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Chapter 1

Preface

This cookbook is about model building using convex optimization. It is intended as a
modeling guide for the MOSEK optimization package. However, the style is intentionally
quite generic without specific MOSEK commands or API descriptions.

There are several excellent books available on this topic, for example the books by Ben-
Tal and Nemirovski [BenTalN01] and Boyd and Vandenberghe [BV04], which have both
been a great source of inspiration for this manual. The purpose of this manual is to collect
the material which we consider most relevant to our users and to present it in a practical
self-contained manner; however, we highly recommend the books as a supplement to this
manual.

Some textbooks on building models using optimization (or mathematical programming)
introduce various concepts through practical examples. In this manual we have chosen a
different route, where we instead show the different sets and functions that can be modeled
using convex optimization, which can subsequently be combined into realistic examples and
applications. In other words, we present simple convex building blocks, which can then be
combined into more elaborate convex models. We call this approach extremely disciplined
modeling. With the advent of more expressive and sophisticated tools like conic optimization,
we feel that this approach is better suited.

Content

We begin with a comprehensive chapter on linear optimization, including modeling exam-
ples, duality theory and infeasibility certificates for linear problems. Linear problems are
optimization problems of the form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.

Conic optimization is a generalization of linear optimization which handles problems of the
form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝐾,
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where 𝐾 is a convex cone. Various families of convex cones allow formulating different types
of nonlinear constraints. The following chapters present modeling with four types of convex
cones:

• quadratic cones ,

• power cones ,

• exponential cone,

• semidefinite cone.

It is “well-known” in the convex optimization community that this family of cones is
sufficient to express almost all convex optimization problems appearing in practice.

Next we discuss issues arising in practical optimization, and we wholeheartedly recom-
mend this short chapter to all readers before moving on to implementing mathematical
models with real data.

Following that, we present a general duality and infeasibility theory for conic problems.
Finally we diverge slightly from the topic of conic optimization and introduce the language of
mixed-integer optimization and we discuss the relation between convex quadratic optimization
and conic quadratic optimization.

2



Chapter 2

Linear optimization

In this chapter we discuss various aspects of linear optimization. We first introduce the
basic concepts of linear optimization and discuss the underlying geometric interpretations.
We then give examples of the most frequently used reformulations or modeling tricks used
in linear optimization, and finally we discuss duality and infeasibility theory in some detail.

2.1 Introduction

2.1.1 Basic notions

The most basic type of optimization is linear optimization. In linear optimization we mini-
mize a linear function given a set of linear constraints. For example, we may wish to minimize
a linear function

𝑥1 + 2𝑥2 − 𝑥3

under the constraints that

𝑥1 + 𝑥2 + 𝑥3 = 1, 𝑥1, 𝑥2, 𝑥3 ≥ 0.

The function we minimize is often called the objective function; in this case we have a linear
objective function. The constraints are also linear and consist of both linear equalities and
inequalities. We typically use more compact notation

minimize 𝑥1 + 2𝑥2 − 𝑥3

subject to 𝑥1 + 𝑥2 + 𝑥3 = 1,
𝑥1, 𝑥2, 𝑥3 ≥ 0,

(2.1)

and we call (2.1) a linear optimization problem. The domain where all constraints are satisfied
is called the feasible set ; the feasible set for (2.1) is shown in Fig. 2.1.

For this simple problem we see by inspection that the optimal value of the problem is −1
obtained by the optimal solution

(𝑥⋆
1, 𝑥

⋆
2, 𝑥

⋆
3) = (0, 0, 1).
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x1 x2

x3

Fig. 2.1: Feasible set for 𝑥1 + 𝑥2 + 𝑥3 = 1 and 𝑥1, 𝑥2, 𝑥3 ≥ 0.

Linear optimization problems are typically formulated using matrix notation. The standard
form of a linear minimization problem is:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(2.2)

For example, we can pose (2.1) in this form with

𝑥 =

⎡⎣ 𝑥1

𝑥2

𝑥3

⎤⎦ , 𝑐 =

⎡⎣ 1
2

−1

⎤⎦ , 𝐴 =
[︀

1 1 1
]︀
.

There are many other formulations for linear optimization problems; we can have different
types of constraints,

𝐴𝑥 = 𝑏, 𝐴𝑥 ≥ 𝑏, 𝐴𝑥 ≤ 𝑏, 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,

and different bounds on the variables

𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥

or we may have no bounds on some 𝑥𝑖, in which case we say that 𝑥𝑖 is a free variable. All
these formulations are equivalent in the sense that by simple linear transformations and
introduction of auxiliary variables they represent the same set of problems. The important
feature is that the objective function and the constraints are all linear in 𝑥.
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2.1.2 Geometry of linear optimization

A hyperplane is a subset of R𝑛 defined as {𝑥 | 𝑎𝑇 (𝑥−𝑥0) = 0} or equivalently {𝑥 | 𝑎𝑇𝑥 = 𝛾}
with 𝑎𝑇𝑥0 = 𝛾, see Fig. 2.2.

a

x

aTx = γ

x0

Fig. 2.2: The dashed line illustrates a hyperplane {𝑥 | 𝑎𝑇𝑥 = 𝛾}.

Thus a linear constraint

𝐴𝑥 = 𝑏

with 𝐴 ∈ R𝑚×𝑛 represents an intersection of 𝑚 hyperplanes.
Next, consider a point 𝑥 above the hyperplane in Fig. 2.3. Since 𝑥 − 𝑥0 forms an acute

angle with 𝑎 we have that 𝑎𝑇 (𝑥 − 𝑥0) ≥ 0, or 𝑎𝑇𝑥 ≥ 𝛾. The set {𝑥 | 𝑎𝑇𝑥 ≥ 𝛾} is called a
halfspace. Similarly the set {𝑥 | 𝑎𝑇𝑥 ≤ 𝛾} forms another halfspace; in Fig. 2.3 it corresponds
to the area below the dashed line.

a

x

aTx > γ

x0

Fig. 2.3: The grey area is the halfspace {𝑥 | 𝑎𝑇𝑥 ≥ 𝛾}.

A set of linear inequalities

𝐴𝑥 ≤ 𝑏

corresponds to an intersection of halfspaces and forms a polyhedron, see Fig. 2.4.
The polyhedral description of the feasible set gives us a very intuitive interpretation of

linear optimization, which is illustrated in Fig. 2.5. The dashed lines are normal to the
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a1

a2
a3

a4

a5

Fig. 2.4: A polyhedron formed as an intersection of halfspaces.

objective 𝑐 = (−1, 1), and to minimize 𝑐𝑇𝑥 we move as far as possible in the opposite
direction of 𝑐, to the furthest position where a dashed line intersect the polyhedron; an
optimal solution is therefore always either a vertex of the polyhedron, or an entire facet of
the polyhedron may be optimal.

x⋆

a1

a2
a3

a4

a5

c

Fig. 2.5: Geometric interpretation of linear optimization. The optimal solution 𝑥⋆ is at a
point where the normals to 𝑐 (the dashed lines) intersect the polyhedron.

The polyhedron shown in the figure is nonempty and bounded, but this is not always the
case for polyhedra arising from linear inequalities in optimization problems. In such cases
the optimization problem may be infeasible or unbounded, which we will discuss in detail in
Sec. 2.3.
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2.2 Linear modeling

In this section we present useful reformulation techniques and standard tricks which allow
constructing more complicated models using linear optimization. It is also a guide through
the types of constraints which can be expressed using linear (in)equalities.

2.2.1 Maximum

The inequality 𝑡 ≥ max{𝑥1, . . . , 𝑥𝑛} is equivalent to a simultaneous sequence of 𝑛 inequalities

𝑡 ≥ 𝑥𝑖, 𝑖 = 1, . . . , 𝑛

and similarly 𝑡 ≤ min{𝑥1, . . . , 𝑥𝑛} is the same as

𝑡 ≤ 𝑥𝑖, 𝑖 = 1, . . . , 𝑛.

Of course the same reformulation applies if each 𝑥𝑖 is not a single variable but a linear
expression. In particular, we can consider convex piecewise-linear functions 𝑓 : R𝑛 ↦→ R
defined as the maximum of affine functions (see Fig. 2.6):

𝑓(𝑥) := max
𝑖=1,...,𝑚

{𝑎𝑇𝑖 𝑥 + 𝑏𝑖}

a1x+ b1

a2x+ b2

a3x+ b3

Fig. 2.6: A convex piecewise-linear function (solid lines) of a single variable 𝑥. The function
is defined as the maximum of 3 affine functions.

The epigraph 𝑓(𝑥) ≤ 𝑡 (see Sec. 12) has an equivalent formulation with 𝑚 inequalities:

𝑎𝑇𝑖 𝑥 + 𝑏𝑖 ≤ 𝑡, 𝑖 = 1, . . . ,𝑚.

Piecewise-linear functions have many uses linear in optimization; either we have a convex
piecewise-linear formulation from the onset, or we may approximate a more complicated
(nonlinear) problem using piecewise-linear approximations, although with modern nonlinear
optimization software it is becoming both easier and more efficient to directly formulate and
solve nonlinear problems without piecewise-linear approximations.
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2.2.2 Absolute value

The absolute value of a scalar variable is a special case of maximum

|𝑥| := max{𝑥,−𝑥},

so we can model the epigraph |𝑥| ≤ 𝑡 using two inequalities

−𝑡 ≤ 𝑥 ≤ 𝑡.

2.2.3 The ℓ1 norm

All norms are convex functions, but the ℓ1 and ℓ∞ norms are of particular interest for linear
optimization. The ℓ1 norm of vector 𝑥 ∈ R𝑛 is defined as

‖𝑥‖1 := |𝑥1| + |𝑥2| + · · · + |𝑥𝑛|.

To model the epigraph

‖𝑥‖1 ≤ 𝑡, (2.3)

we introduce the following system

|𝑥𝑖| ≤ 𝑧𝑖, 𝑖 = 1, . . . , 𝑛,
𝑛∑︁

𝑖=1

𝑧𝑖 = 𝑡, (2.4)

with additional (auxiliary) variable 𝑧 ∈ R𝑛. Clearly (2.3) and (2.4) are equivalent, in the
sense that they have the same projection onto the space of 𝑥 and 𝑡 variables. Therefore, we
can model (2.3) using linear (in)equalities

−𝑧𝑖 ≤ 𝑥𝑖 ≤ 𝑧𝑖,
𝑛∑︁

𝑖=1

𝑧𝑖 = 𝑡, (2.5)

with auxiliary variables 𝑧. Similarly, we can describe the epigraph of the norm of an affine
function of 𝑥,

‖𝐴𝑥− 𝑏‖1 ≤ 𝑡

as

−𝑧𝑖 ≤ 𝑎𝑇𝑖 𝑥− 𝑏𝑖 ≤ 𝑧𝑖,
𝑛∑︁

𝑖=1

𝑧𝑖 = 𝑡,

where 𝑎𝑖 is the 𝑖−th row of 𝐴 (taken as a column-vector).
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Example 2.1 (Basis pursuit). The ℓ1 norm is overwhelmingly popular as a convex ap-
proximation of the cardinality (i.e., number on nonzero elements) of a vector 𝑥. For
example, suppose we are given an underdetermined linear system

𝐴𝑥 = 𝑏

where 𝐴 ∈ R𝑚×𝑛 and 𝑚 ≪ 𝑛. The basis pursuit problem

minimize ‖𝑥‖1
subject to 𝐴𝑥 = 𝑏,

(2.6)

uses the ℓ1 norm of 𝑥 as a heuristic for finding a sparse solution (one with many zero
elements) to 𝐴𝑥 = 𝑏, i.e., it aims to represent 𝑏 as a linear combination of few columns of
𝐴. Using (2.5) we can pose the problem as a linear optimization problem,

minimize 𝑒𝑇 𝑧
subject to −𝑧 ≤ 𝑥 ≤ 𝑧,

𝐴𝑥 = 𝑏,
(2.7)

where 𝑒 = (1, . . . , 1)𝑇 .

2.2.4 The ℓ∞ norm

The ℓ∞ norm of a vector 𝑥 ∈ R𝑛 is defined as

‖𝑥‖∞ := max
𝑖=1,...,𝑛

|𝑥𝑖|,

which is another example of a simple piecewise-linear function. Using Sec. 2.2.2 we model

‖𝑥‖∞ ≤ 𝑡

as

−𝑡 ≤ 𝑥𝑖 ≤ 𝑡, 𝑖 = 1, . . . , 𝑛.

Again, we can also consider affine functions of 𝑥, i.e.,

‖𝐴𝑥− 𝑏‖∞ ≤ 𝑡,

which can be described as

−𝑡 ≤ 𝑎𝑇𝑖 𝑥− 𝑏 ≤ 𝑡, 𝑖 = 1, . . . , 𝑛.
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Example 2.2 (Dual norms). It is interesting to note that the ℓ1 and ℓ∞ norms are dual.
For any norm ‖ · ‖ on R𝑛, the dual norm ‖ · ‖* is defined as

‖𝑥‖* = max{𝑥𝑇𝑣 | ‖𝑣‖ ≤ 1}.

Let us verify that the dual of the ℓ∞ norm is the ℓ1 norm. Consider

‖𝑥‖*,∞ = max{𝑥𝑇𝑣 | ‖𝑣‖∞ ≤ 1}.

Obviously the maximum is attained for

𝑣𝑖 =

{︂
+1, 𝑥𝑖 ≥ 0,
−1, 𝑥𝑖 < 0,

i.e., ‖𝑥‖*,∞ =
∑︀

𝑖 |𝑥𝑖| = ‖𝑥‖1. Similarly, consider the dual of the ℓ1 norm,

‖𝑥‖*,1 = max{𝑥𝑇𝑣 | ‖𝑣‖1 ≤ 1}.

To maximize 𝑥𝑇𝑣 subject to |𝑣1| + · · · + |𝑣𝑛| ≤ 1 we simply pick the element of 𝑥 with
largest absolute value, say |𝑥𝑘|, and set 𝑣𝑘 = ±1, so that ‖𝑥‖*,1 = |𝑥𝑘| = ‖𝑥‖∞. This
illustrates a more general property of dual norms, namely that ‖𝑥‖** = ‖𝑥‖.

2.2.5 Homogenization

Consider the linear-fractional problem

minimize 𝑎𝑇 𝑥+𝑏
𝑐𝑇 𝑥+𝑑

subject to 𝑐𝑇𝑥 + 𝑑 > 0,
𝐹𝑥 = 𝑔.

(2.8)

Perhaps surprisingly, it can be turned into a linear problem if we homogenize the linear
constraint, i.e. replace it with 𝐹𝑦 = 𝑔𝑧 for a single variable 𝑧 ∈ R. The full new optimization
problem is

minimize 𝑎𝑇𝑦 + 𝑏𝑧
subject to 𝑐𝑇𝑦 + 𝑑𝑧 = 1,

𝐹𝑦 = 𝑔𝑧,
𝑧 ≥ 0.

(2.9)

If 𝑥 is a feasible point in (2.8) then 𝑧 = (𝑐𝑇𝑥 + 𝑑)−1, 𝑦 = 𝑥𝑧 is feasible for (2.9) with the
same objective value. Conversely, if (𝑦, 𝑧) is feasible for (2.9) then 𝑥 = 𝑦/𝑧 is feasible in (2.8)
and has the same objective value, at least when 𝑧 ̸= 0. If 𝑧 = 0 and 𝑥 is any feasible point
for (2.8) then 𝑥 + 𝑡𝑦, 𝑡 → +∞ is a sequence of solutions of (2.8) converging to the value of
(2.9). We leave it for the reader to check those statements. In either case we showed an
equivalence between the two problems.
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Note that, as the sketch of proof above suggests, the optimal value in (2.8) may not be
attained, even though the one in the linear problem (2.9) always is. For example, consider
a pair of problems constructed as above:

minimize 𝑥1/𝑥2

subject to 𝑥2 > 0,
𝑥1 + 𝑥2 = 1.

minimize 𝑦1
subject to 𝑦1 + 𝑦2 = 𝑧,

𝑦2 = 1,
𝑧 ≥ 0.

Both have an optimal value of −1, but on the left we can only approach it arbitrarily closely.

2.2.6 Sum of largest elements

Suppose 𝑥 ∈ R𝑛 and that 𝑚 is a positive integer. Consider the problem

minimize 𝑚𝑡 +
∑︀

𝑖 𝑢𝑖

subject to 𝑢𝑖 + 𝑡 ≥ 𝑥𝑖, 𝑖 = 1, . . . , 𝑛,
𝑢𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

(2.10)

with new variables 𝑡 ∈ R, 𝑢𝑖 ∈ R𝑛. It is easy to see that fixing a value for 𝑡 determines the
rest of the solution. For the sake of simplifying notation let us assume for a moment that 𝑥
is sorted:

𝑥1 ≥ 𝑥2 ≥ · · · ≥ 𝑥𝑛.

If 𝑡 ∈ [𝑥𝑘, 𝑥𝑘+1) then 𝑢𝑙 = 0 for 𝑙 ≥ 𝑘 + 1 and 𝑢𝑙 = 𝑥𝑙 − 𝑡 for 𝑙 ≤ 𝑘 in the optimal solution.
Therefore, the objective value under the assumption 𝑡 ∈ [𝑥𝑘, 𝑥𝑘+1) is

obj𝑡 = 𝑥1 + · · · + 𝑥𝑘 + 𝑡(𝑚− 𝑘)

which is a linear function minimized at one of the endpoints of [𝑥𝑘, 𝑥𝑘+1). Now we can
compute

obj𝑥𝑘+1
− obj𝑥𝑘

= (𝑘 −𝑚)(𝑥𝑘 − 𝑥𝑘+1).

It follows that obj𝑥𝑘
has a minimum for 𝑘 = 𝑚, and therefore the optimum value of (2.10)

is simply

𝑥1 + · · · + 𝑥𝑚.

Since the assumption that 𝑥 is sorted was only a notational convenience, we conclude that
in general the optimization model (2.10) computes the sum of 𝑚 largest entries in 𝑥. In
Sec. 2.4 we will show a conceptual way of deriving this model.
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2.3 Infeasibility in linear optimization

In this section we discuss the basic theory of primal infeasibility certificates for linear prob-
lems. These ideas will be developed further after we have introduced duality in the next
section.

One of the first issues one faces when presented with an optimization problem is whether
it has any solutions at all. As we discussed previously, for a linear optimization problem

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(2.11)

the feasible set

ℱ𝑝 = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}

is a convex polytope. We say the problem is feasible if ℱ𝑝 ̸= ∅ and infeasible otherwise.

Example 2.3 (Linear infeasible problem). Consider the optimization problem:

minimize 2𝑥1 + 3𝑥2 − 𝑥3

subject to 𝑥1 + 𝑥2 + 2𝑥3 = 1,
− 2𝑥1 − 𝑥2 + 𝑥3 = −0.5,
− 𝑥1 + 5𝑥3 = −0.1,

𝑥𝑖 ≥ 0.

This problem is infeasible. We see it by taking a linear combination of the constraints
with coefficients 𝑦 = (1, 2,−1)𝑇 :

𝑥1 + 𝑥2 + 2𝑥3 = 1, / ·1
− 2𝑥1 − 𝑥2 + 𝑥3 = −0.5, / ·2
− 𝑥1 + 5𝑥3 = −0.1, / ·(−1)
− 2𝑥1 − 𝑥2 − 𝑥3 = 0.1.

This clearly proves infeasibility: the left-hand side is negative and the right-hand side is
positive, which is impossible.

2.3.1 Farkas’ lemma

In the last example we proved infeasibility of the linear system by exhibiting an explicit linear
combination of the equations, such that the right-hand side (constant) is positive while on
the left-hand side all coefficients are negative or zero. In matrix notation, such a linear
combination is given by a vector 𝑦 such that 𝐴𝑇𝑦 ≤ 0 and 𝑏𝑇𝑦 > 0. The next lemma shows
that infeasibility of (2.11) is equivalent to the existence of such a vector.
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Lemma 2.1 (Farkas’ lemma). Given 𝐴 and 𝑏 as in (2.11), exactly one of the two statements
is true:

1. There exists 𝑥 ≥ 0 such that 𝐴𝑥 = 𝑏.

2. There exists 𝑦 such that 𝐴𝑇𝑦 ≤ 0 and 𝑏𝑇𝑦 > 0.

Proof. Let 𝑎1, . . . , 𝑎𝑛 be the columns of 𝐴. The set {𝐴𝑥 | 𝑥 ≥ 0} is a closed convex cone
spanned by 𝑎1, . . . , 𝑎𝑛. If this cone contains 𝑏 then we have the first alternative. Otherwise
the cone can be separated from the point 𝑏 by a hyperplane passing through 0, i.e. there
exists 𝑦 such that 𝑦𝑇 𝑏 > 0 and 𝑦𝑇𝑎𝑖 ≤ 0 for all 𝑖. This is equivalent to the second alternative.
Finally, 1. and 2. are mutually exclusive, since otherwise we would have

0 < 𝑦𝑇 𝑏 = 𝑦𝑇𝐴𝑥 = (𝐴𝑇𝑦)𝑇𝑥 ≤ 0.

Farkas’ lemma implies that either the problem (2.11) is feasible or there is a certificate
of infeasibility 𝑦. In other words, every time we classify model as infeasible, we can certify
this fact by providing an appropriate 𝑦, as in Example 2.3.

2.3.2 Locating infeasibility

As we already discussed, the infeasibility certificate 𝑦 gives coefficients of a linear combination
of the constraints which is infeasible “in an obvious way”, that is positive on one side and
negative on the other. In some cases, 𝑦 may be very sparse, i.e. it may have very few
nonzeros, which means that already a very small subset of the constraints is the root cause
of infeasibility. This may be interesting if, for example, we are debugging a large model
which we expected to be feasible and infeasibility is caused by an error in the problem
formulation. Then we only have to consider the sub-problem formed by constraints with
index set {𝑗 | 𝑦𝑗 ̸= 0}.

Example 2.4 (All constraints involved in infeasibility). As a cautionary note consider
the constraints

0 ≤ 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛 ≤ −1.

Any problem with those constraints is infeasible, but dropping any one of the inequalities
creates a feasible subproblem.
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2.4 Duality in linear optimization

Duality is a rich and powerful theory, central to understanding infeasibility and sensitivity
issues in linear optimization. In this section we only discuss duality in linear optimization at
a descriptive level suited for practitioners; we refer to Sec. 8 for a more in-depth discussion
of duality for general conic problems.

2.4.1 The dual problem

Primal problem

We consider as always a linear optimization problem in standard form:

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0.
(2.12)

We denote the optimal objective value in (2.12) by 𝑝⋆. There are three possibilities:

• The problem is infeasible. By convention 𝑝⋆ = +∞.

• 𝑝⋆ is finite, in which case the problem has an optimal solution.

• 𝑝⋆ = −∞, meaning that there are feasible solutions with 𝑐𝑇𝑥 decreasing to −∞, in
which case we say the problem is unbounded.

Lagrange function

We associate with (2.12) a so-called Lagrangian function 𝐿 : R𝑛 × R𝑚 × R𝑛
+ → R that

augments the objective with a weighted combination of all the constraints,

𝐿(𝑥, 𝑦, 𝑠) = 𝑐𝑇𝑥 + 𝑦𝑇 (𝑏− 𝐴𝑥) − 𝑠𝑇𝑥.

The variables 𝑦 ∈ R𝑚 and 𝑠 ∈ R𝑛
+ are called Lagrange multipliers or dual variables. For any

feasible 𝑥* ∈ ℱ𝑝 and any (𝑦*, 𝑠*) ∈ R𝑚 × R𝑛
+ we have

𝐿(𝑥*, 𝑦*, 𝑠*) = 𝑐𝑇𝑥* + (𝑦*)𝑇 · 0 − (𝑠*)𝑇𝑥* ≤ 𝑐𝑇𝑥*.

Note the we used the nonnegativity of 𝑠*, or in general of any Lagrange multiplier associated
with an inequality constraint. The dual function is defined as the minimum of 𝐿(𝑥, 𝑦, 𝑠) over
𝑥. Thus the dual function of (2.12) is

𝑔(𝑦, 𝑠) = min
𝑥

𝐿(𝑥, 𝑦, 𝑠) = min
𝑥

𝑥𝑇 (𝑐− 𝐴𝑇𝑦 − 𝑠) + 𝑏𝑇𝑦 =

{︂
𝑏𝑇𝑦, 𝑐− 𝐴𝑇𝑦 − 𝑠 = 0,
−∞, otherwise.
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Dual problem

For every (𝑦, 𝑠) the value of 𝑔(𝑦, 𝑠) is a lower bound for 𝑝⋆. To get the best such bound we
maximize 𝑔(𝑦, 𝑠) over all (𝑦, 𝑠) and get the dual problem:

maximize 𝑏𝑇𝑦
subject to 𝑐− 𝐴𝑇𝑦 = 𝑠,

𝑠 ≥ 0.
(2.13)

The optimal value of (2.13) will be denoted 𝑑⋆. As in the case of (2.12) (which from now on
we call the primal problem), the dual problem can be infeasible (𝑑⋆ = −∞), have an optimal
solution (−∞ < 𝑑⋆ < +∞) or be unbounded (𝑑⋆ = +∞). Note that the roles of −∞ and
+∞ are now reversed because the dual is a maximization problem.

Example 2.5 (Dual of basis pursuit). As an example, let us derive the dual of the basis
pursuit formulation (2.7). It would be possible to add auxiliary variables and constraints
to force that problem into the standard form (2.12) and then just apply the dual trans-
formation as a black box, but it is both easier and more instructive to directly write the
Lagrangian:

𝐿(𝑥, 𝑧, 𝑦, 𝑢, 𝑣) = 𝑒𝑇 𝑧 + 𝑢𝑇 (𝑥− 𝑧) − 𝑣𝑇 (𝑥 + 𝑧) + 𝑦𝑇 (𝑏− 𝐴𝑥)

where 𝑒 = (1, . . . , 1)𝑇 , with Lagrange multipliers 𝑦 ∈ R𝑚 and 𝑢, 𝑣 ∈ R𝑛
+. The dual function

𝑔(𝑦, 𝑢, 𝑣) = min
𝑥,𝑧

𝐿(𝑥, 𝑧, 𝑦, 𝑢, 𝑣) = min
𝑥,𝑧

𝑧𝑇 (𝑒− 𝑢− 𝑣) + 𝑥𝑇 (𝑢− 𝑣 − 𝐴𝑇𝑦) + 𝑦𝑇 𝑏

is only bounded below if 𝑒 = 𝑢 + 𝑣 and 𝐴𝑇𝑦 = 𝑢− 𝑣, hence the dual problem is

maximize 𝑏𝑇𝑦
subject to 𝑒 = 𝑢 + 𝑣,

𝐴𝑇𝑦 = 𝑢− 𝑣,
𝑢, 𝑣 ≥ 0.

(2.14)

It is not hard to observe that an equivalent formulation of (2.14) is simply

maximize 𝑏𝑇𝑦
subject to ‖𝐴𝑇𝑦‖∞ ≤ 1,

(2.15)

which should be associated with duality between norms discussed in Example 2.2.

Example 2.6 (Dual of a maximization problem). We can similarly derive the dual of
problem (2.13). If we write it simply as

maximize 𝑏𝑇𝑦
subject to 𝑐− 𝐴𝑇𝑦 ≥ 0,
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then the Lagrangian is

𝐿(𝑦, 𝑢) = 𝑏𝑇𝑦 + 𝑢𝑇 (𝑐− 𝐴𝑇𝑦) = 𝑦𝑇 (𝑏− 𝐴𝑢) + 𝑐𝑇𝑢

with 𝑢 ∈ R𝑛
+, so that now 𝐿(𝑦, 𝑢) ≥ 𝑏𝑇𝑦 for any feasible 𝑦. Calculating min𝑢 max𝑦 𝐿(𝑦, 𝑢)

is now equivalent to the problem

minimize 𝑐𝑇𝑢
subject to 𝐴𝑢 = 𝑏,

𝑢 ≥ 0,

so, as expected, the dual of the dual recovers the original primal problem.

2.4.2 Weak and strong duality

Suppose 𝑥* and (𝑦*, 𝑠*) are feasible points for the primal and dual problems (2.12) and (2.13),
respectively. Then we have

𝑏𝑇𝑦* = (𝐴𝑥*)𝑇𝑦* = (𝑥*)𝑇 (𝐴𝑇𝑦*) = (𝑥*)𝑇 (𝑐− 𝑠*) = 𝑐𝑇𝑥* − (𝑠*)𝑇𝑥* ≤ 𝑐𝑇𝑥*

so the dual objective value is a lower bound on the objective value of the primal. In particular,
any dual feasible point (𝑦*, 𝑠*) gives a lower bound:

𝑏𝑇𝑦* ≤ 𝑝⋆

and we immediately get the next lemma.

Lemma 2.2 (Weak duality). 𝑑⋆ ≤ 𝑝⋆.

It follows that if 𝑏𝑇𝑦* = 𝑐𝑇𝑥* then 𝑥* is optimal for the primal, (𝑦*, 𝑠*) is optimal for
the dual and 𝑏𝑇𝑦* = 𝑐𝑇𝑥* is the common optimal objective value. This way we can use the
optimal dual solution to certify optimality of the primal solution and vice versa.

The remarkable property of linear optimization is that 𝑑⋆ = 𝑝⋆ holds in the most interest-
ing scenario when the primal problem is feasible and bounded. It means that the certificate
of optimality mentioned in the previous paragraph always exists.

Lemma 2.3 (Strong duality). If at least one of 𝑑⋆, 𝑝⋆ is finite then 𝑑⋆ = 𝑝⋆.

Proof. Suppose −∞ < 𝑝⋆ < ∞; the proof in the dual case is analogous. For any 𝜀 > 0
consider the feasibility problem with variable 𝑥 ≥ 0 and constraints[︂

−𝑐𝑇

𝐴

]︂
𝑥 =

[︂
−𝑝⋆ + 𝜀

𝑏

]︂
that is 𝑐𝑇𝑥 = 𝑝⋆ − 𝜀,

𝐴𝑥 = 𝑏.

Optimality of 𝑝⋆ implies that the above problem is infeasible. By Lemma 2.1 there exists
𝑦 = [𝑦0 𝑦]𝑇 such that [︀

−𝑐, 𝐴𝑇
]︀
𝑦 ≤ 0 and

[︀
−𝑝⋆ + 𝜀, 𝑏𝑇

]︀
𝑦 > 0.
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If 𝑦0 = 0 then 𝐴𝑇𝑦 ≤ 0 and 𝑏𝑇𝑦 > 0, which by Lemma 2.1 again would mean that the
original primal problem was infeasible, which is not the case. Hence we can rescale so that
𝑦0 = 1 and then we get

𝑐− 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 ≥ 𝑝⋆ − 𝜀.

The first inequality above implies that 𝑦 is feasible for the dual problem. By letting 𝜀 → 0
we obtain 𝑑⋆ ≥ 𝑝⋆.

We can exploit strong duality to freely choose between solving the primal or dual version
of any linear problem.

Example 2.7 (Sum of largest elements). Suppose that 𝑥 is now a constant vector. Con-
sider the following problem with variable 𝑧:

maximize 𝑥𝑇 𝑧
subject to

∑︀
𝑖 𝑧𝑖 = 𝑚,

0 ≤ 𝑧 ≤ 1.

The maximum is attained when 𝑧 indicates the positions of 𝑚 largest entries in 𝑥, and
the objective value is then their sum. This formulation, however, cannot be used when 𝑥
is another variable, since then the objective function is no longer linear. Let us derive the
dual problem. The Lagrangian is

𝐿(𝑧, 𝑠, 𝑡, 𝑢) = 𝑥𝑇 𝑧 + 𝑡(𝑚− 𝑒𝑇 𝑧) + 𝑠𝑇 𝑧 + 𝑢𝑇 (𝑒− 𝑧) =
= 𝑧𝑇 (𝑥− 𝑡𝑒 + 𝑠− 𝑢) + 𝑡𝑚 + 𝑢𝑇 𝑒

with 𝑢, 𝑠 ≥ 0. Since 𝑠𝑖 ≥ 0 is arbitrary and not otherwise constrained, the equality
𝑥𝑖 − 𝑡 + 𝑠𝑖 − 𝑢𝑖 = 0 is the same as 𝑢𝑖 + 𝑡 ≥ 𝑥𝑖 and for the dual problem we get

minimize 𝑚𝑡 +
∑︀

𝑖 𝑢𝑖

subject to 𝑢𝑖 + 𝑡 ≥ 𝑥𝑖, 𝑖 = 1, . . . , 𝑛,
𝑢𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

which is exactly the problem (2.10) we studied in Sec. 2.2.6. Strong duality now implies
that (2.10) computes the sum of 𝑚 biggest entries in 𝑥.

2.4.3 Duality and infeasibility: summary

We can now expand the discussion of infeasibility certificates in the context of duality. Farkas’
lemma Lemma 2.1 can be dualized and the two versions can be summarized as follows:

Lemma 2.4 (Primal and dual Farkas’ lemma). For a primal-dual pair of linear problems
we have the following equivalences:

i. The primal problem (2.12) is infeasible if and only if there is 𝑦 such that 𝐴𝑇𝑦 ≤ 0 and
𝑏𝑇𝑦 > 0.
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ii. The dual problem (2.13) is infeasible if and only if there is 𝑥 ≥ 0 such that 𝐴𝑥 = 0
and 𝑐𝑇𝑥 < 0.

Weak and strong duality for linear optimization now lead to the following conclusions:

• If the problem is primal feasible and has finite objective value (−∞ < 𝑝⋆ < ∞) then
so is the dual and 𝑑⋆ = 𝑝⋆. We sometimes refer to this case as primal and dual feasible.
The dual solution certifies the optimality of the primal solution and vice versa.

• If the primal problem is feasible but unbounded (𝑝⋆ = −∞) then the dual is infeasible
(𝑑⋆ = −∞). Part (ii) of Farkas’ lemma provides a certificate of this fact, that is a
vector 𝑥 with 𝑥 ≥ 0, 𝐴𝑥 = 0 and 𝑐𝑇𝑥 < 0. In fact it is easy to give this statement a
geometric interpretation. If 𝑥0 is any primal feasible point then the infinite ray

𝑡 → 𝑥0 + 𝑡𝑥, 𝑡 ∈ [0,∞)

belongs to the feasible set ℱ𝑝 because 𝐴(𝑥0 + 𝑡𝑥) = 𝑏 and 𝑥0 + 𝑡𝑥 ≥ 0. Along this ray
the objective value is unbounded below:

𝑐𝑇 (𝑥0 + 𝑡𝑥) = 𝑐𝑇𝑥0 + 𝑡(𝑐𝑇𝑥) → −∞.

• If the primal problem is infeasible (𝑝⋆ = ∞) then a certificate of this fact is provided
by part (i). The dual problem may be unbounded (𝑑⋆ = ∞) or infeasible (𝑑⋆ = −∞).

Example 2.8 (Primal-dual infeasibility). Weak and strong duality imply that the only
case when 𝑑⋆ ̸= 𝑝⋆ is when both primal and dual problem are infeasible (𝑑⋆ = −∞,
𝑝⋆ = ∞), for example:

minimize 𝑥
subject to 0 · 𝑥 = 1.

2.4.4 Dual values as shadow prices

Dual values are related to shadow prices, as they measure, under some nondegeneracy as-
sumption, the sensitivity of the objective value to a change in the constraint. Consider again
the primal and dual problem pair (2.12) and (2.13) with feasible sets ℱ𝑝 and ℱ𝑑 and with a
primal-dual optimal solution (𝑥*, 𝑦*, 𝑠*).

Suppose we change one of the values in 𝑏 from 𝑏𝑖 to 𝑏′𝑖. This corresponds to moving one
of the hyperplanes defining ℱ𝑝, and in consequence the optimal solution (and the objective
value) may change. On the other hand, the dual feasible set ℱ𝑑 is not affected. Assuming
that the solution (𝑦*, 𝑠*) was a unique vertex of ℱ𝑑 this point remains optimal for the dual
after a sufficiently small change of 𝑏. But then the change of the dual objective is

𝑦*𝑖 (𝑏′𝑖 − 𝑏𝑖)

and by strong duality the primal objective changes by the same amount.
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Example 2.9 (Student diet). An optimization student wants to save money on the diet
while remaining healthy. A healthy diet requires at least 𝑃 = 6 units of protein, 𝐶 = 15
units of carbohydrates, 𝐹 = 5 units of fats and 𝑉 = 7 units of vitamins. The student can
choose from the following products:

P C F V price
takeaway 3 3 2 1 5
vegetables 1 2 0 4 1
bread 0.5 4 1 0 2

The problem of minimizing cost while meeting dietary requirements is

minimize 5𝑥1 + 𝑥2 + 2𝑥3

subject to 3𝑥1 + 𝑥2 + 0.5𝑥3 ≥ 6,
3𝑥1 + 2𝑥2 + 4𝑥3 ≥ 15,
2𝑥1 + 𝑥3 ≥ 5,
𝑥1 + 4𝑥2 ≥ 7,
𝑥1, 𝑥2, 𝑥3 ≥ 0.

If 𝑦1, 𝑦2, 𝑦3, 𝑦4 are the dual variables associated with the four inequality constraints then
the (unique) primal-dual optimal solution to this problem is approximately:

(𝑥, 𝑦) = ((1, 1.5, 3), (0.42, 0, 1.78, 0.14))

with optimal cost 𝑝⋆ = 12.5. Note 𝑦2 = 0 indicates that the second constraint is not
binding. Indeed, we could increase 𝐶 to 18 without affecting the optimal solution. The
remaining constraints are binding.

Improving the intake of protein by 1 unit (increasing 𝑃 to 7) will increase the cost
by 0.42, while doing the same for fat will cost an extra 1.78 per unit. If the student had
extra money to improve one of the parameters then the best choice would be to increase
the intake of vitamins, with shadow price of just 0.14.

If one month the student only had 12 units of money and was willing to relax one of
the requirements then the best choice is to save on fats: the necessary reduction of 𝐹 is
smallest, namely 0.5 · 1.78−1 = 0.28. Indeed, with the new value of 𝐹 = 4.72 the same
problem solves to 𝑝⋆ = 12 and 𝑥 = (1.08, 1.48, 2.56).

We stress that a truly balanced diet problem should also include upper bounds.
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Chapter 3

Conic quadratic optimization

This chapter extends the notion of linear optimization with quadratic cones. Conic quadratic
optimization, also known as second-order cone optimization, is a straightforward generaliza-
tion of linear optimization, in the sense that we optimize a linear function under linear
(in)equalities with some variables belonging to one or more (rotated) quadratic cones. We
discuss the basic concept of quadratic cones, and demonstrate the surprisingly large flexibility
of conic quadratic modeling.

3.1 Cones

Since this is the first place where we introduce a non-linear cone, it seems suitable to make
our most important definition:

A set 𝐾 ⊆ R𝑛 is called a convex cone if

• for every 𝑥, 𝑦 ∈ 𝐾 we have 𝑥 + 𝑦 ∈ 𝐾,

• for every 𝑥 ∈ 𝐾 and 𝛼 ≥ 0 we have 𝛼𝑥 ∈ 𝐾.

For example a linear subspace of R𝑛, the positive orthant R𝑛
≥0 or any ray (half-line)

starting at the origin are examples of convex cones. We leave it for the reader to check
that the intersection of convex cones is a convex cone; this property enables us to assemble
complicated optimization models from individual conic bricks.

3.1.1 Quadratic cones

We define the 𝑛-dimensional quadratic cone as

𝒬𝑛 =

{︂
𝑥 ∈ R𝑛 | 𝑥1 ≥

√︁
𝑥2
2 + 𝑥2

3 + · · · + 𝑥2
𝑛

}︂
. (3.1)

The geometric interpretation of a quadratic (or second-order) cone is shown in Fig. 3.1 for
a cone with three variables, and illustrates how the boundary of the cone resembles an
ice-cream cone. The 1-dimensional quadratic cone simply states nonnegativity 𝑥1 ≥ 0.
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Fig. 3.1: Boundary of quadratic cone 𝑥1 ≥
√︀

𝑥2
2 + 𝑥2

3 and rotated quadratic cone 2𝑥1𝑥2 ≥ 𝑥2
3,

𝑥1, 𝑥2 ≥ 0.

3.1.2 Rotated quadratic cones

An 𝑛−dimensional rotated quadratic cone is defined as

𝒬𝑛
𝑟 =

{︀
𝑥 ∈ R𝑛 | 2𝑥1𝑥2 ≥ 𝑥2

3 + · · · + 𝑥2
𝑛, 𝑥1, 𝑥2 ≥ 0

}︀
. (3.2)

As the name indicates, there is a simple relationship between quadratic and rotated quadratic
cones. Define an orthogonal transformation

𝑇𝑛 :=

⎡⎣ 1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 𝐼𝑛−2

⎤⎦ . (3.3)

Then it is easy to verify that

𝑥 ∈ 𝒬𝑛 ⇐⇒ 𝑇𝑛𝑥 ∈ 𝒬𝑛
𝑟 ,

and since 𝑇 is orthogonal we call 𝒬𝑛
𝑟 a rotated cone; the transformation corresponds to a

rotation of 𝜋/4 in the (𝑥1, 𝑥2) plane. For example if 𝑥 ∈ 𝒬3 and⎡⎣ 𝑧1
𝑧2
𝑧3

⎤⎦ =

⎡⎣ 1√
2

1√
2

0
1√
2

− 1√
2

0

0 0 1

⎤⎦ ·

⎡⎣ 𝑥1

𝑥2

𝑥3

⎤⎦ =

⎡⎣ 1√
2
(𝑥1 + 𝑥2)

1√
2
(𝑥1 − 𝑥2)

𝑥3

⎤⎦
then

2𝑧1𝑧2 ≥ 𝑧23 , 𝑧1, 𝑧2 ≥ 0 =⇒ (𝑥2
1 − 𝑥2

2) ≥ 𝑥2
3, 𝑥1 ≥ 0,
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and similarly we see that

𝑥2
1 ≥ 𝑥2

2 + 𝑥2
3, 𝑥1 ≥ 0 =⇒ 2𝑧1𝑧2 ≥ 𝑧23 , 𝑧1, 𝑧2 ≥ 0.

Thus, one could argue that we only need quadratic cones 𝒬𝑛, but there are many examples
where using an explicit rotated quadratic cone 𝒬𝑛

𝑟 is more natural, as we will see next.

3.2 Conic quadratic modeling

In the following we describe several convex sets that can be modeled using conic quadratic
formulations or, as we call them, are conic quadratic representable.

3.2.1 Absolute values

In Sec. 2.2.2 we saw how to model |𝑥| ≤ 𝑡 using two linear inequalities, but in fact the
epigraph of the absolute value is just the definition of a two-dimensional quadratic cone, i.e.,

|𝑥| ≤ 𝑡 ⇐⇒ (𝑡, 𝑥) ∈ 𝒬2.

3.2.2 Euclidean norms

The Euclidean norm of 𝑥 ∈ R𝑛,

‖𝑥‖2 =
√︁

𝑥2
1 + 𝑥2

2 + · · · + 𝑥2
𝑛

essentially defines the quadratic cone, i.e.,

‖𝑥‖2 ≤ 𝑡 ⇐⇒ (𝑡, 𝑥) ∈ 𝒬𝑛+1.

The epigraph of the squared Euclidean norm can be described as the intersection of a rotated
quadratic cone with an affine hyperplane,

𝑥2
1 + · · · + 𝑥2

𝑛 = ‖𝑥‖22 ≤ 𝑡 ⇐⇒ (1/2, 𝑡, 𝑥) ∈ 𝒬𝑛+2
𝑟 .

3.2.3 Convex quadratic sets

Assume 𝑄 ∈ R𝑛×𝑛 is a symmetric positive semidefinite matrix. The convex inequality

(1/2)𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥 + 𝑟 ≤ 0

may be rewritten as

𝑡 + 𝑐𝑇𝑥 + 𝑟 = 0,
𝑥𝑇𝑄𝑥 ≤ 2𝑡.

(3.4)
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Since 𝑄 is symmetric positive semidefinite the epigraph

𝑥𝑇𝑄𝑥 ≤ 2𝑡 (3.5)

is a convex set and there exists a matrix 𝐹 ∈ R𝑘×𝑛 such that

𝑄 = 𝐹 𝑇𝐹 (3.6)

(see Sec. 6 for properties of semidefinite matrices). For instance 𝐹 could be the Cholesky
factorization of 𝑄. Then

𝑥𝑇𝑄𝑥 = 𝑥𝑇𝐹 𝑇𝐹𝑥 = ‖𝐹𝑥‖22
and we have an equivalent characterization of (3.5) as

(1/2)𝑥𝑇𝑄𝑥 ≤ 𝑡 ⇐⇒ (𝑡, 1, 𝐹𝑥) ∈ 𝒬2+𝑘
𝑟 .

Frequently 𝑄 has the structure

𝑄 = 𝐼 + 𝐹 𝑇𝐹

where 𝐼 is the identity matrix, so

𝑥𝑇𝑄𝑥 = 𝑥𝑇𝑥 + 𝑥𝑇𝐹 𝑇𝐹𝑥 = ‖𝑥‖22 + ‖𝐹𝑥‖22
and hence (︂

𝑡, 1,

[︂
𝐼
𝐹

]︂
𝑥

)︂
∈ 𝒬2+𝑛+𝑘

𝑟

is a conic quadratic representation of (3.5) in this case.

3.2.4 Second-order cones

A second-order cone is occasionally specified as

‖𝐴𝑥 + 𝑏‖2 ≤ 𝑐𝑇𝑥 + 𝑑 (3.7)

where 𝐴 ∈ R𝑚×𝑛 and 𝑐 ∈ R𝑛. The formulation (3.7) is simply

(𝑐𝑇𝑥 + 𝑑,𝐴𝑥 + 𝑏) ∈ 𝒬𝑚+1 (3.8)

or equivalently

𝑠 = 𝐴𝑥 + 𝑏,
𝑡 = 𝑐𝑇𝑥 + 𝑑,

(𝑡, 𝑠) ∈ 𝒬𝑚+1.
(3.9)

As will be explained in Sec. 8, we refer to (3.8) as the dual form and (3.9) as the primal
form. An alternative characterization of (3.7) is

‖𝐴𝑥 + 𝑏‖22 − (𝑐𝑇𝑥 + 𝑑)2 ≤ 0, 𝑐𝑇𝑥 + 𝑑 ≥ 0 (3.10)

which shows that certain quadratic inequalities are conic quadratic representable.
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3.2.5 Simple sets involving power functions

Some power-like inequalities are conic quadratic representable, even though it need not be
obvious at first glance. For example, we have

|𝑡| ≤ √
𝑥, 𝑥 ≥ 0 ⇐⇒ (𝑥, 1/2, 𝑡) ∈ 𝒬3

𝑟,

or in a similar fashion

𝑡 ≥ 1

𝑥
, 𝑥 ≥ 0 ⇐⇒ (𝑥, 𝑡,

√
2) ∈ 𝒬3

𝑟.

For a more complicated example, consider the constraint

𝑡 ≥ 𝑥3/2, 𝑥 ≥ 0.

This is equivalent to a statement involving two cones and an extra variable

(𝑠, 𝑡, 𝑥), (𝑥, 1/8, 𝑠) ∈ 𝒬3
𝑟

because

2𝑠𝑡 ≥ 𝑥2, 2 · 1

8
𝑥 ≥ 𝑠2, =⇒ 4𝑠2𝑡2 · 1

4
𝑥 ≥ 𝑥4 · 𝑠2 =⇒ 𝑡 ≥ 𝑥3/2.

In practice power-like inequalities representable with similar tricks can often be expressed
much more naturally using the power cone (see Sec. 4), so we will not dwell on these examples
much longer.

3.2.6 Rational functions

A general non-degenerate rational function of one variable 𝑓(𝑥) = 𝑎𝑥+𝑏
𝑔𝑥+ℎ

can always be written
in the form 𝑓(𝑥) = 𝑝 + 𝑞

𝑔𝑥+ℎ
, and when 𝑞 > 0 it is convex on the set where 𝑔𝑥 + ℎ > 0. The

conic quadratic model of

𝑡 ≥ 𝑝 +
𝑞

𝑔𝑥 + ℎ
, 𝑔𝑥 + ℎ > 0, 𝑞 > 0

with variables 𝑡, 𝑥 can be written as:

(𝑡− 𝑝, 𝑔𝑥 + ℎ,
√︀

2𝑞) ∈ 𝒬3
𝑟.

We can generalize it to a quadratic-over-linear function 𝑓(𝑥) = 𝑎𝑥2+𝑏𝑥+𝑐
𝑔𝑥+ℎ

. By performing long
polynomial division we can write it as 𝑓(𝑥) = 𝑟𝑥+ 𝑠+ 𝑞

𝑔𝑥+ℎ
, and as before it is convex when

𝑞 > 0 on the set where 𝑔𝑥 + ℎ > 0. In particular

𝑡 ≥ 𝑟𝑥 + 𝑠 +
𝑞

𝑔𝑥 + ℎ
, 𝑔𝑥 + ℎ > 0, 𝑞 > 0

can be written as

(𝑡− 𝑟𝑥− 𝑠, 𝑔𝑥 + ℎ,
√︀

2𝑞) ∈ 𝒬3
𝑟.

In both cases the argument boils down to the observation that the target function is a sum
of an affine expression and the inverse of a positive affine expression, see Sec. 3.2.5.
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3.2.7 Harmonic mean

Consider next the hypograph of the harmonic mean,(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑥−1
𝑖

)︃−1

≥ 𝑡 ≥ 0, 𝑥 ≥ 0.

It is not obvious that the inequality defines a convex set, nor that it is conic quadratic
representable. However, we can rewrite it in the form

𝑛∑︁
𝑖=1

𝑡2

𝑥𝑖

≤ 𝑛𝑡,

which suggests the conic representation:

2𝑥𝑖𝑧𝑖 ≥ 𝑡2, 𝑥𝑖, 𝑧𝑖 ≥ 0, 2
𝑛∑︁

𝑖=1

𝑧𝑖 = 𝑛𝑡. (3.11)

Alternatively, in case 𝑛 = 2, the hypograph of the harmonic mean can be represented by a
single quadratic cone:

(𝑥1 + 𝑥2 − 𝑡/2, 𝑥1, 𝑥2, 𝑡/2) ∈ 𝒬4. (3.12)

As this representation generalizes the harmonic mean to all points 𝑥1 + 𝑥2 ≥ 0, as implied
by (3.12), the variable bounds 𝑥 ≥ 0 and 𝑡 ≥ 0 have to be added seperately if so desired.

3.2.8 Quadratic forms with one negative eigenvalue

Assume that 𝐴 ∈ R𝑛×𝑛 is a symmetric matrix with exactly one negative eigenvalue, i.e., 𝐴
has a spectral factorization (i.e., eigenvalue decomposition)

𝐴 = 𝑄Λ𝑄𝑇 = −𝛼1𝑞1𝑞
𝑇
1 +

𝑛∑︁
𝑖=2

𝛼𝑖𝑞𝑖𝑞
𝑇
𝑖 ,

where 𝑄𝑇𝑄 = 𝐼, Λ = Diag(−𝛼1, 𝛼2, . . . , 𝛼𝑛), 𝛼𝑖 ≥ 0. Then

𝑥𝑇𝐴𝑥 ≤ 0

is equivalent to
𝑛∑︁

𝑗=2

𝛼𝑗(𝑞
𝑇
𝑗 𝑥)2 ≤ 𝛼1(𝑞

𝑇
1 𝑥)2. (3.13)

This shows 𝑥𝑇𝐴𝑥 ≤ 0 to be a union of two convex subsets, each representable by a quadratic
cone. For example, assuming 𝑞𝑇1 𝑥 ≥ 0, we can characterize (3.13) as

(
√
𝛼1𝑞

𝑇
1 𝑥,

√
𝛼2𝑞

𝑇
2 𝑥, . . . ,

√
𝛼𝑛𝑞

𝑇
𝑛𝑥) ∈ 𝒬𝑛. (3.14)
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3.2.9 Ellipsoidal sets

The set

ℰ = {𝑥 ∈ R𝑛 | ‖𝑃 (𝑥− 𝑐)‖2 ≤ 1}

describes an ellipsoid centred at 𝑐. It has a natural conic quadratic representation, i.e., 𝑥 ∈ ℰ
if and only if

𝑥 ∈ ℰ ⇐⇒ (1, 𝑃 (𝑥− 𝑐)) ∈ 𝒬𝑛+1.

3.3 Conic quadratic case studies

3.3.1 Quadratically constrained quadratic optimization

A general convex quadratically constrained quadratic optimization problem can be written
as

minimize (1/2)𝑥𝑇𝑄0𝑥 + 𝑐𝑇0 𝑥 + 𝑟0
subject to (1/2)𝑥𝑇𝑄𝑖𝑥 + 𝑐𝑇𝑖 𝑥 + 𝑟𝑖 ≤ 0, 𝑖 = 1, . . . , 𝑝,

(3.15)

where all 𝑄𝑖 ∈ R𝑛×𝑛 are symmetric positive semidefinite. Let

𝑄𝑖 = 𝐹 𝑇
𝑖 𝐹𝑖, 𝑖 = 0, . . . , 𝑝,

where 𝐹𝑖 ∈ R𝑘𝑖×𝑛. Using the formulations in Sec. 3.2.3 we then get an equivalent conic
quadratic problem

minimize 𝑡0 + 𝑐𝑇0 𝑥 + 𝑟0
subject to 𝑡𝑖 + 𝑐𝑇𝑖 𝑥 + 𝑟𝑖 = 0, 𝑖 = 1, . . . , 𝑝,

(𝑡𝑖, 1, 𝐹𝑖𝑥) ∈ 𝒬𝑘𝑖+2
𝑟 , 𝑖 = 0, . . . , 𝑝.

(3.16)

Assume next that 𝑘𝑖, the number of rows in 𝐹𝑖, is small compared to 𝑛. Storing 𝑄𝑖 requires
about 𝑛2/2 space whereas storing 𝐹𝑖 then only requires 𝑛𝑘𝑖 space. Moreover, the amount
of work required to evaluate 𝑥𝑇𝑄𝑖𝑥 is proportional to 𝑛2 whereas the work required to
evaluate 𝑥𝑇𝐹 𝑇

𝑖 𝐹𝑖𝑥 = ‖𝐹𝑖𝑥‖2 is proportional to 𝑛𝑘𝑖 only. In other words, if 𝑄𝑖 have low rank,
then (3.16) will require much less space and time to solve than (3.15). We will study the
reformulation (3.16) in much more detail in Sec. 10.

3.3.2 Robust optimization with ellipsoidal uncertainties

Often in robust optimization some of the parameters in the model are assumed to be unknown
exactly, but there is a simple set describing the uncertainty. For example, for a standard
linear optimization problem we may wish to find a robust solution for all objective vectors
𝑐 in an ellipsoid

ℰ = {𝑐 ∈ R𝑛 | 𝑐 = 𝐹𝑦 + 𝑔, ‖𝑦‖2 ≤ 1}.
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A common approach is then to optimize for the worst-case scenario for 𝑐, so we get a robust
version

minimize sup𝑐∈ℰ 𝑐
𝑇𝑥

subject to 𝐴𝑥 = 𝑏,
𝑥 ≥ 0.

(3.17)

The worst-case objective can be evaluated as

sup
𝑐∈ℰ

𝑐𝑇𝑥 = 𝑔𝑇𝑥 + sup
‖𝑦‖2≤1

𝑦𝑇𝐹 𝑇𝑥 = 𝑔𝑇𝑥 + ‖𝐹 𝑇𝑥‖2

where we used that sup‖𝑢‖2≤1 𝑣
𝑇𝑢 = (𝑣𝑇𝑣)/‖𝑣‖2 = ‖𝑣‖2. Thus the robust problem (3.17) is

equivalent to

minimize 𝑔𝑇𝑥 + ‖𝐹 𝑇𝑥‖2
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,

which can be posed as a conic quadratic problem

minimize 𝑔𝑇𝑥 + 𝑡
subject to 𝐴𝑥 = 𝑏,

(𝑡, 𝐹 𝑇𝑥) ∈ 𝒬𝑛+1,
𝑥 ≥ 0.

(3.18)

3.3.3 Markowitz portfolio optimization

In classical Markowitz portfolio optimization we consider investment in 𝑛 stocks or assets
held over a period of time. Let 𝑥𝑖 denote the amount we invest in asset 𝑖, and assume a
stochastic model where the return of the assets is a random variable 𝑟 with known mean

𝜇 = E𝑟

and covariance

Σ = E(𝑟 − 𝜇)(𝑟 − 𝜇)𝑇 .

The return of our investment is also a random variable 𝑦 = 𝑟𝑇𝑥 with mean (or expected
return)

E𝑦 = 𝜇𝑇𝑥

and variance (or risk)

(𝑦 − E𝑦)2 = 𝑥𝑇Σ𝑥.
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We then wish to rebalance our portfolio to achieve a compromise between risk and expected
return, e.g., we can maximize the expected return given an upper bound 𝛾 on the tolerable
risk and a constraint that our total investment is fixed,

maximize 𝜇𝑇𝑥
subject to 𝑥𝑇Σ𝑥 ≤ 𝛾

𝑒𝑇𝑥 = 1
𝑥 ≥ 0.

(3.19)

Suppose we factor Σ = 𝐺𝐺𝑇 (e.g., using a Cholesky or a eigenvalue decomposition). We
then get a conic formulation

maximize 𝜇𝑇𝑥
subject to (

√
𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1

𝑒𝑇𝑥 = 1
𝑥 ≥ 0.

(3.20)

In practice both the average return and covariance are estimated using historical data. A
recent trend is then to formulate a robust version of the portfolio optimization problem to
combat the inherent uncertainty in those estimates, e.g., we can constrain 𝜇 to an ellipsoidal
uncertainty set as in Sec. 3.3.2.

It is also common that the data for a portfolio optimization problem is already given in
the form of a factor model Σ = 𝐹 𝑇𝐹 of Σ = 𝐼 + 𝐹 𝑇𝐹 and a conic quadratic formulation as
in Sec. 3.3.1 is most natural. For more details see Sec. 10.3.

3.3.4 Maximizing the Sharpe ratio

Continuing the previous example, the Sharpe ratio defines an efficiency metric of a portfolio
as the expected return per unit risk, i.e.,

𝑆(𝑥) =
𝜇𝑇𝑥− 𝑟𝑓
(𝑥𝑇Σ𝑥)1/2

,

where 𝑟𝑓 denotes the return of a risk-free asset. We assume that there is a portfolio with
𝜇𝑇𝑥 > 𝑟𝑓 , so maximizing the Sharpe ratio is equivalent to minimizing 1/𝑆(𝑥). In other
words, we have the following problem

minimize ‖𝐺𝑇 𝑥‖
𝜇𝑇 𝑥−𝑟𝑓

subject to 𝑒𝑇𝑥 = 1,
𝑥 ≥ 0.

The objective has the same nature as a quotient of two affine functions we studied in Sec.
2.2.5. We reformulate the problem in a similar way, introducing a scalar variable 𝑧 ≥ 0 and
a variable transformation

𝑦 = 𝑧𝑥.
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Since a positive 𝑧 can be chosen arbitrarily and (𝜇 − 𝑟𝑓𝑒)
𝑇𝑥 > 0, we can without loss of

generality assume that

(𝜇− 𝑟𝑓𝑒)
𝑇𝑦 = 1.

Thus, we obtain the following conic problem for maximizing the Sharpe ratio,

minimize 𝑡
subject to (𝑡, 𝐺𝑇𝑦) ∈ 𝒬𝑘+1,

𝑒𝑇𝑦 = 𝑧,
(𝜇− 𝑟𝑓𝑒)

𝑇𝑦 = 1,
𝑦, 𝑧 ≥ 0,

and we recover 𝑥 = 𝑦/𝑧.

3.3.5 A resource constrained production and inventory problem

The resource constrained production and inventory problem [Zie82] can be formulated as
follows:

minimize
∑︀𝑛

𝑗=1(𝑑𝑗𝑥𝑗 + 𝑒𝑗/𝑥𝑗)

subject to
∑︀𝑛

𝑗=1 𝑟𝑗𝑥𝑗 ≤ 𝑏,

𝑥𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛,

(3.21)

where 𝑛 denotes the number of items to be produced, 𝑏 denotes the amount of common
resource, and 𝑟𝑗 is the consumption of the limited resource to produce one unit of item 𝑗.
The objective function represents inventory and ordering costs. Let 𝑐𝑝𝑗 denote the holding
cost per unit of product 𝑗 and 𝑐𝑟𝑗 denote the rate of holding costs, respectively. Further, let

𝑑𝑗 =
𝑐𝑝𝑗𝑐

𝑟
𝑗

2

so that

𝑑𝑗𝑥𝑗

is the average holding costs for product 𝑗. If 𝐷𝑗 denotes the total demand for product 𝑗 and
𝑐𝑜𝑗 the ordering cost per order of product 𝑗 then let

𝑒𝑗 = 𝑐𝑜𝑗𝐷𝑗

and hence

𝑒𝑗
𝑥𝑗

=
𝑐𝑜𝑗𝐷𝑗

𝑥𝑗

is the average ordering costs for product 𝑗. In summary, the problem finds the optimal batch
size such that the inventory and ordering cost are minimized while satisfying the constraints
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on the common resource. Given 𝑑𝑗, 𝑒𝑗 ≥ 0 problem (3.21) is equivalent to the conic quadratic
problem

minimize
∑︀𝑛

𝑗=1(𝑑𝑗𝑥𝑗 + 𝑒𝑗𝑡𝑗)

subject to
∑︀𝑛

𝑗=1 𝑟𝑗𝑥𝑗 ≤ 𝑏,

(𝑡𝑗, 𝑥𝑗,
√

2) ∈ 𝒬3
𝑟, 𝑗 = 1, . . . , 𝑛.

It is not always possible to produce a fractional number of items. In such case 𝑥𝑗 should be
constrained to be integers. See Sec. 9.
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Chapter 4

The power cones

So far we studied quadratic cones and their applications in modeling problems involving,
directly or indirectly, quadratic terms. In this part we expand the quadratic and rotated
quadratic cone family with power cones, which provide a convenient language to express
models involving powers other than 2. We must stress that although the power cones in-
clude the quadratic cones as special cases, at the current state-of-the-art they require more
advanced and less efficient algorithms.

4.1 The power cone(s)

𝑛-dimensional power cones form a family of convex cones parametrized by a real number
0 < 𝛼 < 1:

𝒫𝛼,1−𝛼
𝑛 =

{︁
𝑥 ∈ R𝑛 : 𝑥𝛼

1𝑥
1−𝛼
2 ≥

√︀
𝑥2
3 + · · · + 𝑥2

𝑛, 𝑥1, 𝑥2 ≥ 0
}︁
. (4.1)

The constraint in the definition of 𝒫𝛼,1−𝛼
𝑛 can be expressed as a composition of two con-

straints, one of which is a quadratic cone:

𝑥𝛼
1𝑥

1−𝛼
2 ≥ |𝑧|,
𝑧 ≥

√︀
𝑥2
3 + · · · + 𝑥2

𝑛,
(4.2)

which means that the basic building block we need to consider is the three-dimensional power
cone

𝒫𝛼,1−𝛼
3 =

{︀
𝑥 ∈ R3 : 𝑥𝛼

1𝑥
1−𝛼
2 ≥ |𝑥3|, 𝑥1, 𝑥2 ≥ 0

}︀
. (4.3)

More generally, we can also consider power cones with “long left-hand side”. That is, for
𝑚 < 𝑛 and a sequence of exponents 𝛼1, . . . , 𝛼𝑚 with 𝛼1 + · · · + 𝛼𝑚 = 1, we have the most
general power cone object defined as

𝒫𝛼1,··· ,𝛼𝑚
𝑛 =

{︁
𝑥 ∈ R𝑛 :

∏︀𝑚
𝑖=1 𝑥

𝛼𝑖
𝑖 ≥

√︁∑︀𝑛
𝑖=𝑚+1 𝑥

2
𝑖 , 𝑥1, . . . , 𝑥𝑚 ≥ 0

}︁
. (4.4)

The left-hand side is nothing but the weighted geometric mean of the 𝑥𝑖, 𝑖 = 1, . . . ,𝑚 with
weights 𝛼𝑖. In particular when all 𝛼𝑖 are equal and there is only one element on the right-hand
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side we obtain as a special case the geometric mean cone:

𝒢ℳ𝑛 =

⎧⎨⎩𝑥 ∈ R𝑛 :

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ . (4.5)

As we will see later, both the most general power cone and the geometric mean cone can be
modeled as a composition of three-dimensional cones 𝒫𝛼,1−𝛼

3 , so in a sense that is the basic
object of interest.

There are some notable special cases we are familiar with. If we let 𝛼 → 0 then in the
limit we get 𝒫0,1

𝑛 = R+ × 𝒬𝑛−1. If 𝛼 = 1
2

then we have a rescaled version of the rotated
quadratic cone, precisely:

(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝒫
1
2
, 1
2

𝑛 ⇐⇒ (𝑥1/
√

2, 𝑥2/
√

2, 𝑥3, . . . , 𝑥𝑛) ∈ 𝒬𝑛
r .

A gallery of three-dimensional power cones for varying 𝛼 is shown in Fig. 4.1.

4.2 Sets representable using the power cone

In this section we give basic examples of constraints which can be expressed using power
cones.

4.2.1 Powers

For all values of 𝑝 ̸= 0, 1 we can bound 𝑥𝑝 depending on the convexity of 𝑓(𝑥) = 𝑥𝑝.

• For 𝑝 > 1 the inequality 𝑡 ≥ |𝑥|𝑝 is equivalent to 𝑡1/𝑝 ≥ |𝑥| and hence corresponds to

𝑡 ≥ |𝑥|𝑝 ⇐⇒ (𝑡, 1, 𝑥) ∈ 𝒫1/𝑝,1−1/𝑝
3 .

For instance 𝑡 ≥ |𝑥|1.5 is equivalent to (𝑡, 1, 𝑥) ∈ 𝒫2/3,1/3
3 .

• For 0 < 𝑝 < 1 the function 𝑓(𝑥) = 𝑥𝑝 is concave for 𝑥 ≥ 0 and so we get

|𝑡| ≤ 𝑥𝑝, 𝑥 ≥ 0 ⇐⇒ (𝑥, 1, 𝑡) ∈ 𝒫𝑝,1−𝑝
3 .

• For 𝑝 < 0 the function 𝑓(𝑥) = 𝑥𝑝 is convex for 𝑥 > 0 and in this range the inequality
𝑡 ≥ 𝑥𝑝 is equivalent to

𝑡 ≥ 𝑥𝑝 ⇐⇒ 𝑡1/(1−𝑝)𝑥−𝑝/(1−𝑝) ≥ 1 ⇐⇒ (𝑡, 𝑥, 1) ∈ 𝒫1/(1−𝑝),−𝑝/(1−𝑝)
3 .

For example 𝑡 ≥ 1√
𝑥

is the same as (𝑡, 𝑥, 1) ∈ 𝒫2/3,1/3
3 .
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Fig. 4.1: The boundary of 𝒫𝛼,1−𝛼
3 for 𝛼 = 0.1, 0.2, 0.35, 0.5.
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4.2.2 𝑝-norm cones

Let 𝑝 ≥ 1. The 𝑝-norm of a vector 𝑥 ∈ R𝑛 is ‖𝑥‖𝑝 = (|𝑥1|𝑝 + · · · + |𝑥𝑛|𝑝)1/𝑝 and the 𝑝-norm
ball of radius 𝑡 is defined by the inequality ‖𝑥‖𝑝 ≤ 𝑡. We take the 𝑝-norm cone (in dimension
𝑛 + 1) to be the convex set {︀

(𝑡, 𝑥) ∈ R𝑛+1 : 𝑡 ≥ ‖𝑥‖𝑝
}︀
. (4.6)

For 𝑝 = 2 this is precisely the quadratic cone. We can model the 𝑝-norm cone by writing the
inequality 𝑡 ≥ ‖𝑥‖𝑝 as:

𝑡 ≥
∑︁
𝑖

|𝑥𝑖|𝑝/𝑡𝑝−1

and bounding each summand with a power cone. This leads to the following model:

𝑟𝑖𝑡
𝑝−1 ≥ |𝑥𝑖|𝑝 ((𝑟𝑖, 𝑡, 𝑥𝑖) ∈ 𝒫1/𝑝,1−1/𝑝

3 ),∑︀
𝑟𝑖 = 𝑡.

(4.7)

When 0 < 𝑝 < 1 or 𝑝 < 0 the formula for ‖𝑥‖𝑝 gives a concave, rather than convex function
on R𝑛

+ and in this case it is possible to model the set{︂
(𝑡, 𝑥) : 0 ≤ 𝑡 ≤

(︁∑︁
𝑥𝑝
𝑖

)︁1/𝑝
, 𝑥𝑖 ≥ 0

}︂
, 𝑝 < 1, 𝑝 ̸= 0.

We leave it as an exercise (see previous subsection). The case 𝑝 = −1 appears in Sec. 3.2.7.

4.2.3 The most general power cone

Not all conic optimization software provides direct access to the most general version of
the power cone 𝒫𝛼1,··· ,𝛼𝑚

𝑛 . In this case it is good to know how to model it using the basic
three-dimensional power cones 𝒫𝛼,1−𝛼

3 . Clearly it suffices to consider a short right-hand side,
that is to model the cone

𝒫𝛼1,...,𝛼𝑚

𝑚+1 = {𝑥𝛼1
1 𝑥𝛼2

2 · · ·𝑥𝛼𝑚
𝑚 ≥ |𝑧|, 𝑥1, . . . , 𝑥𝑚 ≥ 0} , (4.8)

where
∑︀

𝑖 𝛼𝑖 = 1. Denote 𝑠 = 𝛼1 + · · · + 𝛼𝑚−1. We split (4.8) into two constraints

𝑥
𝛼1/𝑠
1 · · ·𝑥𝛼𝑚−1/𝑠

𝑚−1 ≥ |𝑡|, 𝑥1, . . . , 𝑥𝑚−1 ≥ 0,
𝑡𝑠𝑥𝛼𝑚

𝑚 ≥ |𝑧|, 𝑥𝑚 ≥ 0,
(4.9)

and this way we expressed 𝒫𝛼1,...,𝛼𝑚

𝑚+1 using two power cones 𝒫𝛼1/𝑠,...,𝛼𝑚−1/𝑠
𝑚 and 𝒫𝑠,𝛼𝑚

3 . Pro-
ceeding by induction gives the desired splitting.
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4.2.4 Geometric mean

The geometric mean cone 𝒢ℳ𝑛+1 = 𝒫1/𝑛,...,1/𝑛
𝑛+1 is a direct way to model the inequality

|𝑧| ≤ (𝑥1𝑥2 · · · 𝑥𝑛)1/𝑛, (4.10)

which corresponds to maximizing the geometric mean of the variables 𝑥𝑖 ≥ 0. In case this
cone is not directly available to the user, tracing through the splitting (4.9) produces an
equivalent representation of (4.10) using three-dimensional power cones as follows:

𝑥
1/2
1 𝑥

1/2
2 ≥ |𝑡3|,

𝑡
1−1/3
3 𝑥

1/3
3 ≥ |𝑡4|,

· · ·
𝑡
1−1/(𝑛−1)
𝑛−1 𝑥

1/(𝑛−1)
𝑛−1 ≥ |𝑡𝑛|,

𝑡
1−1/𝑛
𝑛 𝑥

1/𝑛
𝑛 ≥ |𝑧|.

4.2.5 Non-homogenous constraints

Every constraint of the form

𝑥𝛼1
1 𝑥𝛼2

2 · · ·𝑥𝛼𝑚
𝑚 ≥ |𝑧|𝛽, 𝑥𝑖 ≥ 0,

where
∑︀

𝑖 𝛼𝑖 < 𝛽 and 𝛼𝑖 > 0 is equivalent to

(𝑥1, 𝑥2, . . . , 𝑥𝑚, 1, 𝑧) ∈ 𝒫𝛼1/𝛽,...,𝛼𝑚/𝛽,𝑠
𝑚+2

with 𝑠 = 1 −∑︀𝑖 𝛼𝑖/𝛽.

4.3 Power cone case studies

4.3.1 Portfolio optimization with market impact

Let us go back to the Markowitz portfolio optimization problem introduced in Sec. 3.3.3,
where we now ask to maximize expected profit subject to bounded risk in a long-only port-
folio:

maximize 𝜇𝑇𝑥

subject to
√
𝑥𝑇Σ𝑥 ≤ 𝛾,

𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

(4.11)

In a realistic model we would have to consider transaction costs which decrease the expected
return. In particular if a really large volume is traded then the trade itself will affect the
price of the asset, a phenomenon called market impact. It is typically modeled by decreasing
the expected return of 𝑖-th asset by a slippage cost proportional to 𝑥𝛽 for some 𝛽 > 1, so
that the objective function changes to

maximize

(︃
𝜇𝑇𝑥−

∑︁
𝑖

𝛿𝑖𝑥
𝛽
𝑖

)︃
.
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A popular choice is 𝛽 = 3/2. This objective can easily be modeled with a power cone as in
Sec. 4.2:

maximize 𝜇𝑇𝑥− 𝛿𝑇 𝑡

subject to (𝑡𝑖, 1, 𝑥𝑖) ∈ 𝒫1/𝛽,1−1/𝛽
3 (𝑡𝑖 ≥ 𝑥𝛽

𝑖 ),
· · ·

In particular if 𝛽 = 3/2 the inequality 𝑡𝑖 ≥ 𝑥
3/2
𝑖 has conic representation (𝑡𝑖, 1, 𝑥𝑖) ∈ 𝒫2/3,1/3

3 .

4.3.2 Maximum volume cuboid

Suppose we have a convex, conic representable set 𝐾 ⊆ R𝑛 (for instance a polyhedron, a
ball, intersections of those and so on). We would like to find a maximum volume axis-parallel
cuboid inscribed in 𝐾. If we denote by 𝑝 ∈ R𝑛 the leftmost corner and by 𝑥1, . . . , 𝑥𝑛 the
edge lengths, then this problem is equivalent to

maximize 𝑡
subject to 𝑡 ≤ (𝑥1 · · · 𝑥𝑛)1/𝑛,

𝑥𝑖 ≥ 0,
(𝑝1 + 𝑒1𝑥1, . . . , 𝑝𝑛 + 𝑒𝑛𝑥𝑛) ∈ 𝐾, ∀𝑒1, . . . , 𝑒𝑛 ∈ {0, 1},

(4.12)

where the last constraint states that all vertices of the cuboid are in 𝐾. The optimal volume
is then 𝑣 = 𝑡𝑛. The geometric mean cone 𝒢ℳ𝑛+1 can be used for the volume maximization
constraint.

Maximizing the volume of an arbitrary (not necessarily axis-parallel) cuboid inscribed in
𝐾 is no longer a convex problem. However, it can be solved by maximizing the solution to
(4.12) over all sets 𝑇 (𝐾) where 𝑇 is a rotation (orthogonal matrix) in R𝑛. In practice one
can approximate the global solution by sampling sufficiently many rotations 𝑇 or using more
advanced methods of optimization over the orthogonal group.

Fig. 4.2: The maximal volume cuboid inscribed in the regular icosahedron takes up approx-
imately 0.388 of the volume of the icosahedron (the exact value is 3(1 +

√
5)/25).
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4.3.3 𝑝-norm geometric median

The geometric median of a sequence of points 𝑥1, . . . , 𝑥𝑘 ∈ R𝑛 is defined as

argmin𝑦∈R𝑛

𝑘∑︁
𝑖=1

‖𝑦 − 𝑥𝑖‖,

that is a point which minimizes the sum of distances to all the given points. Here ‖ · ‖ can
be any norm on R𝑛. The most classical case is the Euclidean norm, where the geometric
median is the solution to the basic facility location problem minimizing total transportation
cost from one depot to given destinations.

For a general 𝑝-norm ‖𝑥‖𝑝 with 1 ≤ 𝑝 < ∞ (see Sec. 4.2.2) the geometric median is the
solution to the obvious conic problem:

minimize
∑︀

𝑖 𝑡𝑖
subject to 𝑡𝑖 ≥ ‖𝑦 − 𝑥𝑖‖𝑝,

𝑦 ∈ R𝑛.
(4.13)

In Sec. 4.2.2 we showed how to model the 𝑝-norm bound using 𝑛 power cones.
The Fermat-Torricelli point of a triangle is the Euclidean geometric mean of its vertices,

and a classical theorem in planar geometry (due to Torricelli, posed by Fermat), states that
it is the unique point inside the triangle from which each edge is visible at the angle of 120∘

(or a vertex if the triangle has an angle of 120∘ or more). Using (4.13) we can compute the
𝑝-norm analogues of the Fermat-Torricelli point. Some examples are shown in Fig. 4.3.

Fig. 4.3: The geometric median of three triangle vertices in various 𝑝-norms.

4.3.4 Maximum likelihood estimator of a convex density function

In [TV98] the problem of estimating a density function that is know in advance to be convex
is considered. Here we will show that this problem can be posed as a conic optimization
problem. Formally the problem is to estimate an unknown convex density function 𝑔 : R+ →
R+ given an ordered sample 𝑦1 < 𝑦2 < . . . < 𝑦𝑛 of 𝑛 outcomes of a distribution with density
𝑔.

The estimator 𝑔 ≥ 0 is a piecewise linear function

𝑔 : [𝑦1, 𝑦𝑛] → R+
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with break points at (𝑦𝑖, 𝑥𝑖), 𝑖 = 1, . . . , 𝑛, where the variables 𝑥𝑖 > 0 are estimators for 𝑔(𝑦𝑖).
The slope of the 𝑖-th linear segment of 𝑔 is

𝑥𝑖+1 − 𝑥𝑖

𝑦𝑖+1 − 𝑦𝑖
.

Hence the convexity requirement leads to the constraints

𝑥𝑖+1 − 𝑥𝑖

𝑦𝑖+1 − 𝑦𝑖
≤ 𝑥𝑖+2 − 𝑥𝑖+1

𝑦𝑖+2 − 𝑦𝑖+1

, 𝑖 = 1, . . . , 𝑛− 2.

Recall the area under the density function must be 1. Hence,

𝑛−1∑︁
𝑖=1

(𝑦𝑖+1 − 𝑦𝑖)

(︂
𝑥𝑖+1 + 𝑥𝑖

2

)︂
= 1

must hold. Therefore, the problem to be solved is

maximize
∏︀𝑛

𝑖=1 𝑥𝑖

subject to 𝑥𝑖+1−𝑥𝑖

𝑦𝑖+1−𝑦𝑖
− 𝑥𝑖+2−𝑥𝑖+1

𝑦𝑖+2−𝑦𝑖+1
≤ 0, 𝑖 = 1, . . . , 𝑛− 2,∑︀𝑛−1

𝑖=1 (𝑦𝑖+1 − 𝑦𝑖)
(︀𝑥𝑖+1+𝑥𝑖

2

)︀
= 1,

𝑥 ≥ 0.

Maximizing
∏︀𝑛

𝑖=1 𝑥𝑖 or the geometric mean (
∏︀𝑛

𝑖=1 𝑥𝑖)
1
𝑛 will produce the same optimal so-

lutions. Using that observation we can model the objective with the geometric mean cone
𝒢ℳ𝑛+1. Alternatively, one can use as objective

∑︀
𝑖 log 𝑥𝑖 and model it using the exponential

cone as in Sec. 5.2.
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Chapter 5

Exponential cone optimization

So far we discussed optimization problems involving the major “polynomial” families of cones:
linear, quadratic and power cones. In this chapter we introduce a single new object, namely
the three-dimensional exponential cone, together with examples and applications. The ex-
ponential cone can be used to model a variety of constraints involving exponentials and
logarithms.

5.1 Exponential cone

The exponential cone is a convex subset of R3 defined as

𝐾exp =
{︀

(𝑥1, 𝑥2, 𝑥3) : 𝑥1 ≥ 𝑥2𝑒
𝑥3/𝑥2 , 𝑥2 > 0

}︀
∪

{(𝑥1, 0, 𝑥3) : 𝑥1 ≥ 0, 𝑥3 ≤ 0} . (5.1)

Thus the exponential cone is the closure in R3 of the set of points which satisfy

𝑥1 ≥ 𝑥2𝑒
𝑥3/𝑥2 , 𝑥1, 𝑥2 > 0. (5.2)

When working with logarithms, a convenient reformulation of (5.2) is

𝑥3 ≤ 𝑥2 log(𝑥1/𝑥2), 𝑥1, 𝑥2 > 0. (5.3)

Alternatively, one can write the same condition as

𝑥1/𝑥2 ≥ 𝑒𝑥3/𝑥2 , 𝑥1, 𝑥2 > 0,

which immediately shows that 𝐾exp is in fact a cone, i.e. 𝛼𝑥 ∈ 𝐾exp for 𝑥 ∈ 𝐾exp and 𝛼 ≥ 0.
Convexity of 𝐾exp follows from the fact that the Hessian of 𝑓(𝑥, 𝑦) = 𝑦 exp(𝑥/𝑦), namely

𝐷2(𝑓) = 𝑒𝑥/𝑦
[︂

𝑦−1 −𝑥𝑦−2

−𝑥𝑦−2 𝑥2𝑦−3

]︂
is positive semidefinite for 𝑦 > 0.
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Fig. 5.1: The boundary of the exponential cone 𝐾exp.

5.2 Modeling with the exponential cone

Extending the conic optimization toolbox with the exponential cone leads to new types of
constraint building blocks and new types of representable sets. In this section we list the
basic operations available using the exponential cone.

5.2.1 Exponential

The epigraph 𝑡 ≥ 𝑒𝑥 is a section of 𝐾exp:

𝑡 ≥ 𝑒𝑥 ⇐⇒ (𝑡, 1, 𝑥) ∈ 𝐾exp. (5.4)

5.2.2 Logarithm

Similarly, we can express the hypograph 𝑡 ≤ log 𝑥, 𝑥 ≥ 0:

𝑡 ≤ log 𝑥 ⇐⇒ (𝑥, 1, 𝑡) ∈ 𝐾exp. (5.5)

5.2.3 Entropy

The entropy function 𝐻(𝑥) = −𝑥 log 𝑥 can be maximized using the following representation
which follows directly from (5.3):

𝑡 ≤ −𝑥 log 𝑥 ⇐⇒ 𝑡 ≤ 𝑥 log(1/𝑥) ⇐⇒ (1, 𝑥, 𝑡) ∈ 𝐾exp. (5.6)
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5.2.4 Relative entropy

The relative entropy or Kullback-Leiber divergence of two probability distributions is defined
in terms of the function 𝐷(𝑥, 𝑦) = 𝑥 log(𝑥/𝑦). It is convex, and the minimization problem
𝑡 ≥ 𝐷(𝑥, 𝑦) is equivalent to

𝑡 ≥ 𝐷(𝑥, 𝑦) ⇐⇒ −𝑡 ≤ 𝑥 log(𝑦/𝑥) ⇐⇒ (𝑦, 𝑥,−𝑡) ∈ 𝐾exp. (5.7)

Because of this reparametrization the exponential cone is also referred to as the relative
entropy cone, leading to a class of problems known as REPs (relative entropy problems).
Having the relative entropy function available makes it possible to express epigraphs of other
functions appearing in REPs, for instance:

𝑥 log(1 + 𝑥/𝑦) = 𝐷(𝑥 + 𝑦, 𝑦) + 𝐷(𝑦, 𝑥 + 𝑦).

5.2.5 Softplus function

In neural networks the function 𝑓(𝑥) = log(1+𝑒𝑥), known as the softplus function, is used as
an analytic approximation to the rectifier activation function 𝑟(𝑥) = 𝑥+ = max(0, 𝑥). The
softplus function is convex and we can express its epigraph 𝑡 ≥ log(1 + 𝑒𝑥) by combining two
exponential cones. Note that

𝑡 ≥ log(1 + 𝑒𝑥) ⇐⇒ 𝑒𝑥−𝑡 + 𝑒−𝑡 ≤ 1

and therefore 𝑡 ≥ log(1 + 𝑒𝑥) is equivalent to the following set of conic constraints:

𝑢 + 𝑣 ≤ 1,
(𝑢, 1, 𝑥− 𝑡) ∈ 𝐾exp,

(𝑣, 1,−𝑡) ∈ 𝐾exp.
(5.8)

5.2.6 Log-sum-exp

We can generalize the previous example to a log-sum-exp (logarithm of sum of exponentials)
expression

𝑡 ≥ log(𝑒𝑥1 + · · · + 𝑒𝑥𝑛).

This is equivalent to the inequality

𝑒𝑥1−𝑡 + · · · + 𝑒𝑥𝑛−𝑡 ≤ 1,

and so it can be modeled as follows:∑︀
𝑢𝑖 ≤ 1,

(𝑢𝑖, 1, 𝑥𝑖 − 𝑡) ∈ 𝐾exp, 𝑖 = 1, . . . , 𝑛.
(5.9)
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5.2.7 Log-sum-inv

The following type of bound has applications in capacity optimization for wireless network
design:

𝑡 ≥ log

(︂
1

𝑥1

+ · · · +
1

𝑥𝑛

)︂
, 𝑥𝑖 > 0.

Since the logarithm is increasing, we can model this using a log-sum-exp and an exponential
as:

𝑡 ≥ log(𝑒𝑦1 + · · · + 𝑒𝑦𝑛),
𝑥𝑖 ≥ 𝑒−𝑦𝑖 , 𝑖 = 1, . . . , 𝑛.

Alternatively, one can also rewrite the original constraint in equivalent form:

𝑒−𝑡 ≤ 𝑠 ≤
(︂

1

𝑥1

+ · · · +
1

𝑥𝑛

)︂−1

, 𝑥𝑖 > 0.

and then model the right-hand side inequality using the technique from Sec. 3.2.7. This
approach requires only one exponential cone.

5.2.8 Arbitrary exponential

The inequality

𝑡 ≥ 𝑎𝑥1
1 𝑎𝑥2

2 · · · 𝑎𝑥𝑛
𝑛 ,

where 𝑎𝑖 are arbitrary positive constants, is of course equivalent to

𝑡 ≥ exp

(︃∑︁
𝑖

𝑥𝑖 log 𝑎𝑖

)︃
and therefore to (𝑡, 1,

∑︀
𝑖 𝑥𝑖 log 𝑎𝑖) ∈ 𝐾exp.

5.2.9 Lambert W-function

The Lambert function 𝑊 : R+ → R+ is the unique function satisfying the identity

𝑊 (𝑥)𝑒𝑊 (𝑥) = 𝑥.

It is the real branch of a more general function which appears in applications such as diode
modeling. The 𝑊 function is concave. Although there is no explicit analytic formula for
𝑊 (𝑥), the hypograph {(𝑥, 𝑡) : 0 ≤ 𝑥, 0 ≤ 𝑡 ≤ 𝑊 (𝑥)} has an equivalent description:

𝑥 ≥ 𝑡𝑒𝑡 = 𝑡𝑒𝑡
2/𝑡

and so it can be modeled with a mix of exponential and quadratic cones (see Sec. 3.1.2):

(𝑥, 𝑡, 𝑢) ∈ 𝐾exp, (𝑥 ≥ 𝑡 exp(𝑢/𝑡)),
(1/2, 𝑢, 𝑡) ∈ 𝒬r , (𝑢 ≥ 𝑡2).

(5.10)
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5.2.10 Other simple sets

Here are a few more typical sets which can be expressed using the exponential and quadratic
cones. The presentations should be self-explanatory; we leave the simple verifications to the
reader.

Table 5.1: Sets representable with the exponential cone

Set Conic representation

𝑡 ≥ (log 𝑥)2, 0 < 𝑥 ≤ 1 (1
2
, 𝑡, 𝑢) ∈ 𝒬3

r , (𝑥, 1, 𝑢) ∈ 𝐾exp, 𝑥 ≤ 1
𝑡 ≤ log log 𝑥, 𝑥 > 1 (𝑢, 1, 𝑡) ∈ 𝐾exp, (𝑥, 1, 𝑢) ∈ 𝐾exp

𝑡 ≥ (log 𝑥)−1, 𝑥 > 1 (𝑢, 𝑡,
√

2) ∈ 𝒬3
r , (𝑥, 1, 𝑢) ∈ 𝐾exp

𝑡 ≤ √
log 𝑥, 𝑥 > 1 (1

2
, 𝑢, 𝑡) ∈ 𝒬3

r , (𝑥, 1, 𝑢) ∈ 𝐾exp

𝑡 ≤ √
𝑥 log 𝑥, 𝑥 > 1 (𝑥, 𝑢,

√
2𝑡) ∈ 𝒬3

r , (𝑥, 1, 𝑢) ∈ 𝐾exp

𝑡 ≤ log(1 − 1/𝑥), 𝑥 > 1 (𝑥, 𝑢,
√

2) ∈ 𝒬3
r , (1 − 𝑢, 1, 𝑡) ∈ 𝐾exp

𝑡 ≥ log(1 + 1/𝑥), 𝑥 > 0 (𝑥 + 1, 𝑢,
√

2) ∈ 𝒬3
r , (1 − 𝑢, 1,−𝑡) ∈ 𝐾exp

5.3 Geometric programming

Geometric optimization problems form a family of optimization problems with objective and
constraints in special polynomial form. It is a rich class of problems solved by reformulating in
logarithmic-exponential form, and thus a major area of applications for the exponential cone
𝐾exp. Geometric programming is used in circuit design, chemical engineering, mechanical
engineering and finance, just to mention a few applications. We refer to [BKVH07] for a
survey and extensive bibliography.

5.3.1 Definition and basic examples

A monomial is a real valued function of the form

𝑓(𝑥1, . . . , 𝑥𝑛) = 𝑐𝑥𝑎1
1 𝑥𝑎2

2 · · ·𝑥𝑎𝑛
𝑛 , (5.11)

where the exponents 𝑎𝑖 are arbitrary real numbers and 𝑐 > 0. A posynomial (positive poly-
nomial) is a sum of monomials. Thus the difference between a posynomial and a standard
notion of a multi-variate polynomial known from algebra or calculus is that (i) posynomi-
als can have arbitrary exponents, not just integers, but (ii) they can only have positive
coefficients.

For example, the following functions are monomials (in variables 𝑥, 𝑦, 𝑧):

𝑥𝑦, 2𝑥1.5𝑦−1𝑥0.3, 3
√︀

𝑥𝑦/𝑧, 1 (5.12)

and the following are examples of posynomials:

2𝑥 + 𝑦𝑧, 1.5𝑥3𝑧 + 5/𝑦, (𝑥2𝑦2 + 3𝑧−0.3)4 + 1. (5.13)
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A geometric program (GP) is an optimization problem of the form

minimize 𝑓0(𝑥)
subject to 𝑓𝑖(𝑥) ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑥𝑗 > 0, 𝑗 = 1, . . . , 𝑛,
(5.14)

where 𝑓0, . . . , 𝑓𝑚 are posynomials and 𝑥 = (𝑥1, . . . , 𝑥𝑛) is the variable vector.
A geometric program (5.14) can be modeled in exponential conic form by making a

substitution

𝑥𝑗 = 𝑒𝑦𝑗 , 𝑗 = 1, . . . , 𝑛.

Under this substitution a monomial of the form (5.11) becomes

𝑐𝑒𝑎1𝑦1𝑒𝑎2𝑦2 · · · 𝑒𝑎𝑛𝑦𝑛 = exp(𝑎𝑇* 𝑦 + log 𝑐)

for 𝑎* = (𝑎1, . . . , 𝑎𝑛). Consequently, the optimization problem (5.14) takes an equivalent
form

minimize 𝑡
subject to log(

∑︀
𝑘 exp(𝑎𝑇0,𝑘,*𝑦 + log 𝑐0,𝑘)) ≤ 𝑡,

log(
∑︀

𝑘 exp(𝑎𝑇𝑖,𝑘,*𝑦 + log 𝑐𝑖,𝑘)) ≤ 0, 𝑖 = 1, . . . ,𝑚,
(5.15)

where 𝑎𝑖,𝑘 ∈ R𝑛 and 𝑐𝑖,𝑘 ∈ R for all 𝑖, 𝑘. These are now log-sum-exp constraints we already
discussed in Sec. 5.2.6. In particular, the problem (5.15) is convex, as opposed to the
posynomial formulation (5.14).

Example

We demonstrate this reduction on a simple example. Take the geometric problem

minimize 𝑥 + 𝑦2𝑧
subject to 0.1

√
𝑥 + 2𝑦−1 ≤ 1,

𝑧−1 + 𝑦𝑥−2 ≤ 1.

By substituting 𝑥 = 𝑒𝑢, 𝑦 = 𝑒𝑣, 𝑧 = 𝑒𝑤 we get

minimize 𝑡
subject to log(𝑒𝑢 + 𝑒2𝑣+𝑤) ≤ 𝑡,

log(𝑒0.5𝑢+log 0.1 + 𝑒−𝑣+log 2) ≤ 0,
log(𝑒−𝑤 + 𝑒𝑣−2𝑢) ≤ 0.

and using the log-sum-exp reduction from Sec. 5.2.6 we write an explicit conic problem:

minimize 𝑡
subject to (𝑝1, 1, 𝑢− 𝑡), (𝑞1, 1, 2𝑣 + 𝑤 − 𝑡) ∈ 𝐾exp, 𝑝1 + 𝑞1 ≤ 1,

(𝑝2, 1, 0.5𝑢 + log 0.1), (𝑞2, 1,−𝑣 + log 2) ∈ 𝐾exp, 𝑝2 + 𝑞2 ≤ 1,
(𝑝3, 1,−𝑤), (𝑞3, 1, 𝑣 − 2𝑢) ∈ 𝐾exp, 𝑝3 + 𝑞3 ≤ 1.

Solving this problem yields (𝑥, 𝑦, 𝑧) ≈ (3.14, 2.43, 1.32).
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5.3.2 Generalized geometric models

In this section we briefly discuss more general types of constraints which can be modeled
with geometric programs.

Monomials

If 𝑚(𝑥) is a monomial then the constraint 𝑚(𝑥) = 𝑐 is equivalent to two posynomial inequal-
ities 𝑚(𝑥)𝑐−1 ≤ 1 and 𝑚(𝑥)−1𝑐 ≤ 1, so it can be expressed in the language of geometric
programs. In practice it should be added to the model (5.15) as a linear constraint∑︁

𝑘

𝑎𝑘𝑦𝑘 = log 𝑐.

Monomial inequalities 𝑚(𝑥) ≤ 𝑐 and 𝑚(𝑥) ≥ 𝑐 should similarly be modeled as linear inequal-
ities in the 𝑦𝑖 variables.

In similar vein, if 𝑓(𝑥) is a posynomial and 𝑚(𝑥) is a monomial then 𝑓(𝑥) ≤ 𝑚(𝑥) is still
a posynomial inequality because it can be written as 𝑓(𝑥)𝑚(𝑥)−1 ≤ 1.

It also means that we can add lower and upper variable bounds: 0 < 𝑐1 ≤ 𝑥 ≤ 𝑐2 is
equivalent to 𝑥−1𝑐1 ≤ 1 and 𝑐−1

2 𝑥 ≤ 1.

Products and positive powers

Expressions involving products and positive powers (possibly iterated) of posynomials can
again be modeled with posynomials. For example, a constraint such as

((𝑥𝑦2 + 𝑧)0.3 + 𝑦)(1/𝑥 + 1/𝑦)2.2 ≤ 1

can be replaced with

𝑥𝑦2 + 𝑧 ≤ 𝑡, 𝑡0.3 + 𝑦 ≤ 𝑢, 𝑥−1 + 𝑦−1 ≤ 𝑣, 𝑢𝑣2.2 ≤ 1.

Other transformations and extensions

• If 𝑓1, 𝑓2 are already expressed by posynomials then max{𝑓1(𝑥), 𝑓2(𝑥)} ≤ 𝑡 is clearly
equivalent to 𝑓1(𝑥) ≤ 𝑡 and 𝑓2(𝑥) ≤ 𝑡. Hence we can add the maximum operator to
the list of building blocks for geometric programs.

• If 𝑓, 𝑔 are posynomials, 𝑚 is a monomial and we know that 𝑚(𝑥) ≥ 𝑔(𝑥) then the
constraint 𝑓(𝑥)

𝑚(𝑥)−𝑔(𝑥)
≤ 𝑡 is equivalent to 𝑡−1𝑓(𝑥)𝑚(𝑥)−1 + 𝑔(𝑥)𝑚(𝑥)−1 ≤ 1.

• The objective function of a geometric program (5.14) can be extended to include other
terms, for example:

minimize 𝑓0(𝑥) +
∑︁
𝑘

log𝑚𝑘(𝑥)
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where 𝑚𝑘(𝑥) are monomials. After the change of variables 𝑥 = 𝑒𝑦 we get a slightly
modified version of (5.15):

minimize 𝑡 + 𝑏𝑇𝑦
subject to

∑︀
𝑘 exp(𝑎𝑇0,𝑘,*𝑦 + log 𝑐0,𝑘) ≤ 𝑡,

log(
∑︀

𝑘 exp(𝑎𝑇𝑖,𝑘,*𝑦 + log 𝑐𝑖,𝑘)) ≤ 0, 𝑖 = 1, . . . ,𝑚,

(note the lack of one logarithm) which can still be expressed with exponential cones.

5.3.3 Geometric programming case studies

Frobenius norm diagonal scaling

Suppose we have a matrix 𝑀 ∈ R𝑛×𝑛 and we want to rescale the coordinate system using a
diagonal matrix 𝐷 = Diag(𝑑1, . . . , 𝑑𝑛) with 𝑑𝑖 > 0. In the new basis the linear transforma-
tion given by 𝑀 will now be described by the matrix 𝐷𝑀𝐷−1 = (𝑑𝑖𝑀𝑖𝑗𝑑

−1
𝑗 )𝑖,𝑗. To choose 𝐷

which leads to a “small” rescaling we can for example minimize the Frobenius norm

‖𝐷𝑀𝐷−1‖2𝐹 =
∑︁
𝑖𝑗

(︀
(𝐷𝑀𝐷−1)𝑖𝑗

)︀2
=
∑︁
𝑖𝑗

𝑀2
𝑖𝑗𝑑

2
𝑖 𝑑

−2
𝑗 .

Minimizing the last sum is an example of a geometric program with variables 𝑑𝑖 (and without
constraints).

Maximum likelihood estimation

Geometric programs appear naturally in connection with maximum likelihood estimation
of parameters of random distributions. Consider a simple example. Suppose we have two
biased coins, with head probabilities 𝑝 and 2𝑝, respectively. We toss both coins and count
the total number of heads. Given that, in the long run, we observed 𝑖 heads 𝑛𝑖 times for
𝑖 = 0, 1, 2, estimate the value of 𝑝.

The probability of obtaining the given outcome equals(︂
𝑛0 + 𝑛1 + 𝑛2

𝑛0

)︂(︂
𝑛1 + 𝑛2

𝑛1

)︂
(𝑝 · 2𝑝)𝑛2 (𝑝(1 − 2𝑝) + 2𝑝(1 − 𝑝))𝑛1 ((1 − 𝑝)(1 − 2𝑝))𝑛0 ,

and, up to constant factors, maximizing that expression is equivalent to solving the problem

maximize 𝑝2𝑛2+𝑛1𝑠𝑛1𝑞𝑛0𝑟𝑛0

subject to 𝑞 ≤ 1 − 𝑝,
𝑟 ≤ 1 − 2𝑝,
𝑠 ≤ 3 − 4𝑝,

or, as a geometric problem:

minimize 𝑝−2𝑛2−𝑛1𝑠−𝑛1𝑞−𝑛0𝑟−𝑛0

subject to 𝑞 + 𝑝 ≤ 1,
𝑟 + 2𝑝 ≤ 1,

1
3
𝑠 + 4

3
𝑝 ≤ 1.

For example, if (𝑛0, 𝑛1, 𝑛2) = (30, 53, 16) then the above problem solves with 𝑝 = 0.29.
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An Olympiad problem

The 26th Vojtěch Jarník International Mathematical Competition, Ostrava 2016. Let 𝑎, 𝑏, 𝑐
be positive real numbers with 𝑎 + 𝑏 + 𝑐 = 1. Prove that(︂

1

𝑎
+

1

𝑏𝑐

)︂(︂
1

𝑏
+

1

𝑎𝑐

)︂(︂
1

𝑐
+

1

𝑎𝑏

)︂
≥ 1728

Using the tricks introduced in Sec. 5.3.2 we formulate this problem as a geometric program:

minimize 𝑝𝑞𝑟
subject to 𝑝−1𝑎−1 + 𝑝−1𝑏−1𝑐−1 ≤ 1,

𝑞−1𝑏−1 + 𝑞−1𝑎−1𝑐−1 ≤ 1,
𝑟−1𝑐−1 + 𝑟−1𝑎−1𝑏−1 ≤ 1,

𝑎 + 𝑏 + 𝑐 ≤ 1.

Unsurprisingly, the optimal value of this program is 1728, achieved for (𝑎, 𝑏, 𝑐, 𝑝, 𝑞, 𝑟) =(︀
1
3
, 1
3
, 1
3
, 12, 12, 12

)︀
.

Power control and rate allocation in wireless networks

We consider a basic wireless network power control problem. In a wireless network with 𝑛
logical transmitter-receiver pairs if the power output of transmitter 𝑗 is 𝑝𝑗 then the power
received by receiver 𝑖 is 𝐺𝑖𝑗𝑝𝑗, where 𝐺𝑖𝑗 models path gain and fading effects. If the 𝑖-th
receiver’s own noise is 𝜎𝑖 then the signal-to-interference-plus-noise (SINR) ratio of receiver
𝑖 is given by

𝑠𝑖 =
𝐺𝑖𝑖𝑝𝑖

𝜎𝑖 +
∑︀

𝑗 ̸=𝑖 𝐺𝑖𝑗𝑝𝑗
. (5.16)

Maximizing the minimal SINR over all receivers (max min𝑖 𝑠𝑖), subject to bounded power
output of the transmitters, is equivalent to the geometric program with variables 𝑝1, . . . , 𝑝𝑛, 𝑡:

minimize 𝑡−1

subject to 𝑝min ≤ 𝑝𝑗 ≤ 𝑝max, 𝑗 = 1, . . . , 𝑛,
𝑡(𝜎𝑖 +

∑︀
𝑗 ̸=𝑖𝐺𝑖𝑗𝑝𝑗)𝐺

−1
𝑖𝑖 𝑝

−1
𝑖 ≤ 1, 𝑖 = 1, . . . , 𝑛.

(5.17)

In the low-SNR regime the problem of system rate maximization is approximated by the
problem of maximizing

∑︀
𝑖 log 𝑠𝑖, or equivalently minimizing

∏︀
𝑖 𝑠

−1
𝑖 . This is a geometric

problem with variables 𝑝𝑖, 𝑠𝑖:

minimize 𝑠−1
1 · · · · 𝑠−1

𝑛

subject to 𝑝min ≤ 𝑝𝑗 ≤ 𝑝max, 𝑗 = 1, . . . , 𝑛,
𝑠𝑖(𝜎𝑖 +

∑︀
𝑗 ̸=𝑖𝐺𝑖𝑗𝑝𝑗)𝐺

−1
𝑖𝑖 𝑝

−1
𝑖 ≤ 1, 𝑖 = 1, . . . , 𝑛.

(5.18)

For more information and examples see [BKVH07].
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5.4 Exponential cone case studies

In this section we introduce some practical optimization problems where the exponential
cone comes in handy.

5.4.1 Risk parity portfolio

Consider a simple version of the Markowitz portfolio optimization problem introduced in Sec.
3.3.3, where we simply ask to minimize the risk 𝑟(𝑥) =

√
𝑥𝑇Σ𝑥 of a fully-invested long-only

portfolio:

minimize
√
𝑥𝑇Σ𝑥

subject to
∑︀𝑛

𝑖=1 𝑥𝑖 = 1,
𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛,

(5.19)

where Σ is a symmetric positive definite covariance matrix. We can derive from the first-
order optimality conditions that the solution to (5.19) satisfies 𝜕𝑟

𝜕𝑥𝑖
= 𝜕𝑟

𝜕𝑥𝑗
whenever 𝑥𝑖, 𝑥𝑗 > 0,

i.e. marginal risk contributions of positively invested assets are equal. In practice this often
leads to concentrated portfolios, whereas it would benefit diversification to consider portfolios
where all assets have the same total contribution to risk:

𝑥𝑖
𝜕𝑟

𝜕𝑥𝑖

= 𝑥𝑗
𝜕𝑟

𝜕𝑥𝑗

, 𝑖, 𝑗 = 1, . . . , 𝑛. (5.20)

We call (5.20) the risk parity condition. It indeed models equal risk contribution from all
the assets, because as one can easily check 𝜕𝑟

𝜕𝑥𝑖
= (Σ𝑥)𝑖√

𝑥𝑇Σ𝑥
and

𝑟(𝑥) =
∑︁
𝑖

𝑥𝑖
𝜕𝑟

𝜕𝑥𝑖

.

Risk parity portfolios satisfying condition (5.20) can be found with an auxiliary optimization
problem:

minimize
√
𝑥𝑇Σ𝑥− 𝑐

∑︀
𝑖 log 𝑥𝑖

subject to 𝑥𝑖 > 0, 𝑖 = 1, . . . , 𝑛,
(5.21)

for any 𝑐 > 0. More precisely, the gradient of the objective function in (5.21) is zero
when 𝜕𝑟

𝜕𝑥𝑖
= 𝑐/𝑥𝑖 for all 𝑖, implying the parity condition (5.20) holds. Since (5.20) is scale-

invariant, we can rescale any solution of (5.21) and get a fully-invested risk parity portfolio
with

∑︀
𝑖 𝑥𝑖 = 1.

The conic form of problem (5.21) is:

minimize 𝑡− 𝑐𝑒𝑇 𝑠

subject to (𝑡,Σ1/2𝑥) ∈ 𝒬𝑛+1, (𝑡 ≥
√
𝑥𝑇Σ𝑥),

(𝑥𝑖, 1, 𝑠𝑖) ∈ 𝐾exp, (𝑠𝑖 ≤ log 𝑥𝑖).

(5.22)
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5.4.2 Entropy maximization

A general entropy maximization problem has the form

maximize −∑︀𝑖 𝑝𝑖 log 𝑝𝑖
subject to

∑︀
𝑖 𝑝𝑖 = 1,
𝑝𝑖 ≥ 0,
𝑝 ∈ ℐ,

(5.23)

where ℐ defines additional constraints on the probability distribution 𝑝 (these are known as
prior information). In the absence of complete information about 𝑝 the maximum entropy
principle of Jaynes posits to choose the distribution which maximizes uncertainty, that is
entropy, subject to what is known. Practitioners think of the solution to (5.23) as the most
random or most conservative of distributions consistent with ℐ.

Maximization of the entropy function 𝐻(𝑥) = −𝑥 log 𝑥 was explained in Sec. 5.2.
Often one has an a priori distribution 𝑞, and one tries to minimize the distance between

𝑝 and 𝑞, while remaining consistent with ℐ. In this case it is standard to minimize the
Kullback-Leiber divergence

𝒟𝐾𝐿(𝑝||𝑞) =
∑︁
𝑖

𝑝𝑖 log 𝑝𝑖/𝑞𝑖

which leads to an optimization problem

minimize
∑︀

𝑖 𝑝𝑖 log 𝑝𝑖/𝑞𝑖
subject to

∑︀
𝑖 𝑝𝑖 = 1,
𝑝𝑖 ≥ 0,
𝑝 ∈ ℐ.

(5.24)

5.4.3 Hitting time of a linear system

Consider a linear dynamical system

x′(𝑡) = 𝐴x(𝑡) (5.25)

where we assume for simplicity that 𝐴 = Diag(𝑎1, . . . , 𝑎𝑛) with 𝑎𝑖 < 0 with initial condition
x(0)𝑖 = 𝑥𝑖. The resulting dynamical system x(𝑡) = x(0) exp(𝐴𝑡) converges to 0 and one can
ask, for instance, for the time it takes to approach the limit up to distance 𝜀. The resulting
optimization problem is

minimize 𝑡

subject to
√︁∑︀

𝑖 (𝑥𝑖 exp(𝑎𝑖𝑡))
2 ≤ 𝜀,

with the following conic form, where the variables are 𝑡, 𝑞1, . . . , 𝑞𝑛:

minimize 𝑡
subject to (𝜀, 𝑥1𝑞1, . . . , 𝑥𝑛𝑞𝑛) ∈ 𝒬𝑛+1,

(𝑞𝑖, 1, 𝑎𝑖𝑡) ∈ 𝐾exp, 𝑖 = 1, . . . , 𝑛.
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See Fig. 5.2 for an example. Other criteria for the target set of the trajectories are also
possible. For example, polyhedral constraints

𝑐𝑇x ≤ 𝑑, 𝑐 ∈ R𝑛
+, 𝑑 ∈ R+

are also expressible in exponential conic form for starting points x(0) ∈ R𝑛
+, since they

correspond to log-sum-exp constraints of the form

log

(︃∑︁
𝑖

exp(𝑎𝑖x𝑖 + log(𝑐𝑖𝑥𝑖))

)︃
≤ log 𝑑.

For a robust version involving uncertainty on 𝐴 and 𝑥(0) see [CS14].

Fig. 5.2: With 𝐴 = Diag(−0.3,−0.06) and starting point 𝑥(0) = (2.2, 1.3) the trajectory
reaches distance 𝜀 = 0.5 from origin at time 𝑡 ≈ 15.936.

5.4.4 Logistic regression

Logistic regression is a technique of training a binary classifier. We are given a training set
of examples 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑 together with labels 𝑦𝑖 ∈ {0, 1}. The goal is to train a classifier
capable of assigning new data points to either class 0 or 1. Specifically, the labels should be
assigned by computing

ℎ𝜃(𝑥) =
1

1 + exp(−𝜃𝑇𝑥)
(5.26)

and choosing label 𝑦 = 0 if ℎ𝜃(𝑥) < 1
2

and 𝑦 = 1 for ℎ𝜃(𝑥) ≥ 1
2
. Here ℎ𝜃(𝑥) is interpreted as

the probability that 𝑥 belongs to class 1. The optimal parameter vector 𝜃 should be learned
from the training set, so as to maximize the likelihood function:∏︁

𝑖

ℎ𝜃(𝑥𝑖)
𝑦𝑖(1 − ℎ𝜃(𝑥𝑖))

1−𝑦𝑖 .

By taking logarithms and adding regularization with respect to 𝜃 we reach an unconstrained
optimization problem

minimize𝜃∈R𝑑 𝜆‖𝜃‖2 +
∑︁
𝑖

−𝑦𝑖 log(ℎ𝜃(𝑥𝑖)) − (1 − 𝑦𝑖) log(1 − ℎ𝜃(𝑥𝑖)). (5.27)
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Problem (5.27) is convex, and can be more explicitly written as

minimize
∑︀

𝑖 𝑡𝑖 + 𝜆𝑟
subject to 𝑡𝑖 ≥ − log(ℎ𝜃(𝑥)) = log(1 + exp(−𝜃𝑇𝑥𝑖)) if 𝑦𝑖 = 1,

𝑡𝑖 ≥ − log(1 − ℎ𝜃(𝑥)) = log(1 + exp(𝜃𝑇𝑥𝑖)) if 𝑦𝑖 = 0,
𝑟 ≥ ‖𝜃‖2,

involving softplus type constraints (see Sec. 5.2) and a quadratic cone. See Fig. 5.3 for an
example.

Fig. 5.3: Logistic regression example with none, medium and strong regularization (small,
medium, large 𝜆). The two-dimensional dataset was converted into a feature vector 𝑥 ∈ R28

using monomial coordinates of degrees at most 6. Without regularization we get obvious
overfitting.
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Chapter 6

Semidefinite optimization

In this chapter we extend the conic optimization framework introduced before with symmet-
ric positive semidefinite matrix variables.

6.1 Introduction to semidefinite matrices

6.1.1 Semidefinite matrices and cones

A symmetric matrix 𝑋 ∈ 𝒮𝑛 is called symmetric positive semidefinite if

𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑛.

We then define the cone of symmetric positive semidefinite matrices as

𝒮𝑛
+ = {𝑋 ∈ 𝒮𝑛 | 𝑧𝑇𝑋𝑧 ≥ 0, ∀𝑧 ∈ R𝑛}. (6.1)

For brevity we will often use the shorter notion semidefinite instead of symmetric positive
semidefinite, and we will write 𝑋 ⪰ 𝑌 (𝑋 ⪯ 𝑌 ) as shorthand notation for (𝑋 − 𝑌 ) ∈ 𝒮𝑛

+

((𝑌 −𝑋) ∈ 𝒮𝑛
+). As inner product for semidefinite matrices, we use the standard trace inner

product for general matrices, i.e.,

⟨𝐴,𝐵⟩ := tr(𝐴𝑇𝐵) =
∑︁
𝑖𝑗

𝑎𝑖𝑗𝑏𝑖𝑗.

It is easy to see that (6.1) indeed specifies a convex cone; it is pointed (with origin 𝑋 = 0),
and 𝑋, 𝑌 ∈ 𝒮𝑛

+ implies that (𝛼𝑋 + 𝛽𝑌 ) ∈ 𝒮𝑛
+, 𝛼, 𝛽 ≥ 0. Let us review a few equivalent

definitions of 𝒮𝑛
+. It is well-known that every symmetric matrix 𝐴 has a spectral factorization

𝐴 =
𝑛∑︁

𝑖=1

𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖 .

where 𝑞𝑖 ∈ R𝑛 are the (orthogonal) eigenvectors and 𝜆𝑖 are eigenvalues of 𝐴. Using the
spectral factorization of 𝐴 we have

𝑥𝑇𝐴𝑥 =
𝑛∑︁

𝑖=1

𝜆𝑖(𝑥
𝑇 𝑞𝑖)

2,
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which shows that 𝑥𝑇𝐴𝑥 ≥ 0 ⇔ 𝜆𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑛. In other words,

𝒮𝑛
+ = {𝑋 ∈ 𝒮𝑛 | 𝜆𝑖(𝑋) ≥ 0, 𝑖 = 1, . . . , 𝑛}. (6.2)

Another useful characterization is that 𝐴 ∈ 𝒮𝑛
+ if and only if it is a Grammian matrix

𝐴 = 𝑉 𝑇𝑉 . Here 𝑉 is called the Cholesky factor of 𝐴. Using the Grammian representation
we have

𝑥𝑇𝐴𝑥 = 𝑥𝑇𝑉 𝑇𝑉 𝑥 = ‖𝑉 𝑥‖22,

i.e., if 𝐴 = 𝑉 𝑇𝑉 then 𝑥𝑇𝐴𝑥 ≥ 0 for all 𝑥. On the other hand, from the posi-
tive spectral factorization 𝐴 = 𝑄Λ𝑄𝑇 we have 𝐴 = 𝑉 𝑇𝑉 with 𝑉 = Λ1/2𝑄𝑇 , where
Λ1/2 = Diag(

√
𝜆1, . . . ,

√
𝜆𝑛). We thus have the equivalent characterization

𝒮𝑛
+ = {𝑋 ∈ 𝒮𝑛

+ | 𝑋 = 𝑉 𝑇𝑉 for some 𝑉 ∈ R𝑛×𝑛}. (6.3)

In a completely analogous way we define the cone of symmetric positive definite matrices as

𝒮𝑛
++ = {𝑋 ∈ 𝒮𝑛 | 𝑧𝑇𝑋𝑧 > 0, ∀𝑧 ∈ R𝑛}

= {𝑋 ∈ 𝒮𝑛 | 𝜆𝑖(𝑋) > 0, 𝑖 = 1, . . . , 𝑛}
= {𝑋 ∈ 𝒮𝑛

+ | 𝑋 = 𝑉 𝑇𝑉 for some 𝑉 ∈ R𝑛×𝑛, rank(𝑉 ) = 𝑛},
and we write 𝑋 ≻ 𝑌 (𝑋 ≺ 𝑌 ) as shorthand notation for (𝑋 − 𝑌 ) ∈ 𝒮𝑛

++ ((𝑌 −𝑋) ∈ 𝒮𝑛
++).

The one dimensional cone 𝒮1
+ simply corresponds to R+. Similarly consider

𝑋 =

[︂
𝑥1 𝑥3

𝑥3 𝑥2

]︂
with determinant det(𝑋) = 𝑥1𝑥2−𝑥2

3 = 𝜆1𝜆2 and trace tr(𝑋) = 𝑥1+𝑥2 = 𝜆1+𝜆2. Therefore
𝑋 has positive eigenvalues if and only if

𝑥1𝑥2 ≥ 𝑥2
3, 𝑥1, 𝑥2 ≥ 0,

which characterizes a three-dimensional scaled rotated cone, i.e.,[︂
𝑥1 𝑥3

𝑥3 𝑥2

]︂
∈ 𝒮2

+ ⇐⇒ (𝑥1, 𝑥2, 𝑥3

√
2) ∈ 𝒬3

𝑟.

More generally we have

𝑥 ∈ R𝑛
+ ⇐⇒ Diag(𝑥) ∈ 𝒮𝑛

+

and

(𝑡, 𝑥) ∈ 𝒬𝑛+1 ⇐⇒
[︂

𝑡 𝑥𝑇

𝑥 𝑡𝐼

]︂
∈ 𝒮𝑛+1

+ ,

where the latter equivalence follows immediately from Lemma 6.1. Thus both the linear
and quadratic cone are embedded in the semidefinite cone. In practice, however, linear and
quadratic cones should never be described using semidefinite constraints, which would result
in a large performance penalty by squaring the number of variables.
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Example 6.1. As a more interesting example, consider the symmetric matrix

𝐴(𝑥, 𝑦, 𝑧) =

⎡⎣ 1 𝑥 𝑦
𝑥 1 𝑧
𝑦 𝑧 1

⎤⎦ (6.4)

parametrized by (𝑥, 𝑦, 𝑧). The set

𝑆 = {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝐴(𝑥, 𝑦, 𝑧) ∈ 𝒮3
+},

(shown in Fig. 6.1) is called a spectrahedron and is perhaps the simplest bounded semidef-
inite representable set, which cannot be represented using (finitely many) linear or
quadratic cones. To gain a geometric intuition of 𝑆, we note that

det(𝐴(𝑥, 𝑦, 𝑧)) = −(𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑦𝑧 − 1),

so the boundary of 𝑆 can be characterized as

𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑦𝑧 = 1,

or equivalently as [︂
𝑥
𝑦

]︂𝑇 [︂
1 −𝑧

−𝑧 1

]︂ [︂
𝑥
𝑦

]︂
= 1 − 𝑧2.

For 𝑧 = 0 this describes a circle in the (𝑥, 𝑦)-plane, and for −1 ≤ 𝑧 ≤ 1 it characterizes
an ellipse (for a fixed 𝑧).

6.1.2 Properties of semidefinite matrices

Many useful properties of (semi)definite matrices follow directly from the definitions (6.1)-
(6.3) and their definite counterparts.

• The diagonal elements of 𝐴 ∈ 𝒮𝑛
+ are nonnegative. Let 𝑒𝑖 denote the 𝑖th standard basis

vector (i.e., [𝑒𝑖]𝑗 = 0, 𝑗 ̸= 𝑖, [𝑒𝑖]𝑖 = 1). Then 𝐴𝑖𝑖 = 𝑒𝑇𝑖 𝐴𝑒𝑖, so (6.1) implies that 𝐴𝑖𝑖 ≥ 0.

• A block-diagonal matrix 𝐴 = Diag(𝐴1, . . . 𝐴𝑝) is (semi)definite if and only if each
diagonal block 𝐴𝑖 is (semi)definite.

• Given a quadratic transformation 𝑀 := 𝐵𝑇𝐴𝐵, 𝑀 ≻ 0 if and only if 𝐴 ≻ 0 and 𝐵 has
full rank. This follows directly from the Grammian characterization 𝑀 = (𝑉 𝐵)𝑇 (𝑉 𝐵).
For 𝑀 ⪰ 0 we only require that 𝐴 ⪰ 0. As an example, if 𝐴 is (semi)definite then so
is any permutation 𝑃 𝑇𝐴𝑃 .
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Fig. 6.1: Plot of spectrahedron 𝑆 = {(𝑥, 𝑦, 𝑧) ∈ R3 | 𝐴(𝑥, 𝑦, 𝑧) ⪰ 0}.

• Any principal submatrix of 𝐴 ∈ 𝒮𝑛
+ (𝐴 restricted to the same set of rows as columns)

is positive semidefinite; this follows by restricting the Grammian characterization 𝐴 =
𝑉 𝑇𝑉 to a submatrix of 𝑉 .

• The inner product of positive (semi)definite matrices is positive (nonnegative). For
any 𝐴,𝐵 ∈ 𝒮𝑛

++ let 𝐴 = 𝑈𝑇𝑈 and 𝐵 = 𝑉 𝑇𝑉 where 𝑈 and 𝑉 have full rank. Then

⟨𝐴,𝐵⟩ = tr(𝑈𝑇𝑈𝑉 𝑇𝑉 ) = ‖𝑈𝑉 𝑇‖2𝐹 > 0,

where strict positivity follows from the assumption that 𝑈 has full column-rank, i.e.,
𝑈𝑉 𝑇 ̸= 0.

• The inverse of a positive definite matrix is positive definite. This follows from the
positive spectral factorization 𝐴 = 𝑄Λ𝑄𝑇 , which gives us

𝐴−1 = 𝑄𝑇Λ−1𝑄

where Λ𝑖𝑖 > 0. If 𝐴 is semidefinite then the pseudo-inverse 𝐴† of 𝐴 is semidefinite.

• Consider a matrix 𝑋 ∈ 𝒮𝑛 partitioned as

𝑋 =

[︂
𝐴 𝐵𝑇

𝐵 𝐶

]︂
.

Let us find necessary and sufficient conditions for 𝑋 ≻ 0. We know that 𝐴 ≻ 0 and
𝐶 ≻ 0 (since any principal submatrix must be positive definite). Furthermore, we can
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simplify the analysis using a nonsingular transformation

𝐿 =

[︂
𝐼 0
𝐹 𝐼

]︂
to diagonalize 𝑋 as 𝐿𝑋𝐿𝑇 = 𝐷, where 𝐷 is block-diagonal. Note that det(𝐿) = 1, so
𝐿 is indeed nonsingular. Then 𝑋 ≻ 0 if and only if 𝐷 ≻ 0. Expanding 𝐿𝑋𝐿𝑇 = 𝐷,
we get [︂

𝐴 𝐴𝐹 𝑇 + 𝐵𝑇

𝐹𝐴 + 𝐵 𝐹𝐴𝐹 𝑇 + 𝐹𝐵𝑇 + 𝐵𝐹 𝑇 + 𝐶

]︂
=

[︂
𝐷1 0
0 𝐷2

]︂
.

Since det(𝐴) ̸= 0 (by assuming that 𝐴 ≻ 0) we see that 𝐹 = −𝐵𝐴−1 and direct
substitution gives us [︂

𝐴 0
0 𝐶 −𝐵𝐴−1𝐵𝑇

]︂
=

[︂
𝐷1 0
0 𝐷2

]︂
.

In the last part we have thus established the following useful result.

Lemma 6.1 (Schur complement lemma). A symmetric matrix

𝑋 =

[︂
𝐴 𝐵𝑇

𝐵 𝐶

]︂
.

is positive definite if and only if

𝐴 ≻ 0, 𝐶 −𝐵𝐴−1𝐵𝑇 ≻ 0.

6.2 Semidefinite modeling

Having discussed different characterizations and properties of semidefinite matrices, we next
turn to different functions and sets that can be modeled using semidefinite cones and vari-
ables. Most of those representations involve semidefinite matrix-valued affine functions,
which we discuss next.

6.2.1 Linear matrix inequalities

Consider an affine matrix-valued mapping 𝐴 : R𝑛 ↦→ 𝒮𝑚:

𝐴(𝑥) = 𝐴0 + 𝑥1𝐴1 + · · · + 𝑥𝑛𝐴𝑛. (6.5)

A linear matrix inequality (LMI) is a constraint of the form

𝐴0 + 𝑥1𝐴1 + · · · + 𝑥𝑛𝐴𝑛 ⪰ 0 (6.6)
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in the variable 𝑥 ∈ R𝑛 with symmetric coefficients 𝐴𝑖 ∈ 𝒮𝑚, 𝑖 = 0, . . . , 𝑛. As a simple
example consider the matrix in (6.4),

𝐴(𝑥, 𝑦, 𝑧) = 𝐴0 + 𝑥𝐴1 + 𝑦𝐴2 + 𝑧𝐴3 ⪰ 0

with

𝐴0 = 𝐼, 𝐴1 =

⎡⎣ 0 1 0
1 0 0
0 0 0

⎤⎦ , 𝐴2 =

⎡⎣ 0 0 1
0 0 0
1 0 0

⎤⎦ , 𝐴3 =

⎡⎣ 0 0 0
0 0 1
0 1 0

⎤⎦ .

Alternatively, we can describe the linear matrix inequality 𝐴(𝑥, 𝑦, 𝑧) ⪰ 0 as

𝑋 ∈ 𝒮3
+, 𝑋11 = 𝑋22 = 𝑋33 = 1, 𝑥 = 𝑋21, 𝑦 = 𝑋31, 𝑧 = 𝑋32,

i.e., as a semidefinite variable with fixed diagonal; these two alternative formulations illus-
trate the difference between primal and dual form of semidefinite problems, see Sec. 8.6.

6.2.2 Eigenvalue optimization

Consider a symmetric matrix 𝐴 ∈ 𝒮𝑚 and let its eigenvalues be denoted by

𝜆1(𝐴) ≥ 𝜆2(𝐴) ≥ · · · ≥ 𝜆𝑚(𝐴).

A number of different functions of 𝜆𝑖 can then be described using a mix of linear and semidef-
inite constraints.

Sum of eigenvalues

The sum of the eigenvalues corresponds to

𝑚∑︁
𝑖=1

𝜆𝑖(𝐴) = tr(𝐴).

Largest eigenvalue

The largest eigenvalue can be characterized in epigraph form 𝜆1(𝐴) ≤ 𝑡 as

𝑡𝐼 − 𝐴 ⪰ 0. (6.7)

To verify this, suppose we have a spectral factorization 𝐴 = 𝑄Λ𝑄𝑇 where 𝑄 is orthogonal
and Λ is diagonal. Then 𝑡 is an upper bound on the largest eigenvalue if and only if

𝑄𝑇 (𝑡𝐼 − 𝐴)𝑄 = 𝑡𝐼 − Λ ⪰ 0.

Thus we can minimize the largest eigenvalue of 𝐴.
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Smallest eigenvalue

The smallest eigenvalue can be described in hypograph form 𝜆𝑚(𝐴) ≥ 𝑡 as

𝐴 ⪰ 𝑡𝐼, (6.8)

i.e., we can maximize the smallest eigenvalue of 𝐴.

Eigenvalue spread

The eigenvalue spread can be modeled in epigraph form

𝜆1(𝐴) − 𝜆𝑚(𝐴) ≤ 𝑡

by combining the two linear matrix inequalities in (6.7) and (6.8), i.e.,

𝑧𝐼 ⪯ 𝐴 ⪯ 𝑠𝐼,
𝑠− 𝑧 ≤ 𝑡.

(6.9)

Spectral radius

The spectral radius 𝜌(𝐴) := max𝑖 |𝜆𝑖(𝐴)| can be modeled in epigraph form 𝜌(𝐴) ≤ 𝑡 using
two linear matrix inequalities

−𝑡𝐼 ⪯ 𝐴 ⪯ 𝑡𝐼.

Condition number of a positive definite matrix

Suppose now that 𝐴 ∈ 𝒮𝑚
+ . The condition number of a positive definite matrix can be

minimized by noting that 𝜆1(𝐴)/𝜆𝑚(𝐴) ≤ 𝑡 if and only if there exists a 𝜇 > 0 such that

𝜇𝐼 ⪯ 𝐴 ⪯ 𝜇𝑡𝐼,

or equivalently if and only if 𝐼 ⪯ 𝜇−1𝐴 ⪯ 𝑡𝐼. If 𝐴 = 𝐴(𝑥) is represented as in (6.5) then a
change of variables 𝑧 := 𝑥/𝜇, 𝜈 := 1/𝜇 leads to a problem of the form

minimize 𝑡
subject to 𝐼 ⪯ 𝜈𝐴0 +

∑︀𝑚
𝑖=1 𝑧𝑖𝐴𝑖 ⪯ 𝑡𝐼,

(6.10)

from which we recover the solution 𝑥 = 𝑧/𝜈. In essence, we first normalize the spectrum by
the smallest eigenvalue, and then minimize the largest eigenvalue of the normalized linear
matrix inequality. Compare Sec. 2.2.5.

58



6.2.3 Log-determinant

Consider again a symmetric positive-definite matrix 𝐴 ∈ 𝒮𝑚
+ . The determinant

det(𝐴) =
𝑚∏︁
𝑖=1

𝜆𝑖(𝐴)

is neither convex or concave, but log det(𝐴) is concave and we can write the inequality

𝑡 ≤ log det(𝐴)

in the form of the following problem:[︂
𝐴 𝑍
𝑍𝑇 diag(𝑍)

]︂
⪰ 0,

𝑍 is lower triangular,
𝑡 ≤∑︀𝑖 log𝑍𝑖𝑖.

(6.11)

The equivalence of the two problems follows from Lemma 6.1 and subadditivity of determi-
nant for semidefinite matrices. That is:

0 ≤ det(𝐴− 𝑍𝑇diag(𝑍)−1𝑍) ≤ det(𝐴) − det(𝑍𝑇diag(𝑍)−1𝑍)
= det(𝐴) − det(𝑍).

On the other hand the optimal value det(𝐴) is attained for 𝑍 = 𝐿𝐷 if 𝐴 = 𝐿𝐷𝐿𝑇 is the
LDL factorization of 𝐴.

The last inequality in problem (6.11) can of course be modeled using the exponential
cone as in Sec. 5.2. Note that we can replace that bound with 𝑡 ≤ (

∏︀
𝑖 𝑍𝑖𝑖)

1/𝑚 to get instead
the model of 𝑡 ≤ det(𝐴)1/𝑚 using Sec. 4.2.4.

6.2.4 Singular value optimization

We next consider a non-square matrix 𝐴 ∈ R𝑚×𝑝. Assume 𝑝 ≤ 𝑚 and denote the singular
values of 𝐴 by

𝜎1(𝐴) ≥ 𝜎2(𝐴) ≥ · · · ≥ 𝜎𝑝(𝐴) ≥ 0.

The singular values are connected to the eigenvalues of 𝐴𝑇𝐴 via

𝜎𝑖(𝐴) =
√︀

𝜆𝑖(𝐴𝑇𝐴), (6.12)

and if 𝐴 is square and symmetric then 𝜎𝑖(𝐴) = |𝜆𝑖(𝐴)|. We show next how to optimize
several functions of the singular values.
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Largest singular value

The epigraph 𝜎1(𝐴) ≤ 𝑡 can be characterized using (6.12) as

𝐴𝑇𝐴 ⪯ 𝑡2𝐼,

which from Schur’s lemma is equivalent to[︂
𝑡𝐼 𝐴
𝐴𝑇 𝑡𝐼

]︂
⪰ 0. (6.13)

The largest singular value 𝜎1(𝐴) is also called the spectral norm or the ℓ2-norm of 𝐴, ‖𝐴‖2 :=
𝜎1(𝐴).

Sum of singular values

The trace norm or the nuclear norm of 𝑋 is the dual of the ℓ2-norm:

‖𝑋‖* = sup
‖𝑍‖2≤1

tr(𝑋𝑇𝑍). (6.14)

It turns out that the nuclear norm corresponds to the sum of the singular values,

‖𝑋‖* =
𝑚∑︁
𝑖=1

𝜎𝑖(𝑋) =
𝑛∑︁

𝑖=1

√︀
𝜆𝑖(𝑋𝑇𝑋), (6.15)

which is easy to verify using singular value decomposition 𝑋 = 𝑈Σ𝑉 𝑇 . We have

sup
‖𝑍‖2≤1

tr(𝑋𝑇𝑍) = sup
‖𝑍‖2≤1

tr(Σ𝑇𝑈𝑇𝑍𝑉 )

= sup
‖𝑌 ‖2≤1

tr(Σ𝑇𝑌 )

= sup
|𝑦𝑖|≤1

𝑝∑︁
𝑖=1

𝜎𝑖𝑦𝑖 =

𝑝∑︁
𝑖=1

𝜎𝑖.

which shows (6.15). Alternatively, we can express (6.14) as the solution to

maximize tr(𝑋𝑇𝑍)

subject to
[︂

𝐼 𝑍𝑇

𝑍 𝐼

]︂
⪰ 0,

(6.16)

with the dual problem (see Example 8.8)

minimize tr(𝑈 + 𝑉 )/2

subject to
[︂

𝑈 𝑋𝑇

𝑋 𝑉

]︂
⪰ 0.

(6.17)

In other words, using strong duality we can characterize the epigraph ‖𝐴‖* ≤ 𝑡 with[︂
𝑈 𝐴𝑇

𝐴 𝑉

]︂
⪰ 0, tr(𝑈 + 𝑉 )/2 ≤ 𝑡. (6.18)

For a symmetric matrix the nuclear norm corresponds to the sum of absolute values of
eigenvalues, and for a semidefinite matrix it simply corresponds to the trace of the matrix.
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6.2.5 Matrix inequalities from Schur’s Lemma

Several quadratic or quadratic-over-linear matrix inequalities follow immediately from
Schur’s lemma. Suppose 𝐴 : R𝑚×𝑝 and 𝐵 : R𝑝×𝑝 are matrix variables. Then

𝐴𝑇𝐵−1𝐴 ⪯ 𝐶

if and only if [︂
𝐶 𝐴𝑇

𝐴 𝐵

]︂
⪰ 0.

6.2.6 Nonnegative polynomials

We next consider characterizations of polynomials constrained to be nonnegative on the real
axis. To that end, consider a polynomial basis function

𝑣(𝑡) =
(︀
1, 𝑡, . . . , 𝑡2𝑛

)︀
.

It is then well-known that a polynomial 𝑓 : R ↦→ R of even degree 2𝑛 is nonnegative on the
entire real axis

𝑓(𝑡) := 𝑥𝑇𝑣(𝑡) = 𝑥0 + 𝑥1𝑡 + · · · + 𝑥2𝑛𝑡
2𝑛 ≥ 0, ∀𝑡 (6.19)

if and only if it can be written as a sum of squared polynomials of degree 𝑛 (or less), i.e.,
for some 𝑞1, 𝑞2 ∈ R𝑛+1

𝑓(𝑡) = (𝑞𝑇1 𝑢(𝑡))2 + (𝑞𝑇2 𝑢(𝑡))2, 𝑢(𝑡) := (1, 𝑡, . . . , 𝑡𝑛). (6.20)

It turns out that an equivalent characterization of {𝑥 | 𝑥𝑇𝑣(𝑡) ≥ 0, ∀𝑡} can be given in terms
of a semidefinite variable 𝑋,

𝑥𝑖 = ⟨𝑋,𝐻𝑖⟩, 𝑖 = 0, . . . , 2𝑛, 𝑋 ∈ 𝒮𝑛+1
+ . (6.21)

where 𝐻𝑛+1
𝑖 ∈ R(𝑛+1)×(𝑛+1) are Hankel matrices

[𝐻𝑖]𝑘𝑙 =

{︂
1, 𝑘 + 𝑙 = 𝑖,
0, otherwise.

When there is no ambiguity, we drop the superscript on 𝐻𝑖. For example, for 𝑛 = 2 we have

𝐻0 =

⎡⎣ 1 0 0
0 0 0
0 0 0

⎤⎦ , 𝐻1 =

⎡⎣ 0 1 0
1 0 0
0 0 0

⎤⎦ , . . . 𝐻4 =

⎡⎣ 0 0 0
0 0 0
0 0 1

⎤⎦ .

To verify that (6.19) and (6.21) are equivalent, we first note that

𝑢(𝑡)𝑢(𝑡)𝑇 =
2𝑛∑︁
𝑖=0

𝐻𝑖𝑣𝑖(𝑡),
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i.e., ⎡⎢⎢⎢⎣
1
𝑡
...
𝑡𝑛

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
𝑡
...
𝑡𝑛

⎤⎥⎥⎥⎦
𝑇

=

⎡⎢⎢⎢⎣
1 𝑡 . . . 𝑡𝑛

𝑡 𝑡2 . . . 𝑡𝑛+1

...
... . . . ...

𝑡𝑛 𝑡𝑛+1 . . . 𝑡2𝑛

⎤⎥⎥⎥⎦ .

Assume next that 𝑓(𝑡) ≥ 0. Then from (6.20) we have

𝑓(𝑡) = (𝑞𝑇1 𝑢(𝑡))2 + (𝑞𝑇2 𝑢(𝑡))2

= ⟨𝑞1𝑞𝑇1 + 𝑞2𝑞
𝑇
2 , 𝑢(𝑡)𝑢(𝑡)𝑇 ⟩

=
∑︀2𝑛

𝑖=0⟨𝑞1𝑞𝑇1 + 𝑞2𝑞
𝑇
2 , 𝐻𝑖⟩𝑣𝑖(𝑡),

i.e., we have 𝑓(𝑡) = 𝑥𝑇𝑣(𝑡) with 𝑥𝑖 = ⟨𝑋,𝐻𝑖⟩, 𝑋 = (𝑞1𝑞
𝑇
1 + 𝑞2𝑞

𝑇
2 ) ⪰ 0. Conversely, assume

that (6.21) holds. Then

𝑓(𝑡) =
2𝑛∑︁
𝑖=0

⟨𝐻𝑖, 𝑋⟩𝑣𝑖(𝑡) = ⟨𝑋,
2𝑛∑︁
𝑖=0

𝐻𝑖𝑣𝑖(𝑡)⟩ = ⟨𝑋, 𝑢(𝑡)𝑢(𝑡)𝑇 ⟩ ≥ 0

since 𝑋 ⪰ 0. In summary, we can characterize the cone of nonnegative polynomials over the
real axis as

𝐾𝑛
∞ = {𝑥 ∈ R𝑛+1 | 𝑥𝑖 = ⟨𝑋,𝐻𝑖⟩, 𝑖 = 0, . . . , 2𝑛, 𝑋 ∈ 𝒮𝑛+1

+ }. (6.22)

Checking nonnegativity of a univariate polynomial thus corresponds to a semidefinite feasi-
bility problem.

Nonnegativity on a finite interval

As an extension we consider a basis function of degree 𝑛,

𝑣(𝑡) = (1, 𝑡, . . . , 𝑡𝑛).

A polynomial 𝑓(𝑡) := 𝑥𝑇𝑣(𝑡) is then nonnegative on a subinterval 𝐼 = [𝑎, 𝑏] ⊂ R if and only
𝑓(𝑡) can be written as a sum of weighted squares,

𝑓(𝑡) = 𝑤1(𝑡)(𝑞
𝑇
1 𝑢1(𝑡))

2 + 𝑤2(𝑡)(𝑞
𝑇
2 𝑢2(𝑡))

2

where 𝑤𝑖(𝑡) are polynomials nonnegative on [𝑎, 𝑏]. To describe the cone

𝐾𝑛
𝑎,𝑏 = {𝑥 ∈ R𝑛+1 | 𝑓(𝑡) = 𝑥𝑇𝑣(𝑡) ≥ 0, ∀𝑡 ∈ [𝑎, 𝑏]}

we distinguish between polynomials of odd and even degree.

• Even degree. Let 𝑛 = 2𝑚 and denote

𝑢1(𝑡) = (1, 𝑡, . . . , 𝑡𝑚), 𝑢2(𝑡) = (1, 𝑡, . . . , 𝑡𝑚−1).
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We choose 𝑤1(𝑡) = 1 and 𝑤2(𝑡) = (𝑡− 𝑎)(𝑏− 𝑡) and note that 𝑤2(𝑡) ≥ 0 on [𝑎, 𝑏]. Then
𝑓(𝑡) ≥ 0,∀𝑡 ∈ [𝑎, 𝑏] if and only if

𝑓(𝑡) = (𝑞𝑇1 𝑢1(𝑡))
2 + 𝑤2(𝑡)(𝑞

𝑇
2 𝑢2(𝑡))

2

for some 𝑞1, 𝑞2, and an equivalent semidefinite characterization can be found as

𝐾𝑛
𝑎,𝑏 = {𝑥 ∈ R𝑛+1 | 𝑥𝑖 = ⟨𝑋1, 𝐻

𝑚
𝑖 ⟩ + ⟨𝑋2, (𝑎 + 𝑏)𝐻𝑚−1

𝑖−1 − 𝑎𝑏𝐻𝑚−1
𝑖 −𝐻𝑚−1

𝑖−2 ⟩,
𝑖 = 0, . . . , 𝑛, 𝑋1 ∈ 𝒮𝑚

+ , 𝑋2 ∈ 𝒮𝑚−1
+ }. (6.23)

• Odd degree. Let 𝑛 = 2𝑚+1 and denote 𝑢(𝑡) = (1, 𝑡, . . . , 𝑡𝑚). We choose 𝑤1(𝑡) = (𝑡−𝑎)
and 𝑤2(𝑡) = (𝑏− 𝑡). We then have that 𝑓(𝑡) = 𝑥𝑇𝑣(𝑡) ≥ 0,∀𝑡 ∈ [𝑎, 𝑏] if and only if

𝑓(𝑡) = (𝑡− 𝑎)(𝑞𝑇1 𝑢(𝑡))2 + (𝑏− 𝑡)(𝑞𝑇2 𝑢(𝑡))2

for some 𝑞1, 𝑞2, and an equivalent semidefinite characterization can be found as

𝐾𝑛
𝑎,𝑏 = {𝑥 ∈ R𝑛+1 | 𝑥𝑖 = ⟨𝑋1, 𝐻

𝑚
𝑖−1 − 𝑎𝐻𝑚

𝑖 ⟩ + ⟨𝑋2, 𝑏𝐻
𝑚
𝑖 −𝐻𝑚

𝑖−1⟩,
𝑖 = 0, . . . , 𝑛, 𝑋1, 𝑋2 ∈ 𝒮𝑚

+ }. (6.24)

6.2.7 Hermitian matrices

Semidefinite optimization can be extended to complex-valued matrices. To that end, let ℋ𝑛

denote the cone of Hermitian matrices of order 𝑛, i.e.,

𝑋 ∈ ℋ𝑛 ⇐⇒ 𝑋 ∈ C𝑛×𝑛, 𝑋𝐻 = 𝑋, (6.25)

where superscript ’𝐻’ denotes Hermitian (or complex) transposition. Then 𝑋 ∈ ℋ𝑛
+ if and

only if

𝑧𝐻𝑋𝑧 = (ℜ𝑧 − 𝑖ℑ𝑧)𝑇 (ℜ𝑋 + 𝑖ℑ𝑋)(ℜ𝑧 + 𝑖ℑ𝑧)

=

[︂
ℜ𝑧
ℑ𝑧

]︂𝑇 [︂ ℜ𝑋 −ℑ𝑋
ℑ𝑋 ℜ𝑋

]︂ [︂
ℜ𝑧
ℑ𝑧

]︂
≥ 0, ∀𝑧 ∈ C𝑛.

In other words,

𝑋 ∈ ℋ𝑛
+ ⇐⇒

[︂
ℜ𝑋 −ℑ𝑋
ℑ𝑋 ℜ𝑋

]︂
∈ 𝒮2𝑛

+ . (6.26)

Note that (6.25) implies skew-symmetry of ℑ𝑋, i.e., ℑ𝑋 = −ℑ𝑋𝑇 .

6.2.8 Nonnegative trigonometric polynomials

As a complex-valued variation of the sum-of-squares representation we consider trigonometric
polynomials; optimization over cones of nonnegative trigonometric polynomials has several
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important engineering applications. Consider a trigonometric polynomial evaluated on the
complex unit-circle

𝑓(𝑧) = 𝑥0 + 2ℜ(
𝑛∑︁

𝑖=1

𝑥𝑖𝑧
−𝑖), |𝑧| = 1 (6.27)

parametrized by 𝑥 ∈ R× C𝑛. We are interested in characterizing the cone of trigonometric
polynomials that are nonnegative on the angular interval [0, 𝜋],

𝐾𝑛
0,𝜋 = {𝑥 ∈ R× C𝑛 | 𝑥0 + 2ℜ(

𝑛∑︁
𝑖=1

𝑥𝑖𝑧
−𝑖) ≥ 0, ∀𝑧 = 𝑒𝑗𝑡, 𝑡 ∈ [0, 𝜋]}.

Consider a complex-valued basis function

𝑣(𝑧) = (1, 𝑧, . . . , 𝑧𝑛).

The Riesz-Fejer Theorem states that a trigonometric polynomial 𝑓(𝑧) in (6.27) is nonnegative
(i.e., 𝑥 ∈ 𝐾𝑛

0,𝜋) if and only if for some 𝑞 ∈ C𝑛+1

𝑓(𝑧) = |𝑞𝐻𝑣(𝑧)|2. (6.28)

Analogously to Sec. 6.2.6 we have a semidefinite characterization of the sum-of-squares rep-
resentation, i.e., 𝑓(𝑧) ≥ 0, ∀𝑧 = 𝑒𝑗𝑡, 𝑡 ∈ [0, 2𝜋] if and only if

𝑥𝑖 = ⟨𝑋,𝑇𝑖⟩, 𝑖 = 0, . . . , 𝑛, 𝑋 ∈ ℋ𝑛+1
+ (6.29)

where 𝑇 𝑛+1
𝑖 ∈ R(𝑛+1)×(𝑛+1) are Toeplitz matrices

[𝑇𝑖]𝑘𝑙 =

{︂
1, 𝑘 − 𝑙 = 𝑖
0, otherwise , 𝑖 = 0, . . . , 𝑛.

When there is no ambiguity, we drop the superscript on 𝑇𝑖. For example, for 𝑛 = 2 we have

𝑇0 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ , 𝑇1 =

⎡⎣ 0 0 0
1 0 0
0 1 0

⎤⎦ , 𝑇2 =

⎡⎣ 0 0 0
0 0 0
1 0 0

⎤⎦ .

To prove correctness of the semidefinite characterization, we first note that

𝑣(𝑧)𝑣(𝑧)𝐻 = 𝐼 +
𝑛∑︁

𝑖=1

(𝑇𝑖𝑣𝑖(𝑧)) +
𝑛∑︁

𝑖=1

(𝑇𝑖𝑣𝑖(𝑧))𝐻

i.e., ⎡⎢⎢⎢⎣
1
𝑧
...
𝑧𝑛

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
𝑧
...
𝑧𝑛

⎤⎥⎥⎥⎦
𝐻

=

⎡⎢⎢⎢⎣
1 𝑧−1 . . . 𝑧−𝑛

𝑧 1 . . . 𝑧1−𝑛

...
... . . . ...

𝑧𝑛 𝑧𝑛−1 . . . 1

⎤⎥⎥⎥⎦ .

64



Next assume that (6.28) is satisfied. Then

𝑓(𝑧) = ⟨𝑞𝑞𝐻 , 𝑣(𝑧)𝑣(𝑧)𝐻⟩
= ⟨𝑞𝑞𝐻 , 𝐼⟩ + ⟨𝑞𝑞𝐻 ,∑︀𝑛

𝑖=1 𝑇𝑖𝑣𝑖(𝑧)⟩ + ⟨𝑞𝑞𝐻 ,∑︀𝑛
𝑖=1 𝑇

𝑇
𝑖 𝑣𝑖(𝑧)⟩

= ⟨𝑞𝑞𝐻 , 𝐼⟩ +
∑︀𝑛

𝑖=1⟨𝑞𝑞𝐻 , 𝑇𝑖⟩𝑣𝑖(𝑧) +
∑︀𝑛

𝑖=1⟨𝑞𝑞𝐻 , 𝑇 𝑇
𝑖 ⟩𝑣𝑖(𝑧)

= 𝑥0 + 2ℜ(
∑︀𝑛

𝑖=1 𝑥𝑖𝑣𝑖(𝑧))

with 𝑥𝑖 = ⟨𝑞𝑞𝐻 , 𝑇𝑖⟩. Conversely, assume that (6.29) holds. Then

𝑓(𝑧) = ⟨𝑋, 𝐼⟩ +
𝑛∑︁

𝑖=1

⟨𝑋,𝑇𝑖⟩𝑣𝑖(𝑧) +
𝑛∑︁

𝑖=1

⟨𝑋,𝑇 𝑇
𝑖 ⟩𝑣𝑖(𝑧) = ⟨𝑋, 𝑣(𝑧)𝑣(𝑧)𝐻⟩ ≥ 0.

In other words, we have shown that

𝐾𝑛
0,𝜋 = {𝑥 ∈ R× C𝑛 | 𝑥𝑖 = ⟨𝑋,𝑇𝑖⟩, 𝑖 = 0, . . . , 𝑛, 𝑋 ∈ ℋ𝑛+1

+ }. (6.30)

Nonnegativity on a subinterval

We next sketch a few useful extensions. An extension of the Riesz-Fejer Theorem states that
a trigonometric polynomial 𝑓(𝑧) of degree 𝑛 is nonnegative on 𝐼(𝑎, 𝑏) = {𝑧 | 𝑧 = 𝑒𝑗𝑡, 𝑡 ∈
[𝑎, 𝑏] ⊆ [0, 𝜋]} if and only if it can be written as a weighted sum of squared trigonometric
polynomials

𝑓(𝑧) = |𝑓1(𝑧)|2 + 𝑔(𝑧)|𝑓2(𝑧)|2

where 𝑓1, 𝑓2, 𝑔 are trigonemetric polynomials of degree 𝑛, 𝑛 − 𝑑 and 𝑑, respectively, and
𝑔(𝑧) ≥ 0 on 𝐼(𝑎, 𝑏). For example 𝑔(𝑧) = 𝑧 + 𝑧−1 − 2 cos𝛼 is nonnegative on 𝐼(0, 𝛼), and it
can be verified that 𝑓(𝑧) ≥ 0, ∀𝑧 ∈ 𝐼(0, 𝛼) if and only if

𝑥𝑖 = ⟨𝑋1, 𝑇
𝑛+1
𝑖 ⟩ + ⟨𝑋2, 𝑇

𝑛
𝑖+1⟩ + ⟨𝑋2, 𝑇

𝑛
𝑖−1⟩ − 2 cos(𝛼)⟨𝑋2, 𝑇

𝑛
𝑖 ⟩,

for 𝑋1 ∈ ℋ𝑛+1
+ , 𝑋2 ∈ ℋ𝑛

+, i.e.,

𝐾𝑛
0,𝛼 = {𝑥 ∈ R× C𝑛 | 𝑥𝑖 = ⟨𝑋1, 𝑇

𝑛+1
𝑖 ⟩ + ⟨𝑋2, 𝑇

𝑛
𝑖+1⟩ + ⟨𝑋2, 𝑇

𝑛
𝑖−1⟩

−2 cos(𝛼)⟨𝑋2, 𝑇
𝑛
𝑖 ⟩, 𝑋1 ∈ ℋ𝑛+1

+ , 𝑋2 ∈ ℋ𝑛
+}.

(6.31)

Similarly 𝑓(𝑧) ≥ 0, ∀𝑧 ∈ 𝐼(𝛼, 𝜋) if and only if

𝑥𝑖 = ⟨𝑋1, 𝑇
𝑛+1
𝑖 ⟩ + ⟨𝑋2, 𝑇

𝑛
𝑖+1⟩ + ⟨𝑋2, 𝑇

𝑛
𝑖−1⟩ − 2 cos(𝛼)⟨𝑋2, 𝑇

𝑛
𝑖 ⟩

i.e.,

𝐾𝑛
𝛼,𝜋 = {𝑥 ∈ R× C𝑛 | 𝑥𝑖 = ⟨𝑋1, 𝑇

𝑛+1
𝑖 ⟩ + ⟨𝑋2, 𝑇

𝑛
𝑖+1⟩ + ⟨𝑋2, 𝑇

𝑛
𝑖−1⟩

+2 cos(𝛼)⟨𝑋2, 𝑇
𝑛
𝑖 ⟩, 𝑋1 ∈ ℋ𝑛+1

+ , 𝑋2 ∈ ℋ𝑛
+}.

(6.32)
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6.3 Semidefinite optimization case studies

6.3.1 Nearest correlation matrix

We consider the set

𝑆 = {𝑋 ∈ 𝒮𝑛
+ | 𝑋𝑖𝑖 = 1, 𝑖 = 1, . . . , 𝑛}

(shown in Fig. 6.1 for 𝑛 = 3). For 𝐴 ∈ 𝒮𝑛 the nearest correlation matrix is

𝑋⋆ = arg min
𝑋∈𝑆

‖𝐴−𝑋‖𝐹 ,

i.e., the projection of 𝐴 onto the set 𝑆. To pose this as a conic optimization we define the
linear operator

svec(𝑈) = (𝑈11,
√

2𝑈21, . . . ,
√

2𝑈𝑛1, 𝑈22,
√

2𝑈32, . . . ,
√

2𝑈𝑛2, . . . , 𝑈𝑛𝑛),

which extracts and scales the lower-triangular part of 𝑈 . We then get a conic formulation
of the nearest correlation problem exploiting symmetry of 𝐴−𝑋,

minimize 𝑡
subject to ‖𝑧‖2 ≤ 𝑡,

svec(𝐴−𝑋) = 𝑧,
diag(𝑋) = 𝑒,
𝑋 ⪰ 0.

(6.33)

This is an example of a problem with both conic quadratic and semidefinite constraints in
primal form. We can add different constraints to the problem, for example a bound 𝛾 on
the smallest eigenvalue by replacing 𝑋 ⪰ 0 with 𝑋 ⪰ 𝛾𝐼.

6.3.2 Extremal ellipsoids

Given a polytope we can find the largest ellipsoid contained in the polytope, or the smallest
ellipsoid containing the polytope (for certain representations of the polytope).

Maximal inscribed ellipsoid

Consider a polytope

𝑆 = {𝑥 ∈ R𝑛 | 𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚}.

The ellipsoid

ℰ := {𝑥 | 𝑥 = 𝐶𝑢 + 𝑑, ‖𝑢‖ ≤ 1}

is contained in 𝑆 if and only if

max
‖𝑢‖2≤1

𝑎𝑇𝑖 (𝐶𝑢 + 𝑑) ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚
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or equivalently, if and only if

‖𝐶𝑎𝑖‖2 + 𝑎𝑇𝑖 𝑑 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚.

Since Vol(ℰ) ≈ det(𝐶)1/𝑛 the maximum-volume inscribed ellipsoid is the solution to

maximize det(𝐶)
subject to ‖𝐶𝑎𝑖‖2 + 𝑎𝑇𝑖 𝑑 ≤ 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,

𝐶 ⪰ 0.

In Sec. 6.2.2 we show how to maximize the determinant of a positive definite matrix.

Minimal enclosing ellipsoid

Next consider a polytope given as the convex hull of a set of points,

𝑆 ′ = conv{𝑥1, 𝑥2, . . . , 𝑥𝑚}, 𝑥𝑖 ∈ R𝑛.

The ellipsoid

ℰ ′ := {𝑥 | ‖𝑃𝑥− 𝑐‖2 ≤ 1}

has Vol(ℰ ′) ≈ det(𝑃 )−1/𝑛, so the minimum-volume enclosing ellipsoid is the solution to

maximize det(𝑃 )
subject to ‖𝑃𝑥𝑖 − 𝑐‖2 ≤ 1, 𝑖 = 1, . . . ,𝑚,

𝑃 ⪰ 0.

Fig. 6.2: Example of inner and outer ellipsoidal approximations of a pentagon in R2.

6.3.3 Polynomial curve-fitting

Consider a univariate polynomial of degree 𝑛,

𝑓(𝑡) = 𝑥0 + 𝑥1𝑡 + 𝑥2𝑡
2 + · · · + 𝑥𝑛𝑡

𝑛.
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Often we wish to fit such a polynomial to a given set of measurements or control points

{(𝑡1, 𝑦1), (𝑡2, 𝑦2), . . . , (𝑡𝑚, 𝑦𝑚)},

i.e., we wish to determine coefficients 𝑥𝑖, 𝑖 = 0, . . . , 𝑛 such that

𝑓(𝑡𝑗) ≈ 𝑦𝑗, 𝑗 = 1, . . . ,𝑚.

To that end, define the Vandermonde matrix

𝐴 =

⎡⎢⎢⎢⎣
1 𝑡1 𝑡21 . . . 𝑡𝑛1
1 𝑡2 𝑡22 . . . 𝑡𝑛2
...

...
...

...
1 𝑡𝑚 𝑡2𝑚 . . . 𝑡𝑛𝑚

⎤⎥⎥⎥⎦ .

We can then express the desired curve-fit compactly as

𝐴𝑥 ≈ 𝑦,

i.e., as a linear expression in the coefficients 𝑥. When the degree of the polynomial equals
the number measurements, 𝑛 = 𝑚, the matrix 𝐴 is square and non-singular (provided there
are no duplicate rows), so we can can solve

𝐴𝑥 = 𝑦

to find a polynomial that passes through all the control points (𝑡𝑖, 𝑦𝑖). Similarly, if 𝑛 > 𝑚
there are infinitely many solutions satisfying the underdetermined system 𝐴𝑥 = 𝑦. A typical
choice in that case is the least-norm solution

𝑥ln = arg min
𝐴𝑥=𝑦

‖𝑥‖2

which (assuming again there are no duplicate rows) equals

𝑥ln = 𝐴𝑇 (𝐴𝐴𝑇 )−1𝑦.

On the other hand, if 𝑛 < 𝑚 we generally cannot find a solution to the overdetermined
system 𝐴𝑥 = 𝑦, and we typically resort to a least-squares solution

𝑥ls = arg min ‖𝐴𝑥− 𝑦‖2

which is given by the formula (see Sec. 8.5.1)

𝑥ls = (𝐴𝑇𝐴)−1𝐴𝑇𝑦.

In the following we discuss how the semidefinite characterizations of nonnegative polynomials
(see Sec. 6.2.6) lead to more advanced and useful polynomial curve-fitting constraints.
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• Nonnegativity. One possible constraint is nonnegativity on an interval,

𝑓(𝑡) := 𝑥0 + 𝑥1𝑡 + · · · + 𝑥𝑛𝑡
𝑛 ≥ 0, ∀𝑡 ∈ [𝑎, 𝑏]

with a semidefinite characterization embedded in 𝑥 ∈ 𝐾𝑛
𝑎,𝑏, see (6.23).

• Monotonicity. We can ensure monotonicity of 𝑓(𝑡) by requiring that 𝑓 ′(𝑡) ≥ 0 (or
𝑓 ′(𝑡) ≤ 0), i.e.,

(𝑥1, 2𝑥2, . . . , 𝑛𝑥𝑛) ∈ 𝐾𝑛−1
𝑎,𝑏 ,

or

−(𝑥1, 2𝑥2, . . . , 𝑛𝑥𝑛) ∈ 𝐾𝑛−1
𝑎,𝑏 ,

respectively.

• Convexity or concavity. Convexity (or concavity) of 𝑓(𝑡) corresponds to 𝑓 ′′(𝑡) ≥ 0 (or
𝑓 ′′(𝑡) ≤ 0), i.e.,

(2𝑥2, 6𝑥3, . . . , (𝑛− 1)𝑛𝑥𝑛) ∈ 𝐾𝑛−2
𝑎,𝑏 ,

or

−(2𝑥2, 6𝑥3, . . . , (𝑛− 1)𝑛𝑥𝑛) ∈ 𝐾𝑛−2
𝑎,𝑏 ,

respectively.

As an example, we consider fitting a smooth polynomial

𝑓𝑛(𝑡) = 𝑥0 + 𝑥1𝑡 + · · · + 𝑥𝑛𝑡
𝑛

to the points {(−1, 1), (0, 0), (1, 1)}, where smoothness is implied by bounding |𝑓 ′
𝑛(𝑡)|. More

specifically, we wish to solve the problem

minimize 𝑧
subject to |𝑓 ′

𝑛(𝑡)| ≤ 𝑧, ∀𝑡 ∈ [−1, 1]
𝑓𝑛(−1) = 1, 𝑓𝑛(0) = 0, 𝑓𝑛(1) = 1,

or equivalently

minimize 𝑧
subject to 𝑧 − 𝑓 ′

𝑛(𝑡) ≥ 0, ∀𝑡 ∈ [−1, 1]
𝑓 ′
𝑛(𝑡) − 𝑧 ≥ 0, ∀𝑡 ∈ [−1, 1]
𝑓𝑛(−1) = 1, 𝑓𝑛(0) = 0, 𝑓𝑛(1) = 1.

Finally, we use the characterizations 𝐾𝑛
𝑎,𝑏 to get a conic problem

minimize 𝑧
subject to (𝑧 − 𝑥1,−2𝑥2, . . . ,−𝑛𝑥𝑛) ∈ 𝐾𝑛−1

−1,1

(𝑥1 − 𝑧, 2𝑥2, . . . , 𝑛𝑥𝑛) ∈ 𝐾𝑛−1
−1,1

𝑓𝑛(−1) = 1, 𝑓𝑛(0) = 0, 𝑓𝑛(1) = 1.
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Fig. 6.3: Graph of univariate polynomials of degree 2, 4, and 8, respectively, passing through
{(−1, 1), (0, 0), (1, 1)}. The higher-degree polynomials are increasingly smoother on [−1, 1].

In Fig. 6.3 we show the graphs for the resulting polynomails of degree 2, 4 and 8, re-
spectively. The second degree polynomial is uniquely determined by the three constraints
𝑓2(−1) = 1, 𝑓2(0) = 0, 𝑓2(1) = 1, i.e., 𝑓2(𝑡) = 𝑡2. Also, we obviously have a lower bound
on the largest derivative max𝑡∈[−1,1] |𝑓 ′

𝑛(𝑡)| ≥ 1. The computed fourth degree polynomial is
given by

𝑓4(𝑡) =
3

2
𝑡2 − 1

2
𝑡4

after rounding coefficients to rational numbers. Furthermore, the largest derivative is given
by

𝑓 ′
4(1/

√
2) =

√
2,

and 𝑓 ′′
4 (𝑡) < 0 on (1/

√
2, 1] so, although not visibly clear, the polynomial is nonconvex on

[−1, 1]. In Fig. 6.4 we show the graphs of the corresponding polynomials where we added a
convexity constraint 𝑓 ′′

𝑛(𝑡) ≥ 0, i.e.,

(2𝑥2, 6𝑥3, . . . , (𝑛− 1)𝑛𝑥𝑛) ∈ 𝐾𝑛−2
−1,1.

In this case, we get

𝑓4(𝑡) =
6

5
𝑡2 − 1

5
𝑡4

and the largest derivative increases to 8
5
.
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Fig. 6.4: Graph of univariate polynomials of degree 2, 4, and 8, respectively, passing through
{(−1, 1), (0, 0), (1, 1)}. The polynomials all have positive second derivative (i.e., they are
convex) on [−1, 1] and the higher-degree polynomials are increasingly smoother on that
interval.

6.3.4 Filter design problems

Filter design is an important application of optimization over trigonometric polynomials in
signal processing. We consider a trigonometric polynomial

𝐻(𝜔) = 𝑥0 + 2ℜ(
∑︀𝑛

𝑘=1 𝑥𝑘𝑒
−𝑗𝜔𝑘)

= 𝑎0 + 2
∑︀𝑛

𝑘=1 (𝑎𝑘 cos(𝜔𝑘) + 𝑏𝑘 sin(𝜔𝑘))

where 𝑎𝑘 := ℜ(𝑥𝑘), 𝑏𝑘 := ℑ(𝑥𝑘). If the function 𝐻(𝜔) is nonnegative we call it a transfer
function, and it describes how different harmonic components of a periodic discrete signal
are attenuated when a filter with transfer function 𝐻(𝜔) is applied to the signal.

We often wish a transfer function where 𝐻(𝜔) ≈ 1 for 0 ≤ 𝜔 ≤ 𝜔𝑝 and 𝐻(𝜔) ≈ 0 for
𝜔𝑠 ≤ 𝜔 ≤ 𝜋 for given constants 𝜔𝑝, 𝜔𝑠. One possible formulation for achieving this is

minimize 𝑡
subject to 0 ≤ 𝐻(𝜔) ∀𝜔 ∈ [0, 𝜋]

1 − 𝛿 ≤ 𝐻(𝜔) ≤ 1 + 𝛿 ∀𝜔 ∈ [0, 𝜔𝑝]
𝐻(𝜔) ≤ 𝑡 ∀𝜔 ∈ [𝜔𝑠, 𝜋],

which corresponds to minimizing 𝐻(𝑤) on the interval [𝜔𝑠, 𝜋] while allowing 𝐻(𝑤) to depart
from unity by a small amount 𝛿 on the interval [0, 𝜔𝑝]. Using the results from Sec. 6.2.8 (in
particular (6.30), (6.31) and (6.32)), we can pose this as a conic optimization problem

minimize 𝑡
subject to 𝑥 ∈ 𝐾𝑛

0,𝜋,
(𝑥0 − (1 − 𝛿), 𝑥1:𝑛) ∈ 𝐾𝑛

0,𝜔𝑝
,

−(𝑥0 − (1 + 𝛿), 𝑥1:𝑛) ∈ 𝐾𝑛
0,𝜔𝑝

,

−(𝑥0 − 𝑡, 𝑥1:𝑛) ∈ 𝐾𝑛
𝜔𝑠,𝜋,

(6.34)

which is a semidefinite optimization problem. In Fig. 6.5 we show 𝐻(𝜔) obtained by solving
(6.34) for 𝑛 = 10, 𝛿 = 0.05, 𝜔𝑝 = 𝜋/4 and 𝜔𝑠 = 𝜔𝑝 + 𝜋/8.
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Fig. 6.5: Plot of lowpass filter transfer function.

6.3.5 Relaxations of binary optimization

Semidefinite optimization is also useful for computing bounds on difficult non-convex or
combinatorial optimization problems. For example consider the binary linear optimization
problem

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ {0, 1}𝑛.
(6.35)

In general, problem (6.35) is a very difficult non-convex problem where we have to explore
2𝑛 different objectives. Alternatively, we can use semidefinite optimization to get a lower
bound on the optimal solution with polynomial complexity. We first note that

𝑥𝑖 ∈ {0, 1} ⇐⇒ 𝑥2
𝑖 = 𝑥𝑖,

which is, in fact, equivalent to a rank constraint on a semidefinite variable,

𝑋 = 𝑥𝑥𝑇 , diag(𝑋) = 𝑥.

By relaxing the rank 1 constraint on 𝑋 we get a semidefinite relaxation of (6.35),

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

diag(𝑋) = 𝑥,
𝑋 ⪰ 𝑥𝑥𝑇 ,

(6.36)

where we note that

𝑋 ⪰ 𝑥𝑥𝑇 ⇐⇒
[︂

1 𝑥𝑇

𝑥 𝑋

]︂
⪰ 0.

Since (6.36) is a semidefinite optimization problem, it can be solved very efficiently. Suppose
𝑥⋆ is an optimal solution for (6.35); then (𝑥⋆, 𝑥⋆(𝑥⋆)𝑇 ) is also feasible for (6.36), but the
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feasible set for (6.36) is larger than the feasible set for (6.35), so in general the optimal
solution of (6.36) serves as a lower bound. However, if the optimal solution 𝑋⋆ of (6.36) has
rank 1 we have found a solution to (6.35) also. The semidefinite relaxation can also be used
in a branch-bound mixed-integer exact algorithm for (6.35).

We can tighten (or improve) the relaxation (6.36) by adding other constraints that cut
away parts of the feasible set, without excluding rank 1 solutions. By tightening the re-
laxation, we reduce the gap between the optimal values of the original problem and the
relaxation. For example, we can add the constraints

0 ≤ 𝑋𝑖𝑗 ≤ 1, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛,
𝑋𝑖𝑖 ≥ 𝑋𝑖𝑗, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑛,

and so on. This will usually have a dramatic impact on solution times and memory re-
quirements. Already constraining a semidefinite matrix to be doubly nonnegative (𝑋𝑖𝑗 ≥ 0)
introduces additional 𝑛2 linear inequality constraints.

6.3.6 Relaxations of boolean optimization

Similarly to Sec. 6.3.5 we can use semidefinite relaxations of boolean constraints 𝑥 ∈
{−1,+1}𝑛. To that end, we note that

𝑥 ∈ {−1,+1}𝑛 ⇐⇒ 𝑋 = 𝑥𝑥𝑇 , diag(𝑋) = 𝑒, (6.37)

with a semidefinite relaxation 𝑋 ⪰ 𝑥𝑥𝑇 of the rank-1 constraint.
As a (standard) example of a combinatorial problem with boolean constraints, we consider

an undirected graph 𝐺 = (𝑉,𝐸) described by a set of vertices 𝑉 = {𝑣1, . . . , 𝑣𝑛} and a set of
edges 𝐸 = {(𝑣𝑖, 𝑣𝑗) | 𝑣𝑖, 𝑣𝑗 ∈ 𝑉, 𝑖 ̸= 𝑗}, and we wish to find the cut of maximum capacity.
A cut 𝐶 partitions the nodes 𝑉 into two disjoint sets 𝑆 and 𝑇 = 𝑉 ∖ 𝑆, and the cut-set 𝐼 is
the set of edges with one node in 𝑆 and another in 𝑇 , i.e.,

𝐼 = {(𝑢, 𝑣) ∈ 𝐸 | 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇}.

The capacity of a cut is then defined as the number of edges in the cut-set, |𝐼|.

v0

v1

v2

v3 v4

v5v6

Fig. 6.6: Undirected graph. The cut {𝑣2, 𝑣4, 𝑣5} has capacity 9 (thick edges).
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To maximize the capacity of a cut we define the symmetric adjacency matrix 𝐴 ∈ 𝒮𝑛,

[𝐴]𝑖𝑗 =

{︂
1, (𝑣𝑖, 𝑣𝑗) ∈ 𝐸,
0, otherwise,

where 𝑛 = |𝑉 |, and let

𝑥𝑖 =

{︂
+1, 𝑣𝑖 ∈ 𝑆,
−1, 𝑣𝑖 /∈ 𝑆.

Suppose 𝑣𝑖 ∈ 𝑆. Then 1 − 𝑥𝑖𝑥𝑗 = 0 if 𝑣𝑗 ∈ 𝑆 and 1 − 𝑥𝑖𝑥𝑗 = 2 if 𝑣𝑗 /∈ 𝑆, so we get an
expression for the capacity as

𝑐(𝑥) =
1

4

∑︁
𝑖𝑗

(1 − 𝑥𝑖𝑥𝑗)𝐴𝑖𝑗 =
1

4
𝑒𝑇𝐴𝑒− 1

4
𝑥𝑇𝐴𝑥,

and discarding the constant term 𝑒𝑇𝐴𝑒 gives us the MAX-CUT problem

minimize 𝑥𝑇𝐴𝑥
subject to 𝑥 ∈ {−1,+1}𝑛, (6.38)

with a semidefinite relaxation

minimize ⟨𝐴,𝑋⟩
subject to diag(𝑋) = 𝑒,

𝑋 ⪰ 0.
(6.39)
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Chapter 7

Practical optimization

In this chapter we discuss various practical aspects of creating optimization models.

7.1 Conic reformulations

Many nonlinear constraint families were reformulated to conic form in previous chapters, and
these examples are often sufficient to construct conic models for the optimization problems at
hand. In case you do need to go beyond the cookbook examples, however, a few composition
rules are worth knowing to guarantee correctness of your reformulation.

7.1.1 Perspective functions

The perspective of a function 𝑓(𝑥) is defined as 𝑠𝑓(𝑥/𝑠) on 𝑠 > 0. From any conic represen-
tation of 𝑡 ≥ 𝑓(𝑥) one can reach a representation of 𝑡 ≥ 𝑠𝑓(𝑥/𝑠) by exchanging all constants
𝑘 with their homogenized counterpart 𝑘𝑠.

Example 7.1. In Sec. 5.2.6 it was shown that the logarithm of sum of exponentials

𝑡 ≥ log(𝑒𝑥1 + · · · + 𝑒𝑥𝑛),

can be modeled as: ∑︀
𝑢𝑖 ≤ 1,

(𝑢𝑖, 1, 𝑥𝑖 − 𝑡) ∈ 𝐾exp, 𝑖 = 1, . . . , 𝑛.

It follows immediately that its perspective

𝑡 ≥ 𝑠 log(𝑒𝑥1/𝑠 + · · · + 𝑒𝑥𝑛/𝑠),

can be modeled as: ∑︀
𝑢𝑖 ≤ 𝑠,

(𝑢𝑖, 𝑠, 𝑥𝑖 − 𝑡) ∈ 𝐾exp, 𝑖 = 1, . . . , 𝑛.
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Proof. If [𝑡 ≥ 𝑓(𝑥)] ⇔ [𝑡 ≥ 𝑐(𝑥, 𝑟) + 𝑐0, 𝐴(𝑥, 𝑟) + 𝑏 ∈ 𝐾] for some linear functions 𝑐 and 𝐴, a
cone 𝐾, and artificial variable 𝑟, then [𝑡 ≥ 𝑠𝑓(𝑥/𝑠)] ⇔ [𝑡 ≥ 𝑠

(︀
𝑐(𝑥/𝑠, 𝑟) + 𝑐0

)︀
, 𝐴(𝑥/𝑠, 𝑟) + 𝑏 ∈

𝐾] ⇔ [𝑡 ≥ 𝑐(𝑥, 𝑟) + 𝑐0𝑠, 𝐴(𝑥, 𝑟) + 𝑏𝑠 ∈ 𝐾], where 𝑟 is taken as a new artificial variable in
place of 𝑟𝑠.

7.1.2 Composite functions

In representing composites 𝑓(𝑔(𝑥)), it is often helpful to move the inner function 𝑔(𝑥) to a
separate constraint. That is, we would like 𝑡 ≥ 𝑓(𝑔(𝑥)) to be reformulated as 𝑡 ≥ 𝑓(𝑟) for a
new variable 𝑟 constrained as 𝑟 = 𝑔(𝑥). This reformulation works directly as stated if 𝑔 is
affine; that is, 𝑔(𝑥) = 𝑎𝑇𝑥+𝑏. Otherwise, one of two possible relaxations may be considered:

1. If 𝑓 is convex and 𝑔 is convex, then 𝑡 ≥ 𝑓(𝑟), 𝑟 ≥ 𝑔(𝑥) is equivalent to 𝑡 ≥{︃
𝑓(𝑔(𝑥)) if 𝑔(𝑥) ∈ ℱ+,

𝑓min otherwise ,

2. If 𝑓 is convex and 𝑔 is concave, then 𝑡 ≥ 𝑓(𝑟), 𝑟 ≤ 𝑔(𝑥) is equivalent to 𝑡 ≥{︃
𝑓(𝑔(𝑥)) if 𝑔(𝑥) ∈ ℱ−,

𝑓min otherwise ,

where ℱ+ (resp. ℱ−) is the domain on which 𝑓 is nondecreasing (resp. nonincreasing),
and 𝑓min is the minimum of 𝑓 , if finite, and −∞ otherwise. Note that Relaxation 1 provides
an exact representation if 𝑔(𝑥) ∈ ℱ+ for all 𝑥 in domain, and likewise for Relaxation 2 if
𝑔(𝑥) ∈ ℱ− for all 𝑥 in domain.

Proof. Consider Relaxation 1. Intuitively, if 𝑟 ∈ ℱ+, you can expect clever solvers to drive
𝑟 towards −∞ in attempt to relax 𝑡 ≥ 𝑓(𝑟), and this push continues until 𝑟 ≥ 𝑔(𝑥) becomes
active or else — in case 𝑔(𝑥) ̸∈ ℱ+ — until 𝑓min is reached. On the other hand, if 𝑟 ∈ ℱ−

(and thus 𝑟 ≥ 𝑔(𝑥) ∈ ℱ−) then solvers will drive 𝑟 towards +∞ until 𝑓min is reached.

Example 7.2. Here are some simple substitutions.

• The inequality 𝑡 ≥ exp(𝑔(𝑥)) can be rewritten as 𝑡 ≥ exp(𝑟) and 𝑟 ≥ 𝑔(𝑥) for all
convex functions 𝑔(𝑥). This is because 𝑓(𝑟) = exp(𝑟) is nondecreasing everywhere.

• The inequality 2𝑠𝑡 ≥ 𝑔(𝑥)2 can be rewritten as 2𝑠𝑡 ≥ 𝑟2 and 𝑟 ≥ 𝑔(𝑥) for all
nonnegative convex functions 𝑔(𝑥). This is because 𝑓(𝑟) = 𝑟2 is nondecreasing on
𝑟 ≥ 0.

• The nonconvex inequality 𝑡 ≥ (𝑥2 − 1)2 can be relaxed as 𝑡 ≥ 𝑟2 and 𝑟 ≥ 𝑥2 − 1.
This relaxation is exact on 𝑥2 − 1 ≥ 0 where 𝑓(𝑟) = 𝑟2 is nondecreasing, i.e., on the
disjoint domain |𝑥| ≥ 1. On the domain |𝑥| ≤ 1 it represents the strongest possible
convex cut given by 𝑡 ≥ 𝑓min = 0.
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Example 7.3. Some amount of work is generally required to find the correct reformulation
of a nested nonlinear constraint. For instance, suppose that for 𝑥, 𝑦, 𝑧 ≥ 0 with 𝑥𝑦𝑧 > 1
we want to write

𝑡 ≥ 1

𝑥𝑦𝑧 − 1
.

A natural first attempt is:

𝑡 ≥ 1

𝑟
, 𝑟 ≤ 𝑥𝑦𝑧 − 1,

which corresponds to Relaxation 2 with 𝑓(𝑟) = 1/𝑟 and 𝑔(𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑧 − 1 > 0. The
function 𝑓 is indeed convex and nonincreasing on all of 𝑔(𝑥, 𝑦, 𝑧), and the inequality 𝑡𝑟 ≥ 1
is moreover representable with a rotated quadratic cone. Unfortunately 𝑔 is not concave.
We know that a monomial like 𝑥𝑦𝑧 appears in connection with the power cone, but that
requires a homogeneous constraint such as 𝑥𝑦𝑧 ≥ 𝑢3. This gives us an idea to try

𝑡 ≥ 1

𝑟3
, 𝑟3 ≤ 𝑥𝑦𝑧 − 1,

which is 𝑓(𝑟) = 1/𝑟3 and 𝑔(𝑥, 𝑦, 𝑧) = (𝑥𝑦𝑧 − 1)1/3 > 0. This provides the right balance:
all conditions for validity and exactness of Relaxation 2 are satisfied. Introducing another
variable 𝑢 we get the following model:

𝑡𝑟3 ≥ 1, 𝑥𝑦𝑧 ≥ 𝑢3, 𝑢 ≥ (𝑟3 + 13)1/3,

We refer to Sec. 4 to verify that all the constraints above are representable using power
cones. We leave it as an exercise to find other conic representations, based on other
transformations of the original inequality.

7.1.3 Convex univariate piecewise-defined functions

Consider a univariate function with 𝑘 pieces:

𝑓(𝑥) =

⎧⎪⎨⎪⎩
𝑓1(𝑥) if 𝑥 ≤ 𝛼1,

𝑓𝑖(𝑥) if 𝛼𝑖−1 ≤ 𝑥 ≤ 𝛼𝑖, for 𝑖 = 2, . . . , 𝑘 − 1,

𝑓𝑘(𝑥) if 𝛼𝑘−1 ≤ 𝑥,

Suppose 𝑓(𝑥) is convex (in particular each piece is convex by itself) and 𝑓𝑖(𝛼𝑖) = 𝑓𝑖+1(𝛼𝑖). In
representing the epigraph 𝑡 ≥ 𝑓(𝑥) it is helpful to proceed via the equivalent representation:

𝑡 =
∑︀𝑘

𝑖=1 𝑡𝑖 −
∑︀𝑘−1

𝑖=1 𝑓𝑖(𝛼𝑖),

𝑥 =
∑︀𝑘

𝑖=1 𝑥𝑖 −
∑︀𝑘−1

𝑖=1 𝛼𝑖,
𝑡𝑖 ≥ 𝑓𝑖(𝑥𝑖) for 𝑖 = 1, . . . , 𝑘,
𝑥1 ≤ 𝛼1, 𝛼𝑖−1 ≤ 𝑥𝑖 ≤ 𝛼𝑖 for 𝑖 = 2, . . . , 𝑘 − 1, 𝛼𝑘−1 ≤ 𝑥𝑘.
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Proof. In the special case when 𝑘 = 2 and 𝛼1 = 𝑓1(𝛼1) = 𝑓2(𝛼1) = 0 the epigraph of 𝑓 is
equal to the Minkowski sum {(𝑡1 + 𝑡2, 𝑥1 + 𝑥2) : 𝑡𝑖 ≥ 𝑓𝑖(𝑥𝑖)}. In general the epigraph over
two consecutive pieces is obtained by shifting them to (0, 0), computing the Minkowski sum
and shifting back. Finally more than two pieces can be joined by continuing this argument
by induction.

As the reformulation grows in size with the number of pieces, it is preferable to keep
this number low. Trivially, if 𝑓𝑖(𝑥) = 𝑓𝑖+1(𝑥), these two pieces can be merged. Substituting
𝑓𝑖(𝑥) and 𝑓𝑖+1(𝑥) for max(𝑓𝑖(𝑥), 𝑓𝑖+1(𝑥)) is sometimes an invariant change to facilitate this
merge. For instance, it always works for affine functions 𝑓𝑖(𝑥) and 𝑓𝑖+1(𝑥). Finally, if 𝑓(𝑥)
is symmetric around some point 𝛼, we can represent its epigraph via a piecewise function,
with only half the number of pieces, defined in terms of a new variable 𝑧 = |𝑥− 𝛼| + 𝛼.

Example 7.4 (Huber loss function). The Huber loss function

𝑓(𝑥) =

⎧⎪⎨⎪⎩
−2𝑥− 1 if 𝑥 ≤ −1,

𝑥2 if − 1 ≤ 𝑥 ≤ 1,

2𝑥− 1 if 1 ≤ 𝑥,

is convex and its epigraph 𝑡 ≥ 𝑓(𝑥) has an equivalent representation

𝑡 ≥ 𝑡1 + 𝑡2 + 𝑡3 − 2,
𝑥 = 𝑥1 + 𝑥2 + 𝑥3,
𝑡1 = −2𝑥1 − 1, 𝑡2 ≥ 𝑥2

2, 𝑡3 = 2𝑥3 − 1,
𝑥1 ≤ −1, −1 ≤ 𝑥2 ≤ 1, 1 ≤ 𝑥3,

where 𝑡2 ≥ 𝑥2
2 is representable by a rotated quadratic cone. No two pieces of 𝑓(𝑥) can be

merged to reduce the size of this formulation, but the loss function does satisfy a simple
symmetry; namely 𝑓(𝑥) = 𝑓(−𝑥). We can thus represent its epigraph by 𝑡 ≥ 𝑓(𝑧) and
𝑧 ≥ |𝑥|, where

𝑓(𝑧) =

{︃
𝑧2 if 𝑧 ≤ 1,

2𝑧 − 1 if 1 ≤ 𝑧.

In this particular example, however, unless the absolute value 𝑧 from 𝑧 ≥ |𝑥| is used
elsewhere, the cost of introducing it does not outweigh the savings achieved by going from
three pieces in 𝑥 to two pieces in 𝑧.
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7.2 Avoiding ill-posed problems

For a well-posed continuous problem a small change in the input data should induce a small
change of the optimal solution. A problem is ill-posed if small perturbations of the problem
data result in arbitrarily large perturbations of the solution, or even change the feasibility
status of the problem. In such cases small rounding errors, or solving the problem on a
different computer can result in different or wrong solutions.

In fact, from an algorithmic point of view, even computing a wrong solution is numerically
difficult for ill-posed problems. A rigorous definition of the degree of ill-posedness is possible
by defining a condition number. This is an attractive, but not very practical metric, as its
evaluation requires solving several auxiliary optimization problems. Therefore we only make
the modest recommendations to avoid problems

• that are nearly infeasible,

• with constraints that are linearly dependent, or nearly linearly dependent.

Example 7.5 (Near linear dependencies). To give some idea about the perils of near
linear dependence, consider this pair of optimization problems:

maximize 𝑥
subject to 2𝑥− 𝑦 ≥ −1,

2.0001𝑥− 𝑦 ≤ 0,

and

maximize 𝑥
subject to 2𝑥− 𝑦 ≥ −1,

1.9999𝑥− 𝑦 ≤ 0.

The first problem has a unique optimal solution (𝑥, 𝑦) = (104, 2 ·104 +1), while the second
problem is unbounded. This is caused by the fact that the hyperplanes (here: straight
lines) defining the constraints in each problem are almost parallel. Moreover, we can
consider another modification:

maximize 𝑥
subject to 2𝑥− 𝑦 ≥ −1,

2.001𝑥− 𝑦 ≤ 0,

with optimal solution (𝑥, 𝑦) = (103, 2 · 103 + 1), which shows how a small perturbation of
the coefficients induces a large change of the solution.

Typical examples of problems with nearly linearly dependent constraints are discretiza-
tions of continuous processes, where the constraints invariably become more correlated as
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we make the discretization finer; as such there may be nothing wrong with the discretiza-
tion or problem formulation, but we should expect numerical difficulties for sufficiently fine
discretizations.

One should also be careful not to specify problems whose optimal value is only achieved
in the limit. A trivial example is

minimize 𝑒𝑥, 𝑥 ∈ R.

The infimum value 0 is not attained for any finite 𝑥, which can lead to unspecified behaviour
of the solver. More examples of ill-posed conic problems are discussed in Fig. 7.1 and Sec.
8. In particular, Fig. 7.1 depicts some troublesome problems in two dimensions. In (a)
minimizing 𝑦 ≥ 1/𝑥 on the nonnegative orthant is unattained approaching zero for 𝑥 → ∞.
In (b) the only feasible point is (0, 0), but objectives maximizing 𝑥 are not blocked by the
purely vertical normal vectors of active constraints at this point, falsely suggesting local
progress could be made. In (c) the intersection of the two subsets is empty, but the distance
between them is zero. Finally in (d) minimizing 𝑥 on 𝑦 ≥ 𝑥2 is unbounded at minus infinity
for 𝑦 → ∞, but there is no improving ray to follow. Although seemingly unrelated, the four
cases are actually primal-dual pairs; (a) with (b) and (c) with (d). In fact, the missing normal
vector property in (b)—desired to certify optimality—can be attributed to (a) not attaining
the best among objective values at distance zero to feasibility, and the missing positive
distance property in (c)—desired to certify infeasibility—is because (d) has no improving
ray.

Fig. 7.1: Geometric representations of some ill-posed situations.
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7.3 Scaling

Another difficulty encountered in practice involves models that are badly scaled. Loosely
speaking, we consider a model to be badly scaled if

• variables are measured on very different scales,

• constraints or bounds are measured on very different scales.

For example if one variable 𝑥1 has units of molecules and another variable 𝑥2 measures
temperature, we might expect an objective function such as

𝑥1 + 1012𝑥2

and in finite precision the second term dominates the objective and renders the contribution
from 𝑥1 insignificant and unreliable.

A similar situation (from a numerical point of view) is encountered when using penal-
ization or big-𝑀 strategies. Assume we have a standard linear optimization problem (2.12)
with the additional constraint that 𝑥1 = 0. We may eliminate 𝑥1 completely from the model,
or we might add an additional constraint, but suppose we choose to formulate a penalized
problem instead

minimize 𝑐𝑇𝑥 + 1012𝑥1

subject to 𝐴𝑥 = 𝑏,
𝑥 ≥ 0,

reasoning that the large penalty term will force 𝑥1 = 0. However, if ‖𝑐‖ is small we have
the exact same problem, namely that in finite precision the penalty term will completely
dominate the objective and render the contribution 𝑐𝑇𝑥 insignificant or unreliable. Therefore,
the penalty term should be chosen carefully.

Example 7.6 (Risk-return tradeoff). Suppose we want to solve an efficient frontier variant
of the optimal portfolio problem from Sec. 3.3.3 with an objective of the form

maximize 𝜇𝑇𝑥− 1

2
𝛾𝑥𝑇Σ𝑥

where the parameter 𝛾 controls the tradeoff between return and risk. The user might
choose a very small 𝛾 to discount the risk term. This, however, may lead to numerical
issues caused by a very large solution. To see why, consider a simple one-dimensional,
unconstrained analogue:

maximize 𝑥− 1

2
𝛾𝑥2, 𝑥 ∈ R

and note that the maximum is attained for 𝑥 = 1/𝛾, which may be very large.
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Example 7.7 (Explicit redundant bounds). Consider again the problem (2.12), but with
additional (redundant) constraints 𝑥𝑖 ≤ 𝛾. This is a common approach for some optimiza-
tion practitioners. The problem we solve is then

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,
𝑥 ≤ 𝛾𝑒,

with a dual problem

maximize 𝑏𝑇𝑦 − 𝛾𝑒𝑇 𝑧
subject to 𝐴𝑇𝑦 + 𝑠− 𝑧 = 𝑐,

𝑠, 𝑧 ≥ 0.

Suppose we do not know a-priori an upper bound on ‖𝑥‖∞, so we choose a very large
𝛾 = 1012 reasoning that this will not change the optimal solution. Note that the large
variable bound becomes a penalty term in the dual problem; in finite precision such a
large bound will effectively destroy accuracy of the solution.

Example 7.8 (Big-M). Suppose we have a mixed integer model which involves a big-M
constraint (see Sec. 9), for instance

𝑎𝑇𝑥 ≤ 𝑏 + 𝑀(1 − 𝑧)

as in Sec. 9.1.3. The constant 𝑀 must be big enough to guarantee that the constraint
becomes redundant when 𝑧 = 0, or we risk shrinking the feasible set, perhaps to the point
of creating an infeasible model. On the other hand, the user might set 𝑀 to a huge, safe
value, say 𝑀 = 1012. While this is mathematically correct, it will lead to a model with
poorer linear relaxations and most likely increase solution time (sometimes dramatically).
It is therefore very important to put some effort into estimating a reasonable value of 𝑀
which is safe, but not too big.

7.4 The huge and the tiny

Some types of problems and constraints are especially prone to behave badly with very large
or very small numbers. We discuss such examples briefly in this section.
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Sum of squares

The sum of squares 𝑥2
1 + · · · + 𝑥2

𝑛 can be bounded above using the rotated quadratic cone:

𝑡 ≥ 𝑥2
1 + · · · + 𝑥2

𝑛 ⇐⇒ (
1

2
, 𝑡, 𝑥) ∈ 𝒬𝑛

r ,

but in most cases it is better to bound the square root with a quadratic cone:

𝑡′ ≥
√︁

𝑥2
1 + · · · + 𝑥2

𝑛 ⇐⇒ (𝑡′, 𝑥) ∈ 𝒬𝑛.

The latter has slightly better numerical properties: 𝑡′ is roughly comparable with 𝑥 and
is measured on the same scale, while 𝑡 grows as the square of 𝑥 which will sooner lead to
numerical instabilities.

Exponential cone

Using the function 𝑒𝑥 for 𝑥 ≤ −30 or 𝑥 ≥ 30 would be rather questionable if 𝑒𝑥 is supposed
to represent any realistic value. Note that 𝑒30 ≈ 1013 and that 𝑒30.0000001 − 𝑒30 ≈ 106, so a
tiny perturbation of the exponent produces a huge change of the result. Ideally, 𝑥 should
have a single-digit absolute value. For similar reasons, it is even more important to have
well-scaled data. For instance, in floating point arithmetic we have the “equality”

𝑒20 + 𝑒−20 = 𝑒20

since the smaller summand disappears in comparison to the other one, 1017 times bigger.
For the same reason it is advised to replace explicit inequalities involving exp(𝑥) with

log-sum-exp variants (see Sec. 5.2.6). For example, suppose we have a constraint such as

𝑡 ≥ 𝑒𝑥1 + 𝑒𝑥2 + 𝑒𝑥3 .

Then after a substitution 𝑡 = 𝑒𝑡
′ we have

1 ≥ 𝑒𝑥1−𝑡′ + 𝑒𝑥2−𝑡′ + 𝑒𝑥3−𝑡′

which has the advantage that 𝑡′ is of the same order of magnitude as 𝑥𝑖, and that the
exponents 𝑥𝑖 − 𝑡′ are likely to have much smaller absolute values than simply 𝑥𝑖.

Power cone

The power cone is not reliable when one of the exponents is very small. For example, consider
the function 𝑓(𝑥) = 𝑥0.01, which behaves almost like the indicator function of 𝑥 > 0 in the
sense that

𝑓(0) = 0, and 𝑓(𝑥) > 0.5 for 𝑥 > 10−30.

Now suppose 𝑥 = 10−20. Is the constraint 𝑓(𝑥) > 0.5 satisfied? In principle yes, but in
practice 𝑥 could have been obtained as a solution to an optimization problem and it may in
fact represent 0 up to numerical error. The function 𝑓(𝑥) is sensitive to changes in 𝑥 well
below standard numerical accuracy. The point 𝑥 = 0 does not satisfy 𝑓(𝑥) > 0.5 but it is
only 10−30 from doing so.
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7.5 Semidefinite variables

Special care should be given to models involving semidefinite matrix variables (see Sec. 6),
otherwise it is easy to produce an unnecessarily inefficient model. The general rule of thumb
is:

• having many small matrix variables is more efficient than one big matrix variable,

• efficiency drops with growing number of semidefinite terms involved in linear con-
straints. This can have much bigger impact on the solution time than increasing the
dimension of the semidefinite variable.

Let us consider a few examples.

Block matrices

Given two matrix variables 𝑋, 𝑌 ⪰ 0 do not assemble them in a block matrix and write the
constraints as [︂

𝑋 0
0 𝑌

]︂
⪰ 0.

This increases the dimension of the problem and, even worse, introduces unnecessary con-
straints for a large portion of entries of the block matrix.

Schur complement

Suppose we want to model a relaxation of a rank-one constraint:[︂
𝑋 𝑥
𝑥𝑇 1

]︂
⪰ 0.

where 𝑥 ∈ R𝑛 and 𝑋 ∈ 𝒮𝑛
+. The correct way to do this is to set up a matrix variable

𝑌 ∈ 𝒮𝑛+1
+ with only a linear number of constraints:

𝑌𝑖,𝑛+1 = 𝑥𝑖, 𝑖 = 1, . . . , 𝑛
𝑌𝑛+1,𝑛+1 = 1,
𝑌 ⪰ 0,

and use the upper-left 𝑛× 𝑛 part of 𝑌 as the original 𝑋. Going the other way around, i.e.
starting with a variable 𝑋 and aligning it with the corner of another, bigger semidefinite
matrix 𝑌 introduces 𝑛(𝑛+1)/2 equality constraints and will quickly have formidable solution
times.
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Sparse LMIs

Suppose we want to model a problem with a sparse linear matrix inequality (see Sec. 6.2.1)
such as:

minimize 𝑐𝑇𝑥

subject to 𝐴0 +
∑︀𝑘

𝑖=1 𝐴𝑖𝑥𝑖 ⪰ 0,

where 𝑥 ∈ R𝑘 and 𝐴𝑖 are symmetric 𝑛 × 𝑛 matrices. The representation of this problem in
primal form is:

minimize 𝑐𝑇𝑥

subject to 𝐴0 +
∑︀𝑘

𝑖=1 𝐴𝑖𝑥𝑖 = 𝑋,
𝑋 ⪰ 0,

and the linear constraint requires a full set of 𝑛(𝑛 + 1)/2 equalities, many of which are just
𝑋𝑘,𝑙 = 0, regardless of the sparsity of 𝐴𝑖. However the dual problem (see Sec. 8.6) is:

maximize −⟨𝐴0, 𝑍⟩
subject to ⟨𝐴𝑖, 𝑍⟩ = 𝑐𝑖, 𝑖 = 1, . . . , 𝑘,

𝑍 ⪰ 0,

and the number of nonzeros in linear constraints is just joint number of nonzeros in 𝐴𝑖. It
means that large, sparse LMIs should almost always be dualized and entered in that form
for efficiency reasons.

7.6 The quality of a solution

In this section we will discuss how to validate an obtained solution. Assume we have a conic
model with continuous variables only and that the optimization software has reported an
optimal primal and dual solution. Given such a solution, we might ask how to verify that it
is indeed feasible and optimal.

To that end, consider a simple model

minimize −𝑥2

subject to 𝑥1 + 𝑥2 ≤ 3,
𝑥2
2 ≤ 2,

𝑥1, 𝑥2 ≥ 0,

(7.1)

where a solver might approximate the solution as

𝑥1 = 0.0000000000000000 and 𝑥2 = 1.4142135623730951

and therefore the approximate optimal objective value is

−1.4142135623730951.
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The true objective value is −
√

2, so the approximate objective value is wrong by the amount

1.4142135623730951 −
√

2 ≈ 10−16.

Most likely this difference is irrelevant for all practical purposes. Nevertheless, in general a
solution obtained using floating point arithmetic is only an approximation. Most (if not all)
commercial optimization software uses double precision floating point arithmetic, implying
that about 16 digits are correct in the computations performed internally by the software.
This also means that irrational numbers such as

√
2 and 𝜋 can only be stored accurately

within 16 digits.

Verifying feasibility

A good practice after solving an optimization problem is to evaluate the reported solution.
At the very least this process should be carried out during the initial phase of building a
model, or if the reported solution is unexpected in some way. The first step in that process
is to check that the solution is feasible; in case of the small example (7.1) this amounts to
checking that:

𝑥1 + 𝑥2 = 0.0000000000000000 + 1.4142135623730951 ≤ 3,
𝑥2
2 = 2.0000000000000004 ≤ 2, (?)

𝑥1 = 0.0000000000000000 ≥ 0,
𝑥2 = 1.4142135623730951 ≥ 0,

which demonstrates that one constraint is slightly violated due to computations in finite
precision. It is up to the user to assess the significance of a specific violation; for example a
violation of one unit in

𝑥1 + 𝑥2 ≤ 1

may or may not be more significant than a violation of one unit in

𝑥1 + 𝑥2 ≤ 109.

The right-hand side of 109 may itself be the result of a computation in finite precision, and
may only be known with, say 3 digits of accuracy. Therefore, a violation of 1 unit is not
significant since the true right-hand side could just as well be 1.001·109. Certainly a violation
of 4 · 10−16 as in our example is within the numerical tolerance for zero and we would accept
the solution as feasible. In practice it would be standard to see violations of order 10−8.

Verifying optimality

Another question is how to verify that a feasible approximate solution is actually optimal,
which is answered by duality theory, which is discussed in Sec. 2.4 for linear problems and
in Sec. 8 in full generality. Following Sec. 8 we can derive an equivalent version of the dual
problem as:

maximize −3𝑦1 − 𝑦2 − 𝑦3
subject to 2𝑦2𝑦3 ≥ (𝑦1 + 1)2,

𝑦1 ≥ 0.
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This problem has a feasible point (𝑦1, 𝑦2, 𝑦3) = (0, 1/
√

2, 1/
√

2) with objective value −
√

2,
matching the objective value of the primal problem. By duality theory this proves that both
the primal and dual solutions are optimal. Again, in finite precision the dual objective value
may be reported as, for example

−1.4142135623730950

leading to a duality gap of about 10−16 between the approximate primal and dual objective
values. It is up to the user to assess the significance of any duality gap and accept or reject
the solution as sufficiently good approximation of the optimal value.

7.7 Distance to a cone

The violation of a linear constraint 𝑎𝑇𝑥 ≤ 𝑏 under a given solution 𝑥* is obviously

max(0, 𝑎𝑇𝑥* − 𝑏).

It is less obvious how to assess violations of conic constraints. To this end suppose we have
a convex cone 𝐾. The (Euclidean) projection of a point 𝑥 onto 𝐾 is defined as the solution
of the problem

minimize ‖𝑝− 𝑥‖2
subject to 𝑝 ∈ 𝐾.

(7.2)

We denote the projection by proj𝐾(𝑥). The distance of 𝑥 to 𝐾

dist(𝑥,𝐾) = ‖𝑥− proj𝐾(𝑥)‖2,
i.e. the objective value of (7.2), measures the violation of a conic constraint involving 𝐾.
Obviously

dist(𝑥,𝐾) = 0 ⇐⇒ 𝑥 ∈ 𝐾.

This distance measure is attractive because it depends only on the set 𝐾 and not on any
particular representation of 𝐾 using (in)equalities.

Example 7.9 (Surprisingly small distance). Let 𝐾 = 𝒫0.1,0.9
3 be the power cone defined

by the inequality 𝑥0.1𝑦0.9 ≥ |𝑧|. The point

𝑥* = (𝑥, 𝑦, 𝑧) = (0, 10000, 500)

is clearly not in the cone, in fact 𝑥0.1𝑦0.9 = 0 while |𝑧| = 500, so the violation of the conic
inequality is seemingly large. However, the point

𝑝 = (10−8, 10000, 500)

belongs to 𝒫0.1,0.9
3 (since (10−8)0.1 · 100000.9 ≈ 630), hence

dist(𝑥*,𝒫0.1,0.9
3 ) ≤ ‖𝑥* − 𝑝‖2 = 10−8.

Therefore the distance of 𝑥* to the cone is actually very small.
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Distance to certain cones

For some basic cone types the projection problem (7.2) can be solved analytically. Denoting
[𝑥]+ = max(0, 𝑥) we have that:

• For 𝑥 ∈ R the projection onto the nonnegative half-line is projR+
(𝑥) = [𝑥]+.

• For (𝑡, 𝑥) ∈ R× R𝑛−1 the projection onto the quadratic cone is

proj𝒬𝑛(𝑡, 𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(𝑡, 𝑥) if 𝑡 ≥ ‖𝑥‖2,
1
2

(︁
𝑡

‖𝑥‖2 + 1
)︁

(‖𝑥‖2, 𝑥) if − ‖𝑥‖2 < 𝑡 < ‖𝑥‖2,
0 if 𝑡 ≤ −‖𝑥‖2.

• For 𝑋 =
∑︀𝑛

𝑖=1 𝜆𝑖𝑞𝑖𝑞
𝑇
𝑖 the projection onto the semidefinite cone is

proj𝒮𝑛
+

(𝑋) =
𝑛∑︁

𝑖=1

[𝜆𝑖]+𝑞𝑖𝑞
𝑇
𝑖 .
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Chapter 8

Duality in conic optimization

In Sec. 2 we introduced duality and related concepts for linear optimization. Here we present
a more general version of this theory for conic optimization and we illustrate it with examples.
Although this chapter is self-contained, we recommend familiarity with Sec. 2, which some
of this material is a natural extension of.

Duality theory is a rich and powerful area of convex optimization, and central to under-
standing sensitivity analysis and infeasibility issues. Furthermore, it provides a simple and
systematic way of obtaining non-trivial lower bounds on the optimal value for many difficult
non-convex problems.

From now on we consider a conic problem in standard form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝐾,
(8.1)

where 𝐾 is a convex cone. In practice 𝐾 would likely be defined as a product

𝐾 = 𝐾1 × · · · ×𝐾𝑚

of smaller cones corresponding to actual constraints in the problem formulation. The abstract
formulation (8.1) encompasses such special cases as 𝐾 = R𝑛

+ (linear optimization), 𝐾𝑖 = R
(unconstrained variable) or 𝐾𝑖 = 𝒮𝑛

+ (1
2
𝑛(𝑛 + 1) variables representing the upper-triangular

part of a matrix).
The feasible set for (8.1):

ℱ𝑝 = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏} ∩𝐾

is a section of 𝐾. We say the problem is feasible if ℱ𝑝 ̸= ∅ and infeasible otherwise. The
value of (8.1) is defined as

𝑝⋆ = inf{𝑐𝑇𝑥 : 𝑥 ∈ ℱ𝑝},

allowing the special cases of 𝑝⋆ = +∞ (the problem is infeasible) and 𝑝⋆ = −∞ (the problem
is unbounded). Note that 𝑝⋆ may not be attained, i.e. the infimum is not necessarily a
minimum, although this sort of problems are ill-posed from a practical point of view (see
Sec. 7).
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Example 8.1 (Unattained problem value). The conic quadratic problem

minimize 𝑥
subject to (𝑥, 𝑦, 1) ∈ 𝒬3

𝑟,

with constraint equivalent to 2𝑥𝑦 ≥ 1, 𝑥, 𝑦 ≥ 0 has 𝑝⋆ = 0 but this optimal value is not
attained by any point in ℱ𝑝.

8.1 Dual cone

Suppose 𝐾 ⊆ R𝑛 is a closed convex cone. We define the dual cone 𝐾* as

𝐾* = {𝑦 ∈ R𝑛 : 𝑦𝑇𝑥 ≥ 0 ∀𝑥 ∈ 𝐾}. (8.2)

For simplicity we write 𝑦𝑇𝑥, denoting the standard Euclidean inner product, but everything
in this section applies verbatim to the inner product of matrices in the semidefinite context.
In other words 𝐾* consists of vectors which form an acute (or right) angle with every vector
in 𝐾. We see easily that 𝐾* is in fact a convex cone. The main example, associated with
linear optimization, is the dual of the positive orthant:

Lemma 8.1 (Dual of linear cone).

(R𝑛
+)* = R𝑛

+.

Proof. This is obvious for 𝑛 = 1, and then we use the simple fact

(𝐾1 × · · · ×𝐾𝑚)* = 𝐾*
1 × · · · ×𝐾*

𝑚,

which we invite the reader to prove.

All cones studied in this cookbook can be explicitly dualized as we show next.

Lemma 8.2 (Duals of nonlinear cones). We have the following:

• The quadratic, rotated quadratic and semidefinite cones are self-dual:

(𝒬𝑛)* = 𝒬𝑛, (𝒬𝑛
r )* = 𝒬𝑛

r , (𝒮𝑛
+)* = 𝒮𝑛

+.

• The dual of the power cone (4.4) is

(𝒫𝛼1,··· ,𝛼𝑚
𝑛 )* =

{︂
𝑦 ∈ R𝑛 :

(︂
𝑦1
𝛼1

, . . . ,
𝑦𝑚
𝛼𝑚

, 𝑦𝑚+1, . . . , 𝑦𝑛

)︂
∈ 𝒫𝛼1,··· ,𝛼𝑚

𝑛

}︂
.

90



• The dual of the geometric mean cone (4.5) is

(𝒢ℳ𝑛)* =

⎧⎨⎩𝑥 ∈ R𝑛 : (𝑛− 1)

(︃
𝑛−1∏︁
𝑖=1

𝑥𝑖

)︃1/(𝑛−1)

≥ |𝑥𝑛|, 𝑥1, . . . , 𝑥𝑛−1 ≥ 0

⎫⎬⎭ .

• The dual of the exponential cone (5.2) is the closure

(𝐾exp)* = cl
{︀
𝑦 ∈ R3 : 𝑦1 ≥ −𝑦3𝑒

𝑦2/𝑦3−1, 𝑦1 > 0, 𝑦3 < 0
}︀
.

Proof. We only sketch some parts of the proof and indicate geometric intuitions. First, let
us show (𝒬𝑛)* = 𝒬𝑛. For (𝑡, 𝑥), (𝑠, 𝑦) ∈ 𝒬𝑛 we have

𝑠𝑡 + 𝑦𝑇𝑥 ≥ ‖𝑦‖2‖𝑥‖2 + 𝑦𝑇𝑥 ≥ 0

by the Cauchy-Schwartz inequality |𝑢𝑇𝑣| ≤ ‖𝑢‖2‖𝑣‖2, therefore 𝒬𝑛 ⊆ (𝒬𝑛)*. Geometrically
we are just saying that the quadratic cone 𝒬𝑛 has a right angle at the apex, so any two
vectors inside the cone form at most a right angle. Now suppose (𝑠, 𝑦) is a point outside
𝒬𝑛. If (−𝑠,−𝑦) ∈ 𝒬𝑛 then −𝑠2 − 𝑦𝑇𝑦 < 0 and we showed (𝑠, 𝑦) ̸∈ (𝒬𝑛)*. Otherwise let
(𝑡, 𝑥) = proj𝒬𝑛(𝑠, 𝑦) be the projection (see Sec. 7.7); note that (𝑠, 𝑦) and (𝑡,−𝑥) ∈ 𝒬𝑛 form
an obtuse angle.

For the semidefinite cone we use the property ⟨𝑋, 𝑌 ⟩ ≥ 0 for 𝑋, 𝑌 ∈ 𝒮𝑛
+ (see Sec. 6.1.2).

Conversely, assume that 𝑍 ̸∈ 𝒮𝑛
+. Then there exists a 𝑤 satisfying ⟨𝑤𝑤𝑇 , 𝑍⟩ = 𝑤𝑇𝑍𝑤 < 0,

so 𝑍 ̸∈ (𝒮𝑛
+)*.

As our last exercise let us check that vectors in 𝐾exp and (𝐾exp)* form acute angles. By
definition of 𝐾exp and (𝐾exp)* we take 𝑥, 𝑦 such that:

𝑥1 ≥ 𝑥2 exp(𝑥3/𝑥2), 𝑦1 ≥ −𝑦3 exp(𝑦2/𝑦3 − 1), 𝑥1, 𝑥2, 𝑦1 > 0, 𝑦3 < 0,

and then we have

𝑦𝑇𝑥 = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 ≥ −𝑥2𝑦3 exp(𝑥3

𝑥2
+ 𝑦2

𝑦3
− 1) + 𝑥2𝑦2 + 𝑥3𝑦3

≥ −𝑥2𝑦3(
𝑥3

𝑥2
+ 𝑦2

𝑦3
) + 𝑥2𝑦2 + 𝑥3𝑦3 = 0,

using the inequality exp(𝑡) ≥ 1 + 𝑡. We refer to the literature for full proofs of all the
statements.

Finally it is nice to realize that (𝐾*)* = 𝐾 and that the cones {0} and R are each others’
duals. We leave it to the reader to check these facts.

8.2 Infeasibility in conic optimization

We can now discuss infeasibility certificates for conic problems. Given an optimization
problem, the first basic question we are interested in is its feasibility status. The theory
of infeasibility certificates for linear problems, including the Farkas lemma (see Sec. 2.3)
extends almost verbatim to the conic case.
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Lemma 8.3 (Farkas’ lemma, conic version). Suppose we have the conic optimization problem
(8.1). Exactly one of the following statements is true:

1. Problem (8.1) is feasible.

2. Problem (8.1) is infeasible, but there is a sequence 𝑥𝑛 ∈ 𝐾 such that ‖𝐴𝑥𝑛 − 𝑏‖ → 0.

3. There exists 𝑦 such that −𝐴𝑇𝑦 ∈ 𝐾* and 𝑏𝑇𝑦 > 0.

Problems which fall under option 2. (limit-feasible) are ill-posed: an arbitrarily small
perturbation of input data puts the problem in either category 1. or 3. This fringe case
should therefore not appear in practice, and if it does, it signals issues with the optimization
model which should be addressed.

Example 8.2 (Limit-feasible model). Here is an example of an ill-posed limit-feasible
model created by fixing one of the root variables of a rotated quadratic cone to 0.

minimize 𝑢
subject to (𝑢, 𝑣, 𝑤) ∈ 𝒬3

𝑟,
𝑣 = 0,
𝑤 ≥ 1.

The problem is clearly infeasible, but the sequence (𝑢𝑛, 𝑣𝑛, 𝑤𝑛) = (𝑛, 1/𝑛, 1) ∈ 𝒬3
𝑟 with

(𝑣𝑛, 𝑤𝑛) → (0, 1) makes it limit-feasible as in alternative 2. of Lemma 8.3. There is no
infeasibility certificate as in alternative 3.

Having cleared this detail we continue with the proof and example for the actually useful
part of conic Farkas’ lemma.

Proof. Consider the set

𝐴(𝐾) = {𝐴𝑥 : 𝑥 ∈ 𝐾}.

It is a convex cone. Feasibility is equivalent to 𝑏 ∈ 𝐴(𝐾). If 𝑏 ̸∈ 𝐴(𝐾) but 𝑏 ∈ cl(𝐴(𝐾))
then we have the second alternative. Finally, if 𝑏 ̸∈ cl(𝐴(𝐾)) then the closed convex cone
cl(𝐴(𝐾)) and the point 𝑏 can be strictly separated by a hyperplane passing through the
origin, i.e. there exists 𝑦 such that

𝑏𝑇𝑦 > 0, (𝐴𝑥)𝑇𝑦 ≤ 0 ∀𝑥 ∈ 𝐾.

But then 0 ≤ −(𝐴𝑥)𝑇𝑦 = (−𝐴𝑇𝑦)𝑇𝑥 for all 𝑥 ∈ 𝐾, so by definition of 𝐾* we have −𝐴𝑇𝑦 ∈
𝐾*, and we showed 𝑦 satisfies the third alternative. Finally, 1. and 3. are mutually exclusive,
since otherwise we would have

0 ≤ (−𝐴𝑇𝑦)𝑇𝑥 = −𝑦𝑇𝐴𝑥 = −𝑦𝑇 𝑏 < 0

and the same argument works in the limit if 𝑥𝑛 is a sequence as in 2. That proves the lemma.
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Therefore Farkas’ lemma implies that (up to certain ill-posed cases) either the problem
(8.1) is feasible (first alternative) or there is a certificate of infeasibility 𝑦 (last alternative).
In other words, every time we classify a model as infeasible, we can certify this fact by
providing an appropriate 𝑦. Note that when 𝐾 = R𝑛

+ we recover precisely the linear version,
Lemma 2.1.

Example 8.3 (Infeasible conic problem). Consider a minimization problem:

minimize 𝑥1

subject to −𝑥1 + 𝑥2 − 𝑥4 = 1,
2𝑥3 − 3𝑥4 = −1,

𝑥1 ≥
√︀

𝑥2
2 + 𝑥2

3,
𝑥4 ≥ 0.

It can be expressed in the standard form (8.1) with

𝐴 =

[︂
−1 1 0 −1
0 0 2 −3

]︂
, 𝑏 =

[︂
1
−1

]︂
, 𝐾 = 𝒬3 × R+, 𝑐 = [1, 0, 0, 0]𝑇 .

A certificate of infeasibility is 𝑦 = [1, 0]𝑇 . Indeed, 𝑏𝑇𝑦 = 1 > 0 and −𝐴𝑇𝑦 = [1,−1, 0, 1] ∈
𝐾* = 𝒬3 × R+. The certificate indicates that the first linear constraint alone causes
infeasibility, which is indeed the case: the first equality together with the conic constraints
yield a contradiction:

𝑥2 − 1 ≥ 𝑥2 − 1 − 𝑥4 = 𝑥1 ≥ |𝑥2|.

8.3 Lagrangian and the dual problem

Classical Lagrangian

In general constrained optimization we consider an optimization problem of the form

minimize 𝑓0(𝑥)
subject to 𝑓(𝑥) ≤ 0,

ℎ(𝑥) = 0,
(8.3)

where 𝑓0 : R𝑛 ↦→ R is the objective function, 𝑓 : R𝑛 ↦→ R𝑚 encodes inequality constraints,
and ℎ : R𝑛 ↦→ R𝑝 encodes equality constraints. Readers familiar with the method of Lagrange
multipliers or penalization will recognize the Lagrangian for (8.3), a function 𝐿 : R𝑛 ×R𝑚 ×
R𝑝 ↦→ R that augments the objective with a weighted combination of all the constraints,

𝐿(𝑥, 𝑦, 𝑠) = 𝑓0(𝑥) + 𝑦𝑇ℎ(𝑥) + 𝑠𝑇𝑓(𝑥). (8.4)
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The variables 𝑦 ∈ R𝑝 and 𝑠 ∈ R𝑚
+ are called Lagrange multipliers or dual variables. The

Lagrangian has the property that 𝐿(𝑥, 𝑦, 𝑠) ≤ 𝑓0(𝑥) whenever 𝑥 is feasible for (8.1) and
𝑠 ∈ R𝑚

+ . The optimal point satisfies the first-order optimality condition ∇𝑥𝐿(𝑥, 𝑦, 𝑠) = 0.
Moreover, the dual function 𝑔(𝑦, 𝑠) = inf𝑥 𝐿(𝑥, 𝑦, 𝑠) provides a lower bound for the optimal
value of (8.3) for any 𝑦 ∈ R𝑝 and 𝑠 ∈ R𝑚

+ , which leads to considering the dual problem of
maximizing 𝑔(𝑦, 𝑠).

Lagrangian for a conic problem

We next set up an analogue of the Lagrangian theory for the conic problem (8.1)

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝐾,

where 𝑥, 𝑐 ∈ R𝑛, 𝑏 ∈ R𝑚, 𝐴 ∈ R𝑚×𝑛 and 𝐾 ⊆ R𝑛 is a convex cone. We associate with (8.1)
a Lagrangian of the form 𝐿 : R𝑛 × R𝑚 ×𝐾* → R

𝐿(𝑥, 𝑦, 𝑠) = 𝑐𝑇𝑥 + 𝑦𝑇 (𝑏− 𝐴𝑥) − 𝑠𝑇𝑥.

For any feasible 𝑥* ∈ ℱ𝑝 and any (𝑦*, 𝑠*) ∈ R𝑚 ×𝐾* we have

𝐿(𝑥*, 𝑦*, 𝑠*) = 𝑐𝑇𝑥* + (𝑦*)𝑇 · 0 − (𝑠*)𝑇𝑥* ≤ 𝑐𝑇𝑥*. (8.5)

Note the we used the definition of the dual cone to conclude that (𝑠*)𝑇𝑥* ≥ 0. The dual
function is defined as the minimum of 𝐿(𝑥, 𝑦, 𝑠) over 𝑥. Thus the dual function of (8.1) is

𝑔(𝑦, 𝑠) = min
𝑥

𝐿(𝑥, 𝑦, 𝑠) = min
𝑥

𝑥𝑇 (𝑐− 𝐴𝑇𝑦 − 𝑠) + 𝑏𝑇𝑦 =

{︂
𝑏𝑇𝑦, 𝑐− 𝐴𝑇𝑦 − 𝑠 = 0,
−∞, otherwise.

Dual problem

From (8.5) every (𝑦, 𝑠) ∈ R𝑚 ×𝐾* satisfies 𝑔(𝑦, 𝑠) ≤ 𝑝⋆, i.e. 𝑔(𝑦, 𝑠) is a lower bound for 𝑝⋆.
To get the best such bound we maximize 𝑔(𝑦, 𝑠) over all (𝑦, 𝑠) ∈ R𝑚 ×𝐾* and get the dual
problem:

maximize 𝑏𝑇𝑦
subject to 𝑐− 𝐴𝑇𝑦 = 𝑠,

𝑠 ∈ 𝐾*,
(8.6)

or simply:

maximize 𝑏𝑇𝑦
subject to 𝑐− 𝐴𝑇𝑦 ∈ 𝐾*.

(8.7)

The optimal value of (8.6) will be denoted 𝑑⋆. As in the case of (8.1) (which from now on
we call the primal problem), the dual problem can be infeasible (𝑑⋆ = −∞), have an optimal
solution (−∞ < 𝑑⋆ < +∞) or be unbounded (𝑑⋆ = +∞). As before, the value 𝑑⋆ is defined
as a supremum of 𝑏𝑇𝑦 and may not be attained. Note that the roles of −∞ and +∞ are
now reversed because the dual is a maximization problem.
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Example 8.4 (More general constraints). We can just as easily derive the dual of a prob-
lem with more general constraints, without necessarily having to transform the problem to
standard form beforehand. Imagine, for example, that some solver accepts conic problems
of the form:

minimize 𝑐𝑇𝑥 + 𝑐𝑓

subject to 𝑙𝑐 ≤ 𝐴𝑥 ≤ 𝑢𝑐,
𝑙𝑥 ≤ 𝑥 ≤ 𝑢𝑥,
𝑥 ∈ 𝐾.

(8.8)

Then we define a Lagrangian with one set of dual variables for each constraint appearing
in the problem:

𝐿(𝑥, 𝑠𝑐𝑙 , 𝑠
𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢, 𝑠

𝑥
𝑛) = 𝑐𝑇𝑥 + 𝑐𝑓 − (𝑠𝑐𝑙 )

𝑇 (𝐴𝑥− 𝑙𝑐) − (𝑠𝑐𝑢)𝑇 (𝑢𝑐 − 𝐴𝑥)
−(𝑠𝑥𝑙 )𝑇 (𝑥− 𝑙𝑥) − (𝑠𝑥𝑢)𝑇 (𝑢𝑥 − 𝑥) − (𝑠𝑥𝑛)𝑇𝑥

= 𝑥𝑇 (𝑐− 𝐴𝑇 𝑠𝑐𝑙 + 𝐴𝑇 𝑠𝑐𝑢 − 𝑠𝑥𝑙 + 𝑠𝑥𝑢 − 𝑠𝑥𝑛)
+(𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑐)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

and that gives a dual problem

maximize (𝑙𝑐)𝑇 𝑠𝑐𝑙 − (𝑢𝑐)𝑇 𝑠𝑐𝑢 + (𝑙𝑥)𝑇 𝑠𝑥𝑙 − (𝑢𝑐)𝑇 𝑠𝑥𝑢 + 𝑐𝑓

subject to 𝑐 + 𝐴𝑇 (−𝑠𝑐𝑙 + 𝑠𝑐𝑢) − 𝑠𝑥𝑙 + 𝑠𝑥𝑢 − 𝑠𝑥𝑛 = 0,
𝑠𝑐𝑙 , 𝑠

𝑐
𝑢, 𝑠

𝑥
𝑙 , 𝑠

𝑥
𝑢 ≥ 0,

𝑠𝑥𝑛 ∈ 𝐾*.

Example 8.5 (Dual of simple portfolio). Consider a simplified version of the portfolio
optimization problem, where we maximize expected return subject to an upper bound on
the risk and no other constraints:

maximize 𝜇𝑇𝑥
subject to ‖𝐹𝑥‖2 ≤ 𝛾,

where 𝑥 ∈ R𝑛 and 𝐹 ∈ R𝑚×𝑛. The conic formulation is

maximize 𝜇𝑇𝑥
subject to (𝛾, 𝐹𝑥) ∈ 𝒬𝑚+1,

(8.9)

and we can directly write the Lagrangian

𝐿(𝑥, 𝑣, 𝑤) = 𝜇𝑇𝑥 + 𝑣𝛾 + 𝑤𝑇𝐹𝑥 = 𝑥𝑇 (𝜇 + 𝐹 𝑇𝑤) + 𝑣𝛾

with (𝑣, 𝑤) ∈ (𝒬𝑚+1)* = 𝒬𝑚+1. Note that we chose signs to have 𝐿(𝑥, 𝑣, 𝑤) ≥ 𝜇𝑇𝑥
since we are dealing with a maximization problem. The dual is now determined by the
conditions 𝐹 𝑇𝑤 + 𝜇 = 0 and 𝑣 ≥ ‖𝑤‖2, so it can be formulated as

minimize 𝛾‖𝑤‖2
subject to 𝐹 𝑇𝑤 = −𝜇.

(8.10)
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Note that it is actually more natural to view problem (8.9) as the dual form and problem
(8.10) as the primal. Indeed we can write the constraint in (8.9) as[︂

𝛾
0

]︂
−
[︂

0
−𝐹

]︂
𝑥 ∈ (𝑄𝑚+1)*

which fits naturally into the form (8.7). Having done this we can recover the dual as a
minimization problem in the standard form (8.1). We leave it to the reader to check that
we get the same answer as above.

8.4 Weak and strong duality

Weak duality

Suppose 𝑥* and (𝑦*, 𝑠*) are feasible points for the primal and dual problems (8.1) and (8.6),
respectively. Then we have

𝑏𝑇𝑦* = (𝐴𝑥*)𝑇𝑦* = (𝑥*)𝑇 (𝐴𝑇𝑦*) = (𝑥*)𝑇 (𝑐− 𝑠*) = 𝑐𝑇𝑥* − (𝑠*)𝑇𝑥* ≤ 𝑐𝑇𝑥* (8.11)

so the dual objective value is a lower bound on the objective value of the primal. In particular,
any dual feasible point (𝑦*, 𝑠*) gives a lower bound:

𝑏𝑇𝑦* ≤ 𝑝⋆

and we immediately get the next lemma.

Lemma 8.4 (Weak duality). 𝑑⋆ ≤ 𝑝⋆.

It follows that if 𝑏𝑇𝑦* = 𝑐𝑇𝑥* then 𝑥* is optimal for the primal, (𝑦*, 𝑠*) is optimal for
the dual and 𝑏𝑇𝑦* = 𝑐𝑇𝑥* is the common optimal objective value. This way we can use the
optimal dual solution to certify optimality of the primal solution and vice versa.

Complementary slackness

Moreover, (8.11) asserts that 𝑏𝑇𝑦* = 𝑐𝑇𝑥* is equivalent to orthogonality

(𝑠*)𝑇𝑥* = 0

i.e. complementary slackness. It is not hard to verify what complementary slackness means
for particular types of cones, for example

• for 𝑠, 𝑥 ∈ R+ we have 𝑠𝑥 = 0 iff 𝑠 = 0 or 𝑥 = 0,

• vectors (𝑠1, 𝑠), (𝑥1, 𝑥̃) ∈ 𝒬𝑛+1 are orthogonal iff (𝑠1, 𝑠) and (𝑥1,−𝑥̃) are parallel,

• vectors (𝑠1, 𝑠2, 𝑠), (𝑥1, 𝑥2, 𝑥̃) ∈ 𝒬𝑛+2
r are orthogonal iff (𝑠1, 𝑠2, 𝑠) and (𝑥2, 𝑥1,−𝑥̃) are

parallel.
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One implicit case is worth special attention: complementary slackness for a linear inequal-
ity constraint 𝑎𝑇𝑥 ≤ 𝑏 with a non-negative dual variable 𝑦 asserts that (𝑎𝑇𝑥* − 𝑏)𝑦* = 0.
This can be seen by directly writing down the appropriate Lagrangian for this type of con-
straint. Alternatively, we can introduce a slack variable 𝑢 = 𝑏− 𝑎𝑇𝑥 with a conic constraint
𝑢 ≥ 0 and let 𝑦 be the dual conic variable. In particular, if a constraint is non-binding in
the optimal solution (𝑎𝑇𝑥* < 𝑏) then the corresponding dual variable 𝑦* = 0. If 𝑦* > 0 then
it can be related to a shadow price, see Sec. 2.4.4 and Sec. 8.5.2.

Strong duality

The obvious question is now whether 𝑑⋆ = 𝑝⋆, that is if optimality of a primal solution can
always be certified by a dual solution with matching objective value, as for linear program-
ming. This turns out not to be the case for general conic problems.

Example 8.6 (Positive duality gap). Consider the problem

minimize 𝑥3

subject to 𝑥1 ≥
√︀
𝑥2
2 + 𝑥2

3,
𝑥2 ≥ 𝑥1, 𝑥3 ≥ −1.

The only feasible points are (𝑥, 𝑥, 0), so 𝑝⋆ = 0. The dual problem is

maximize −𝑦2
subject to 𝑦1 ≥

√︀
𝑦21 + (1 − 𝑦2)2,

with feasible points (𝑦, 1), hence 𝑑⋆ = −1.
Similarly, we consider a problem

minimize 𝑥1

subject to

⎡⎣ 0 𝑥1 0
𝑥1 𝑥2 0
0 0 1 + 𝑥1

⎤⎦ ∈ 𝒮3
+,

with feasible set {𝑥1 = 0, 𝑥2 ≥ 0} and optimal value 𝑝⋆ = 0. The dual problem can be
formulated as

maximize −𝑧2

subject to

⎡⎣ 𝑧1 (1 − 𝑧2)/2 0
(1 − 𝑧2)/2 0 0

0 0 𝑧2

⎤⎦ ∈ 𝒮3
+,

which has a feasible set {𝑧1 ≥ 0, 𝑧2 = 1} and dual optimal value 𝑑⋆ = −1.

To ensure strong duality for conic problems we need an additional regularity assumption.
As with the conic version of Farkas’ lemma Lemma 8.3, we stress that this is a technical con-
dition to eliminate ill-posed problems which should not be formed in practice. In particular,
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we invite the reader to think that strong duality holds for all well formed conic problems one
is likely to come across in applications, and that having a duality gap signals issues with the
model formulation.

We say problem (8.1) is very nicely posed if for all values of 𝑐0 the feasibility problem

𝑐𝑇𝑥 = 𝑐0, 𝐴𝑥 = 𝑏, 𝑥 ∈ 𝐾

satisfies either the first or third alternative in Lemma 8.3.

Lemma 8.5 (Strong duality). Suppose that (8.1) is very nicely posed and 𝑝⋆ is finite. Then
𝑑⋆ = 𝑝⋆.

Proof. For any 𝜀 > 0 consider the feasibility problem with variable 𝑥 and constraints[︂
−𝑐𝑇

𝐴

]︂
𝑥 =

[︂
−𝑝⋆ + 𝜀

𝑏

]︂
𝑥 ∈ 𝐾

that is
𝑐𝑇𝑥 = 𝑝⋆ − 𝜀,
𝐴𝑥 = 𝑏,
𝑥 ∈ 𝐾.

Optimality of 𝑝⋆ implies that the above problem is infeasible. By Lemma 8.3 and because
we assumed very-nice-posedness there exists 𝑦 = [𝑦0 𝑦]𝑇 such that[︀

𝑐, −𝐴𝑇
]︀
𝑦 ∈ 𝐾* and

[︀
−𝑝⋆ + 𝜀, 𝑏𝑇

]︀
𝑦 > 0.

If 𝑦0 = 0 then −𝐴𝑇𝑦 ∈ 𝐾* and 𝑏𝑇𝑦 > 0, which by Lemma 8.3 again would mean that the
original problem was infeasible, which is not the case. Hence we can rescale so that 𝑦0 = 1
and then we get

𝑐− 𝐴𝑇𝑦 ∈ 𝐾* and 𝑏𝑇𝑦 ≥ 𝑝⋆ − 𝜀.

The first constraint means that 𝑦 is feasible for the dual problem. By letting 𝜀 → 0 we
obtain 𝑑⋆ ≥ 𝑝⋆.

There are more direct conditions which guarantee strong duality, such as below.

Lemma 8.6 (Slater constraint qualification). Suppose that (8.1) is strictly feasible: there
exists a point 𝑥 ∈ int(𝐾) in the interior of 𝐾 such that 𝐴𝑥 = 𝑏. Then strong duality holds
if 𝑝⋆ is finite. Moreover, if both primal and dual problem are strictly feasible then 𝑝⋆ and 𝑑⋆

are attained.

We omit the proof which can be found in standard texts. Note that the first problem
from Example 8.6 does not satisfy Slater constraint qualification: the only feasible points
lie on the boundary of the cone (we say the problem has no interior). That problem is not
very nicely posed either: the point (𝑥1, 𝑥2, 𝑥3) = (0.5𝑐20𝜀

−1 +𝜀, 0.5𝑐20𝜀
−1, 𝑐0) ∈ 𝒬3 violates the

inequality 𝑥2 ≥ 𝑥1 by an arbitrarily small 𝜀, so the problem is infeasible but limit-feasible
(second alternative in Lemma 8.3).
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8.5 Applications of conic duality

8.5.1 Linear regression and the normal equation

Least-squares linear regression is the problem of minimizing ‖𝐴𝑥 − 𝑏‖22 over 𝑥 ∈ R𝑛, where
𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚 are fixed. This problem can be posed in conic form as

minimize 𝑡
subject to (𝑡, 𝐴𝑥− 𝑏) ∈ 𝒬𝑚+1,

and we can write the Lagrangian

𝐿(𝑡, 𝑥, 𝑢, 𝑣) = 𝑡− 𝑡𝑢− 𝑣𝑇 (𝐴𝑥− 𝑏) = 𝑡(1 − 𝑢) − 𝑥𝑇𝐴𝑇𝑣 + 𝑏𝑇𝑣

so the constraints in the dual problem are:

𝑢 = 1, 𝐴𝑇𝑣 = 0, (𝑢, 𝑣) ∈ 𝑄𝑚+1.

The problem exhibits strong duality with both the primal and dual values attained in the
optimal solution. The primal solution clearly satisfies 𝑡 = ‖𝐴𝑥− 𝑏‖2, and so complementary
slackness for the quadratic cone implies that the vectors (𝑢,−𝑣) = (1,−𝑣) and (𝑡, 𝐴𝑥 − 𝑏)
are parallel. As a consequence the constraint 𝐴𝑇𝑣 = 0 becomes 𝐴𝑇 (𝐴𝑥− 𝑏) = 0 or simply

𝐴𝑇𝐴𝑥 = 𝐴𝑇 𝑏

so if 𝐴𝑇𝐴 is invertible then 𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇 𝑏. This is the so-called normal equation for
least-squares regression, which we now obtained as a consequence of strong duality.

8.5.2 Constraint attribution

Consider again a portfolio optimization problem with mean-variance utility function, vector
of expected returns 𝛼 and covariance matrix Σ = 𝐹 𝑇𝐹 :

maximize 𝛼𝑇𝑥− 1
2
𝑐𝑥𝑇Σ𝑥

subject to 𝐴𝑥 ≤ 𝑏,
(8.12)

where the linear part represents any set of additional constraints: total budget, sector con-
straints, diversification constraints, individual relations between positions etc. In the absence
of additional constraints the solution to the unconstrained maximization problem is easy to
derive using basic calculus and equals

𝑥̂ = 𝑐−1Σ−1𝛼.

We would like to understand the difference 𝑥* − 𝑥̂, where 𝑥* is the solution of (8.12), and
in particular to measure which of the linear constraints actually cause 𝑥* to deviate from 𝑥̂
and to what degree. This can be quantified using the dual variables.
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The conic version of problem (8.12) is

maximize 𝛼𝑇𝑥− 𝑐𝑟
subject to 𝐴𝑥 ≤ 𝑏,

(1, 𝑟, 𝐹𝑥) ∈ 𝒬r

with dual

minimize 𝑏𝑇𝑦 + 𝑠
subject to 𝐴𝑇𝑦 = 𝛼 + 𝐹 𝑇𝑢,

(𝑠, 𝑐, 𝑢) ∈ 𝒬r ,
𝑦 ≥ 0.

Suppose we have a primal-dual optimal solution (𝑥*, 𝑟*, 𝑦*, 𝑠*, 𝑢*). Complementary slackness
for the rotated quadratic cone implies

(𝑠*, 𝑐, 𝑢*) = 𝛽(𝑟*, 1,−𝐹𝑥*)

which leads to 𝛽 = 𝑐 and

𝐴𝑇𝑦* = 𝛼− 𝑐𝐹 𝑇𝐹𝑥*

or equivalently

𝑥* = 𝑥̂− 𝑐−1Σ−1𝐴𝑇𝑦*.

This equation splits the difference between the constrained and unconstrained solutions into
contributions from individual constraints, where the weights are precisely the dual variables
𝑦*. For example, if a constraint is not binding (𝑎𝑇𝑖 𝑥* − 𝑏𝑖 < 0) then by complementary
slackness 𝑦*𝑖 = 0 and, indeed, a non-binding constraint has no effect on the change in solution.

8.6 Semidefinite duality and LMIs

The general theory of conic duality applies in particular to problems with semidefinite vari-
ables so here we just state it in the language familiar to SDP practitioners. Consider for
simplicity a primal semidefinite optimization problem with one matrix variable

minimize ⟨𝐶,𝑋⟩
subject to ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, 𝑖 = 1, . . . ,𝑚,

𝑋 ∈ 𝒮𝑛
+.

(8.13)

We can quickly repeat the derivation of the dual problem in this notation. The Lagrangian
is

𝐿(𝑋, 𝑦, 𝑆) = ⟨𝐶,𝑋⟩ −∑︀𝑖 𝑦𝑖(⟨𝐴𝑖, 𝑋⟩ − 𝑏𝑖) − ⟨𝑆,𝑋⟩
= ⟨𝐶 −∑︀𝑖 𝑦𝑖𝐴𝑖 − 𝑆,𝑋⟩ + 𝑏𝑇𝑦
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and we get the dual problem

maximize 𝑏𝑇𝑦
subject to 𝐶 −∑︀𝑚

𝑖=1 𝑦𝑖𝐴𝑖 ∈ 𝒮𝑛
+.

(8.14)

The dual contains an affine matrix-valued function with coefficients 𝐶,𝐴𝑖 ∈ 𝒮𝑛 and variable
𝑦 ∈ R𝑚. Such a matrix-valued affine inequality is called a linear matrix inequality (LMI). In
Sec. 6 we formulated many problems as LMIs, that is in the form more naturally matching
the dual.

From a modeling perspective it does not matter whether constraints are given as linear
matrix inequalities or as an intersection of affine hyperplanes; one formulation is easily
converted to other using auxiliary variables and constraints, and this transformation is often
done transparently by optimization software. Nevertheless, it is instructive to study an
explicit example of how to carry out this transformation. An linear matrix inequality

𝐴0 + 𝑥1𝐴1 + · · · + 𝑥𝑛𝐴𝑛 ⪰ 0

where 𝐴𝑖 ∈ 𝒮𝑚
+ is converted to a set of linear equality constraints using a slack variable

𝐴0 + 𝑥1𝐴1 + · · · + 𝑥𝑛𝐴𝑛 = 𝑆, 𝑆 ⪰ 0.

Apart from introducing an explicit semidefinite variable 𝑆 ∈ 𝒮𝑚
+ we also added 𝑚(𝑚 + 1)/2

equality constraints. On the other hand, a semidefinite variable 𝑋 ∈ 𝒮𝑛
+ can be rewritten as

a linear matrix inequality with 𝑛(𝑛 + 1)/2 scalar variables

𝑋 =
𝑛∑︁

𝑖=1

𝑒𝑖𝑒
𝑇
𝑖 𝑥𝑖𝑖 +

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

(𝑒𝑖𝑒
𝑇
𝑗 + 𝑒𝑗𝑒

𝑇
𝑖 )𝑥𝑖𝑗 ⪰ 0.

Obviously we should only use these transformations when necessary; if we have a problem
that is more naturally interpreted in either primal or dual form, we should be careful to
recognize that structure.

Example 8.7 (Dualization and efficiency). Consider the problem:

minimize 𝑒𝑇 𝑧
subject to 𝐴 + Diag(𝑧) = 𝑋,

𝑋 ⪰ 0.

with the variables 𝑋 ∈ 𝒮𝑛
+ and 𝑧 ∈ R𝑛. This is a problem in primal form with 𝑛(𝑛+ 1)/2

equality constraints, but they are more naturally interpreted as a linear matrix inequality

𝐴 +
∑︁
𝑖

𝑒𝑖𝑒
𝑇
𝑖 𝑧𝑖 ⪰ 0.

The dual problem is

maximize −⟨𝐴,𝑍⟩
subject to diag(𝑍) = 𝑒,

𝑍 ⪰ 0,

in the variable 𝑍 ∈ 𝒮𝑛
+. The dual problem has only 𝑛 equality constraints, which is a vast

improvement over the 𝑛(𝑛 + 1)/2 constraints in the primal problem. See also Sec. 7.5.
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Example 8.8 (Sum of singular values revisited). In Sec. 6.2.4, and specifically in (6.16),
we expressed the problem of minimizing the sum of singular values of a nonsymmetric
matrix 𝑋. Problem (6.16) can be written as an LMI:

maximize
∑︀

𝑖,𝑗 𝑋𝑖𝑗𝑧𝑖𝑗

subject to 𝐼 −∑︀𝑖,𝑗 𝑧𝑖𝑗

[︂
0 𝑒𝑗𝑒

𝑇
𝑖

𝑒𝑖𝑒
𝑇
𝑗 0

]︂
⪰ 0.

Treating this as the dual and going back to the primal form we get:

minimize Tr(𝑈) + Tr(𝑉 )
subject to 𝑆 = −1

2
𝑋,[︂

𝑈 𝑆𝑇

𝑆 𝑉

]︂
⪰ 0,

which is equivalent to the claimed (6.17). The dual formulation has the advantage of
being linear in 𝑋.
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Chapter 9

Mixed integer optimization

In other chapters of this cookbook we have considered different classes of convex problems
with continuous variables. In this chapter we consider a much wider range of non-convex
problems by allowing integer variables. This technique is extremely useful in practice, and
already for linear programming it covers a vast range of problems. We introduce different
building blocks for integer optimization, which make it possible to model useful non-convex
dependencies between variables in conic problems. It should be noted that mixed integer
optimization problems are very hard (technically NP-hard), and for many practical cases an
exact solution may not be found in reasonable time.

9.1 Integer modeling

A general mixed integer conic optimization problem has the form

minimize 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ∈ 𝐾,
𝑥𝑖 ∈ Z, ∀𝑖 ∈ ℐ,

(9.1)

where 𝐾 is a cone and ℐ ⊆ {1, . . . , 𝑛} denotes the set of variables that are constrained to be
integers.

Two major techniques are typical for mixed integer optimization. The first one is the
use of binary variables, also known as indicator variables, which only take values 0 and 1,
and indicate the absence or presence of a particular event or choice. This restriction can of
course be modeled in the form (9.1) by writing:

0 ≤ 𝑥 ≤ 1 and 𝑥 ∈ Z.

The other, known as big-M, refers to the fact that some relations can only be modeled linearly
if one assumes some fixed bound 𝑀 on the quantities involved, and this constant enters the
model formulation. The choice of 𝑀 can affect the performance of the model, see Example
7.8.
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9.1.1 Implication of positivity

Often we have a real-valued variable 𝑥 ∈ R satisfying 0 ≤ 𝑥 < 𝑀 for a known upper bound
𝑀 , and we wish to model the implication

𝑥 > 0 =⇒ 𝑧 = 1. (9.2)

Making 𝑧 a binary variable we can write (9.2) as a linear inequality

𝑥 ≤ 𝑀𝑧, 𝑧 ∈ {0, 1}. (9.3)

Indeed 𝑥 > 0 excludes the possibility of 𝑧 = 0, hence forces 𝑧 = 1. Since a priori 𝑥 ≤ 𝑀 ,
there is no danger that the constraint accidentally makes the problem infeasible. A typical
use of this trick is to model fixed setup costs.

Example 9.1 (Fixed setup cost). Assume that production of a specific item 𝑖 costs 𝑢𝑖 per
unit, but there is an additional fixed charge of 𝑤𝑖 if we produce item 𝑖 at all. For instance,
𝑤𝑖 could be the cost of setting up a production plant, initial cost of equipment etc. Then
the cost of producing 𝑥𝑖 units of product 𝑖 is given by the discontinuous function

𝑐𝑖(𝑥𝑖) =

{︂
𝑤𝑖 + 𝑢𝑖𝑥𝑖, 𝑥𝑖 > 0
0, 𝑥𝑖 = 0.

If we let 𝑀 denote an upper bound on the quantities we can produce, we can then minimize
the total production cost of 𝑛 products under some affine constraint 𝐴𝑥 = 𝑏 with

minimize 𝑢𝑇𝑥 + 𝑤𝑇 𝑧
subject to 𝐴𝑥 = 𝑏,

𝑥𝑖 ≤ 𝑀𝑧𝑖, 𝑖 = 1, . . . , 𝑛
𝑥 ≥ 0,
𝑧 ∈ {0, 1}𝑛,

which is a linear mixed-integer optimization problem. Note that by minimizing the pro-
duction cost, we drive 𝑧𝑖 to 0 when 𝑥𝑖 = 0, so setup costs are indeed included only for
products with 𝑥𝑖 > 0.

9.1.2 Semi-continuous variables

We can also model semi-continuity of a variable 𝑥 ∈ R,

𝑥 ∈ 0 ∪ [𝑎, 𝑏], (9.4)

where 0 < 𝑎 ≤ 𝑏 using a double inequality

𝑎𝑧 ≤ 𝑥 ≤ 𝑏𝑧, 𝑧 ∈ {0, 1}.
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Fig. 9.1: Production cost with fixed setup cost 𝑤𝑖.

9.1.3 Indicator constraints

Suppose we want to model the fact that a certain linear inequality must be satisfied when
some other event occurs. In other words, for a binary variable 𝑧 we want to model the
implication

𝑧 = 1 =⇒ 𝑎𝑇𝑥 ≤ 𝑏.

Suppose we know in advance an upper bound 𝑎𝑇𝑥 − 𝑏 ≤ 𝑀 . Then we can write the above
as a linear inequality

𝑎𝑇𝑥 ≤ 𝑏 + 𝑀(1 − 𝑧).

Now if 𝑧 = 1 then we forced 𝑎𝑇𝑥 ≤ 𝑏, while for 𝑧 = 0 the inequality is trivially satisfied and
does not enforce any additional constraint on 𝑥.

9.1.4 Disjunctive constraints

With a disjunctive constraint we require that at least one of the given linear constraints is
satisfied, that is

(𝑎𝑇1 𝑥 ≤ 𝑏1) ∨ (𝑎𝑇2 𝑥 ≤ 𝑏2) ∨ · · · ∨ (𝑎𝑇𝑘 𝑥 ≤ 𝑏𝑘).

Introducing binary variables 𝑧1, . . . , 𝑧𝑘, we can use Sec. 9.1.3 to write a linear model

𝑧1 + · · · + 𝑧𝑘 ≥ 1,
𝑧1, . . . , 𝑧𝑘 ∈ {0, 1},
𝑎𝑇𝑖 𝑥 ≤ 𝑏𝑖 + 𝑀(1 − 𝑧𝑖), 𝑖 = 1, . . . , 𝑘.

Note that 𝑧𝑗 = 1 implies that the 𝑗-th constraint is satisfied, but not vice-versa. Achieving
that effect is described in the next section.
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9.1.5 Constraint satisfaction

Say we want to define an optimization model that will behave differently depending on which
of the inequalities

𝑎𝑇𝑥 ≤ 𝑏 or 𝑎𝑇𝑥 ≥ 𝑏

is satisfied. Suppose we have lower and upper bounds for 𝑎𝑇𝑥 − 𝑏 in the form of 𝑚 ≤
𝑎𝑇𝑥− 𝑏 ≤ 𝑀 . Then we can write a model

𝑏 + 𝑚𝑧 ≤ 𝑎𝑇𝑥 ≤ 𝑏 + 𝑀(1 − 𝑧), 𝑧 ∈ {0, 1}. (9.5)

Now observe that 𝑧 = 0 implies 𝑏 ≤ 𝑎𝑇𝑥 ≤ 𝑏 + 𝑀 , of which the right-hand inequality is
redundant, i.e. always satisfied. Similarly, 𝑧 = 1 implies 𝑏 + 𝑚 ≤ 𝑎𝑇𝑥 ≤ 𝑏. In other words 𝑧
is an indicator of whether 𝑎𝑇𝑥 ≤ 𝑏.

In practice we would relax one inequality using a small amount of slack, i.e.,

𝑏 + (𝑚− 𝜖)𝑧 + 𝜖 ≤ 𝑎𝑇𝑥 (9.6)

to avoid issues with classifying the equality 𝑎𝑇𝑥 = 𝑏.

9.1.6 Exact absolute value

In Sec. 2.2.2 we showed how to model |𝑥| ≤ 𝑡 as two linear inequalities. Now suppose we
need to model an exact equality

|𝑥| = 𝑡. (9.7)

It defines a non-convex set, hence it is not conic representable. If we split 𝑥 into positive and
negative part 𝑥 = 𝑥+ − 𝑥−, where 𝑥+, 𝑥− ≥ 0, then |𝑥| = 𝑥+ + 𝑥− as long as either 𝑥+ = 0
or 𝑥− = 0. That last alternative can be modeled with a binary variable, and we get a model
of (9.7):

𝑥 = 𝑥+ − 𝑥−,
𝑡 = 𝑥+ + 𝑥−,
0 ≤ 𝑥+, 𝑥−,

𝑥+ ≤ 𝑀𝑧,
𝑥− ≤ 𝑀(1 − 𝑧),
𝑧 ∈ {0, 1},

(9.8)

where the constant 𝑀 is an a priori known upper bound on |𝑥| in the problem.

9.1.7 Exact 1-norm

We can use the technique above to model the exact ℓ1-norm equality constraint
𝑛∑︁

𝑖=1

|𝑥𝑖| = 𝑐, (9.9)
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where 𝑥 ∈ R𝑛 is a decision variable and 𝑐 is a constant. Such constraints arise for instance
in fully invested portfolio optimizations scenarios (with short-selling). As before, we split 𝑥
into a positive and negative part, using a sequence of binary variables to guarantee that at
most one of them is nonzero:

𝑥 = 𝑥+ − 𝑥−,
0 ≤ 𝑥+, 𝑥−,

𝑥+ ≤ 𝑐𝑧,
𝑥− ≤ 𝑐(𝑒− 𝑧),∑︀

𝑖 𝑥
+
𝑖 +

∑︀
𝑖 𝑥

−
𝑖 = 𝑐,
𝑧 ∈ {0, 1}𝑛, 𝑥+, 𝑥− ∈ R𝑛.

(9.10)

9.1.8 Maximum

The exact equality 𝑡 = max{𝑥1, . . . , 𝑥𝑛} can be expressed by introducing a sequence of
mutually exclusive indicator variables 𝑧1, . . . , 𝑧𝑛, with the intention that 𝑧𝑖 = 1 picks the
variable 𝑥𝑖 which actually achieves maximum. Choosing a safe bound 𝑀 we get a model:

𝑥𝑖 ≤ 𝑡 ≤ 𝑥𝑖 + 𝑀(1 − 𝑧𝑖), 𝑖 = 1, . . . , 𝑛,
𝑧1 + · · · + 𝑧𝑛 = 1,

𝑧 ∈ {0, 1}𝑛.
(9.11)

9.1.9 Boolean operators

Typically an indicator variable 𝑧 ∈ {0, 1} represents a boolean value (true/false). In this
case the standard boolean operators can be implemented as linear inequalities. In the table
below we assume all variables are binary.

Table 9.1: Boolean operators

Boolean Linear

𝑧 = 𝑥 OR 𝑦 𝑥 ≤ 𝑧, 𝑦 ≤ 𝑧, 𝑧 ≤ 𝑥 + 𝑦
𝑧 = 𝑥 AND 𝑦 𝑥 ≥ 𝑧, 𝑦 ≥ 𝑧, 𝑧 + 1 ≥ 𝑥 + 𝑦
𝑧 = NOT 𝑥 𝑧 = 1 − 𝑥
𝑥 =⇒ 𝑦 𝑥 ≤ 𝑦
At most one of 𝑧1, . . . , 𝑧𝑛 holds (SOS1, set-packing)

∑︀
𝑖 𝑧𝑖 ≤ 1

Exactly one of 𝑧1, . . . , 𝑧𝑛 holds (set-partitioning)
∑︀

𝑖 𝑧𝑖 = 1
At least one of 𝑧1, . . . , 𝑧𝑛 holds (set-covering)

∑︀
𝑖 𝑧𝑖 ≥ 1

At most 𝑘 of 𝑧1, . . . , 𝑧𝑛 holds (cardinality)
∑︀

𝑖 𝑧𝑖 ≤ 𝑘
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9.1.10 Fixed set of values

We can restrict a variable 𝑥 to take on only values from a specified finite set {𝑎1, . . . , 𝑎𝑛} by
writing

𝑥 =
∑︀

𝑖 𝑧𝑖𝑎𝑖
𝑧 ∈ {0, 1}𝑛,∑︀

𝑖 𝑧𝑖 = 1.
(9.12)

In (9.12) we essentially defined 𝑧𝑖 to be the indicator variable of whether 𝑥 = 𝑎𝑖. In some
circumstances there may be more efficient representations of a restricted set of values, for
example:

• (sign) 𝑥 ∈ {−1, 1} ⇐⇒ 𝑥 = 2𝑧 − 1, 𝑧 ∈ {0, 1},

• (modulo) 𝑥 ∈ {1, 4, 7, 10} ⇐⇒ 𝑥 = 3𝑧 + 1, 0 ≤ 𝑧 ≤ 3, 𝑧 ∈ Z,

• (fraction) 𝑥 ∈ {0, 1/3, 2/3, 1} ⇐⇒ 3𝑥 = 𝑧, 0 ≤ 𝑧 ≤ 3, 𝑧 ∈ Z,

• (gap) 𝑥 ∈ (−∞, 𝑎]∪ [𝑏,∞) ⇐⇒ 𝑏−𝑀(1−𝑧) ≤ 𝑥 ≤ 𝑎+𝑀𝑧, 𝑧 ∈ {0, 1} for sufficiently
large 𝑀 .

In a very similar fashion we can restrict a variable 𝑥 to a finite union of intervals
⋃︀

𝑖[𝑎𝑖, 𝑏𝑖]:∑︀
𝑖 𝑧𝑖𝑎𝑖 ≤ 𝑥 ≤∑︀𝑖 𝑧𝑖𝑏𝑖,

𝑧 ∈ {0, 1}𝑛,∑︀
𝑖 𝑧𝑖 = 1.

(9.13)

9.1.11 Alternative as a bilinear equality

In the literature one often finds models containing a bilinear constraint

𝑥𝑦 = 0.

This constraint is just an algebraic formulation of the alternative 𝑥 = 0 or 𝑦 = 0 and therefore
it can be written as a mixed-integer linear problem:

|𝑥| ≤ 𝑀𝑧,
|𝑦| ≤ 𝑀(1 − 𝑧),
𝑧 ∈ {0, 1},

for a suitable constant 𝑀 . The absolute value can be omitted if both 𝑥, 𝑦 are nonnegative.
Otherwise it can be modeled as in Sec. 2.2.2.
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9.1.12 Equal signs

Suppose we want to say that the variables 𝑥1, . . . , 𝑥𝑛 must either be all nonnegative or all
nonpositive. This can be achieved by introducing a single binary variable 𝑧 ∈ {0, 1} which
picks one of these two alternatives:

−𝑀(1 − 𝑧) ≤ 𝑥𝑖 ≤ 𝑀𝑧, 𝑖 = 1, . . . , 𝑛.

Indeed, if 𝑧 = 0 then we have −𝑀 ≤ 𝑥𝑖 ≤ 0 and if 𝑧 = 1 then 0 ≤ 𝑥𝑖 ≤ 𝑀 .

9.1.13 Continuous piecewise-linear functions

Consider a continuous, univariate, piecewise-linear, non-convex function 𝑓 : [𝛼1, 𝛼5] ↦→ R
shown in Fig. 9.2. At the interval [𝛼𝑗, 𝛼𝑗+1], 𝑗 = 1, 2, 3, 4 we can describe the function as

𝑓(𝑥) = 𝜆𝑗𝑓(𝛼𝑗) + 𝜆𝑗+1𝑓(𝛼𝑗+1)

where 𝜆𝑗𝛼𝑗 +𝜆𝑗+1𝛼𝑗+1 = 𝑥 and 𝜆𝑗 +𝜆𝑗+1 = 1. If we add a constraint that only two (adjacent)
variables 𝜆𝑗, 𝜆𝑗+1 can be nonzero, we can characterize every value 𝑓(𝑥) over the entire interval
[𝛼1, 𝛼5] as some convex combination,

𝑓(𝑥) =
4∑︁

𝑗=1

𝜆𝑗𝑓(𝛼𝑗).

f
(x
)

xα1 α2 α3 α4 α5

Fig. 9.2: A univariate piecewise-linear non-convex function.

The condition that only two adjacent variables can be nonzero is sometimes called an
SOS2 constraint. If we introduce indicator variables 𝑧𝑖 for each pair of adjacent variables
(𝜆𝑖, 𝜆𝑖+1), we can model an SOS2 constraint as:

𝜆1 ≤ 𝑧1, 𝜆2 ≤ 𝑧1 + 𝑧2, 𝜆3 ≤ 𝑧2 + 𝑧3, 𝜆4 ≤ 𝑧4 + 𝑧3, 𝜆5 ≤ 𝑧4
𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 = 1, 𝑧 ∈ {0, 1}4,

so that we have 𝑧𝑗 = 1 =⇒ 𝜆𝑖 = 0, 𝑖 ̸= {𝑗, 𝑗 + 1}. Collectively, we can then model the
epigraph 𝑓(𝑥) ≤ 𝑡 as

𝑥 =
∑︀𝑛

𝑗=1 𝜆𝑗𝛼𝑗,
∑︀𝑛

𝑗=1 𝜆𝑗𝑓(𝛼𝑗) ≤ 𝑡

𝜆1 ≤ 𝑧1, 𝜆𝑗 ≤ 𝑧𝑗 + 𝑧𝑗−1, 𝑗 = 2, . . . , 𝑛− 1, 𝜆𝑛 ≤ 𝑧𝑛−1,

𝜆 ≥ 0,
∑︀𝑛

𝑗=1 𝜆𝑗 = 1,
∑︀𝑛−1

𝑗=1 𝑧𝑗 = 1, 𝑧 ∈ {0, 1}𝑛−1,
(9.14)
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for a piecewise-linear function 𝑓(𝑥) with 𝑛 terms. This approach is often called the lambda-
method.

For the function in Fig. 9.2 we can reduce the number of integer variables by using a
Gray encoding

00 10 11 01

α1 α2 α3 α4 α5

of the intervals [𝛼𝑗, 𝛼𝑗+1] and an indicator variable 𝑦 ∈ {0, 1}2 to represent the four
different values of Gray code. We can then describe the constraints on 𝜆 using only two
indicator variables,

(𝑦1 = 0) → 𝜆3 = 0,
(𝑦1 = 1) → 𝜆1 = 𝜆5 = 0,
(𝑦2 = 0) → 𝜆4 = 𝜆5 = 0,
(𝑦2 = 1) → 𝜆1 = 𝜆2 = 0,

which leads to a more efficient characterization of the epigraph 𝑓(𝑥) ≤ 𝑡,

𝑥 =
∑︀5

𝑗=1 𝜆𝑗𝛼𝑗,
∑︀5

𝑗=1 𝜆𝑗𝑓(𝛼𝑗) ≤ 𝑡,

𝜆3 ≤ 𝑦1, 𝜆1 + 𝜆5 ≤ (1 − 𝑦1), 𝜆4 + 𝜆5 ≤ 𝑦2, 𝜆1 + 𝜆2 ≤ (1 − 𝑦2),

𝜆 ≥ 0,
∑︀5

𝑗=1 𝜆𝑗 = 1, 𝑦 ∈ {0, 1}2,
The lambda-method can also be used to model multivariate continuous piecewise-linear non-
convex functions, specified on a set of polyhedra 𝑃𝑘. For example, for the function shown in
Fig. 9.3 we can model the epigraph 𝑓(𝑥) ≤ 𝑡 as

𝑥 =
∑︀6

𝑖=1 𝜆𝑖𝑣𝑖,
∑︀6

𝑖=1 𝜆𝑖𝑓(𝑣𝑖) ≤ 𝑡,
𝜆1 ≤ 𝑧1 + 𝑧2, 𝜆2 ≤ 𝑧1, 𝜆3 ≤ 𝑧2 + 𝑧3,

𝜆4 ≤ 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4, 𝜆5 ≤ 𝑧3 + 𝑧4, 𝜆6 ≤ 𝑧4,

𝜆 ≥ 0,
∑︀6

𝑖=1 𝜆𝑖 = 1,
∑︀4

𝑖=1 𝑧𝑖 = 1,
𝑧 ∈ {0, 1}4.

(9.15)

Note, for example, that 𝑧2 = 1 implies that 𝜆2 = 𝜆5 = 𝜆6 = 0 and 𝑥 = 𝜆1𝑣1 + 𝜆3𝑣3 + 𝜆4𝑣4.

9.1.14 Lower semicontinuous piecewise-linear functions

The ideas in Sec. 9.1.13 can be applied to lower semicontinuous piecewise-linear functions as
well. For example, consider the function shown in Fig. 9.4. If we denote the one-sided limits
by 𝑓−(𝑐) := lim𝑥↑𝑐 𝑓(𝑥) and 𝑓+(𝑐) := lim𝑥↓𝑐 𝑓(𝑥), respectively, the one-sided limits, then we
can describe the epigraph 𝑓(𝑥) ≤ 𝑡 for the function in Fig. 9.4 as

𝑥 = 𝜆1𝛼1 + (𝜆2 + 𝜆3 + 𝜆4)𝛼2 + 𝜆5𝛼3,
𝜆1𝑓(𝛼1) + 𝜆2𝑓−(𝛼2) + 𝜆3𝑓(𝛼2) + 𝜆4𝑓+(𝛼2) + 𝜆5𝑓(𝛼3) ≤ 𝑡,

𝜆1 + 𝜆2 ≤ 𝑧1, 𝜆3 ≤ 𝑧2, 𝜆4 + 𝜆5 ≤ 𝑧3,

𝜆 ≥ 0,
∑︀5

𝑖=1 𝜆𝑖 = 1,
∑︀3

𝑖=1 𝑧𝑖 = 1, 𝑧 ∈ {0, 1}3,
(9.16)

where we have a different decision variable for the intervals [𝛼1, 𝛼2), [𝛼2, 𝛼2], and (𝛼2, 𝛼3]. As
a special case this gives us an alternative characterization of fixed charge models considered
in Sec. 9.1.1.
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Fig. 9.3: A multivariate continuous piecewise-linear non-convex function.

f
(x
)

xα1 α2 α3

Fig. 9.4: A univariate lower semicontinuous piecewise-linear function.
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9.2 Mixed integer conic case studies

9.2.1 Wireless network design

The following problem arises in wireless network design and some other applications. We
want to serve 𝑛 clients with 𝑘 transmitters. A transmitter with range 𝑟𝑗 can serve all clients
within Euclidean distance 𝑟𝑗 from its position. The power consumption of a transmitter with
range 𝑟 is proportional to 𝑟𝛼 for some fixed 1 ≤ 𝛼 < ∞. The goal is to assign locations and
ranges to transmitters minimizing the total power consumption while providing coverage of
all 𝑛 clients.

Denoting by 𝑥1, . . . , 𝑥𝑛 ∈ R2 locations of the clients, we can model this problem using
binary decision variables 𝑧𝑖𝑗 indicating if the 𝑖-th client is covered by the 𝑗-th transmitter.
This leads to a mixed-integer conic problem:

minimize
∑︀

𝑗 𝑟
𝛼
𝑗

subject to 𝑟𝑗 ≥ ‖𝑝𝑗 − 𝑥𝑖‖2 −𝑀(1 − 𝑧𝑖𝑗), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘,∑︀
𝑗 𝑧𝑖𝑗 ≥ 1, 𝑖 = 1, . . . , 𝑛,

𝑝𝑗 ∈ R2, 𝑧𝑖𝑗 ∈ {0, 1}.
(9.17)

The objective can be realized by summing power bounds 𝑡𝑗 ≥ 𝑟𝛼𝑗 or by directly bounding
the 𝛼-norm of (𝑟1, . . . , 𝑟𝑘). The latter approach would be recommended for large 𝛼.

This is a type of clustering problem. For 𝛼 = 1, 2, respectively, we are minimizing the
perimeter and area of the covered region. In practical applications the power exponent 𝛼
can be as large as 6 depending on various factors (for instance terrain). In the linear cost
model (𝛼 = 1) typical solutions contain a small number of huge disks covering most of the
clients. For increasing 𝛼 large ranges are penalized more heavily and the disks tend to be
more balanced.

9.2.2 Avoiding small trades

The standard portfolio optimization model admits a number of mixed-integer extensions
aimed at avoiding solutions with very small trades. To fix attention consider the model

maximize 𝜇𝑇𝑥
subject to (𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,
𝑥 ≥ 0,

(9.18)

with initial holdings 𝑥0, initial cash amount 𝑤, expected returns 𝜇, risk bound 𝛾 and decision
variable 𝑥. Here 𝑒 is the all-ones vector. Let ∆𝑥𝑗 = 𝑥𝑗 − 𝑥0

𝑗 denote the change of position in
asset 𝑗.
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Transaction costs

A transaction cost involved with nonzero ∆𝑥𝑗 could be modeled as

𝑇𝑗(𝑥𝑗) =

{︃
0, ∆𝑥𝑗 = 0,

𝛼𝑗∆𝑥𝑗 + 𝛽𝑗, ∆𝑥𝑗 ̸= 0,

similarly to the problem from Example 9.1. Including transaction costs will now lead to the
model:

maximize 𝜇𝑇𝑥
subject to (𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,

𝑒𝑇𝑥 + 𝛼𝑇𝑥 + 𝛽𝑇 𝑧 = 𝑤 + 𝑒𝑇𝑥0,
𝑥− 𝑥0 ≤ 𝑀𝑧, 𝑥0 − 𝑥 ≤ 𝑀𝑧,
𝑥 ≥ 0, 𝑧 ∈ {0, 1}𝑛,

(9.19)

where the binary variable 𝑧𝑗 is an indicator of ∆𝑥𝑗 ̸= 0. Here 𝑀 is a sufficiently large
constant, for instance 𝑀 = 𝑤 + 𝑒𝑇𝑥0 will do.

Cardinality constraints

Another option is to fix an upper bound 𝑘 on the number of nonzero trades. The meaning
of 𝑧 is the same as before:

maximize 𝜇𝑇𝑥
subject to (𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,
𝑥− 𝑥0 ≤ 𝑀𝑧, 𝑥0 − 𝑥 ≤ 𝑀𝑧,
𝑒𝑇 𝑧 ≤ 𝑘,
𝑥 ≥ 0, 𝑧 ∈ {0, 1}𝑛.

(9.20)

Trading size constraints

We can also demand a lower bound on nonzero trades, that is |∆𝑥𝑗| ∈ {0} ∪ [𝑎, 𝑏] for all 𝑗.
To this end we combine the techniques from Sec. 9.1.6 and Sec. 9.1.2 writing 𝑝𝑗, 𝑞𝑗 for the
indicators of ∆𝑥𝑗 > 0 and ∆𝑥𝑗 < 0, respectively:

maximize 𝜇𝑇𝑥
subject to (𝛾,𝐺𝑇𝑥) ∈ 𝒬𝑛+1,

𝑒𝑇𝑥 = 𝑤 + 𝑒𝑇𝑥0,
𝑥− 𝑥0 = 𝑥+ − 𝑥−,
𝑥+ ≤ 𝑀𝑝, 𝑥− ≤ 𝑀𝑞,
𝑎(𝑝 + 𝑞) ≤ 𝑥+ + 𝑥− ≤ 𝑏(𝑝 + 𝑞),
𝑝 + 𝑞 ≤ 𝑒,
𝑥, 𝑥+, 𝑥− ≥ 0, 𝑝, 𝑞 ∈ {0, 1}𝑛.

(9.21)
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9.2.3 Convex piecewise linear regression

Consider the problem of approximating the data (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 𝑛 by a piecewise linear
convex function of the form

𝑓(𝑥) = max{𝑎𝑗𝑥 + 𝑏𝑗, 𝑗 = 1, . . . 𝑘},

where 𝑘 is the number of segments we want to consider. The quality of the fit is measured
with least squares as ∑︁

𝑖

(𝑓(𝑥𝑖) − 𝑦𝑖)
2.

Note that we do not specify the locations of nodes (breakpoints), i.e. points where 𝑓(𝑥)
changes slope. Finding them is part of the fitting problem.

As in Sec. 9.1.8 we introduce binary variables 𝑧𝑖𝑗 indicating that 𝑓(𝑥𝑖) = 𝑎𝑗𝑥𝑖 + 𝑏𝑗, i.e. it
is the 𝑗-th linear function that achieves maximum at the point 𝑥𝑖. Following Sec. 9.1.8 we
now have a mixed integer conic quadratic problem

minimize ‖𝑦 − 𝑓‖2
subject to 𝑎𝑗𝑥𝑖 + 𝑏𝑗 ≤ 𝑓𝑖, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘,

𝑓𝑖 ≤ 𝑎𝑗𝑥𝑖 + 𝑏𝑗 + 𝑀(1 − 𝑧𝑖𝑗), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘,∑︀
𝑗 𝑧𝑖𝑗 = 1, 𝑖 = 1 . . . , 𝑛,

𝑧𝑖𝑗 ∈ {0, 1}, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑘,

(9.22)

with variables 𝑎, 𝑏, 𝑓, 𝑧, where 𝑀 is a sufficiently large constant.

Fig. 9.5: Convex piecewise linear fit with 𝑘 = 2, 3, 4 segments.

Frequently an integer model will have properties which formally follow from the problem’s
constraints, but may be very hard or impossible for a mixed-integer solver to automatically
deduce. It may dramatically improve efficiency to explicitly add some of them to the model.
For example, we can enhance (9.22) with all inequalities of the form

𝑧𝑖,𝑗+1 + 𝑧𝑖+𝑖′,𝑗 ≤ 1,

which indicate that each linear segment covers a contiguous subset of the sample and addi-
tionally force these segments to come in the order of increasing 𝑗 as 𝑖 increases from left to
right. The last statement is an example of symmetry breaking.
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Chapter 10

Quadratic optimization

In this chapter we discuss convex quadratic and quadratically constrained optimization.
Our discussion is fairly brief compared to the previous chapters for three reasons; (i) convex
quadratic optimization is a special case of conic quadratic optimization, (ii) for most convex
problems it is actually more computationally efficient to pose the problem in conic form, and
(iii) duality theory (including infeasibility certificates) is much simpler for conic quadratic
optimization. Therefore, we generally recommend a conic quadratic formulation, see Sec. 3
and especially Sec. 3.2.3.

10.1 Quadratic objective

A standard (convex) quadratic optimization problem

minimize 1
2
𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥

subject to 𝐴𝑥 = 𝑏,
𝑥 ≥ 0,

(10.1)

with 𝑄 ∈ 𝒮𝑛
+ is conceptually a simple extension of a standard linear optimization problem

with a quadratic term 𝑥𝑇𝑄𝑥. Note the important requirement that 𝑄 is symmetric positive
semidefinite; otherwise the objective function would not be convex.

10.1.1 Geometry of quadratic optimization

Quadratic optimization has a simple geometric interpretation; we minimize a convex
quadratic function over a polyhedron., see Fig. 10.1. It is intuitively clear that the following
different cases can occur:

• The optimal solution 𝑥⋆ is at the boundary of the polyhedron (as shown in Fig. 10.1).
At 𝑥⋆ one of the hyperplanes is tangential to an ellipsoidal level curve.

• The optimal solution is inside the polyhedron; this occurs if the unconstrained mini-
mizer arg min𝑥

1
2
𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥 = −𝑄†𝑐 (i.e., the center of the ellipsoidal level curves) is

inside the polyhedron. From now on 𝑄† denotes the pseudoinverse of 𝑄; in particular
𝑄† = 𝑄−1 if 𝑄 is positive definite.
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• If the polyhedron is unbounded in the opposite direction of 𝑐, and if the ellipsoid level
curves are degenerate in that direction (i.e., 𝑄𝑐 = 0), then the problem is unbounded.
If 𝑄 ∈ 𝒮𝑛

++, then the problem cannot be unbounded.

• The problem is infeasible, i.e., {𝑥 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} = ∅.

x⋆

a0

a1
a2

a3

a4

Fig. 10.1: Geometric interpretation of quadratic optimization. At the optimal point 𝑥⋆ the
hyperplane {𝑥 | 𝑎𝑇1 𝑥 = 𝑏} is tangential to an ellipsoidal level curve.

Possibly because of its simple geometric interpretation and similarity to linear optimiza-
tion, quadratic optimization has been more widely adopted by optimization practitioners
than conic quadratic optimization.

10.1.2 Duality in quadratic optimization

The Lagrangian function (Sec. 8.3) for (10.1) is

𝐿(𝑥, 𝑦, 𝑠) =
1

2
𝑥𝑇𝑄𝑥 + 𝑥𝑇 (𝑐− 𝐴𝑇𝑦 − 𝑠) + 𝑏𝑇𝑦 (10.2)

with Lagrange multipliers 𝑠 ∈ R𝑛
+, and from ∇𝑥𝐿(𝑥, 𝑦, 𝑠) = 0 we get the necessary first-order

optimality condition

𝑄𝑥 = 𝐴𝑇𝑦 + 𝑠− 𝑐,

i.e. (𝐴𝑇𝑦 + 𝑠− 𝑐) ∈ ℛ(𝑄). Then

arg min
𝑥

𝐿(𝑥, 𝑦, 𝑠) = 𝑄†(𝐴𝑇𝑦 + 𝑠− 𝑐),

which can be substituted into (10.2) to give a dual function

𝑔(𝑦, 𝑠) =

{︂
𝑏𝑇𝑦 − 1

2
(𝐴𝑇𝑦 + 𝑠− 𝑐)𝑄†(𝐴𝑇𝑦 + 𝑠− 𝑐), (𝐴𝑇𝑦 + 𝑠− 𝑐) ∈ ℛ(𝑄),

−∞ otherwise.
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Thus we get a dual problem

maximize 𝑏𝑇𝑦 − 1
2
(𝐴𝑇𝑦 + 𝑠− 𝑐)𝑄†(𝐴𝑇𝑦 + 𝑠− 𝑐)

subject to (𝐴𝑇𝑦 + 𝑠− 𝑐) ∈ ℛ(𝑄),
𝑠 ≥ 0,

(10.3)

or alternatively, using the optimality condition 𝑄𝑥 = 𝐴𝑇𝑦 + 𝑠− 𝑐 we can write

maximize 𝑏𝑇𝑦 − 1
2
𝑥𝑇𝑄𝑥

subject to 𝑄𝑥 = 𝐴𝑇𝑦 − 𝑐 + 𝑠,
𝑠 ≥ 0.

(10.4)

Note that this is an unusual dual problem in the sense that it involves both primal and dual
variables.

Weak duality, strong duality under Slater constraint qualification and Farkas infeasibility
certificates work similarly as in Sec. 8. In particular, note that the constraints in both (10.1)
and (10.4) are linear, so Lemma 2.4 applies and we have:

i. The primal problem (10.1) is infeasible if and only if there is 𝑦 such that 𝐴𝑇𝑦 ≤ 0 and
𝑏𝑇𝑦 > 0.

ii. The dual problem (10.4) is infeasible if and only if there is 𝑥 ≥ 0 such that 𝐴𝑥 = 0,
𝑄𝑥 = 0 and 𝑐𝑇𝑥 < 0.

10.1.3 Conic reformulation

Suppose we have a factorization 𝑄 = 𝐹 𝑇𝐹 where 𝐹 ∈ R𝑘×𝑛, which is most interesting when
𝑘 ≪ 𝑛. Then 𝑥𝑇𝑄𝑥 = 𝑥𝑇𝐹 𝑇𝐹𝑥 = ‖𝐹𝑥‖22 and the conic quadratic reformulation of (10.1) is

minimize 𝑟 + 𝑐𝑇𝑥
subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,
(1, 𝑟, 𝐹𝑥) ∈ 𝒬𝑘+2

r ,

(10.5)

with dual problem

maximize 𝑏𝑇𝑦 − 𝑢
subject to −𝐹 𝑇𝑣 = 𝐴𝑇𝑦 − 𝑐 + 𝑠,

𝑠 ≥ 0,
(𝑢, 1, 𝑣) ∈ 𝒬𝑘+2

r .

(10.6)

Note that in an optimal primal-dual solution we have 𝑟 = 1
2
‖𝐹𝑥‖22, hence the complementary

slackness for 𝒬𝑘+2
r demands 𝑣 = −𝐹𝑥 and −𝐹 𝑇𝐹𝑣 = 𝑄𝑥, as well as 𝑢 = 1

2
‖𝑣‖22 = 1

2
𝑥𝑇𝑄𝑥.

This justifies why some of the dual variables in (10.6) and (10.4) have the same names - they
are in fact equal, and so both the primal and dual solution to the original quadratic problem
can be recovered from the primal-dual solution to the conic reformulation.
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10.2 Quadratically constrained optimization

A general convex quadratically constrained quadratic optimization problem is

minimize 1
2
𝑥𝑇𝑄0𝑥 + 𝑐𝑇0 𝑥 + 𝑟0

subject to 1
2
𝑥𝑇𝑄𝑖𝑥 + 𝑐𝑇𝑖 𝑥 + 𝑟𝑖 ≤ 0, 𝑖 = 1, . . . ,𝑚,

(10.7)

where 𝑄𝑖 ∈ 𝒮𝑛
+. This corresponds to minimizing a convex quadratic function over an inter-

section of convex quadratic sets such as ellipsoids or affine halfspaces. Note the important
requirement 𝑄𝑖 ⪰ 0 for all 𝑖 = 0, . . . ,𝑚, so that the objective function is convex and the
constraints characterize convex sets. For example, neither of the constraints

1

2
𝑥𝑇𝑄𝑖𝑥 + 𝑐𝑇𝑖 𝑥 + 𝑟𝑖 = 0,

1

2
𝑥𝑇𝑄𝑖𝑥 + 𝑐𝑇𝑖 𝑥 + 𝑟𝑖 ≥ 0

characterize convex sets, and therefore cannot be included.

10.2.1 Duality in quadratically constrained optimization

The Lagrangian function for (10.7) is

𝐿(𝑥, 𝜆) = 1
2
𝑥𝑇𝑄0𝑥 + 𝑐𝑇0 𝑥 + 𝑟0 +

∑︀𝑚
𝑖=1 𝜆𝑖

(︀
1
2
𝑥𝑇𝑄𝑖𝑥 + 𝑐𝑇𝑖 𝑥 + 𝑟𝑖

)︀
= 1

2
𝑥𝑇𝑄(𝜆)𝑥 + 𝑐(𝜆)𝑇𝑥 + 𝑟(𝜆),

where

𝑄(𝜆) = 𝑄0 +
𝑚∑︁
𝑖=1

𝜆𝑖𝑄𝑖, 𝑐(𝜆) = 𝑐0 +
𝑚∑︁
𝑖=1

𝜆𝑖𝑐𝑖, 𝑟(𝜆) = 𝑟0 +
𝑚∑︁
𝑖=1

𝜆𝑖𝑟𝑖.

From the Lagrangian we get the first-order optimality conditions

𝑄(𝜆)𝑥 = −𝑐(𝜆), (10.8)

and similar to the case of quadratic optimization we get a dual problem

maximize −1
2
𝑐(𝜆)𝑇𝑄(𝜆)†𝑐(𝜆) + 𝑟(𝜆)

subject to 𝑐(𝜆) ∈ ℛ (𝑄(𝜆)) ,
𝜆 ≥ 0,

(10.9)

or equivalently

maximize −1
2
𝑤𝑇𝑄(𝜆)𝑤 + 𝑟(𝜆)

subject to 𝑄(𝜆)𝑤 = −𝑐(𝜆),
𝜆 ≥ 0.

(10.10)

Using a general version of the Schur Lemma for singular matrices, we can also write (10.9)
as an equivalent semidefinite optimization problem,

maximize 𝑡

subject to
[︂

2(𝑟(𝜆) − 𝑡) 𝑐(𝜆)𝑇

𝑐(𝜆) 𝑄(𝜆)

]︂
⪰ 0,

𝜆 ≥ 0.

(10.11)
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Feasibility in quadratically constrained optimization is characterized by the following con-
ditions (assuming Slater constraint qualification or other conditions to exclude ill-posed
problems):

• Either the primal problem (10.7) is feasible or there exists 𝜆 ≥ 0, 𝜆 ̸= 0 satisfying

𝑚∑︁
𝑖=1

𝜆𝑖

[︂
2𝑟𝑖 𝑐𝑇𝑖
𝑐𝑖 𝑄𝑖

]︂
≻ 0. (10.12)

• Either the dual problem (10.10) is feasible or there exists 𝑥 ∈ R𝑛 satisfying

𝑄0𝑥 = 0, 𝑐𝑇0 𝑥 < 0, 𝑄𝑖𝑥 = 0, 𝑐𝑇𝑖 𝑥 = 0, 𝑖 = 1, . . . ,𝑚. (10.13)

To see why the certificate proves infeasibility, suppose for instance that (10.12) and (10.7)
are simultaneously satisfied. Then

0 <
∑︁
𝑖

𝜆𝑖

[︂
1
𝑥

]︂𝑇 [︂
2𝑟𝑖 𝑐𝑇𝑖
𝑐𝑖 𝑄𝑖

]︂ [︂
1
𝑥

]︂
= 2

∑︁
𝑖

𝜆𝑖

(︂
1

2
𝑥𝑇𝑄𝑖𝑥 + 𝑐𝑇𝑖 𝑥 + 𝑟𝑖

)︂
≤ 0

and we have a contradiction, so (10.12) certifies infeasibility.

10.2.2 Conic reformulation

If 𝑄𝑖 = 𝐹 𝑇
𝑖 𝐹𝑖 for 𝑖 = 0, . . . ,𝑚, where 𝐹𝑖 ∈ R𝑘𝑖×𝑛 then we get a conic quadratic reformulation

of (10.7):

minimize 𝑡0 + 𝑐𝑇0 𝑥 + 𝑟0
subject to (1, 𝑡0, 𝐹0𝑥) ∈ 𝒬𝑘0+2

r ,
(1,−𝑐𝑇𝑖 𝑥− 𝑟𝑖, 𝐹𝑖𝑥) ∈ 𝒬𝑘𝑖+2

r , 𝑖 = 1, . . . ,𝑚.
(10.14)

The primal and dual solution of (10.14) recovers the primal and dual solution of (10.7) sim-
ilarly as for quadratic optimization in Sec. 10.1.3. Let us see for example, how a (conic) pri-
mal infeasibility certificate for (10.14) implies an infeasibility certificate in the form (10.12).
Infeasibility in (10.14) involves only the last set of conic constraints. We can derive the
infeasibility certificate for those constraints from Lemma 8.3 or by directly writing the La-
grangian

𝐿 = −∑︀𝑖

(︀
𝑢𝑖 + 𝑣𝑖(−𝑐𝑇𝑖 𝑥− 𝑟𝑖) + 𝑤𝑇

𝑖 𝐹𝑖𝑥
)︀

= 𝑥𝑇
(︀∑︀

𝑖 𝑣𝑖𝑐𝑖 −
∑︀

𝑖 𝐹
𝑇
𝑖 𝑤𝑖

)︀
+ (
∑︀

𝑖 𝑣𝑖𝑟𝑖 −
∑︀

𝑖 𝑢𝑖) .

The dual maximization problem is unbounded (i.e. the primal problem is infeasible) if we
have ∑︀

𝑖 𝑣𝑖𝑐𝑖 =
∑︀

𝑖 𝐹
𝑇
𝑖 𝑤𝑖,∑︀

𝑖 𝑣𝑖𝑟𝑖 >
∑︀

𝑖 𝑢𝑖,
2𝑢𝑖𝑣𝑖 ≥ ‖𝑤𝑖‖2, 𝑢𝑖, 𝑣𝑖 ≥ 0.
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We claim that 𝜆 = 𝑣 is an infeasibility certificate in the sense of (10.12). We can assume
𝑣𝑖 > 0 for all 𝑖, as otherwise 𝑤𝑖 = 0 and we can take 𝑢𝑖 = 0 and skip the 𝑖-th coordinate. Let
𝑀 denote the matrix appearing in (10.12) with 𝜆 = 𝑣. We show that 𝑀 is positive definite:

[𝑦, 𝑥]𝑇𝑀 [𝑦, 𝑥] =
∑︀

𝑖

(︀
𝑣𝑖𝑥

𝑇𝑄𝑖𝑥 + 2𝑣𝑖𝑦𝑐
𝑇
𝑖 𝑥 + 2𝑣𝑖𝑟𝑖𝑦

2
)︀

>
∑︀

𝑖

(︀
𝑣𝑖‖𝐹𝑖𝑥‖2 + 2𝑦𝑤𝑇

𝑖 𝐹𝑖𝑥 + 2𝑢𝑖𝑦
2
)︀

≥∑︀𝑖 𝑣
−1
𝑖 ‖𝑣𝑖𝐹𝑖𝑥 + 𝑦𝑤𝑖‖2 ≥ 0.

10.3 Example: Factor model

Recall from Sec. 3.3.3 that the standard Markowitz portfolio optimization problem is

maximize 𝜇𝑇𝑥
subject to 𝑥𝑇Σ𝑥 ≤ 𝛾,

𝑒𝑇𝑥 = 1,
𝑥 ≥ 0,

(10.15)

where 𝜇 ∈ R𝑛 is a vector of expected returns for 𝑛 different assets and Σ ∈ 𝒮𝑛
+ denotes the

corresponding covariance matrix. Problem (10.15) maximizes the expected return of an in-
vestment given a budget constraint and an upper bound 𝛾 on the allowed risk. Alternatively,
we can minimize the risk given a lower bound 𝛿 on the expected return of investment, i.e.,
we can solve the problem

minimize 𝑥𝑇Σ𝑥
subject to 𝜇𝑇𝑥 ≥ 𝛿,

𝑒𝑇𝑥 = 1,
𝑥 ≥ 0.

(10.16)

Both problems (10.15) and (10.16) are equivalent in the sense that they describe the same
Pareto-optimal trade-off curve by varying 𝛿 and 𝛾.

Next consider a factorization

Σ = 𝑉 𝑇𝑉 (10.17)

for some 𝑉 ∈ R𝑘×𝑛. We can then rewrite both problems (10.15) and (10.16) in conic quadratic
form as

maximize 𝜇𝑇𝑥
subject to (1/2, 𝛾, 𝑉 𝑥) ∈ 𝒬𝑘+2

𝑟 ,
𝑒𝑇𝑥 = 1,
𝑥 ≥ 0,

(10.18)

and

minimize 𝑡
subject to (1/2, 𝑡, 𝑉 𝑥) ∈ 𝒬𝑘+2

𝑟 ,
𝜇𝑇𝑥 ≥ 𝛿,
𝑒𝑇𝑥 = 1,
𝑥 ≥ 0,

(10.19)
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respectively. Given Σ ≻ 0, we may always compute a factorization (10.17) where 𝑉 is upper-
triangular (Cholesky factor). In this case 𝑘 = 𝑛, i.e., 𝑉 ∈ R𝑛×𝑛, so there is little difference
in complexity between the conic and quadratic formulations. However, in practice, better
choices of 𝑉 are either known or readily available. We mention two examples.

Data matrix

Σ might be specified directly in the form (10.17), where 𝑉 is a normalized data-matrix
with 𝑘 observations of market data (for example daily returns) of the 𝑛 assets. When the
observation horizon 𝑘 is shorter than 𝑛, which is typically the case, the conic representation
is both more parsimonious and has better numerical properties.

Factor model

For a factor model we have

Σ = 𝐷 + 𝑈𝑇𝑅𝑈

where 𝐷 = Diag(𝑤) is a diagonal matrix, 𝑈 ∈ R𝑘×𝑛 represents the exposure of assets to risk
factors and 𝑅 ∈ R𝑘×𝑘 is the covariance matrix of factors. Importantly, we normally have a
small number of factors (𝑘 ≪ 𝑛), so it is computationally much cheaper to find a Cholesky
decomposition 𝑅 = 𝐹 𝑇𝐹 with 𝐹 ∈ R𝑘×𝑘. This combined gives us Σ = 𝑉 𝑇𝑉 for

𝑉 =

[︂
𝐷1/2

𝐹𝑈

]︂
of dimensions (𝑛 + 𝑘) × 𝑛. The dimensions of 𝑉 are larger than the dimensions of the
Cholesky factors of Σ, but 𝑉 is very sparse, which usually results in a significant reduction
of solution time. The resulting risk minimization conic problem can ultimately be written
as:

minimize 𝑡

subject to
(︂

1/2, 𝑡,

[︂
𝐷1/2

𝐹𝑈

]︂
𝑥

)︂
∈ 𝒬𝑛+𝑘+2

𝑟 ,

𝜇𝑇𝑥 ≥ 𝛿,
𝑒𝑇𝑥 = 1,
𝑥 ≥ 0.

(10.20)
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Chapter 11

Bibliographic notes

The material on linear optimization is very basic, and can be found in any textbook. For
further details, we suggest a few standard references [Chvatal83], [BT97] and [PS98], which
all cover much more that discussed here. [NW06] gives a more modern treatment of both
theory and algorithmic aspects of linear optimization.

Material on conic quadratic optimization is based on the paper [LVBL98] and the books
[BenTalN01], [BV04]. The papers [AG03], [ART03] contain additional theoretical and algo-
rithmic aspects.

For more theory behind the power cone and the exponential cone we recommend the
thesis [Cha09].

Much of the material about semidefinite optimization is based on the paper [VB96] and
the books [BenTalN01], [BKVH07]. The section on optimization over nonnegative poly-
nomials is based on [Nes99], [Hac03]. We refer to [LR05] for a comprehensive survey on
semidefinite optimization and relaxations in combinatorial optimization.

The chapter on conic duality follows the exposition in [GartnerM12]
Mixed-integer optimization is based on the books [NW88], [Wil93]. Modeling of piecewise

linear functions is described in the survey paper [VAN10].
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Chapter 12

Notation and definitions

R and Z denote the sets of real numbers and integers, respectively. R𝑛 denotes the set of
𝑛-dimensional vectors of real numbers (and similarly for Z𝑛 and {0, 1}𝑛); in most cases we
denote such vectors by lower case letters, e.g., 𝑎 ∈ R𝑛. A subscripted value 𝑎𝑖 then refers to
the 𝑖-th entry in 𝑎, i.e.,

𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛).

The symbol 𝑒 denotes the all-ones vector 𝑒 = (1, . . . , 1)𝑇 , whose length always follows from
the context.

All vectors are interpreted as column-vectors. For 𝑎, 𝑏 ∈ R𝑛 we use the standard inner
product,

⟨𝑎, 𝑏⟩ := 𝑎1𝑏1 + 𝑎2𝑏2 + · · · + 𝑎𝑛𝑏𝑛,

which we also write as 𝑎𝑇 𝑏 := ⟨𝑎, 𝑏⟩. We let R𝑚×𝑛 denote the set of 𝑚× 𝑛 matrices, and we
use upper case letters to represent them, e.g., 𝐵 ∈ R𝑚×𝑛 is organized as

𝐵 =

⎡⎢⎢⎢⎣
𝑏11 𝑏12 . . . 𝑏1𝑛
𝑏21 𝑏22 . . . 𝑏2𝑛
...

... . . . ...
𝑏𝑚1 𝑏𝑚2 . . . 𝑏𝑚𝑛

⎤⎥⎥⎥⎦
For matrices 𝐴,𝐵 ∈ R𝑚×𝑛 we use the inner product

⟨𝐴,𝐵⟩ :=
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑏𝑖𝑗.

For a vector 𝑥 ∈ R𝑛 we have

Diag(𝑥) :=

⎡⎢⎢⎢⎣
𝑥1 0 . . . 0
0 𝑥2 . . . 0
...

... . . . ...
0 0 . . . 𝑥𝑛

⎤⎥⎥⎥⎦ ,
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i.e., a square matrix with 𝑥 on the diagonal and zero elsewhere. Similarly, for a square
matrix 𝑋 ∈ R𝑛×𝑛 we have

diag(𝑋) := (𝑥11, 𝑥22, . . . , 𝑥𝑛𝑛).

A set 𝑆 ⊆ R𝑛 is convex if and only if for any 𝑥, 𝑦 ∈ 𝑆 and 𝜃 ∈ [0, 1] we have

𝜃𝑥 + (1 − 𝜃)𝑦 ∈ 𝑆

A function 𝑓 : R𝑛 ↦→ R is convex if and only if its domain dom(𝑓) is convex and for all
𝜃 ∈ [0, 1] we have

𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦).

A function 𝑓 : R𝑛 ↦→ R is concave if and only if −𝑓 is convex. The epigraph of a function
𝑓 : R𝑛 ↦→ R is the set

epi(𝑓) := {(𝑥, 𝑡) | 𝑥 ∈ dom(𝑓), 𝑓(𝑥) ≤ 𝑡},

shown in Fig. 12.1.

epi(f)

f

Fig. 12.1: The shaded region is the epigraph of the function 𝑓(𝑥) = − log(𝑥).

Thus, minimizing over the epigraph

minimize 𝑡
subject to 𝑓(𝑥) ≤ 𝑡

is equivalent to minimizing 𝑓(𝑥). Furthermore, 𝑓 is convex if and only if epi(𝑓) is a convex
set. Similarly, the hypograph of a function 𝑓 : R𝑛 ↦→ R is the set

hypo(𝑓) := {(𝑥, 𝑡) | 𝑥 ∈ dom(𝑓), 𝑓(𝑥) ≥ 𝑡}.

Maximizing 𝑓 is equivalent to maximizing over the hypograph

maximize 𝑡
subject to 𝑓(𝑥) ≥ 𝑡,

and 𝑓 is concave if and only if hypo(𝑓) is a convex set.
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