##
#  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
#  File :      qo1.py
#
#  Purpose :   Demonstrate how to solve a quadratic
#              optimization problem using the MOSEK Python API.
##

import sys, os, mosek

# Since the actual value of Infinity is ignored, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):
    sys.stdout.write(text)
    sys.stdout.flush()


def main():
    # Create a task
    with mosek.Task() as task:
        task.set_Stream(mosek.streamtype.log, streamprinter)
        # Set up and input bounds and linear coefficients
        bkc = [mosek.boundkey.lo]
        blc = [1.0]
        buc = [inf]
        numvar = 3
        bkx = [mosek.boundkey.lo] * numvar
        blx = [0.0] * numvar
        bux = [inf] * numvar
        c = [0.0, -1.0, 0.0]
        asub = [[0], [0], [0]]
        aval = [[1.0], [1.0], [1.0]]

        numvar = len(bkx)
        numcon = len(bkc)

        # Append 'numcon' empty constraints.
        # The constraints will initially have no bounds.
        task.appendcons(numcon)

        # Append 'numvar' variables.
        # The variables will initially be fixed at zero (x=0).
        task.appendvars(numvar)

        for j in range(numvar):
            # Set the linear term c_j in the objective.
            task.putcj(j, c[j])
            # Set the bounds on variable j
            # blx[j] <= x_j <= bux[j]
            task.putvarbound(j, bkx[j], blx[j], bux[j])
            # Input column j of A
            task.putacol(j,                  # Variable (column) index.
                         # Row index of non-zeros in column j.
                         asub[j],
                         aval[j])            # Non-zero Values of column j.
        for i in range(numcon):
            task.putconbound(i, bkc[i], blc[i], buc[i])

        # Set up and input quadratic objective
        qsubi = [0, 1, 2, 2]
        qsubj = [0, 1, 0, 2]
        qval = [2.0, 0.2, -1.0, 2.0]

        task.putqobj(qsubi, qsubj, qval)

        # Input the objective sense (minimize/maximize)
        task.putobjsense(mosek.objsense.minimize)

        # Optimize
        task.optimize()
        # Print a summary containing information
        # about the solution for debugging purposes
        task.solutionsummary(mosek.streamtype.msg)

        prosta = task.getprosta(mosek.soltype.itr)
        solsta = task.getsolsta(mosek.soltype.itr)

        # Output a solution
        xx = task.getxx(mosek.soltype.itr)

        if solsta == mosek.solsta.optimal:
            print("Optimal solution: %s" % xx)
        elif solsta == mosek.solsta.dual_infeas_cer:
            print("Primal or dual infeasibility.\n")
        elif solsta == mosek.solsta.prim_infeas_cer:
            print("Primal or dual infeasibility.\n")
        elif mosek.solsta.unknown:
            print("Unknown solution status")
        else:
            print("Other solution status")


# call the main function
try:
    main()
except mosek.MosekException as e:
    print("ERROR: %s" % str(e.errno))
    if e.msg is not None:
        import traceback
        traceback.print_exc()
        print("\t%s" % e.msg)
    sys.exit(1)
except:
    import traceback
    traceback.print_exc()
    sys.exit(1)
