances II

Successfully solved instances

syn10m03m	1.13	-3354.7	923
syn10m03h	0.11	-3354.7	5
syn10m02m	0.36	-2310.3	409
syn10m02h	0.08	-2310.3	5
syn10m	0.05	-1267.4	31
syn10h	0	-1267.4	0
syn05m04m	0.17	-5510.4	45
syn05m04h	0.06	-5510.4	3
syn05m03m	0.09	-4027.4	33
syn05m03h	0.04	-4027.4	3
syn05m02m	0.06	-3032.7	23
syn05m02h	0.03	-3032.7	3
syn05m	0.02	-837.73	11
syn05h	0.02	-837.73	5
rsyn0840m04h	39.28	-2564.5	2197
rsyn0840m03h	15.34	-2742.6	1577
rsyn0840m02h	1.56	-734.98	149
rsyn0840h	0.27	-325.55	19
rsyn0830m04h	29.9	-2529.1	2115
rsyn0830m03h	8.3	-1543.1	935
rsyn0830m02h	2.38	-730.51	299
rsyn0830m	227.14	-510.07	99495
rsyn0830h	0.44	-510.07	117
rsyn0820m04h	10.59	-2450.8	635
rsyn0820m03h	18.16	-2028.8	2079
rsyn0820m02h	3.35	-1092.1	510
rsyn0820m	110.08	-1150.3	58607
rsyn0820h	0.46	-1150.3	145
rsyn0815m04h	5.79	-3410.9	587
rsyn0815m03h	7.37	-2827.9	866

rsyn0815m02m	2345.68	-1774.4	567030
rsyn0815m02h	2.08	-1774.4	365
rsyn0815m	10.47	-1269.9	7059
rsyn0815h	0.36	-1269.9	238
rsyn0810m04h	6.95	-6581.9	677
rsyn0810m03h	4.95	-2722.4	740
rsyn0810m02m	1353.22	-1741.4	425403
rsyn0810m02h	1.15	-1741.4	159
rsyn0810m	8.31	-1721.4	9041
rsyn0810h	0.21	-1721.4	134
rsyn0805m04m	578.5	-7174.2	66975
rsyn0805m04h	1.92	-7174.2	101
rsyn0805m03m	186.01	-3068.9	37908
rsyn0805m03h	1.61	-3068.9	177
rsyn0805m02m	86.81	-2238.4	34126
rsyn0805m02h	0.87	-2238.4	201
rsyn0805m	3.16	-1296.1	4639
rsvn0805h	0.19	-1296.1	120

Mixed-integer exponential-cone instances

Timed-out instances

	Time	Obj. value	# nodes
gams01	3600.0	22265	70232
rsyn0810m03m	3600.0	-2722.4	493926
rsyn0810m04m	3600.0	-6580.9	307231
rsyn0815m03m	3600.1	-2827.9	420782
rsyn0815m04m	3600.2	-3359.8	309729
rsyn0820m02m	3600.2	-1077.6	683356
rsyn0820m03m	3600.2	-1980.4	380611
rsyn0820m04m	3600.1	-2401.1	262880
rsyn0830m02m	3600.4	-705.46	568113
rsyn0830m03m	3600.2	-1456.3	368794
rsyn0830m04m	3600.1	-2395.7	206456
rsyn0840m	3600.3	-325.55	1157426
rsyn0840m02m	3600.5	-634.17	422224
rsyn0840m03m	3600.1	-2656.5	252651
rsyn0840m04m	3600.0	-2426.3	142895
syn30m03m	3600.2	-654.15	831798
syn30m04m	3600.2	-848.07	643266
syn40m02m	3600.2	-366.77	748603
syn40m03m	3600.3	-355.64	607359
syn40m04m	3600.2	-859.71	371521

- Documentation: https://www.mosek.com/documentation/
 - Manuals for interfaces.
 - Modeling cook-book.
 - White papers.
- Examples and tutorials:
 - https://github.com/MOSEK/Tutorials

References

 M. Lubin and E. Yamangil and R. Bent and J. P. Vielma. Extended Formulations in Mixed-integer Convex Programming. Technical report, 2016. arXiv:1511.06710v3.

[2] T. Myklebust and L. Tunçel.

Interior-point algorithms for convex optimization based on primal-dual metrics.

Technical report, 2014.

[3] R. B. Schnabel.

Quasi-newton methods using multiple secant equations.

Technical report, Colorado Univ., Boulder, Dept. Comp. Sci., 1983.

[4] L. Tunçel.

Generalization of primal-dual interior-point methods to convex optimization problems in conic form.

Foundations of Computational Mathematics, 1:229–254, 2001.