Semidefinite Programming for Power System
Stability and Optimization

MOSEK Workshop on Semidefinite Optimization in Power Flow Problems

Spyros Chatzivasileiadis

DTU Center for Electric Power and Energy
Outline

• Who are we? ... And what do we do?
• What is semidefinite programming (SDP) ?
• Power System Stability Assessment and SDP
• Power System Optimization and SDP
DTU Center for Electric Power and Energy

- Established 15 Aug. 2012; merger of existing units (Lyngby+Risø)
- One of the strongest university centers in Europe with ~ 100 employees

Mission: Provides cutting-edge research, education and innovation in the field of electric power and energy to meet the future needs of society regarding a reliable, cost efficient and environmentally friendly energy system

- **BSc & MSc:** Electrical Engineering, Wind Energy, Sustainable Energy
- **Direct Support from:** Energinet.dk, Siemens, DONG Energy, Danfoss

*DTU ranked world 2nd in Energy Science and Engineering*¹

¹Shanghai Ranking 2016, Global Ranking of Academic Subjects
The Energy Analytics & Markets group

One of the 5 groups of the Center for Electric Power and Energy, Department of Electrical Engineering

• Resources: (10 nationalities)
 • Faculty: 1 Prof, 2 Assist. Profs.
 • Junior: 3 post-doc fellows, 9 Ph.D. students (+2 externals), 2-3 research assistants
 • + student helpers, and Ph.D. guests from China, Brazil, US, Spain, France, Italy, Netherlands, Germany, etc.

• Projects (active in 2016):
 • EU: BestPaths
 • Danish: 5s, EcoGrid 2.0, CITIES, EnergyLab Nordhavn, EnergyBlock, CORE, MULTI-DC
 • Danish-Chinese: PROAIN

• Education: Various courses on renewables forecasting, optimization, and electricity markets

• (hopefully) recognized leading expertise in energy analytics and markets
What we really do...

Energy Analytics & Markets

- Forecasting
- Clustering & Profiling
- Big data
- Data-driven analytics

- Design
- Energy markets
- Uncertainty, variability & flexibility
- Offering strategy & trading
- Modelling & Simulation

- System models & Optimization
- Large-scale optimization
- Equilibrium models
- Stochastic optimization

- Open access datasets
- Open-source software
- Open dissemination
- Open courses
- Open access datasets
- Open-source software
- Open dissemination

Open access datasets
Open-source software
Open dissemination
Open courses
Research Topics (Selection)

• Optimal operation of combined heat, gas, and electricity networks
• Game theoretical approaches for electricity market participants
• Spatiotemporal forecasting for wind, solar, and energy demand
• Stochastic electricity market design and value of information
• HVDC optimization and control under uncertainty
Outline

• Who are we? ... and what we do
• What is semidefinite programming (SDP)?
• Power System Stability Assessment and SDP
• Power System Optimization and SDP
What is Semidefinite Programming? (SDP)

• SDP is the “generalized” form of an LP (linear program)

Linear Programming

\[\min c^T \cdot x \]

subject to:

\[a_i \cdot x = b_i, \quad i = 1, \ldots, m \]
\[x \geq 0, \quad x \in \mathbb{R}^n \]

Semidefinite Programming

\[\min C \bullet X := \sum_i \sum_j C_{ij} X_{ij} \]

subject to:

\[A_i \bullet X = b_i, \quad i = 1, \ldots, m \]
\[X \succeq 0 \]

• LP: Optimization variables in the form of a vector \(x \).

• SDP: Optim. variables in the form of a positive semidefinite matrix \(X \).

• SDP=LP: for diagonal matrices
Example: Feasible space of SDP vs LP variables

LP

\[\begin{align*}
 x_1 & \geq 0 \\
 x_2 & \geq 0
\end{align*} \]

SDP

\[X = \begin{bmatrix} x_2 & x_1 \\ x_1 & 1 \end{bmatrix} \succeq 0 \Rightarrow x_2 - x_1^2 \geq 0 \]
Example: Feasible space of SDP vs LP variables

LP

\[
\begin{align*}
 x_1 & \geq 0 \\
 x_2 & \geq 0
\end{align*}
\]

SDP

\[
X = \begin{bmatrix} x_2 & x_1 \\ x_1 & 1 \end{bmatrix} \succeq 0 \Rightarrow x_2 - x_1^2 \geq 0
\]

- In SDP we can express quadratic constraints, e.g. \(x_1^2 \) or \(x_1 x_2 \)
- optimization variables need not be strictly non-negative
- LP is a special case of SDP
SDP for Power System Stability

find a feasible X

subject to:

\[A_i \bullet X \succeq 0 \]

\[X \succeq 0 \]

SDP for Optimal Power Flow

minimize cost of electricity

\[\min C \bullet X \]

subject to:

voltage and power flow constraints

\[A_i \bullet X = b_i, \quad i = 1, \ldots, m \]

\[X \succeq 0 \]
Robust Power System Stability Assessment with Extensions to Inertia and Topology Control

work with:
Thanh Long Vu, Kostya Turitsyn
MIT Mechanical Engineering
Power blackouts

Statistics:

- Frequency: \(\frac{1}{1\text{hr/year}} \)
- Economic damage: \(\approx 100\text{B\$}/\text{year} \)
- Total electric energy cost in US: \(\approx 400\text{B\$}/\text{year} \)

Challenges and opportunities:

- New algorithms for better decision-making
Power blackouts

Statistics:

- Frequency: $\approx 1\text{hr/year} \implies$ economic damage: $\approx 100B$/year
- Total electric energy cost in US: $\approx 400B$/year
Power blackouts

Statistics:

- Frequency: \(\approx 1 \text{hr/year} \) \(\Rightarrow \) economic damage: \(\approx 100B\$/year \)
- Total electric energy cost in US: \(\approx 400B\$/year \)

Challenges and opportunities:

- New algorithms for better decision-making
Dynamic Security Assessment

- Security = ability to withstand disturbances

- Security Assessment:
 - Screen contingency list every 15 mins
 - Prepare contingency plans for critical scenarios.
Dynamic Security Assessment

- Security = ability to withstand disturbances

- Security Assessment:
 - Screen contingency list every 15 mins
 - Prepare contingency plans for critical scenarios.

- Dynamic simulations are hard:
 - DAE system with about 10k degrees of freedom
 - Faster than real-time simulations is an open research topic

- Alternative: Energy methods = Security certificates
Security certificates

- Security region: non-convex, NP-hard characterization
Security certificates

- Security region: non-convex, NP-hard characterization
- Security certificates: tractable sufficient conditions
Security certificates

- Security region: non-convex, NP-hard characterization
- Security certificates: tractable sufficient conditions
- Strategy: certify security of most of scenarios with conservative conditions, use simulations for few really dangerous scenarios
Closest mechanical equivalent to a power system is a mass-spring system.
Energy method

- If $E(\delta_0, \dot{\delta}_0) < E_{CUEP}$, then stable
Energy method

• If $E(\delta_0, \dot{\delta}_0) < E_{CUEP}$, then stable
• Fast transient stability certificate
Energy method

- If $E(\delta_0, \dot{\delta}_0) < E_{CUEP}$, then stable
- Fast transient stability certificate
- Computing E_{CUEP} is an NP-hard problem
Energy method

- If $E(\delta_0, \dot{\delta}_0) < E_{CUEP}$, then stable
- Fast transient stability certificate
- Computing E_{CUEP} is an NP-hard problem
- Certificates are generally conservative
Modeling Approach

- Non-linear swing equation

\[m_k \ddot{\delta}_k + d_k \dot{\delta}_k + \sum_{j \in \mathcal{N}_k} a_{kj} \sin(\delta_k - \delta_j) = P_k \]

(1)

\[m_k \ddot{\delta}_k + d_k \dot{\delta}_k + \sum_{j \in \mathcal{N}_k} a_{kj} (\sin(\delta_{kj}) - \sin(\delta_{kj}^*)) = 0 \]

(2)

\[\dot{x} = Ax - BF(Cx) \]

(3)

- Structure-preserving model: \(A \) and \(B \) do not correspond to the reduced model

- \(x = \delta_i - \delta_i^* \)

- \(A, B, C \) are independent of the operating point \(P_k \)

- \(F(Cx) \) stands for the non-linear function \(\sin(\delta_{kj}) - \sin(\delta_{kj}^*) \)
Bounding nonlinearity

\[\left\{ k_j, \dot{\theta}_j : |k_j| < \pi/2 \right\} \]
Bounding nonlinearity

- Sector bound on nonlinearity for polytope \mathcal{P}: $\{\delta, \dot{\delta} : |\delta_{k,j}| < \frac{\pi}{2}\}$
Stability certificate

• If:

\[
\bar{A}^T P + P \bar{A} + \frac{(1 - g)^2}{4} C^T C + P B B^T P \leq 0
\]

(4)

• there exists a quadratic Lyapunov function \(V = x^T P x \) that is decreasing whenever \(x(t) \in \mathcal{P} \).
Stability region

- Lyapunov function $x^T P x$ is an ellipsoid
• Lyapunov function $x^T P x$ is an ellipsoid

• Due to the sector bound on the nonlinear $\sin()$ term, stability is certified only as long as we stay within $[-\pi/2, \pi/2]$
- Lyapunov function $x^T P x$ is an ellipsoid

- Due to the sector bound on the nonlinear $\sin()$ term, stability is certified only as long as we stay within $[-\pi/2, \pi/2]$.

- Finding the V_{min} within these bounds is now a convex problem!
 - We can solve (even large) convex problems fast and efficiently.
Extensions to Remedial Actions

• Can incorporate inertia and damping control by appropriately changing A and $B \Rightarrow$ bound the growth of Lyapunov function

\[
\delta_0 = \delta_F(\tau_{clearing})
\]

\[
\delta_{\text{pre}}^* = \delta_{\text{post}}^* = \delta^*
\]

Fault–on trajectory

Post–fault trajectory
Extensions to Remedial Actions

• Can incorporate inertia and damping control by appropriately changing A and $B \Rightarrow$ bound the growth of Lyapunov function

• Can incorporate topology control, e.g. FACTS, by appropriately changing A and $B \Rightarrow$ generate a set of ellipsoids that will guarantee the convergence of x_0 to the post-fault equilibrium
Convex Relaxations of Chance Constrained AC Optimal Power Flow

work with:
Andreas Venzke
The Optimal Power Flow Problem (OPF)

minimize the cost of electricity generation

subject to:

demand of electric loads

maximum power of generators

maximum power capacity of transmission lines

voltage limits

• The problem is:

 • non-linear: power flow depends on the square of voltages
 • non-convex: there are more than one (local) minima
Convex vs. Non-convex Problem

Convex Problem

One global minimum

Non-convex problem

Several local minima
Several local minima: So what?

- **Electricity Markets:** Assume that the difference in the cost function of a local minimum versus a global minimum is 2%

- The total electric energy cost in the US is \(\approx 400 \) Billion\$/year

- 2% amounts to 8 billion US\$ in economic losses per year

- **Technical operation:** Convex OPF determines absolute lower or upper bound of control effort \(\rightarrow \) useful in branch-and-bound methods for mixed integer programming, e.g. unit commitment, capacitor switching

- Convex problems guarantee that we find a global minimum \(\rightarrow \) convexify the OPF problem
Convexifying the Optimal Power Flow problem (OPF)

- Convex relaxation transforms OPF to convex Semi-Definite Program (SDP)

\[f(x) \]

Convex Relaxation

\[x \]

Cost

Convexifying the Optimal Power Flow problem (OPF)

- Convex relaxation transforms OPF to convex Semi-Definite Program (SDP)

\[\tilde{f}(x) \]

Convex Relaxation

Convexifying the Optimal Power Flow problem (OPF)

- Convex relaxation transforms OPF to convex Semi-Definite Program (SDP)

- Under certain conditions, the obtained solution is the global optimum to the original OPF problem\(^2\)

\[\text{Cost} \]

\[f(x) \quad \tilde{f}(x) \]

Convex Relaxation

Transforming the AC-OPF to an SDP

• Power is a quadratic function of voltage, e.g.: \(P_{ij} = f(V_i^2, V_j^2, V_iV_j) \)
Transforming the AC-OPF to an SDP

- Power is a quadratic function of voltage, e.g.: $P_{ij} = f(V_i^2, V_j^2, V_i V_j)$
- Let $W = VV^T$ and express $P = f(W)$. In that case, P is an affine function of W.
Transforming the AC-OPF to an SDP

- Power is a quadratic function of voltage, e.g.: $P_{ij} = f(V_i^2, V_j^2, V_i V_j)$

- Let $W = V V^T$ and express $P = f(W)$. In that case, P is an affine function of W.

- If $W \succeq 0$ and rank(W) = 1:

 W can be expressed as a product of vectors and we can recover the solution V to our original problem

- However the rank-1 constraint is non-convex...
Applying convex relaxations with SDP

\[f(x) \]
\[\tilde{f}(Y^*) \leq f(x^*) \]

\[f(x^*) = \tilde{f}(Y^*) \]

\[\text{rank}(Y^*) = 1 \]

EXACT: \[W = VV^T \]

\[\Downarrow \]

RELAX: \[W \succeq 0 \]

\[\text{rank}(W) = 1 \]

- For the objective functions, it holds \(\text{EXACT} \geq \text{RELAX} \)

- The RELAX problem is an SDP problem!

- If \(W^* \) happens also to be rank-1, then \(\text{EXACT} = \text{RELAX} \)!
Notes on the Convex Relaxation

- **Relaxation gap**: Difference between the solution of original non-convex, non-linear OPF and the SDP

\[f(x) \approx \tilde{f}(x) \]

- If \(\text{rank}(W) = 1 \) or 2: solution to original OPF problem can be recovered to global optimum
- If \(\text{rank}(W) \geq 3 \): the solution \(W \) has no physical meaning (but still it is a lower bound)

Notes on the Convex Relaxation

- **Relaxation gap**: Difference between the solution of original non-convex, non-linear OPF and the SDP

- If \(\text{rank}(W) = 1 \) or \(2 \): solution to original OPF problem can be recovered → global optimum

- If \(\text{rank}(W) \geq 3 \): the solution \(W \) has no physical meaning (but still it is a lower bound)

- Molzahn\(^3\) derives a heuristic rule: if the ratio of the 2nd to the 3rd eigenvalue of \(W \) is larger than \(10^5 \) → we obtain rank-2.

Introducing Uncertainty

- Increasing share of uncertain renewables
 ⇒ Include chance constraints in OPF:
 Constraints should be fulfilled for a defined probability ϵ, given an underlying distribution of the uncertainty

![Probability distribution](image)
Introducing Uncertainty

- Increasing share of uncertain renewables
 ⇒ Include chance constraints in OPF:
 Constraints should be fulfilled for a defined probability \(\epsilon \), given an underlying distribution of the uncertainty

- Uncertainty in wind forecast errors

- Our Goal: Convex Chance-Constrained AC-OPF

- Pros:
 - Can consider losses and large uncertainty deviations
 - Considers reactive power → reactive power flow control
 - Convex → can find global optimum

- Cons:
 - Scalable?
Uncertainty Sets - Rectangular & Gaussian

How to model the uncertainty distribution of forecast errors ΔP_{W_i}?

Rectangular uncertainty set: General non-Gaussian distributions. Upper and lower bounds are known a-priori.

Ellipsoid uncertainty set: Multivariate Gaussian distribution with known standard deviation and confidence interval.

Uncertainty Sets - Rectangular & Gaussian

How to model the uncertainty distribution of forecast errors ΔP_{W_i}?

Rectangular uncertainty set: General non-Gaussian distributions. Upper and lower bounds are known a-priori.

Ellipsoid uncertainty set: Multivariate Gaussian distribution with known standard deviation and confidence interval ϵ.

- First steps taken in Vrakopoulou et al, 2013. Here we extend this work in several ways.

Formulation for Rectangular Uncertainty Set

It suffices to enforce the chance constraints at the vertices v of the uncertainty set\(^4\).

Modified IEEE 9-bus system with wind farms W1 and W2

- W1 with ± 50 MW deviation inside confidence interval
- W2 with ± 40 MW deviation inside confidence interval
- SDP-Solver: MOSEK v8
- Coded with Julia (open-source)
Simulation Results

Affine Policy for Rectangular Uncertainty Set

Generator droops	$d_1 = [0.5 \ 0.25 \ 0.25 \ 0 \ -1 \ 0 \ 0 \ 0 \ 0]$
Generator droops	$d_2 = [0.5 \ 0.25 \ 0.25 \ 0 \ 0 \ -1 \ 0 \ 0 \ 0]$
Weight power loss	$\mu = 0.4 \ \frac{$}{hMW}$

Generator cost $= 3378.73 \ \frac{$}{h}$

Eigenvalue ratios

- $\rho(W_0) = 6.4 \times 10^6$
- $\rho^*(W_0 + \Delta P_{1}^{\max} \Delta B_1) = 2.5 \times 10^5$
- $\rho^*(W_0 + \Delta P_{2}^{\max} \Delta B_2) = 2.4 \times 10^5$
- $\rho^*(W_0 + \Delta P_{3}^{\max} \Delta B_3) = 2.7 \times 10^6$
- $\rho^*(W_0 + \Delta P_{4}^{\max} \Delta B_4) = 1.9 \times 10^6$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>1.10</td>
<td>64.70</td>
<td>8.09</td>
<td>1.07</td>
<td>60.96</td>
<td>31.00</td>
</tr>
<tr>
<td>G2</td>
<td>1.09</td>
<td>97.21</td>
<td>-12.17</td>
<td>1.10</td>
<td>95.34</td>
<td>32.70</td>
</tr>
<tr>
<td>G3</td>
<td>1.08</td>
<td>65.43</td>
<td>-32.98</td>
<td>0.97</td>
<td>63.56</td>
<td>-80.45</td>
</tr>
<tr>
<td>W1</td>
<td>—</td>
<td>50.00</td>
<td>11.45</td>
<td>—</td>
<td>100.00</td>
<td>22.94</td>
</tr>
<tr>
<td>W2</td>
<td>—</td>
<td>40.00</td>
<td>1.39</td>
<td>—</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>\sum</td>
<td>—</td>
<td>317.34</td>
<td>-24.23</td>
<td>—</td>
<td>319.86</td>
<td>6.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Branch</th>
<th>from</th>
<th>to</th>
<th>P_{lm} [MW]</th>
<th>P_{lm}^* [MW]</th>
<th>Q_{lm} [Mvar]</th>
<th>Q_{lm}^* [Mvar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>42.87</td>
<td>67.50</td>
<td>-24.07</td>
<td>-35.04</td>
</tr>
</tbody>
</table>

Maximum voltage [p.u.] $= V_{\text{max}} = 1.100$, $(V_{\text{max}}^*) = 1.100$

- we satisfy the conditions to obtain the global optimum
- all constraints are satisfied
- we find the true global minimum
Ongoing Work

- Convex formulation for chance-constrained AC-OPF
- Investigating the conditions to obtain zero relaxation gap
- Investigating how to achieve scalability
- Extending this formulation to combined AC and HVDC grids

Conclusions

• “Semidefinite programming is the most exciting development in mathematical programming in the 1990’s”6

• Power interruptions are extremely costly; secure operation is challenging
 • SDP-based methods can extract less conservative stability certificates
• Large systems have high costs \Rightarrow cannot afford to find a suboptimal local minimum
 • SDP-based optimization allows to recover the global optimum
 • We introduced convex relaxations for a chance-constrained AC-OPF

• Challenges: Numerics & scalability

Thank you!

spchatz@elektro.dtu.dk

References: