m『sek
 MOSEK Optimizer API for Rust
 Release 10.2.2

MOSEK ApS

Contents

1 Introduction 1
1.1 Why the Optimizer API for Rust? 2
2 Contact Information 3
3 License Agreement 4
3.1 MOSEK end-user license agreement 4
3.2 Third party licenses 4
4 Installation 10
4.1 Setting up a project 10
4.2 Testing distributed examples 11
5 Design Overview 12
5.1 Modeling 12
5.2 "Hello World!" in MOSEK 12
6 Optimization Tutorials 15
6.1 Linear Optimization 16
6.2 From Linear to Conic Optimization 22
6.3 Conic Quadratic Optimization 31
6.4 Power Cone Optimization 35
6.5 Conic Exponential Optimization 39
6.6 Geometric Programming 42
6.7 Semidefinite Optimization 46
6.8 Integer Optimization 57
6.9 Disjunctive constraints 62
6.10 Quadratic Optimization 69
6.11 Problem Modification and Reoptimization 76
6.12 Parallel optimization 81
6.13 Retrieving infeasibility certificates 83
7 Solver Interaction Tutorials 87
7.1 Environment and task 87
7.2 Accessing the solution 88
7.3 Errors and exceptions 91
7.4 Input/Output 93
7.5 Setting solver parameters 95
7.6 Retrieving information items 96
7.7 Progress and data callback 97
7.8 MOSEK OptServer 99
8 Debugging Tutorials 103
8.1 Understanding optimizer log 104
8.2 Addressing numerical issues 108
8.3 Debugging infeasibility 110
8.4 Python Console 115
9 Advanced Numerical Tutorials 117
9.1 Solving Linear Systems Involving the Basis Matrix 117
9.2 Calling BLAS/LAPACK Routines from MOSEK 124
9.3 Computing a Sparse Cholesky Factorization 126
10 Technical guidelines 129
10.1 Memory management and garbage collection 129
10.2 Names 129
10.3 Multithreading 129
10.4 Efficiency 130
10.5 The license system 131
10.6 Deployment 132
11 Case Studies 133
11.1 Portfolio Optimization 133
11.2 Logistic regression 162
11.3 Concurrent optimizer 166
12 Problem Formulation and Solutions 170
12.1 Linear Optimization 170
12.2 Conic Optimization 173
12.3 Semidefinite Optimization 176
12.4 Quadratic and Quadratically Constrained Optimization 178
13 Optimizers 181
13.1 Presolve 181
13.2 Linear Optimization 183
13.3 Conic Optimization - Interior-point optimizer 190
13.4 The Optimizer for Mixed-Integer Problems 194
14 Additional features 205
14.1 Problem Analyzer 205
14.2 Automatic Repair of Infeasible Problems 206
14.3 Sensitivity Analysis 210
15 API Reference 218
15.1 API Conventions 218
15.2 Functions grouped by topic 223
15.3 Class Env 234
15.4 Class Task 247
15.5 Parameters grouped by topic 385
15.6 Parameters (alphabetical list sorted by type) 396
15.7 Response codes 469
15.8 Enumerations 492
15.9 Supported domains 521
16 Supported File Formats 524
16.1 The LP File Format 525
16.2 The MPS File Format 529
16.3 The OPF Format 541
16.4 The CBF Format 551
16.5 The PTF Format 568
16.6 The Task Format 574
16.7 The JSON Format 575
16.8 The Solution File Format 581
17 List of examples 584
18 Interface changes 586
18.1 Important changes compared to version 9 586
18.2 Changes compared to version 9 587
Bibliography 598
Symbol Index 599
Index 617

Chapter 1

Introduction

The MOSEK Optimization Suite 10.2.2 is a powerful software package capable of solving large-scale optimization problems of the following kind:

- linear,
- conic:
- conic quadratic (also known as second-order cone),
- involving the exponential cone,
- involving the power cone,
- semidefinite,
- convex quadratic and quadratically constrained,
- integer.

In order to obtain an overview of features in the MOSEK Optimization Suite consult the product introduction guide.

The most widespread class of optimization problems is linear optimization problems, where all relations are linear. The tremendous success of both applications and theory of linear optimization can be ascribed to the following factors:

- The required data are simple, i.e. just matrices and vectors.
- Convexity is guaranteed since the problem is convex by construction.
- Linear functions are trivially differentiable.
- There exist very efficient algorithms and software for solving linear problems.
- Duality properties for linear optimization are nice and simple.

Even if the linear optimization model is only an approximation to the true problem at hand, the advantages of linear optimization may outweigh the disadvantages. In some cases, however, the problem formulation is inherently nonlinear and a linear approximation is either intractable or inadequate. Conic optimization has proved to be a very expressive and powerful way to introduce nonlinearities, while preserving all the nice properties of linear optimization listed above.

The fundamental expression in linear optimization is a linear expression of the form

$$
A x-b \geq 0
$$

In conic optimization this is replaced with a wider class of constraints

$$
A x-b \in \mathcal{K}
$$

where \mathcal{K} is a convex cone. For example in 3 dimensions \mathcal{K} may correspond to an ice cream cone. The conic optimizer in MOSEK supports a number of different types of cones \mathcal{K}, which allows a surprisingly large number of nonlinear relations to be modeled, as described in the MOSEK Modeling Cookbook, while preserving the nice algorithmic and theoretical properties of linear optimization.

1.1 Why the Optimizer API for Rust?

The Optimizer API for Rust provides low-level access to all functionalities of MOSEK based on a thin interface to the native C optimizer API. The overhead introduced by this mapping is minimal.

The Optimizer API for Rust provides access to:

- Linear Optimization (LO)
- Conic Quadratic (Second-Order Cone) Optimization (CQO, SOCO)
- Power Cone Optimization
- Conic Exponential Optimization (CEO)
- Convex Quadratic and Quadratically Constrained Optimization (QO, QCQO)
- Semidefinite Optimization (SDO)
- Mixed-Integer Optimization (MIO)
as well as additional interfaces for:
- problem analysis,
- sensitivity analysis,
- infeasibility analysis,
- BLAS/LAPACK linear algebra routines.

Chapter 2

Contact Information

Phone	+4571749373	
Website	mosek.com	
Email		
	sales@mosek.com	Sales, pricing, and licensing
	support@mosek.com	Technical support, questions and bug reports
	info@mosek.com	Everything else.
Mailing Address		
	MOSEK ApS	
	Fruebjergvej 3	
	Symbion Science Park, Box 16	
	2100 Copenhagen O	
	Denmark	

You can get in touch with MOSEK using popular social media as well:

Blogger	https://blog.mosek.com/
Google Group	https://groups.google.com/forum/\#!forum/mosek
Twitter	https://twitter.com/mosektw
Linkedin	https://www.linkedin.com/company/mosek-aps
Youtube	https://www.youtube.com/channel/UCvIyectEVLP31NXeD5mIbEw

In particular Twitter is used for news, updates and release announcements.

Chapter 3

License Agreement

3.1 MOSEK end-user license agreement

Before using the MOSEK software, please read the license agreement available in the distribution at <MSKHOME>/mosek/10.2/mosek-eula.pdf or on the MOSEK website https://mosek.com/products/ license-agreement. By using MOSEK you agree to the terms of that license agreement.

3.2 Third party licenses

MOSEK uses some third-party open-source libraries. Their license details follow.

zlib

MOSEK uses the $z l i b$ library obtained from the zlib website. The license agreement for $z l i b$ is shown in Listing 3.1.

Listing 3.1: zlib license.

```
zlib.h -- interface of the 'zlib' general purpose compression library
version 1.2.7, May 2nd, 2012
Copyright (C) 1995-2012 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
    claim that you wrote the original software. If you use this software
    in a product, an acknowledgment in the product documentation would be
    appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
    misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
```


fplib

MOSEK uses the floating point formatting library developed by David M. Gay obtained from the netlib website. The license agreement for fplib is shown in Listing 3.2.

Listing 3.2: fplib license.

```
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
```


\{fmt\}

MOSEK uses the formatting library $\{f m t\}$ developed by Victor Zverovich obtained form github/fmt and distributed under the MIT license. The license agreement fot $\{f m t\}$ is shown in Listing 3.3.

Listing 3.3: $\{f m t\}$ license.

```
Copyright (c) 2012 - present, Victor Zverovich
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
```


Zstandard

MOSEK uses the Zstandard library developed by Facebook obtained from github/zstd. The license agreement for Zstandard is shown in Listing 3.4.

Listing 3.4: Zstandard license.
BSD License
For Zstandard software

Copyright (c) 2016-present, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name Facebook nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

MOSEK uses the LibReSSL library, which is build on OpenSSL. OpenSSL is included under the OpenSSL license, Listing 3.5, and the LibReSSL additions are licensed under the ISC license, Listing 3.6.

Listing 3.5: OpenSSL license


```
Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
    notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
    notice, this list of conditions and the following disclaimer in
```

the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgment:
"This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this software without prior written permission. For written permission, please contact openssl-core@openssl.org.
5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written permission of the OpenSSL Project.
6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT - AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Listing 3.6: ISC license

```
Copyright (C) 1994-2017 Free Software Foundation, Inc.
Copyright (c) 2014 Jeremie Courreges-Anglas <jca@openbsd.org>
Copyright (c) 2014-2015 Joel Sing <jsing@openbsd.org>
Copyright (c) 2014 Ted Unangst <tedu@openbsd.org>
Copyright (c) 2015-2016 Bob Beck <beck@openbsd.org>
Copyright (c) 2015 Marko Kreen <markokr@gmail.com>
Copyright (c) 2015 Reyk Floeter <reyk@openbsd.org>
Copyright (c) 2016 Tobias Pape <tobias@netshed.de>
Permission to use, copy, modify, and/or distribute this software for
any purpose with or without fee is hereby granted, provided that the
above copyright notice and this permission notice appear in all
copies.
```

(continues on next page)

```
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
```


mimalloc

MOSEK uses the mimalloc memory allocator library from github/mimalloc. The license agreement for mimalloc is shown in Listing 3.7.

Listing 3.7: mimalloc license.

```
MIT License
Copyright (c) 2019 Microsoft Corporation, Daan Leijen
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
```


BLASFEO

MOSEK uses the BLASFEO linear algebra library developed by Gianluca Frison, obtained from github/blasfeo. The license agreement for BLASFEO is shown in Listing 3.8.

Listing 3.8: blasfeo license.

```
BLASFEO -- BLAS For Embedded Optimization.
Copyright (C) 2019 by Gianluca Frison.
Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl.
All rights reserved.
The 2-Clause BSD License
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
```

(continues on next page)
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

oneTBB

MOSEK uses the oneTBB parallelization library which is part of oneAPI developed by Intel, obtained from github/oneTBB, licensed under the Apache License 2.0. The license agreement for oneTBB can be found in https://github.com/oneapi-src/oneTBB/blob/master/LICENSE.txt .

Chapter 4

Installation

In this section we discuss how to install and setup the MOSEK Optimizer API for Rust.
Important: Before running this MOSEK interface please make sure that you:

- Installed MOSEK correctly. Some operating systems require extra steps. See the Installation guide for instructions and common troubleshooting tips.
- Set up a license. See the Licensing guide for instructions.

Compatibility

The Optimizer API for Rust can currently be used with Rust 1.59 and later in 64bit platforms (Linux, Windows, macOS) supported by MOSEK.

The Optimizer API for Rust is not included in the MOSEK distribution, but should be installed from the crates.io package repository using Cargo.

Locating files in the MOSEK Optimization Suite

The relevant files of the Optimizer API for Rust are organized as reported in Table 4.1.
Table 4.1: Relevant files for the Optimizer API for Rust.

Relative Path	Description	Label
<MSKHOME>/mosek/10.2/tools/examples/rust	Examples	<EXDIR>
<MSKHOME>/mosek/10.2/tools/examples/data	Additional data	<MISCDIR>

where

- <MSKHOME> is the folder in which the MOSEK Optimization Suite has been installed,
- <PLATFORM> is the actual platform among those supported by MOSEK, i.e. win64x86, linux64x86, osx64x86, osxaarch64, linuxaarch64.

Installation

4.1 Setting up a project

The MOSEK Rust interface package is hosted at https://crates.io, and should be installed with Cargo. To use MOSEK in your project, add

```
mosek = "10.2"
```

to the [dependencies] section of the project Cargo.toml and run rust update.
If the MOSEK distribution is installed in your home directory, rust will pick it up automatically. Otherwise set the environment variable MOSEK_INST_BASE to the directory that contains the installation.

4.2 Testing distributed examples

To build and run the distributed Rust examples, open a prompt and go to the <EXDIR>. To build example lo1, type

```
cargo build --bin lo1
```

To run the example it is necessary to set the environment library path (PATH on Windows, DYLD_LIBRARY_PATH on OS X and LD_LIBRARY_PATH on Linux) to point the the bin directory in the MOSEK distro. Then type

```
cargo run --bin lo1
```


Chapter 5

Design Overview

5.1 Modeling

Optimizer API for Rust is an interface for specifying optimization problems directly in matrix form. It means that an optimization problem such as:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \leq b, \\
& x \in \mathcal{K}
\end{array}
$$

is specified by describing the matrix A, vectors b, c and a list of cones \mathcal{K} directly.
The main characteristics of this interface are:

- Simplicity: once the problem data is assembled in matrix form, it is straightforward to input it into the optimizer.
- Exploiting sparsity: data is entered in sparse format, enabling huge, sparse problems to be defined and solved efficiently.
- Efficiency: the Optimizer API incurs almost no overhead between the user's representation of the problem and MOSEK's internal one.

Optimizer API for Rust does not aid with modeling. It is the user's responsibility to express the problem in MOSEK's standard form, introducing, if necessary, auxiliary variables and constraints. See Sec. 12 for the precise formulations of problems MOSEK solves.

5.2 "Hello World!" in MOSEK

Here we present the most basic workflow pattern when using Optimizer API for Rust.

Creating an environment and task

Optionally, an interaction with MOSEK using Optimizer API for Rust can begin by creating a MOSEK environment. It coordinates the access to MOSEK from the current process.

In most cases the user does not interact directly with the environment, except for creating optimization tasks, which contain actual problem specifications and where optimization takes place. In this case the user can directly create tasks without invoking an environment, as we do here.

Defining tasks

After a task is created, the input data can be specified. An optimization problem consists of several components; objective, objective sense, constraints, variable bounds etc. See Sec. 6 for basic tutorials on how to specify and solve various types of optimization problems.

Retrieving the solutions

When the model is set up, the optimizer is invoked with the call to Task.optimize. When the optimization is over, the user can check the results and retrieve numerical values. See further details in Sec. 7.

We refer also to Sec. 7 for information about more advanced mechanisms of interacting with the solver.

Source code example

Below is the most basic code sample that defines and solves a trivial optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & x \\
\text { subject to } & 2.0 \leq x \leq 3.0
\end{array}
$$

For simplicity the example does not contain any error or status checks.
Listing 5.1: "Hello World!" in MOSEK

```
//!
//! Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
//!
//! File : helloworld.rs
//!
//! The most basic example of how to get started with MOSEK.
//!
extern crate mosek;
use mosek::{Task,Boundkey,Objsense,Soltype};
fn main() -> Result<(),String> {
    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(e) => e,
        None => return Err("Failed to create task".to_string()),
        };
    task.append_vars(1)?; // 1 variable x
    task.put_c_j(0, 1.0)?; // c_0 = 1.0
    task.put_var_bound(0, Boundkey::RA, 2.0, 3.0)?; // 2.0 <= x <= 3.0
    task.put_obj_sense(Objsense::MINIMIZE)?; // minimize
    task.optimize()?; // Optimize
    let mut x = vec![0.0; 1];
    task.get_xx(Soltype::ITR, x.as_mut_slice())?; // Get solution
    println!("Solution x = {}", x[0]); // Print solution
    return Result::Ok(());
}
#[cfg(test)]
mod tests {
```

```
    #[test]
    fn test() {
        super::main().unwrap();
    }
}
```


Chapter 6

Optimization Tutorials

In this section we demonstrate how to set up basic types of optimization problems. Each short tutorial contains a working example of formulating problems, defining variables and constraints and retrieving solutions.

- Model setup and linear optimization tutorial (LO)
- Sec. 6.1. Linear optimization tutorial, recommended first reading for all users. Apart from setting up a linear problem it also demonstrates how to work with an optimizer task: initialize it, add variables and constraints and retrieve the solution.
- Conic optimization tutorials (CO)
- Sec. 6.2. A step by step introduction to programming with affine conic constraints (ACC). Explains all the steps required to input a conic problem. Recommended first reading for users of the conic optimizer.

Further basic examples demonstrating various types of conic constraints:

- Sec. 6.3. A basic example with a quadratic cone (CQO).
- Sec. 6.4. A basic example with a power cone.
- Sec. 6.5. A basic example with a exponential cone (CEO).
- Sec. 6.6. A basic tutorial of geometric programming (GP).
- Semidefinite optimization tutorial (SDO)
- Sec. 6.7. Examples showing how to solve semidefinite optimization problems with one or more semidefinite variables.

- Mixed-integer optimization tutorials (MIO)

- Sec. 6.8. Shows how to declare integer variables for linear and conic problems and how to set an initial solution.
- Sec. 6.9. Demonstrates how to create a problem with disjunctive constraints (DJC).
- Quadratic optimization tutorial (QO, QCQO)
- Sec. 6.10. Examples showing how to solve a quadratic or quadratically constrained problem.

- Reoptimization tutorials

- Sec. 6.11. Various techniques for modifying and reoptimizing a problem.
- Parallel optimization tutorial
- Sec. 6.12. Shows how to optimize tasks in parallel.
- Infeasibility certificates
- Sec. 6.13. Shows how to retrieve and analyze a primal infeasibility certificate for continuous problems.

6.1 Linear Optimization

The simplest optimization problem is a purely linear problem. A linear optimization problem (see also Sec. 12.1) is a problem of the following form:

Minimize or maximize the objective function

$$
\sum_{j=0}^{n-1} c_{j} x_{j}+c^{f}
$$

subject to the linear constraints

$$
l_{k}^{c} \leq \sum_{j=0}^{n-1} a_{k j} x_{j} \leq u_{k}^{c}, \quad k=0, \ldots, m-1
$$

and the bounds

$$
l_{j}^{x} \leq x_{j} \leq u_{j}^{x}, \quad j=0, \ldots, n-1
$$

The problem description consists of the following elements:

- m and n - the number of constraints and variables, respectively,
- x - the variable vector of length n,
- c - the coefficient vector of length n

$$
c=\left[\begin{array}{c}
c_{0} \\
\vdots \\
c_{n-1}
\end{array}\right],
$$

- c^{f} - fixed term in the objective,
- $A-$ an $m \times n$ matrix of coefficients

$$
A=\left[\begin{array}{ccc}
a_{0,0} & \cdots & a_{0,(n-1)} \\
\vdots & \cdots & \vdots \\
a_{(m-1), 0} & \cdots & a_{(m-1),(n-1)}
\end{array}\right]
$$

- l^{c} and u^{c} - the lower and upper bounds on constraints,
- l^{x} and u^{x} - the lower and upper bounds on variables.

Please note that we are using 0 as the first index: x_{0} is the first element in variable vector x.

6.1.1 Example LO1

The following is an example of a small linear optimization problem:

$$
\begin{array}{llll}
\operatorname{maximize} & 3 x_{0}+1 x_{1}+5 x_{2}+1 x_{3} \\
\text { subject to } & 3 x_{0}+1 x_{1}+2 x_{2} & & =30, \tag{6.1}\\
& 2 x_{0}+1 x_{1}+3 x_{2}+1 x_{3} \geq 15, \\
& 2 x_{1} & +3 x_{3} \leq 25,
\end{array}
$$

under the bounds
$0 \leq x_{0} \leq \infty$,
$0 \leq x_{1} \leq 10$,
$0 \leq x_{2} \leq \infty$,
$0 \leq x_{3} \leq \infty$

Solving the problem

To solve the problem above we go through the following steps:

1. (Optionally) Creating an environment.
2. Creating an optimization task.
3. Loading a problem into the task object.
4. Optimization.
5. Extracting the solution.

Below we explain each of these steps.

Creating an environment.

The user can start by creating a MOSEK environment, but it is not necessary if the user does not need access to other functionalities, license management, additional routines, etc. Therefore in this tutorial we don't create an explicit environment.

Creating an optimization task.

We create an empty task object. A task object represents all the data (inputs, outputs, parameters, information items etc.) associated with one optimization problem.

```
let mut task = match Task::new() {
    Some(e) => e,
    None => return Err("Failed to create task".to_string()),
}.with_callbacks();
/* Directs the log task stream to the 'printstr' function. */
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
```

We also connect a call-back function to the task log stream. Messages related to the task are passed to the call-back function. In this case the stream call-back function writes its messages to the standard output stream. See Sec. 7.4.

Loading a problem into the task object.

Before any problem data can be set, variables and constraints must be added to the problem via calls to the functions Task. append_cons and Task.append_vars.

```
/* Append 'numcon' empty constraints.
    * The constraints will initially have no bounds. */
task.append_cons(numcon as i32)?;
/* Append 'numvar' variables.
    * The variables will initially be fixed at zero (x=0). */
task.append_vars(numvar as i32)?;
```

New variables can now be referenced from other functions with indexes in $0, \ldots$, numvar -1 and new constraints can be referenced with indexes in $0, \ldots$, numcon -1 . More variables and/or constraints can be appended later as needed, these will be assigned indexes from numvar/numcon and up. Optionally one can add names.

Setting the objective.

Next step is to set the problem data. We first set the objective coefficients $c_{j}=\mathrm{c}[\mathrm{j}]$. This can be done with functions such as Task.put_c_j or Task.put_c_list.

```
task.put_c_j(j as i32,c[j])?;
```


Setting bounds on variables

For every variable we need to specify a bound key and two bounds according to Table 6.1.
Table 6.1: Bound keys as defined in the enum Boundkey.

Bound key	Type of bound	Lower bound	Upper bound
Boundkey: $: F X$	$u_{j}=l_{j}$	Finite	Identical to the lower bound
Boundkey: $: F R$	Free	$-\infty$	$+\infty$
Boundkey: $: L O$	$l_{j} \leq \cdots$	Finite	$+\infty$
Boundkey: $: R A$	$l_{j} \leq \cdots \leq u_{j}$	Finite	Finite
Boundkey: $: U P$	$\cdots \leq u_{j}$	$-\infty$	Finite

For instance bkx [0]= Boundkey: :LO means that $x_{0} \geq l_{0}^{x}$. Finally, the numerical values of the bounds on variables are given by

$$
l_{j}^{x}=\mathrm{blx}[\mathrm{j}]
$$

and

$$
u_{j}^{x}=\operatorname{bux}[\mathrm{j}] .
$$

Let us assume we have the bounds on variables stored in the arrays

```
let bkx = vec![ Boundkey::LO, Boundkey::RA, Boundkey::LO, Boundkey::LO ];
let blx = vec![ 0.0, 0.0, 0.0, 0.0 ];
let bux = vec![ INF, 10.0, INF, INF ];
```

Then we can set them using various functions such Task.put_var_bound, Task. put_var_bound_slice, Task.put_var_bound_list, depending on what is most convenient in the given context. For instance:

```
task.put_var_bound(j as i32, /* Index of variable.*/
    bkx[j], /* Bound key. */
    blx[j], /* Numerical value of lower bound.*/
    bux[j])?; /* Numerical value of upper bound.*/
```


Defining the linear constraint matrix.

Recall that in our example the A matrix is given by

$$
A=\left[\begin{array}{llll}
3 & 1 & 2 & 0 \\
2 & 1 & 3 & 1 \\
0 & 2 & 0 & 3
\end{array}\right]
$$

This matrix is stored in sparse format:

```
let aptrb = vec![ 0, 2, 5, 7 ];
let aptre = vec![ 2, 5, 7, 9 ];
let asub = vec![ 0, 1,
    0, 1, 2,
    0, 1,
    1, 2 ];
let aval = vec![ 3.0, 2.0,
```

```
1.0, 1.0, 2.0,
2.0, 3.0,
1.0, 3.0 ];
```

The array aval[j] contains the non-zero values of column j and asub[j] contains the row indices of these non-zeros.

We now input the linear constraint matrix into the task. This can be done in many alternative ways, row-wise, column-wise or element by element in various orders. See functions such as Task.put_a_row, Task.put_a_row_list, Task.put_aij_list, Task.put_a_col and similar.

```
    task.put_a_col(j as i32, /* Variable (column) index.*/
        & asub[aptrb[j]..aptre[j]], /* Pointer to row indexes of\sqcup
column j.*/
column j.*/
    & aval[aptrb[j]..aptre[j]])?; /* Pointer to Values of\sqcup
```


Setting bounds on constraints

Finally, the bounds on each constraint are set similarly to the variable bounds, using the bound keys as in Table 6.1. This can be done with one of the many functions Task.put_con_bound, Task. put_con_bound_slice, Task.put_con_bound_list, depending on the situation.

```
for i in 0..numcon {
    task.put_con_bound(i as i32, /* Index of constraint.*/
                                    bkc[i], /* Bound key.*/
                                blc[i], /* Numerical value of lower bound.*/
                                buc[i])?; /* Numerical value of upper bound.*/
}
```


Optimization

After the problem is set-up the task can be optimized by calling the function Task.optimize.

```
let _trmcode = task.optimize()?;
```


Extracting the solution.

After optimizing the status of the solution is examined with a call to Task.get_sol_sta.

```
let solsta = task.get_sol_sta(Soltype::BAS)?;
```

If the solution status is reported as Solsta::OPTIMAL the solution is extracted:

```
task.get_xx(Soltype::BAS, /* Request the basic solution. */
    & mut xx[..])?;
```

The Task.get_ $x x$ function obtains the solution. MOSEK may compute several solutions depending on the optimizer employed. In this example the basic solution is requested by setting the first argument to Soltype: :BAS. For details about fetching solutions see Sec. 7.2.

Source code

The complete source code lo1.rs of this example appears below. See also lo2.rs for a version where the A matrix is entered row-wise.

Listing 6.1: Linear optimization example.

```
extern crate mosek;
use mosek::{Task,Boundkey,Objsense,Streamtype,Solsta,Soltype};
const INF : f64 = 0.0;
fn main() -> Result<(),String> {
    let numvar = 4;
    let numcon = 3;
    let c = vec![3.0, 1.0, 5.0, 1.0];
    /* Below is the sparse representation of the A
        * matrix stored by column. */
    let aptrb = vec![ 0, 2, 5, 7 ];
    let aptre = vec![ 2, 5, 7, 9 ];
    let asub = vec![ 0, 1,
                        0, 1, 2,
                        0, 1,
                        1, 2 ];
    let aval = vec![ 3.0, 2.0,
                        1.0, 1.0, 2.0,
                        2.0, 3.0,
                        1.0, 3.0 ];
    /* Bounds on constraints. */
    let bkc = vec![ Boundkey::FX, Boundkey::LO, Boundkey::UP ];
    let blc = vec![ 30.0, 15.0, -INF ];
    let buc = vec![ 30.0, INF, 25.0 ];
    /* Bounds on variables. */
    let bkx = vec![ Boundkey::LO, Boundkey::RA, Boundkey::LO, Boundkey::LO ];
    let blx = vec![ 0.0, 0.0, 0.0, 0.0 ];
    let bux = vec![ INF, 10.0, INF, INF ];
    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(e) => e,
        None => return Err("Failed to create task".to_string()),
    }.with_callbacks();
    /* Directs the log task stream to the 'printstr' function. */
    task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
    /* Append 'numcon' empty constraints.
        * The constraints will initially have no bounds. */
    task.append_cons(numcon as i32)?;
    /* Append 'numvar' variables.
        * The variables will initially be fixed at zero (x=0). */
    task.append_vars(numvar as i32)?;
```

```
for j in 0..numvar
{
    /* Set the linear term c_j in the objective.*/
    task.put_c_j(j as i32,c[j])?;
    /* Set the bounds on variable j.
    * blx[j] <= x_j <= bux[j] */
    task.put_var_bound(j as i32, /* Index of variable.*/
                bkx[j], /* Bound key.*/
                blx[j], /* Numerical value of lower bound.*/
                    bux[j])?; /* Numerical value of upper bound.*/
    /* Input column j of A */
    task.put_a_col(j as i32, /* Variable (column) index.*/
        & asub[aptrb[j]..aptre[j]], /* Pointer to row indexes of
\hookrightarrowcolumn j.*/
                                & aval[aptrb[j]..aptre[j]])?; /* Pointer to Values of\sqcup
\hookrightarrowcolumn j.*/
    }
    /* Set the bounds on constraints.
        * for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */
    for i in 0..numcon {
        task.put_con_bound(i as i32, /* Index of constraint.*/
                bkc[i], /* Bound key.*/
                blc[i], /* Numerical value of lower bound.*/
                buc[i])?; /* Numerical value of upper bound.*/
    }
    /* Maximize objective function. */
    task.put_obj_sense(Objsense::MAXIMIZE)?;
    /* Run optimizer */
    let _trmcode = task.optimize()?;
    /* Print a summary containing information
        * about the solution for debugging purposes. */
    task.solution_summary(Streamtype::LOG)?;
    let solsta = task.get_sol_sta(Soltype::BAS)?;
    match solsta
    {
        Solsta::OPTIMAL =>
        {
            let mut xx = vec![0.0,0.0,0.0,0.0];
            task.get_xx(Soltype::BAS, /* Request the basic solution. */
                & mut xx[..])?;
            println!("Optimal primal solution");
            for j in O..numvar as usize
            {
                println!("x[{}]: {}",j,xx[j]);
            }
        }
```

```
        Solsta::DUAL_INFEAS_CER |
        Solsta::PRIM_INFEAS_CER =>
        {
        println!("Primal or dual infeasibility certificate found.");
        }
        Solsta::UNKNOWN =>
        {
            /* If the solutions status is unknown, print the termination code
            * indicating why the optimizer terminated prematurely. */
            println!("The solution status is unknown.");
            println!("The optimizer terminitated with code: {}",solsta);
        }
        _ =>
        {
        println!("Other solution status.");
        }
    }
    Ok(())
}
```


6.2 From Linear to Conic Optimization

In Sec. 6.1 we demonstrated setting up the linear part of an optimization problem, that is the objective, linear bounds, linear equalities and inequalities. In this tutorial we show how to define conic constraints. We recommend going through this general conic tutorial before proceeding to examples with specific cone types.

MOSEK accepts conic constraints in the form

$$
F x+g \in \mathcal{D}
$$

where

- $x \in \mathbb{R}^{n!}$ is the optimization variable,
- $D \subseteq \mathbb{R}^{k}$ is a conic domain of some dimension k, representing one of the cone types supported by MOSEK,
- $F \in \mathbb{R}^{k \times n}$ and $g \in \mathbb{R}^{k}$ are data which constitute the sequence of k affine expressions appearing in the rows of $F x+g$.
Constraints of this form will be called affine conic constraints, or ACC for short. Therefore in this section we show how to set up a problem of the form

$$
\begin{array}{lll}
\operatorname{minimize} & & c^{T} x+c^{f} \\
\text { subject to } & l^{c} \leq A x & \leq u^{c}, \\
& l^{x} \leq & x \\
& \leq u^{x}, \\
& & \\
& F x+g & \mathcal{D}_{1} \times \cdots \times \mathcal{D}_{p}
\end{array}
$$

with some number p of affine conic constraints.
Note that conic constraints are a natural generalization of linear constraints to the general nonlinear case. For example, a typical linear constraint of the form

$$
A x+b \geq 0
$$

can be also written as membership in the cone of nonnegative real numbers:

$$
A x+b \in \mathbb{R}_{\geq 0}^{d}
$$

and that naturally generalizes to

$$
F x+g \in \mathcal{D}
$$

for more complicated domains \mathcal{D} from Sec. 15.9 of which $\mathcal{D}=\mathbb{R}_{\geq 0}^{d}$ is a special case.

6.2.1 Running example

In this tutorial we will consider a sample problem of the form

$$
\begin{array}{ll}
\text { maximize } & c^{T} x \\
\text { subject to } & \sum_{i} x_{i}=1, \tag{6.2}\\
& \gamma \geq\|G x+h\|_{2},
\end{array}
$$

where $x \in \mathbb{R}^{n}$ is the optimization variable and $G \in \mathbb{R}^{k \times n}, h \in \mathbb{R}^{k}, c \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$. We will use the following sample data:

$$
n=3, \quad k=2, \quad x \in \mathbb{R}^{3}, \quad c=[2,3,-1]^{T}, \quad \gamma=0.03, \quad G=\left[\begin{array}{ccc}
1.5 & 0.1 & 0 \\
0.3 & 0 & 2.1
\end{array}\right], \quad h=\left[\begin{array}{c}
0 \\
0.1
\end{array}\right] .
$$

To be explicit, the problem we are going to solve is therefore:

$$
\begin{array}{ll}
\operatorname{maximize} & 2 x_{0}+3 x_{1}-x_{2} \\
\text { subject to } & x_{0}+x_{1}+x_{2}=1, \tag{6.3}\\
& 0.03 \geq \sqrt{\left(1.5 x_{0}+0.1 x_{1}\right)^{2}+\left(0.3 x_{0}+2.1 x_{2}+0.1\right)^{2}} .
\end{array}
$$

Consulting the definition of a quadratic cone \mathcal{Q} we see that the conic form of this problem is:

$$
\begin{array}{ll}
\operatorname{maximize} & 2 x_{0}+3 x_{1}-x_{2} \\
\text { subject to } & x_{0}+x_{1}+x_{2}=1, \tag{6.4}\\
& \left(0.03,1.5 x_{0}+0.1 x_{1}, 0.3 x_{0}+2.1 x_{2}+0.1\right) \in \mathcal{Q}^{3} .
\end{array}
$$

The conic constraint has an affine conic representation $F x+g \in \mathcal{D}$ as follows:

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \tag{6.5}\\
1.5 & 0.1 & 0 \\
0.3 & 0 & 2.1
\end{array}\right] x+\left[\begin{array}{c}
0.03 \\
0 \\
0.1
\end{array}\right] \in \mathcal{Q}^{3} .
$$

Of course by the same logic in the general case the conic form of the problem (6.2) would be

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & \sum_{i} x_{i}=1, \tag{6.6}\\
& (\gamma, G x+h) \in \mathcal{Q}^{k+1}
\end{array}
$$

and the ACC representation of the constraint $(\gamma, G x+h) \in \mathcal{Q}^{k+1}$ would be

$$
\left[\begin{array}{l}
0 \\
G
\end{array}\right] x+\left[\begin{array}{l}
\gamma \\
h
\end{array}\right] \in \mathcal{Q}^{k+1} .
$$

Now we show how to add the ACC (6.5). This involves three steps:

- storing the affine expressions which appear in the constraint,
- creating a domain, and
- combining the two into an ACC.

6.2.2 Step 1: add affine expressions

To store affine expressions (AFE for short) MOSEK provides a matrix \mathbf{F} and a vector \mathbf{g} with the understanding that every row of

$$
\mathbf{F} x+\mathbf{g}
$$

defines one affine expression. The API functions with infix afe are used to operate on \mathbf{F} and \mathbf{g}, add rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the A matrix of linear constraints. The storage matrix \mathbf{F} is a sparse matrix, therefore only nonzero elements have to be explicitly added.

Remark: the storage \mathbf{F}, \mathbf{g} may, but does not have to be, equal to the pair F, g appearing in the expression $F x+g$. It is possible to store the AFEs in different order than the order they will be used in F, g, as well as store some expressions only once if they appear multiple times in $F x+g$. In this first turorial, however, we will for simplicity store all expressions in the same order we will later use them, so that $(\mathbf{F}, \mathbf{g})=(F, g)$.

In our example we create only one conic constraint (6.5) with three (in general $k+1$) affine expressions

$$
\begin{aligned}
& 0.03 \\
& 1.5 x_{0}+0.1 x_{1} \\
& 0.3 x_{0}+2.1 x_{2}+0.1
\end{aligned}
$$

Given the previous remark, we initialize the AFE storage as:

$$
\mathbf{F}=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{6.7}\\
1.5 & 0.1 & 0 \\
0.3 & 0 & 2.1
\end{array}\right], \quad \mathbf{g}=\left[\begin{array}{c}
0.03 \\
0 \\
0.1
\end{array}\right]
$$

Initially \mathbf{F} and \mathbf{g} are empty (have 0 rows). We construct them as follows. First, we append a number of empty rows:

```
// Append empty AFE rows for affine expression storage
task.append_afes(k + 1)?;
```

We now have \mathbf{F} and \mathbf{g} with 3 rows of zeros and we fill them up to obtain (6.7).

```
// G matrix in sparse form
let Gsubi : &[i64] = &[0, 0, 1, 1];
let Gsubj : &[i32] = &[0, 1, 0, 2];
let Gval = &[1.5, 0.1, 0.3, 2.1];
// Other data
let h = &[0.0, 0.1];
let gamma = 0.03;
// Construct F matrix in sparse form
let Fsubi : Vec<i64> = Gsubi.iter().map(|i| *i+1).collect(); // G will be placed
from row number 1 in F
    let Fsubj = Gsubj;
let Fval = Gval;
// Fill in F storage
task.put_afe_f_entry_list(Fsubi.as_slice(), Fsubj, Fval)?;
// Fill in g storage
task.put_afe_g(0, gamma)?;
task.put_afe_g_slice(1, k+1, h)?;
```

We have now created the matrices from (6.7). Note that at this point we have not defined any ACC yet. All we did was define some affine expressions and place them in a generic AFE storage facility to be used later.

6.2.3 Step 2: create a domain

Next, we create the domain to which the ACC belongs. Domains are created with functions with infix domain. In the case of (6.5) we need a quadratic cone domain of dimension 3 (in general $k+1$), which we create with:

```
// Define a conic quadratic domain
let quadDom = task.append_quadratic_cone_domain(k + 1)?;
```

The function returns a domain index, which is just the position in the list of all domains (potentially) created for the problem. At this point the domain is just stored in the list of domains, but not yet used for anything.

6.2.4 Step 3: create the actual constraint

We are now in position to create the affine conic constraint. ACCs are created with functions with infix acc. The most basic variant, Task.append_acc will append an affine conic constraint based on the following data:

- the list afeidx of indices of AFEs to be used in the constraint. These are the row numbers in \mathbf{F}, \mathbf{g} which contain the required affine expressions.
- the index domidx of the domain to which the constraint belongs.

Note that number of AFEs used in afeidx must match the dimension of the domain.
In case of (6.5) we have already arranged \mathbf{F}, \mathbf{g} in such a way that their (only) three rows contain the three affine expressions we need (in the correct order), and we already defined the quadratic cone domain of matching dimension 3. The ACC is now constructed with the following call:

```
// Create the ACC
task.append_acc(quadDom, // Domain index
    (0..k+1).collect::<Vec<i64>>().as_slice(), // Indices of AFE rows\sqcup
\hookrightarrow[0, ...,k]
    vec![0.0; (k+1) as usize].as_slice())?; // Ignored
```

This completes the setup of the affine conic constraint.

6.2.5 Example ACC1

We refer to Sec. 6.1 for instructions how to set up the objective and linear constraint $x_{0}+x_{1}+x_{2}=1$. All else that remains is to set up the MOSEK environment, task, add variables, call the solver with Task.optimize and retrieve the solution with Task.get_xx. Since our problem contains a nonlinear constraint we fetch the interior-point solution. The full code solving problem (6.3) is shown below.

Listing 6.2: Full code of example ACC1.

```
extern crate mosek;
extern crate itertools;
use mosek::{Task,Objsense,Streamtype,Solsta,Soltype,Boundkey};
// Define problem data
#[allow(non_upper_case_globals)]
const n : i32 = 3;
#[allow(non_upper_case_globals) ]
const k : i64 = 2;
#[allow(non_snake_case)]
fn main() -> Result<(),String> {
    // Create a task
    let mut task = match Task::new() {
        Some(e) => e,
```

```
    None => return Err("Failed to create task".to_string()),
    }.with_callbacks();
    // Attach a printer to the task
    task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
    // Create n free variables
    task.append_vars(n)?;
    let x : Vec<i32> = (0..n).collect();
    task.put_var_bound_slice_const(0, n, Boundkey::FR, 0.0, 0.0)?;
    // Set up the objective
    let c = &[2.0, 3.0, -1.0];
    task.put_obj_sense(Objsense::MAXIMIZE)?;
    task.put_c_list(x.as_slice(), c)?;
    // One linear constraint - sum(x) = 1
    task.append_cons(1)?;
    task.put_a_row(0,x.as_slice(), vec![1.0; n as usize].as_slice())?;
    task.put_con_bound(0, Boundkey::FX, 1.0, 1.0)?;
    // Append empty AFE rows for affine expression storage
    task.append_afes(k + 1)?;
    // G matrix in sparse form
    let Gsubi : &[i64] = &[0, 0, 1, 1];
    let Gsubj : &[i32] = &[0, 1, 0, 2];
    let Gval = &[1.5, 0.1, 0.3, 2.1];
    // Other data
    let h = &[0.0, 0.1];
    let gamma = 0.03;
    // Construct F matrix in sparse form
    let Fsubi : Vec<i64> = Gsubi.iter().map(|i| *i+1).collect(); // G will be placed\sqcup
from row number 1 in F
    let Fsubj = Gsubj;
    let Fval = Gval;
    // Fill in F storage
    task.put_afe_f_entry_list(Fsubi.as_slice(), Fsubj, Fval)?;
    // Fill in g storage
    task.put_afe_g(0, gamma)?;
    task.put_afe_g_slice(1, k+1, h)?;
    // Define a conic quadratic domain
    let quadDom = task.append_quadratic_cone_domain(k + 1)?;
    // Create the ACC
    task.append_acc(quadDom, // Domain index
        (0..k+1).collect::<Vec<i64>>().as_slice(), // Indices of AFE rows\sqcup
\hookrightarrow[0,\ldots,k]
        vec![0.0; (k+1) as usize].as_slice())?; // Ignored
    // Solve and retrieve solution
    let _ = task.optimize()?;
    task.write_data("acc1.ptf")?;
    let mut xx = vec![0.0; n as usize];
```

```
    task.get_xx(Soltype::ITR,xx.as_mut_slice())?;
    assert!(task.get_sol_sta(Soltype::ITR)? == Solsta::OPTIMAL);
    println!("Solution: {:?}",xx);
    // Demonstrate retrieving activity of ACC
    let mut activity = vec![0.0; (k+1) as usize];
    let mut doty = vec![0.0; (k+1) as usize];
    task.evaluate_acc(Soltype::ITR,0,activity.as_mut_slice())?;
    println!("Activity of ACC:: {:?}",activity);
    // Demonstrate retrieving the dual of ACC
    task.get_acc_dot_y(Soltype::ITR,0,doty.as_mut_slice())?;
    println!("Dual of ACC:: {:?}",doty);
    0k(())
}
fn maxgap(a : &[f64], b : &[f64]) -> f64 {
    a.iter().zip(b.iter()).map(|(&a,&b)| (a - b).abs()).max_by(|a,b| if a < b { std::
cmp::Ordering::Less } else if b < a { std::cmp::Ordering::Greater } else {std::cmp::
Ordering::Equal} ).unwrap()
}
fn dot(a : &[f64], b : &[f64]) -> f64 {
    a.iter().zip(b.iter()).map(|(&a,&b)| (a * b)).sum()
}
```

The answer is

```
[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]
```

The dual values \dot{y} of an ACC can be obtained with Task.get_acc_dot_y if required.

```
// Demonstrate retrieving the dual of ACC
task.get_acc_dot_y(Soltype::ITR,0,doty.as_mut_slice())?;
println!("Dual of ACC:: {:?}",doty);
```


6.2.6 Example ACC2 - more conic constraints

Now that we know how to enter one affine conic constraint (ACC) we will demonstrate a problem with two ACCs. From there it should be clear how to add multiple ACCs. To keep things familiar we will reuse the previous problem, but this time cast it into a conic optimization problem with two ACCs as follows:

$$
\begin{array}{ll}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & \left(\sum_{i} x_{i}-1, \gamma, G x+h\right) \in\{0\} \times \mathcal{Q}^{k+1} \tag{6.8}
\end{array}
$$

or, using the data from the example:

$$
\begin{array}{lll}
\operatorname{maximize} & 2 x_{0}+3 x_{1}-x_{2} & \\
\text { subject to } & x_{0}+x_{1}+x_{2}-1 & \in\{0\} \\
& \left(0.03,1.5 x_{0}+0.1 x_{1}, 0.3 x_{0}+2.1 x_{2}+0.1\right) & \in \mathcal{Q}^{3}
\end{array}
$$

In other words, we transformed the linear constraint into an ACC with the one-point zero domain.
As before, we proceed in three steps. First, we add the variables and create the storage \mathbf{F}, \mathbf{g} containing
all affine expressions that appear throughout all off the ACCs. It means we will require 4 rows:

$$
\mathbf{F}=\left[\begin{array}{ccc}
1 & 1 & 1 \tag{6.9}\\
0 & 0 & 0 \\
1.5 & 0.1 & 0 \\
0.3 & 0 & 2.1
\end{array}\right], \quad \mathbf{g}=\left[\begin{array}{c}
-1 \\
0.03 \\
0 \\
0.1
\end{array}\right]
$$

```
// Set AFE rows representing the linear constraint
task.append_afes(1)?;
task.put_afe_f_row(0, x.as_slice(), vec![1.0; n as usize].as_slice())?;
task.put_afe_g(0, -1.0)?;
// Set AFE rows representing the quadratic constraint
task.append_afes(k + 1)?;
task.put_afe_f_row(2, // afeidx, row number
    &[0i32, 1], // varidx, column numbers
    &[1.5, 0.1])?; // values
task.put_afe_f_row(3, // afeidx, row number
    &[0i32, 2], // varidx, column numbers
    &[0.3, 2.1])?; // values
let h = &[0.0, 0.1];
let gamma = 0.03;
task.put_afe_g(1, gamma)?;
task.put_afe_g_slice(2, k+2, h)?;
```

Next, we add the required domains: the zero domain of dimension 1 , and the quadratic cone domain of dimension 3 .

```
// Define domains
let zero_dom = task.append_rzero_domain(1)?;
let quad_dom = task.append_quadratic_cone_domain(k + 1)?;
```

Finally, we create both ACCs. The first ACCs picks the 0 -th row of \mathbf{F}, \mathbf{g} and places it in the zero domain:

```
task.append_acc(zero_dom, // Domain index
    &[0i64], // Indices of AFE rows
    &[0.0])?; // Ignored
```

The second ACC picks rows $1,2,3$ in \mathbf{F}, \mathbf{g} and places them in the quadratic cone domain:

```
task.append_acc(quad_dom, // Domain index
    &[1i64,2,3], // Indices of AFE rows
    &[0.0,0.0,0.0])?; // Ignored
```

The completes the construction and we can solve the problem like before:
Listing 6.3: Full code of example ACC2.

```
extern crate mosek;
extern crate itertools;
use mosek::{Task,Objsense,Streamtype,Solsta,Soltype,Boundkey};
#[allow(non_upper_case_globals) ]
fn main() -> Result<(),String> {
    // Define problem data
    const n : i32 = 3;
    const k : i64 = 2;
```

```
// Create a task
let mut task = match Task::new() {
    Some(e) => e,
    None => return Err("Failed to create task".to_string()),
}.with_callbacks();
// Attach a printer to the task
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
// Create n free variables
task.append_vars(n)?;
let x : Vec<i32> = (0..n).collect();
task.put_var_bound_slice_const(0, n, Boundkey::FR, 0.0,0.0)?;
// Set up the objective
let c = &[2.0, 3.0, -1.0];
task.put_obj_sense(Objsense::MAXIMIZE)?;
task.put_c_list(x.as_slice(), c)?;
// Set AFE rows representing the linear constraint
task.append_afes(1)?;
task.put_afe_f_row(0, x.as_slice(), vec![1.0; n as usize].as_slice())?;
task.put_afe_g(0, -1.0)?;
// Set AFE rows representing the quadratic constraint
task.append_afes(k + 1)?;
task.put_afe_f_row(2, // afeidx, row number
    &[0i32, 1], // varidx, column numbers
    &[1.5, 0.1])?; // values
task.put_afe_f_row(3, // afeidx, row number
    &[0i32, 2], // varidx, column numbers
    &[0.3, 2.1])?; // values
let h = &[0.0, 0.1];
let gamma = 0.03;
task.put_afe_g(1, gamma)?;
task.put_afe_g_slice(2, k+2, h)?;
// Define domains
let zero_dom = task.append_rzero_domain(1)?;
let quad_dom = task.append_quadratic_cone_domain(k + 1)?;
// Append affine conic constraints
task.append_acc(zero_dom, // Domain index
    &[Oi64], // Indices of AFE rows
    &[0.0])?; // Ignored
task.append_acc(quad_dom, // Domain index
    &[1i64,2,3], // Indices of AFE rows
    &[0.0,0.0,0.0])?; // Ignored
// Solve and retrieve solution
let _ = task.optimize()?;
task.write_data("acc2.ptf")?;
let mut xx = vec![0.0; n as usize];
task.get_xx(Soltype::ITR,xx.as_mut_slice())?;
assert! (task.get_sol_sta(Soltype::ITR)? == Solsta::OPTIMAL);
println!("Solution: {:?}",xx);
```

```
    // Demonstrate retrieving activity of ACC
    let mut activity = vec![0.0; 3];
    let mut doty = vec![0.0; 3];
    task.evaluate_acc(Soltype::ITR,1,activity.as_mut_slice())?;
    println!("Activity of quadratic ACC:: {:?}",activity);
    // Demonstrate retrieving the dual of ACC
    task.get_acc_dot_y(Soltype::ITR,1,doty.as_mut_slice())?;
    println!("Dual of quadratic ACC:: {:?}",doty);
    0k(())
}
fn maxgap(a : &[f64], b : &[f64]) -> f64 {
    a.iter().zip(b.iter()).map(|(&a,&b)| (a - b).abs()).max_by(|a,b| if a < b { std::
->cmp::Ordering::Less } else if b < a { std::cmp::Ordering::Greater } else {std::cmp::
Ordering::Equal} ).unwrap()
}
fn dot(a : &[f64], b : &[f64]) -> f64 {
    a.iter().zip(b.iter()).map(|(&a,&b)| (a * b)).sum()
}
```

We obtain the same result:

```
[-0.07838011145615721, 1.1289128998004547, -0.0505327883442975]
```


6.2.7 Summary and extensions

In this section we presented the most basic usage of the affine expression storage \mathbf{F}, \mathbf{g} to input affine expressions used together with domains to create affine conic constraints. Now we briefly point out additional features of his interface which can be useful in some situations for more demanding users. They will be demonstrated in various examples in other tutorials and case studies in this manual.

- It is important to remember that \mathbf{F}, \mathbf{g} has only a storage function and during the ACC construction we can pick an arbitrary list of row indices and place them in a conic domain. It means for example that:
- It is not necessary to store the AFEs in the same order they will appear in ACCs.
- The same AFE index can appear more than once in one and/or more conic constraints (this can be used to reduce storage if the same affine expression is used in multiple ACCs).
- The \mathbf{F}, \mathbf{g} storage can even include rows that are not presently used in any ACC.
- Domains can be reused: multiple ACCs can use the same domain. On the other hand the same type of domain can appear under many domidx positions. In this sense the list of created domains also plays only a storage role: the domains are only used when they enter an ACC.
- Affine expressions can also contain semidefinite terms, ie. the most general form of an ACC is in fact

$$
F x+\langle\bar{F}, \bar{X}\rangle+g \in \mathcal{D}
$$

These terms are input into the rows of AFE storage using the functions with infix afebarf, creating an additional storage structure $\overline{\mathbf{F}}$.

- The same affine expression storage \mathbf{F}, \mathbf{g} is shared between affine conic and disjunctive constraints (see Sec. 6.9).
- If, on the other hand, the user chooses to always store the AFEs one by one sequentially in the same order as they appear in ACCs then sequential functions such as Task.append_acc_seq and Task.append_accs_seq make it easy to input one or more ACCs by just specifying the starting AFE index and dimension.
- It is possible to add a number of ACCs in one go using Task.append_accs.
- When defining an ACC an additional constant vector b can be provided to modify the constant terms coming from \mathbf{g} but only for this particular ACC. This could be useful to reduce \mathbf{F} storage space if, for example, many expressions $f^{T} x-b_{i}$ with the same linear part $f^{T} x$, but varying constant terms b_{i}, are to be used throughout ACCs.

6.3 Conic Quadratic Optimization

The structure of a typical conic optimization problem is

$$
\begin{array}{llll}
\operatorname{minimize} & & c^{T} x+c^{f} \\
\text { subject to } & l^{c} & \leq & A x \\
& l^{x} & \leq u^{c}, \\
& x & \leq x+g & \leq u^{x}, \\
& & & \mathcal{D},
\end{array}
$$

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up problems with the (rotated) quadratic cones.

MOSEK supports two types of quadratic cones, namely:

- Quadratic cone:

$$
\mathcal{Q}^{n}=\left\{x \in \mathbb{R}^{n}: x_{0} \geq \sqrt{\sum_{j=1}^{n-1} x_{j}^{2}}\right\} .
$$

- Rotated quadratic cone:

$$
\mathcal{Q}_{r}^{n}=\left\{x \in \mathbb{R}^{n}: 2 x_{0} x_{1} \geq \sum_{j=2}^{n-1} x_{j}^{2}, \quad x_{0} \geq 0, \quad x_{1} \geq 0\right\}
$$

For example, consider the following constraint:

$$
\left(x_{4}, x_{0}, x_{2}\right) \in \mathcal{Q}^{3}
$$

which describes a convex cone in \mathbb{R}^{3} given by the inequality:

$$
x_{4} \geq \sqrt{x_{0}^{2}+x_{2}^{2}}
$$

For other types of cones supported by MOSEK, see Sec. 15.9 and the other tutorials in this chapter. Different cone types can appear together in one optimization problem.

6.3.1 Example CQO1

Consider the following conic quadratic problem which involves some linear constraints, a quadratic cone and a rotated quadratic cone.

$$
\begin{array}{lc}
\operatorname{minimize} & x_{4}+x_{5}+x_{6} \\
\text { subject to } & x_{1}+x_{2}+2 x_{3}=1, \\
& x_{1}, x_{2}, x_{3} \geq 0 \tag{6.10}\\
& x_{4} \geq \sqrt{x_{1}^{2}+x_{2}^{2}}, \\
& 2 x_{5} x_{6} \geq x_{3}^{2}
\end{array}
$$

The two conic constraints can be expressed in the ACC form as shown in (6.11)

$$
\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \tag{6.11}\\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \in \mathcal{Q}^{3} \times \mathcal{Q}_{r}^{3}
$$

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the matrix \mathbf{F} and vector \mathbf{g} appearing in (6.11). The matrix \mathbf{F} is sparse and we input only its nonzeros using Task.put_afe_f_entry_list. Since \mathbf{g} is zero, nothing needs to be done about this vector.

Each of the conic constraints is appended using the function Task.append_acc. In the first case we append the quadratic cone determined by the first three rows of \mathbf{F} and then the rotated quadratic cone depending on the remaining three rows of \mathbf{F}.

```
{
    task.append_afes(6)?;
    task.put_afe_f_entry_list(&[0,1,2,3,4,5], // Rows
                            &[3, 0, 1, 4, 5, 2], // Columns
    &[1.0,1.0,1.0,1.0,1.0,1.0])?;
    // Quadratic cone (x(3),x(0),x(1)) \in QUAD_3
    let qconedom = task.append_quadratic_cone_domain(3)?;
    task.append_acc(qconedom, // Domain
        &[0, 1, 2], // Rows from F
        &[0.0,0.0,0.0])?; // Unused
    // Rotated quadratic cone (x(4),x(5),x(2)) \in RQUAD_3
    let rqconedom = task.append_r_quadratic_cone_domain(3)?;
    task.append_acc(rqconedom, // Domain
    &[3, 4, 5], // Rows from F
    &[0.0,0.0,0.0])?; // Unused
```

\}

The first argument selects the domain, which must be appended before being used, and must have the dimension matching the number of affine expressions appearing in the constraint. Variants of this method are available to append multiple ACCs at a time. It is also possible to define the matrix \mathbf{F} using a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix \mathbf{F} and vector \mathbf{g} see Sec. 6.2.

Source code

Listing 6.4: Source code solving problem (6.10).

```
fn main() -> Result<(),String>
{
    let numvar : i32 = 6;
    let numcon : i32 = 1;
    let bkc = &[ mosek::Boundkey::FX ];
    let blc = &[ 1.0 ];
    let buc = &[ 1.0 ];
    let bkx = &[ mosek::Boundkey::LO,
                    mosek::Boundkey::LO,
                    mosek::Boundkey::LO,
                    mosek::Boundkey::FR,
                    mosek::Boundkey::FR,
                    mosek::Boundkey::FR];
    let blx = &[ 0.0, 0.0, 0.0, -INF, -INF, -INF ];
    let bux = &[ INF, INF, INF, INF, INF, INF ];
    let c = & [0.0, 0.0, 0.0, 1.0, 1.0, 1.0];
    let asub = &[0, 1, 2];
    let aval = &[1.0, 1.0, 1.0];
    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(e) => e,
        None => return Err("Failed to create task".to_string()),
        }.with_callbacks();
    task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
    /* Append 'numcon' empty constraints.
        * The constraints will initially have no bounds. */
    task.append_cons(numcon)?;
    /* Append 'numvar' variables.
        * The variables will initially be fixed at zero (x=0). */
    task.append_vars(numvar)?;
    for (j,&cj,&bkj,&blj,&buj) in izip!(0..numvar,c,bkx,blx,bux) {
        /* Set the linear term c_j in the objective.*/
        task.put_c_j(j,cj)?;
        /* Set the bounds on variable j.
            * blx[j] <= x_j <= bux[j] */
        task.put_var_bound( j, /* Index of variable.*/
                        bkj, /* Bound key.*/
                blj, /* Numerical value of lower bound.*/
                buj)?; /* Numerical value of upper bound.*/
    }
    /* Input columns of A */
    task.put_a_row(0, asub, aval)?;
```

```
/* Set the bounds on constraints.
    * for i=1, ...,numcon : blc[i] <= constraint i <= buc[i] */
for (i,&bki,&bli,&bui) in izip!(0..numcon,bkc,blc,buc) {
    task.put_con_bound( i, /* Index of constraint.*/
        bki, /* Bound key.*/
        bli, /* Numerical value of lower bound.*/
        bui)?; /* Numerical value of upper bound.*/
}
/* Append the first cone. */
    // Create a matrix F such that F * x = [x(3),x(0),x(1),x(4),x(5),x(2)]
{
    task.append_afes(6)?;
    task.put_afe_f_entry_list(&[0,1,2,3,4,5], // Rows
                            &[3, 0, 1, 4, 5, 2], // Columns
                    &[1.0,1.0,1.0,1.0,1.0,1.0])?;
    // Quadratic cone (x(3),x(0),x(1)) \in QUAD_3
    let qconedom = task.append_quadratic_cone_domain(3)?;
    task.append_acc(qconedom,
        &[0, 1, 2] ,
                                // Domain
                                // Rows from F
                        &[0.0,0.0,0.0])?; // Unused
    // Rotated quadratic cone (x(4),x(5),x(2)) \in RQUAD_3
    let rqconedom = task.append_r_quadratic_cone_domain(3)?;
    task.append_acc(rqconedom, // Domain
        &[3, 4, 5], // Rows from F
        &[0.0,0.0,0.0])?; // Unused
}
/* Run optimizer */
let trm = task.optimize()?;
task.write_data("cqo1.ptf")?;
/* Print a summary containing information
    * about the solution for debugging purposes*/
task.solution_summary (Streamtype::MSG)?;
let solsta = task.get_sol_sta(Soltype::ITR)?;
match solsta
{
    Solsta::OPTIMAL =>
    {
        let mut xx = vec![0.0; numvar as usize];
        task.get_xx(Soltype::ITR, /* Request the basic solution. */
                xx.as_mut_slice())?;
        println!("Optimal primal solution");
        for (j,xj) in izip!(0..numvar,xx) {
            println!("x[{}]: {}",j,xj);
        }
        }
    Solsta::DUAL_INFEAS_CER |
    Solsta::PRIM_INFEAS_CER =>
```

```
    {
        println!("Primal or dual infeasibility certificate found.");
        }
    Solsta::UNKNOWN => {
        /* If the solutions status is unknown, print the termination code
            * indicating why the optimizer terminated prematurely. */
            println!("The solution status is unknown.");
            println!("The optimizer terminitated with code: {}",trm);
        }
        _ =>
        {
        println!("Other solution status.");
        }
    }
    0k(())
} /* main */
```


6.4 Power Cone Optimization

The structure of a typical conic optimization problem is

\[

\]

(see Sec. 12 for detailed formulations). Here we discuss how to set-up problems with the primal/dual power cones.

MOSEK supports the primal and dual power cones, defined as below:

- Primal power cone:

$$
\mathcal{P}_{n}^{\alpha_{k}}=\left\{x \in \mathbb{R}^{n}: \prod_{i=0}^{n_{\ell}-1} x_{i}^{\beta_{i}} \geq \sqrt{\sum_{j=n_{\ell}}^{n-1} x_{j}^{2}}, x_{0} \ldots, x_{n_{\ell}-1} \geq 0\right\}
$$

where $s=\sum_{i} \alpha_{i}$ and $\beta_{i}=\alpha_{i} / s$, so that $\sum_{i} \beta_{i}=1$.

- Dual power cone:

$$
\left(\mathcal{P}_{n}^{\alpha_{k}}\right)=\left\{x \in \mathbb{R}^{n}: \prod_{i=0}^{n_{\ell}-1}\left(\frac{x_{i}}{\beta_{i}}\right)^{\beta_{i}} \geq \sqrt{\sum_{j=n_{\ell}}^{n-1} x_{j}^{2}}, x_{0} \ldots, x_{n_{\ell}-1} \geq 0\right\}
$$

where $s=\sum_{i} \alpha_{i}$ and $\beta_{i}=\alpha_{i} / s$, so that $\sum_{i} \beta_{i}=1$.
Perhaps the most important special case is the three-dimensional power cone family:

$$
\mathcal{P}_{3}^{\alpha, 1-\alpha}=\left\{x \in \mathbb{R}^{3}: x_{0}^{\alpha} x_{1}^{1-\alpha} \geq\left|x_{2}\right|, x_{0}, x_{1} \geq 0\right\}
$$

which has the corresponding dual cone:
For example, the conic constraint $(x, y, z) \in \mathcal{P}_{3}^{0.25,0.75}$ is equivalent to $x^{0.25} y^{0.75} \geq|z|$, or simply $x y^{3} \geq z^{4}$ with $x, y \geq 0$.

For other types of cones supported by MOSEK, see Sec. 15.9 and the other tutorials in this chapter. Different cone types can appear together in one optimization problem.

6.4.1 Example POW1

Consider the following optimization problem which involves powers of variables:

$$
\begin{array}{lr}
\operatorname{maximize} & x_{0}^{0.2} x_{1}^{0.8}+x_{2}^{0.4}-x_{0} \tag{6.12}\\
\text { subject to } & x_{0}+x_{1}+\frac{1}{2} x_{2}=2, \\
x_{0}, x_{1}, x_{2} \geq 0
\end{array}
$$

We convert (6.12) into affine conic form using auxiliary variables as bounds for the power expressions:

$$
\begin{array}{lr}
\operatorname{maximize} & x_{3}+x_{4}-x_{0} \\
\text { subject to } & x_{0}+x_{1}+\frac{1}{2} x_{2}=2, \tag{6.13}\\
& \left(x_{0}, x_{1}, x_{3}\right) \in \mathcal{P}_{3}^{0.2,0.8} \\
& \left(x_{2}, 1.0, x_{4}\right) \in \mathcal{P}_{3}^{0.4,0.6}
\end{array}
$$

The two conic constraints shown in (6.13) can be expressed in the ACC form as shown in (6.14):

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \tag{6.14}\\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right] \in \mathcal{P}_{3}^{0.2,0.8} \times \mathcal{P}_{3}^{0.4,0.6}
$$

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the matrix \mathbf{F} and vector \mathbf{g} which together determine all the six affine expressions appearing in the conic constraints of (6.13)

```
let pc1 = task.append_primal_power_cone_domain(3, &[0.2, 0.8])?;
let pc2 = task.append_primal_power_cone_domain(3, &[4.0, 6.0])?;
// Create data structures F,g so that
//
// F*x+g=(x(0),x(1), x(3), x(2), 1.0, x(4))
//
task.append_afes(6)?;
task.put_afe_f_entry_list(&[0, 1, 2, 3, 5], // Rows
    &[0, 1, 3, 2, 4], // Columns
    &[1.0, 1.0, 1.0, 1.0, 1.0])?;
task.put_afe_g(4, 1.0)?;
// Append the two conic constraints
task.append_acc(pc1, // Domain
    &[0, 1, 2], // Rows from F
    &[0.0,0.0,0.0])?; // Unused
task.append_acc(pc2, // Domain
    &[3, 4, 5], // Rows from F
    &[0.0,0.0,0.0])?; // Unused
```

Following that, each of the affine conic constraints is appended using the function Task. append_acc. The first argument selects the domain, which must be appended before being used, and must have the
dimension matching the number of affine expressions appearing in the constraint. In the first case we append the power cone determined by the first three rows of \mathbf{F} and \mathbf{g} while in the second call we use the remaining three rows of \mathbf{F} and \mathbf{g}.

Variants of this method are available to append multiple ACCs at a time. It is also possible to define the matrix \mathbf{F} using a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix \mathbf{F} and vector \mathbf{g} see Sec. 6.2.

Source code

Listing 6.5: Source code solving problem (6.12).

```
extern crate mosek;
use mosek::*;
const INF : f64 = 0.0;
fn main() -> Result<(),String> {
    let numcon : i32 = 1;
    let numvar : i32 = 5;
    // Since the value infinity is never used, we define
    // 'infinity' symbolic purposes only
    let cval = vec![ 1.0, 1.0, -1.0 ];
    let csub = vec![ 3, 4, 0 ];
    let aval = vec![ 1.0, 1.0, 0.5 ];
    let asub = vec![ 0, 1, 2 ];
    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(e) => e,
        None => return Err("Failed to create task".to_string()),
    }.with_callbacks();
    // Directs the log task stream to the user specified
    // method msgclass.streamCB
    task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
    /* Append 'numcon' empty constraints.
    The constraints will initially have no bounds. */
    task.append_cons(numcon)?;
    /* Append 'numvar' variables.
    The variables will initially be fixed at zero ( }x=0\mathrm{ ). */
    task.append_vars(numvar)?;
    /* Set up the linear part of the problem */
    task.put_c_list(&csub, &cval)?;
    task.put_a_row(0, &asub, &aval)?;
    task.put_con_bound(0, Boundkey::FX, 2.0, 2.0)?;
    task.put_var_bound_slice_const(0, numvar, Boundkey::FR, -INF, INF)?;
    /* Add a conic constraint */
```

```
    let pc1 = task.append_primal_power_cone_domain(3, &[0.2, 0.8])?;
    let pc2 = task.append_primal_power_cone_domain(3, &[4.0, 6.0])?;
    // Create data structures F,g so that
    //
    // F*x+g=(x(0),x(1),x(3),x(2),1.0,x(4))
    //
    task.append_afes(6)?;
    task.put_afe_f_entry_list(&[0, 1, 2, 3, 5], // Rows
            &[0, 1, 3, 2, 4], // Columns
    &[1.0, 1.0, 1.0, 1.0, 1.0])?;
    task.put_afe_g(4, 1.0)?;
    // Append the two conic constraints
    task.append_acc(pc1, // Domain
        &[0, 1, 2], // Rows from F
        &[0.0,0.0,0.0])?; // Unused
    task.append_acc(pc2,
        // Domain
        &[3, 4, 5], // Rows from F
        &[0.0,0.0,0.0])?; // Unused
    task.put_obj_sense(Objsense::MAXIMIZE)?;
    task.optimize()?;
    task.write_data("pow1.ptf")?;
    // Print a summary containing information
    // about the solution for debugging purposes
    task.solution_summary(Streamtype::LOG)?;
    /* Get status information about the solution */
    let solsta = task.get_sol_sta(Soltype::ITR)?;
    assert!(solsta == Solsta::OPTIMAL);
    let mut xx = vec![0.0; numvar as usize];
    task.get_xx(Soltype::ITR,
        xx.as_mut_slice())?;
    println!("Optimal primal solution");
    for (j,&xj) in xx[0..3].iter().enumerate() {
        println!("x[{}]: {}",j+1,xj);
    }
    0k(())
```

\}

6.5 Conic Exponential Optimization

The structure of a typical conic optimization problem is

\[

\]

(see Sec. 12 for detailed formulations). We recommend Sec. 6.2 for a tutorial on how problems of that form are represented in MOSEK and what data structures are relevant. Here we discuss how to set-up problems with the primal/dual exponential cones.

MOSEK supports two exponential cones, namely:

- Primal exponential cone:

$$
K_{\exp }=\left\{x \in \mathbb{R}^{3}: x_{0} \geq x_{1} \exp \left(x_{2} / x_{1}\right), x_{0}, x_{1} \geq 0\right\} .
$$

- Dual exponential cone:

$$
K_{\exp }^{*}=\left\{s \in \mathbb{R}^{3}: s_{0} \geq-s_{2} e^{-1} \exp \left(s_{1} / s_{2}\right), s_{2} \leq 0, s_{0} \geq 0\right\}
$$

For example, consider the following constraint:

$$
\left(x_{4}, x_{0}, x_{2}\right) \in K_{\exp }
$$

which describes a convex cone in \mathbb{R}^{3} given by the inequalities:

$$
x_{4} \geq x_{0} \exp \left(x_{2} / x_{0}\right), x_{0}, x_{4} \geq 0
$$

For other types of cones supported by MOSEK, see Sec. 15.9 and the other tutorials in this chapter. Different cone types can appear together in one optimization problem.

6.5.1 Example CEO1

Consider the following basic conic exponential problem which involves some linear constraints and an exponential inequality:

$$
\begin{align*}
x_{0}+x_{1} & \\
\text { minimize } & =1 \tag{6.15}\\
\text { subject to } & x_{0}+x_{1}+x_{2} \\
x_{0} & \geq x_{1} \exp \left(x_{2} / x_{1}\right), \\
x_{0}, x_{1} & \geq 0 .
\end{align*}
$$

The affine conic form of (6.15) is:

$$
\begin{array}{ll}
x_{0}+x_{1} & \\
\text { minimize } & =1, \\
\text { subject to } & x_{0}+x_{1}+x_{2} \tag{6.16}\\
I x & \in K_{\exp }, \\
x & \in \mathbb{R}^{3} .
\end{array}
$$

where I is the 3×3 identity matrix.

Setting up the linear part

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such as defining an optimization task, retrieving the solution and so on.

Setting up the conic constraints

In order to append the conic constraints we first input the sparse identity matrix \mathbf{F} as indicated by (6.16).

The affine conic constraint is then appended using the function Task.append_acc, with the primal exponential domain and the list of \mathbf{F} rows, in this case consisting of all rows in their natural order.

```
task.append_afes(3)?;
let afeidxs = vec![0, 1, 2 ];
let b = vec![0.0,0.0,0.0];
let domidx = task.append_primal_exp_cone_domain()?;
task.put_afe_f_row_list(afeidxs.as_slice(),
    vec![1,1,1].as_slice(),
    vec![0,1,2].as_slice(),
    vec![0,1,2].as_slice(),
    vec![1.0,1.0,1.0].as_slice())?;
task.append_acc(domidx,afeidxs.as_slice(),b.as_slice())?;
```

The first argument selects the domain, which must be appended before being used, and must have the dimension matching the number of affine expressions appearing in the constraint. Variants of this method are available to append multiple ACCs at a time. It is also possible to define the matrix \mathbf{F} using a variety of methods (row after row, column by column, individual entries, etc.) similarly as for the linear constraint matrix A.

For a more thorough exposition of the affine expression storage (AFE) matrix \mathbf{F} and vector \mathbf{g} see Sec. 6.2.

Source code

Listing 6.6: Source code solving problem (6.15).

```
extern crate mosek;
use mosek::{Task,Boundkey,Objsense,Streamtype,Solsta,Soltype};
const INF : f64 = 0.0;
fn main() -> Result<(), String> {
    let numcon = 1;
    let numvar = 3;
    let bkc = mosek::Boundkey::FX;
    let blc = 1.0;
    let buc = 1.0;
    let bkx = vec![ Boundkey::FR,
                                    Boundkey::FR,
                                    Boundkey::FR ];
    let blx = vec![ -INF, -INF, -INF ];
    let bux = vec![ INF, INF, INF ];
    let c = vec![ 1.0, 1.0, 0.0 ];
    let a = vec![ 1.0, 1.0, 1.0 ];
    let asub = vec![0, 1, 2];
```

(continues on next page)

```
//let csub = new int[numvar];
//double[] xx = new double[numvar];
/* Create the optimization task. */
Task::new().expect("Failed to create task")
    .with_stream_callback(
        Streamtype::LOG,
        &mut|msg| print!("{}",msg),
        |task| task.with_callback(
            &mut |caller| { println!("caller = {}",caller); false },
            |task| {
                /* Append 'numcon' empty constraints.
                    The constraints will initially have no bounds. */
                task.append_cons(numcon)?;
                    /* Append 'numvar' variables.
                            The variables will initially be fixed at zero (x=0). */
                task.append_vars(numvar)?;
                /* Define the linear part of the problem */
                task.put_c_slice(0, numvar, c.as_slice())?;
                task.put_a_row(0, asub.as_slice(), a.as_slice())?;
                task.put_con_bound(0, bkc, blc, buc)?;
                task.put_var_bound_slice(0, numvar, bkx.as_slice(), blx.as_
\hookrightarrowslice(), bux.as_slice())?;
                /* Add a conic constraint */
                task.append_afes(3)?;
                let afeidxs = vec![0, 1, 2 ];
                let b = vec![0.0,0.0,0.0];
                let domidx = task.append_primal_exp_cone_domain()?;
                task.put_afe_f_row_list(afeidxs.as_slice(),
                    vec![1,1,1].as_slice() ,
                    vec![0,1,2].as_slice(),
                    vec![0,1,2].as_slice(),
                    vec![1.0,1.0,1.0].as_slice())?;
task.append_acc(domidx,afeidxs.as_slice(),b.as_slice())?;
task.put_obj_sense(Objsense: :MINIMIZE)?;
println!("optimize");
/* Solve the problem */
task.optimize()?;
// Print a summary containing information
// about the solution for debugging purposes
task.solution_summary(Streamtype::MSG)?;
/* Get status information about the solution */
let solsta = task.get_sol_sta(Soltype::ITR)?;
assert!(solsta == Solsta::OPTIMAL);
let mut xx = vec![0.0; numvar as usize];
task.get_xx(Soltype::ITR, & mut xx[..])?;
println!("Optimal primal solution");
```

```
    for j in 0..numvar as usize {
        println!("x[{}]: {:.4}",j,xx[j]);
    }
    0k(())
    }))
}
```


6.6 Geometric Programming

Geometric programs (GP) are a particular class of optimization problems which can be expressed in special polynomial form as positive sums of generalized monomials. More precisely, a geometric problem in canonical form is

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 1, \quad i=1, \ldots, m \tag{6.17}\\
& x_{j}>0, \quad j=1, \ldots, n
\end{array}
$$

where each f_{0}, \ldots, f_{m} is a posynomial, that is a function of the form

$$
f(x)=\sum_{k} c_{k} x_{1}^{\alpha_{k 1}} x_{2}^{\alpha_{k 2}} \cdots x_{n}^{\alpha_{k n}}
$$

with arbitrary real $\alpha_{k i}$ and $c_{k}>0$. The standard way to formulate GPs in convex form is to introduce a variable substitution

$$
x_{i}=\exp \left(y_{i}\right)
$$

Under this substitution all constraints in a GP can be reduced to the form

$$
\begin{equation*}
\log \left(\sum_{k} \exp \left(a_{k}^{T} y+b_{k}\right)\right) \leq 0 \tag{6.18}
\end{equation*}
$$

involving a log-sum-exp bound. Moreover, constraints involving only a single monomial in x can be even more simply written as a linear inequality:

$$
a_{k}^{T} y+b_{k} \leq 0
$$

We refer to the MOSEK Modeling Cookbook and to [BKVH07] for more details on this reformulation. A geometric problem formulated in convex form can be entered into MOSEK with the help of exponential cones.

6.6.1 Example GP1

The following problem comes from [BKVH07]. Consider maximizing the volume of a $h \times w \times d$ box subject to upper bounds on the area of the floor and of the walls and bounds on the ratios h / w and d / w :

$$
\begin{array}{rll}
\operatorname{maximize} & h w d & \\
\text { subject to } & 2(h w+h d) & \leq A_{\text {wall }}, \\
w d & \leq A_{\text {floor }}, \tag{6.19}\\
\alpha & \leq h / w \leq \beta, \\
\gamma & \leq d / w \leq \delta
\end{array}
$$

The decision variables in the problem are h, w, d. We make a substitution

$$
h=\exp (x), w=\exp (y), d=\exp (z)
$$

after which (6.19) becomes

$$
\begin{align*}
\operatorname{maximize} & x+y+z \\
\text { subject to } & \log \left(\exp \left(x+y+\log \left(2 / A_{\text {wall }}\right)\right)+\exp \left(x+z+\log \left(2 / A_{\text {wall }}\right)\right)\right) \leq 0, \\
& y+z \leq \log \left(A_{\text {floor }}\right) \tag{6.20}\\
& \log (\alpha) \leq x-y \leq \log (\beta) \\
& \log (\gamma) \leq z-y \leq \log (\delta)
\end{align*}
$$

Next, we demonstrate how to implement a log-sum-exp constraint (6.18). It can be written as:

$$
\begin{align*}
& \left.u_{k} \geq \exp \left(a_{k}^{T} y+b_{k}\right), \quad \text { (equiv. }\left(u_{k}, 1, a_{k}^{T} y+b_{k}\right) \in K_{\exp }\right), \tag{6.21}\\
& \sum_{k} u_{k}=1 .
\end{align*}
$$

This presentation requires one extra variable u_{k} for each monomial appearing in the original posynomial constraint. In this case the affine conic constraints (ACC, see Sec. 6.2) take the form:

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
\log \left(2 / A_{\text {wall }}\right) \\
0 \\
1 \\
\log \left(2 / A_{\text {wall }}\right)
\end{array}\right] \in K_{\exp } \times K_{\exp }
$$

As a matter of demonstration we will also add the constraint

$$
u_{1}+u_{2}-1=0
$$

as an affine conic constraint. It means that to define the all the ACCs we need to produce the following affine expressions (AFE) and store them:

$$
u_{1}, u_{2}, x+y+\log \left(2 / A_{\text {wall }}\right), x+z+\log \left(2 / A_{\text {wall }}\right), 1.0, u_{1}+u_{2}-1.0
$$

We implement it by adding all the affine expressions (AFE) and then picking the ones required for each ACC:

Listing 6.7: Implementation of log-sum-exp as in (6.21).

```
{
```

```
let afei = task.get_num_afe()?;
```

let afei = task.get_num_afe()?;
let u1 = task.get_num_var()?;
let u1 = task.get_num_var()?;
let u2 = u1+1;
let u2 = u1+1;
let afeidx = \&[0, 1, 2, 2, 3, 3, 5, 5];
let afeidx = \&[0, 1, 2, 2, 3, 3, 5, 5];
let varidx = \&[u1, u2, x, y, x, z, u1, u2];
let varidx = \&[u1, u2, x, y, x, z, u1, u2];
let fval = \&[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
let fval = \&[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
let gfull = \&[0.0, 0.0, (2.0/Aw).ln(), (2.0/Aw).ln(), 1.0, -1.0];
let gfull = \&[0.0, 0.0, (2.0/Aw).ln(), (2.0/Aw).ln(), 1.0, -1.0];
task.append_vars(2)?;
task.append_vars(2)?;
task.append_afes(6)?;
task.append_afes(6)?;
task.put_var_bound_slice_const(u1, u1+2, Boundkey::FR, -INF, INF)?;
task.put_var_bound_slice_const(u1, u1+2, Boundkey::FR, -INF, INF)?;
// Affine expressions appearing in affine conic constraints
// Affine expressions appearing in affine conic constraints
// in this order:
// in this order:
// u1, u2, x+y+log(2/Awall), x+z+log(2/Awall), 1.0, u1+u2-1.0
// u1, u2, x+y+log(2/Awall), x+z+log(2/Awall), 1.0, u1+u2-1.0
task.put_afe_f_entry_list(afeidx, varidx, fval)?;
task.put_afe_f_entry_list(afeidx, varidx, fval)?;
task.put_afe_g_slice(afei, afei+6, gfull)?;
task.put_afe_g_slice(afei, afei+6, gfull)?;
{
{
let dom = task.append_primal_exp_cone_domain()?;
let dom = task.append_primal_exp_cone_domain()?;
// (u1, 1, x+y+log(2/Awall)) \in EXP
// (u1, 1, x+y+log(2/Awall)) \in EXP
task.append_acc(dom, \&[0, 4, 2], \&[0.0,0.0,0.0])?;
task.append_acc(dom, \&[0, 4, 2], \&[0.0,0.0,0.0])?;
// (u2, 1, x+z+log(2/Awall)) \in EXP
// (u2, 1, x+z+log(2/Awall)) \in EXP
task.append_acc(dom, \&[1, 4, 3], \&[0.0,0.0,0.0])?;
task.append_acc(dom, \&[1, 4, 3], \&[0.0,0.0,0.0])?;
}
}
{

```
{
```

```
    let dom = task.append_rzero_domain(1)?;
        // The constraint u1+u2-1 \in \ZERO is added also as an ACC
        task.append_acc(dom, &[5], &[0.0])?;
    }
}
```

We can now use this function to assemble all constraints in the model. The linear part of the problem is entered as in Sec. 6.1.

Listing 6.8: Source code solving problem (6.20).

```
#[allow(non_snake_case) ]
fn max_volume_box(Aw : f64,
    Af : f64,
    alpha : f64,
    beta : f64,
    gamma : f64,
    delta : f64) -> Result<Vec<f64>,String>
{
    let numvar = 3i32; // Variables in original problem
    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(e) => e,
        None => return Err("Failed to create task".to_string()),
        }.with_callbacks();
    // Directs the log task stream to the user specified
    // method task_msg_obj.stream
    task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
    // Add variables and constraints
    task.append_vars(numvar)?;
    let x = Oi32;
    let y = 1i32;
    let z = 2i32;
    // Objective is the sum of three first variables
    task.put_obj_sense(Objsense::MAXIMIZE)?;
    task.put_c_slice(0, numvar, &[1.0,1.0,1.0])?;
    task.put_var_bound_slice_const(0, numvar, Boundkey::FR, -INF, INF)?;
    task.append_cons(3)?;
    // s0+s1 < 1 <=> log(s0+s1) < 0
    task.put_aij_list(&[0,0,1,1,2,2],
                    &[y, z, x, y, z, y],
                    &[1.0, 1.0, 1.0, -1.0, 1.0, -1.0])?;
    task.put_con_bound(0,Boundkey::UP,-INF,Af.ln())?;
    task.put_con_bound(1,Boundkey::RA,alpha.ln(),beta.ln())?;
    task.put_con_bound(2,Boundkey::RA,gamma.ln(),delta.ln())?;
    {
        let afei = task.get_num_afe()?;
        let u1 = task.get_num_var()?;
```

```
    let \(u 2=u 1+1\);
    let afeidx \(=\) \& \([0,1,2,2,3,3,5,5]\);
    let varidx \(=\&[u 1, u 2, x, y, x, z, u 1, u 2] ;\)
    let fval \(=\&[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0] ;\)
    let gfull \(=\&[0.0,0.0,(2.0 / A w) . \ln (),(2.0 / A w) . \ln (), 1.0,-1.0] ;\)
    task.append_vars (2)?;
    task.append_afes(6)?;
    task.put_var_bound_slice_const(u1, u1+2, Boundkey::FR, -INF, INF)?;
    // Affine expressions appearing in affine conic constraints
    // in this order:
    // u1, u2, \(x+y+\log (2 / A w a l l), x+z+l o g(2 / A w a l l), 1.0, u 1+u 2-1.0\)
    task.put_afe_f_entry_list(afeidx, varidx, fval)?;
    task.put_afe_g_slice(afei, afei+6, gfull)?;
    \{
    let dom = task.append_primal_exp_cone_domain()?;
    // (u1, 1, \(x+y+\log (2 / A w a l l))\) lin EXP
    task.append_acc(dom, \&[0, 4, 2], \&[0.0,0.0,0.0])?;
    // (u2, 1, \(x+z+\log (2 / A w a l l))\) in EXP
    task.append_acc(dom, \&[1, 4, 3], \&[0.0,0.0,0.0])?;
    \}
    \{
    let dom = task.append_rzero_domain(1)?;
    // The constraint u1+u2-1 \in |ZERO is added also as an ACC
    task.append_acc(dom, \&[5], \&[0.0])?;
\}
    \}
let _trm = task.optimize()?;
task.write_data("gp1.ptf")?;
let mut xyz = vec![0.0; 3];
task.get_xx_slice(Soltype::ITR, 0i32, numvar, xyz.as_mut_slice())?;
// task.write_data("gp1.ptf")?;
Ok(xyz.iter().map(|v| v.exp()).collect())
\}
```

Given sample data we obtain the solution h, w, d as follows:
Listing 6.9: Sample data for problem (6.19).

```
# [allow(non_snake_case)]
fn main() -> Result<(),String> {
    // maximize h*w*d
    // subjecto to 2*(h*w + h*d) <= Awall
    // w*d <= Afloor
    // alpha <= h/w <= beta
    // gamma <= d/w <= delta
    //
    // Variable substitutions: }h=\operatorname{exp}(x),w=\operatorname{exp}(y),d=\operatorname{exp}(z)
    //
```

(continues on next page)

```
    // maximize }x+y+
    // subject log( exp(x+y+log(2/Awall)) + exp(x+z+log(2/Awall)) ) <= 0
    // y+z <= log(Afloor)
    // log( alpha ) <= x-y <= log(beta )
    // log( gamma ) <= z-y<= log( delta )
    //
    // Finally, the model we will implement:
    //
    // maximize x+y+z
    // subject to s0 > exp(x+y+log(2/Awall); (s0,1,x+y+log(2/Awall)) in PEXP
    // s1 > exp (x+z+log(2/Awall); (s1,1,x+z+log(2/Awall)) in PEXP
    // s0+s1<1
    //
    // y+z< log Afloor
    // /l
    // x-y in [log alpha; log beta]
    // z-y in [log gamma; log delta]
    //
    // (x,y,z) in pexp : x0 > x1 * exp(x2/x1)
    let Aw = 200.0;
    let Af = 50.0;
    let alpha = 2.0;
    let beta = 10.0;
    let gamma = 2.0;
    let delta = 10.0;
    let hwd = max_volume_box(Aw, Af, alpha, beta, gamma, delta)?;
    println!("h={:.4} w={:.4} d={:.4}\n", hwd[0], hwd[1], hwd[2]);
    0k(())
}
```


6.7 Semidefinite Optimization

Semidefinite optimization is a generalization of conic optimization, allowing the use of matrix variables belonging to the convex cone of positive semidefinite matrices

$$
\mathcal{S}_{+}^{r}=\left\{X \in \mathcal{S}^{r}: z^{T} X z \geq 0, \quad \forall z \in \mathbb{R}^{r}\right\}
$$

where \mathcal{S}^{r} is the set of $r \times r$ real-valued symmetric matrices.
MOSEK can solve semidefinite optimization problems stated in the primal form,

$$
\begin{align*}
& \text { minimize } \quad \sum_{j=0}^{p-1}\left\langle\bar{C}_{j}, \bar{X}_{j}\right\rangle+\sum_{j=0}^{n-1} c_{j} x_{j}+c^{f} \\
& \text { subject to } l_{i}^{c} \leq \sum_{j=0}^{p-1}\left\langle\bar{A}_{i j}, \bar{X}_{j}\right\rangle+\sum_{j=0}^{n-1} a_{i j} x_{j} \leq u_{i}^{c}, \quad i=0, \ldots, m-1 \text {, } \\
& \sum_{j=0}^{p-1}\left\langle\bar{F}_{i j}, \bar{X}_{j}\right\rangle+\sum_{j=0}^{n-1} f_{i j} x_{j}+g_{i} \in \mathcal{K}_{i}, \quad i=0, \ldots, q-1, \tag{6.22}\\
& l_{j}^{x} \leq \leq \mathcal{x}_{j} \leq \mathcal{S}_{j}^{x}, \quad j=0, \ldots, n-1,
\end{align*}
$$

where the problem has p symmetric positive semidefinite variables $\bar{X}_{j} \in \mathcal{S}_{+}^{r_{j}}$ of dimension r_{j}. The symmetric coefficient matrices $\bar{C}_{j} \in \mathcal{S}^{r_{j}}$ and $\bar{A}_{i, j} \in \mathcal{S}^{r_{j}}$ are used to specify PSD terms in the linear objective and the linear constraints, respectively. The symmetric coefficient matrices $\bar{F}_{i, j} \in \mathcal{S}^{r_{j}}$ are used to specify PSD terms in the affine conic constraints. Note that $q((6.22))$ is the total dimension of all
the cones, i.e. $q=\operatorname{dim}\left(\mathcal{K}_{1} \times \ldots \times \mathcal{K}_{k}\right)$, given there are k ACCs. We use standard notation for the matrix inner product, i.e., for $A, B \in \mathbb{R}^{m \times n}$ we have

$$
\langle A, B\rangle:=\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} A_{i j} B_{i j} .
$$

In addition to the primal form presented above, semidefinite problems can be expressed in their dual form. Constraints in this form are usually called linear matrix inequalities (LMIs). LMIs can be easily specified in MOSEK using the vectorized positive semidefinite cone which is defined as:

- Vectorized semidefinite domain:

$$
\mathcal{S}_{+}^{d, \text { vec }}=\left\{\left(x_{1}, \ldots, x_{d(d+1) / 2}\right) \in \mathbb{R}^{n}: \operatorname{sMat}(x) \in \mathcal{S}_{+}^{d}\right\},
$$

where $n=d(d+1) / 2$ and,

$$
\operatorname{sMat}(x)=\left[\begin{array}{cccc}
x_{1} & x_{2} / \sqrt{2} & \cdots & x_{d} / \sqrt{2} \\
x_{2} / \sqrt{2} & x_{d+1} & \cdots & x_{2 d-1} / \sqrt{2} \\
\cdots & \cdots & \cdots & \cdots \\
x_{d} / \sqrt{2} & x_{2 d-1} / \sqrt{2} & \cdots & x_{d(d+1) / 2}
\end{array}\right],
$$

or equivalently

$$
\mathcal{S}_{+}^{d, \mathrm{vec}}=\left\{\mathrm{sVec}(X): X \in \mathcal{S}_{+}^{d}\right\},
$$

where

$$
\operatorname{sVec}(X)=\left(X_{11}, \sqrt{2} X_{21}, \ldots, \sqrt{2} X_{d 1}, X_{22}, \sqrt{2} X_{32}, \ldots, X_{d d}\right)
$$

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidefinite matrix, with the non-diagonal elements additionally rescaled. LMIs can be expressed by restricting appropriate affine expressions to this cone type.

For other types of cones supported by MOSEK, see Sec. 15.9 and the other tutorials in this chapter. Different cone types can appear together in one optimization problem.

We demonstrate the setup of semidefinite variables and their coefficient matrices in the following examples:

- Sec. 6.7.1: A problem with one semidefinite variable and linear and conic constraints.
- Sec. 6.7.2: A problem with two semidefinite variables with a linear constraint and bound.
- Sec. 6.7.3: A problem with linear matrix inequalities and the vectorized semidefinite domain.

6.7.1 Example SDO1

We consider the simple optimization problem with semidefinite and conic quadratic constraints:

$$
\begin{array}{rlrl}
\operatorname{minimize} & \left\langle\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right], \bar{X}\right\rangle+x_{0} & \tag{6.23}\\
\text { subject to } & \left\langle\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \bar{X}\right\rangle+x_{0} & = & 1, \\
& \left\langle\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \bar{X}\right\rangle+x_{1}+x_{2} & = & 1 / 2, \\
& x_{0} \geq{\sqrt{x_{1}^{2}+x_{2}^{2}},}^{\bar{X}} \succeq 0,
\end{array}
$$

The problem description contains a 3-dimensional symmetric semidefinite variable which can be written explicitly as:

$$
\bar{X}=\left[\begin{array}{lll}
\bar{X}_{00} & \bar{X}_{10} & \bar{X}_{20} \\
\bar{X}_{10} & \bar{X}_{11} & \bar{X}_{21} \\
\bar{X}_{20} & \bar{X}_{21} & \bar{X}_{22}
\end{array}\right] \in \mathcal{S}_{+}^{3},
$$

and an affine conic constraint $(\mathrm{ACC})\left(x_{0}, x_{1}, x_{2}\right) \in \mathcal{Q}^{3}$. The objective is to minimize

$$
2\left(\bar{X}_{00}+\bar{X}_{10}+\bar{X}_{11}+\bar{X}_{21}+\bar{X}_{22}\right)+x_{0}
$$

subject to the two linear constraints

$$
\begin{array}{rlr}
\bar{X}_{00}+\bar{X}_{11}+\bar{X}_{22}+x_{0} & =1, \\
\bar{X}_{00}+\bar{X}_{11}+\bar{X}_{22}+2\left(\bar{X}_{10}+\bar{X}_{20}+\bar{X}_{21}\right)+x_{1}+x_{2} & =1 / 2 .
\end{array}
$$

Setting up the linear and conic part

The linear and conic parts (constraints, variables, objective, ACC) are set up using the methods described in the relevant tutorials; Sec. 6.1, Sec. 6.2. Here we only discuss the aspects directly involving semidefinite variables.

Appending semidefinite variables

First, we need to declare the number of semidefinite variables in the problem, similarly to the number of linear variables and constraints. This is done with the function Task. append_barvars.

```
task.append_barvars(&dimbarvar[..])?;
```


Appending coefficient matrices

Coefficient matrices \bar{C}_{j} and $\bar{A}_{i j}$ are constructed as weighted combinations of sparse symmetric matrices previously appended with the function Task.append_sparse_sym_mat.

```
let c_symmat_idx = task.append_sparse_sym_mat(dimbarvar[0],
barc_i,
barc_j,
barc_v)?;
```

The arguments specify the dimension of the symmetric matrix, followed by its description in the sparse triplet format. Only lower-triangular entries should be included. The function produces a unique index of the matrix just entered in the collection of all coefficient matrices defined by the user.

After one or more symmetric matrices have been created using Task.append_sparse_sym_mat, we can combine them to set up the objective matrix coefficient \bar{C}_{j} using Task.put_barc_ j, which forms a linear combination of one or more symmetric matrices. In this example we form the objective matrix directly, i.e. as a weighted combination of a single symmetric matrix.
task.put_barc_j(0, \&[c_symmat_idx], \& [falpha])?;
Similarly, a constraint matrix coefficient $\bar{A}_{i j}$ is set up by the function Task.put_bara_ $i j$.

```
task.put_bara_ij(0, 0, &[a_symmat_idx1][..], &[falpha][..])?;
```


Retrieving the solution

After the problem is solved, we read the solution using Task.get_barx_j:

```
let mut barx = vec![0.0,0.0,0.0,0.0,0.0,0.0];
task.get_barx_j(Soltype:ITR, /* Request the interior solution. */
    0,
    & mut barx[..])?;
```

The function returns the half-vectorization of \bar{X}_{j} (the lower triangular part stacked as a column vector), where the semidefinite variable index j is passed as an argument.

Source code

Listing 6.10: Source code solving problem (6.23).

```
extern crate mosek;
use mosek::{Task,Streamtype,Solsta,Soltype};
const INF : f64 = 0.0;
const NUMCON : usize = 2; /* Number of constraints. */
const NUMVAR : usize = 3; /* Number of conic quadratic variables */
fn main() -> Result<(),String>
{
    let dimbarvar = vec![3]; /* Dimension of semidefinite cone */
    let bkc = &[ mosek::Boundkey::FX, mosek::Boundkey::FX ];
    let blc = &[ 1.0, 0.5 ];
    let buc = &[ 1.0, 0.5 ];
    let barc_i = &[0, 1, 1, 2, 2];
    let barc_j = &[0, 0, 1, 1, 2];
    let barc_v = &[2.0, 1.0, 2.0, 1.0, 2.0];
    let aptrb = &[0, 1];
    let aptre = &[1, 3];
    let asub = &[0, 1, 2]; /* column subscripts of A */
    let aval = &[1.0, 1.0, 1.0];
    let bara_i = &[0, 1, 2, 0, 1, 2, 1, 2, 2];
    let bara_j = &[0, 1, 2, 0, 0, 0, 1, 1, 2];
    let bara_v = &[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
    let falpha = 1.0;
    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(e) => e,
        None => return Err("Failed to create task".to_string()),
        }.with_callbacks();
    task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
    /* Append 'NUMCON' empty constraints.
```

```
* The constraints will initially have no bounds. */
task.append_cons(NUMCON as i32)?;
/* Append 'NUMVAR' variables.
    * The variables will initially be fixed at zero (x=0). */
task.append_vars(NUMVAR as i32)?;
/* Append 'NUMBARVAR' semidefinite variables. */
task.append_barvars(&dimbarvar[..])?;
/* Optionally add a constant term to the objective. */
task.put_cfix(0.0)?;
/* Set the linear term c_j in the objective.*/
task.put_c_j(0,1.0)?;
for j in 0..NUMVAR {
    task.put_var_bound(j as i32,
                mosek::Boundkey::FR,
                -INF,
                INF)?;
}
/* Set the linear term barc_j in the objective.*/
let c_symmat_idx = task.append_sparse_sym_mat(dimbarvar[0],
                                    barc_i,
                                    barc_j,
                                    barc_v)?;
task.put_barc_j(0, &[c_symmat_idx], &[falpha])?;
for i in 0..NUMCON
{
    /* Input A row by row */
    task.put_a_row(i as i32,
                        & asub[aptrb[i]..aptre[i]],
                        & aval[aptrb[i]..aptre[i]])?;
        /* Set the bounds on constraints.
        * for i=1, ...,NUMCON : blc[i] <= constraint i <= buc[i] */
        task.put_con_bound(i as i32, /* Index of constraint.*/
            bkc[i], /* Bound key.*/
                blc[i], /* Numerical value of lower bound.*/
                buc[i])?; /* Numerical value of upper bound.*/
}
{
    /* Append the conic quadratic cone */
    let afei = task.get_num_afe()?;
    task.append_afes(3)?;
    task.put_afe_f_entry_list(& [0,1,2],
                                    & [0,1,2] ,
                                    &[1.0,1.0,1.0])?;
    let dom = task.append_quadratic_cone_domain(3)?;
    task.append_acc_seq(dom, afei,&[0.0,0.0,0.0])?;
}
```

```
/* Add the first row of barA */
let a_symmat_idx1 =
    task.append_sparse_sym_mat(dimbarvar[0],
                                    & bara_i[..3],
                                    & bara_j[..3],
                                    & bara_v[..3])?;
task.put_bara_ij(0, 0, &[a_symmat_idx1][..], &[falpha][..])?;
/* Add the second row of barA */
let a_symmat_idx2 =
    task.append_sparse_sym_mat(dimbarvar[0],
                                    & bara_i[3..9],
                                    & bara_j[3..9],
                                    & bara_v[3..9])?;
task.put_bara_ij(1, 0, &[a_symmat_idx2][..], &[falpha][..])?;
let _trmcode = task.optimize()?;
task.write_data("sdo1.ptf")?;
/* Print a summary containing information
    * about the solution for debugging purposes*/
task.solution_summary (Streamtype::MSG)?;
let solsta = task.get_sol_sta(Soltype::ITR)?;
match solsta
{
    Solsta::OPTIMAL =>
    {
            let mut xx = vec![0.0,0.0,0.0];
            task.get_xx(Soltype::ITR, /* Request the basic solution. */
                & mut xx[..])?;
            let mut barx = vec![0.0,0.0,0.0,0.0,0.0,0.0];
            task.get_barx_j(Soltype::ITR, /* Request the interior solution. */
                                    0,
                    & mut barx[..])?;
            println!("Optimal primal solution");
            for j in O..NUMVAR as usize
            {
                println!("x[{}]: {}",j,xx[j]);
            }
            let n = dimbarvar[0] as usize;
            for j in 0..n
            {
                    for i in j..n
            {
                    println!("barx[{},{}]: {}",i,j,barx[j*n+i-j*(j+1)/2]);
            }
            }
        }
    Solsta::DUAL_INFEAS_CER |
    Solsta::PRIM_INFEAS_CER =>
    {
        println!("Primal or dual infeasibility certificate found.");
```

```
        }
        Solsta::UNKNOWN =>
        {
            /* If the solutions status is unknown, print the termination code
            * indicating why the optimizer terminated prematurely. */
            println!("The solution status is unknown.");
            println!("The optimizer terminitated with code: {}",solsta);
        }
        _ =>
        {
        println!("Other solution status.");
        }
```

 \}
 0k(())
 \} /* main */

6.7.2 Example SDO2

We now demonstrate how to define more than one semidefinite variable using the following problem with two matrix variables and two types of constraints:

$$
\begin{align*}
& \operatorname{minimize} \quad\left\langle C_{1}, \bar{X}_{1}\right\rangle+\left\langle C_{2}, \bar{X}_{2}\right\rangle \\
& \text { subject to }\left\langle A_{1}, \bar{X}_{1}\right\rangle+\left\langle A_{2}, \bar{X}_{2}\right\rangle
\end{aligned}=b, \begin{aligned}
\left(\bar{X}_{2}\right)_{01} & \leq k, \tag{6.24}\\
\bar{X}_{1}, \bar{X}_{2} & \succeq 0 .
\end{align*}
$$

In our example $\operatorname{dim}\left(\bar{X}_{1}\right)=3, \operatorname{dim}\left(\bar{X}_{2}\right)=4, b=23, k=-3$ and

$$
\begin{gathered}
C_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 6
\end{array}\right], A_{1}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 2
\end{array}\right] \\
C_{2}=\left[\begin{array}{cccc}
1 & -3 & 0 & 0 \\
-3 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], A_{2}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -3
\end{array}\right]
\end{gathered}
$$

are constant symmetric matrices.
Note that this problem does not contain any scalar variables, but they could be added in the same fashion as in Sec. 6.7.1.

Other than in Sec. 6.7.1 we don't append coefficient matrices separately but we directly input all nonzeros in each constraint and all nonzeros in the objective at once. Every term of the form $\left(\bar{A}_{i, j}\right)_{k, l}\left(\bar{X}_{j}\right)_{k, l}$ is determined by four indices (i, j, k, l) and a coefficient value $v=\left(\bar{A}_{i, j}\right)_{k, l}$. Here i is the number of the constraint in which the term appears, j is the index of the semidefinite variable it involves and (k, l) is the position in that variable. This data is passed in the call to Task. put_bara_block_triplet. Note that only the lower triangular part should be specified explicitly, that is one always has $k \geq l$. Semidefinite terms $\left(\bar{C}_{j}\right)_{k, l}\left(\bar{X}_{j}\right)_{k, l}$ of the objective are specified in the same way in Task.put_barc_block_triplet but only include (j, k, l) and v.

For explanations of other data structures used in the example see Sec. 6.7.1.
The code representing the above problem is shown below.
Listing 6.11: Implementation of model (6.24).

```
#[allow(non_snake_case)]
fn main() -> Result<(),String> {
```

```
    /* Input data */
    let numcon : i32 = 2; /* Number of constraints. */
    let dimbarvar : &[i32] = &[3, 4]; /* Dimension of semidefinite
Gvariables */
    /* Objective coefficients concatenated */
    let Cj : &[i32] = &[ 0, 0, 1, 1, 1, 1 ]; /* Which symmetric variable (j) */
    let Ck : &[i32] = &[0, 2, 0, 1, 1, 2 ]; /* Which entry (k,l)->v */
    let Cl : &[i32] = &[ 0, 2, 0, 0, 1, 2 ];
    let Cv : &[f64] = &[ 1.0, 6.0, 1.0, -3.0, 2.0, 1.0 ];
    /* Equality constraints coefficients concatenated */
    let Ai : &[i32] = &[ 0, 0, 0, 0, 0, 0 ]; /* Which constraint (i = 0) */
    let Aj : &[i32] = &[ 0, 0, 0, 1, 1, 1 ]; /* Which symmetric variable (j) */
    let Ak : &[i32] = &[ 0, 2, 2, 1, 1, 3 ]; /* Which entry (k,l)->v */
    let Al : &[i32] = &[ 0, 0, 2, 0, 1, 3 ];
    let Av : &[f64] = &[ 1.0, 1.0, 2.0, 1.0, -1.0, -3.0 ];
    /* The second constraint - one-term inequality */
    let A2i : &[i32] = &[ 1 ]; /* Which constraint (i = 1) */
    let A2j : &[i32] = &[ 1 ]; /* Which symmetric variable (j\sqcup
\hookrightarrow= 1) */
    let A2k : &[i32] = &[ 1 ]; /* Which entry A(1,0) = A(0,1)\sqcup
\hookrightarrow=0.5 */
    let A21 : &[i32] = &[ 0 ];
    let A2v : &[f64] = &[ 0.5 ];
    let bkc = &[ mosek::Boundkey::FX,
            mosek::Boundkey::UP ];
    let blc = &[ 23.0, 0.0 ];
    let buc = &[ 23.0, -3.0 ];
    /* Create the optimization task. */
    let mut task = match Task::new() {
        Some(e) => e,
        None => return Err("Failed to create task".to_string()),
    }.with_callbacks();
    task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
    /* Append numcon empty constraints.
    The constraints will initially have no bounds. */
    task.append_cons(numcon)?;
    /* Append numbarvar semidefinite variables. */
    task.append_barvars(dimbarvar)?;
    /* Set objective (6 nonzeros).*/
    task.put_barc_block_triplet(Cj, Ck, Cl, Cv)?;
    /* Set the equality constraint (6 nonzeros). */
    task.put_bara_block_triplet(Ai, Aj, Ak, Al, Av)?;
    /* Set the inequality constraint (1 nonzero).*/
    task.put_bara_block_triplet(A2i, A2j, A2k, A2l, A2v)?;
```

```
    /* Set constraint bounds */
    task.put_con_bound_slice(0, 2, bkc, blc, buc)?;
    /* Run optimizer */
    task.optimize()?;
    task.solution_summary(Streamtype::MSG)?;
    //mosek.solsta[] solsta = new mosek.solsta[1];
    let solsta = task.get_sol_sta (Soltype::ITR)?;
    match solsta {
        Solsta::OPTIMAL => {
        /* Retrieve the soution for all symmetric variables */
        println!("Solution (lower triangular part vectorized):");
        for (i,dimbarvari) in dimbarvar.iter().enumerate() {
            //let dim = dimbarvar[i] * (dimbarvar[i] + 1) / 2;
            let dim = dimbarvari * (dimbarvari+1)/2;
            //double[] barx = new double[dim];
            let mut barx : Vec<f64> = vec![0.0; dim as usize];
            task.get_barx_j(Soltype::ITR, i as i32, barx.as_mut_slice())?;
            println!("X{}: {:?}",i+1,barx);
            // for (int j = 0; j < dim; ++j)
            // System.out.print(barx[j] + " ");
            // System.out.println();
        }
    },
    Solsta::DUAL_INFEAS_CER|Solsta::PRIM_INFEAS_CER =>
        println!("Primal or dual infeasibility certificate found."),
        Solsta::UNKNOWN =>
            println!("The status of the solution could not be determined."),
    _ => println!("Other solution status.")
}
0k(())
```

\}

6.7.3 Example SDO_LMI: Linear matrix inequalities and the vectorized semidefinite domain

The standard form of a semidefinite problem is usually either based on semidefinite variables (primal form) or on linear matrix inequalities (dual form). However, MOSEK allows mixing of these two forms, as shown in (6.25)

$$
\begin{array}{rlr}
\operatorname{minimize} & \left\langle\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \bar{X}\right\rangle+x_{0}+x_{1}+1 \tag{6.25}\\
\text { subject to } & \left\langle\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \bar{X}\right\rangle-x_{0}-x_{1} & \in \mathbb{R}_{\geq 0}^{1}, \\
& x_{0}\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right]+x_{1}\left[\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \succeq 0 \\
& \bar{X} \succeq 0 .
\end{array}
$$

The first affine expression is restricted to a linear domain and could also be modelled as a linear constraint (instead of an ACC). The lower triangular part of the linear matrix inequality (second constraint) can be vectorized and restricted to the Domaintype: :SVEC_PSD_CONE. This allows us to express the constraints
in (6.25) as the affine conic constraints shown in (6.26).

$$
\begin{align*}
\left\langle\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \bar{X}\right\rangle+ & {\left[\begin{array}{cc}
-1 & -1
\end{array}\right] x+[0] }
\end{align*} \in \mathbb{R}_{\geq 0}^{1},
$$

Vectorization of the LMI is performed as explained in Sec. 15.9.

Setting up the linear part

The linear parts (objective, constraints, variables) and the semidefinite terms in the linear expressions are defined exactly as shown in the previous examples.

Setting up the affine conic constraints with semidefinite terms

To define the affine conic constraints, we first set up the affine expressions. The F matrix and the g vector are defined as usual. Additionally, we specify the coefficients for the semidefinite variables. The semidefinite coefficients shown in (6.26) are setup using the function Task.put_afe_barf_block_triplet.

```
task.put_afe_barf_block_triplet(barf_i, barf_j, barf_k, barf_l, barf_v)?;
```

These affine expressions are then included in their corresponding domains to construct the affine conic constraints. Lastly, the ACCs are appended to the task.

```
/* Append R+ domain and the corresponding ACC */
{
    let dom = task.append_rplus_domain(1)?;
    task.append_acc(dom, &[0], &[0.0])?;
}
/* Append SVEC_PSD domain and the corresponding ACC */
{
    let dom = task.append_svec_psd_cone_domain(3)?;
    task.append_acc(dom, &[1,2,3], &[0.0,0.0,0.0])?;
}
```


Source code

Listing 6.12: Source code solving problem (6.25).

```
extern crate mosek;
use mosek::{Task,Boundkey,Objsense,Streamtype,Solsta,Soltype};
const INF : f64 = 0.0;
fn main() -> Result<(),String> {
    let numafe : i64 = 4; /* Number of affine expressions. */
    let numvar : i32 = 2; /* Number of scalar variables */
    let dimbarvar = & [2]; /* Dimension of semidefinite cone */
    let lenbarvar = &[2 * (2 + 1) / 2]; /* Number of scalar SD variables */
    let barc_j = &[0, 0];
    let barc_k = &[0, 1];
    let barc_l = &[0, 1];
    let barc_v = &[1.0, 1.0];
```

```
let afeidx = &[0, 0, 1, 2, 2, 3];
let varidx = &[0, 1, 1, 0, 1, 0];
let f_val = &[-1.0, -1.0, 3.0, 2.0f64.sqrt(), 2.0f64.sqrt(), 3.0];
let g = &[0.0, -1.0, 0.0, -1.0];
let barf_i = &[0, 0];
let barf_j = &[0, 0];
let barf_k = &[0, 1];
let barf_l = &[0, 0];
let barf_v = &[0.0, 1.0];
let mut task = Task::new().unwrap().with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
/* Append 'NUMAFE' empty affine expressions. */
task.append_afes(numafe)?;
/* Append 'NUMVAR' variables.
The variables will initially be fixed at zero (x=0). */
task.append_vars(numvar)?;
/* Append 'NUMBARVAR' semidefinite variables. */
task.append_barvars(dimbarvar)?;
task.put_obj_sense(Objsense::MINIMIZE)?;
/* Optionally add a constant term to the objective. */
task.put_cfix(1.0)?;
    /* Set the linear term c_j in the objective.*/
task.put_c_j(0, 1.0)?;
task.put_c_j(1, 1.0)?;
task.put_var_bound_slice_const(0,numvar, Boundkey::FR, -INF,INF)?;
/* Set the linear term barc_j in the objective.*/
task.put_barc_block_triplet(barc_j, barc_k, barc_l, barc_v)?;
/* Set up the affine conic constraints */
/* Construct the affine expressions */
/* F matrix */
task.put_afe_f_entry_list(afeidx, varidx, f_val)?;
/* g vector */
task.put_afe_g_slice(0, 4, g)?;
/* barF block triplets */
task.put_afe_barf_block_triplet(barf_i, barf_j, barf_k, barf_l, barf_v)?;
/* Append R+ domain and the corresponding ACC */
{
    let dom = task.append_rplus_domain(1)?;
    task.append_acc(dom, &[0], &[0.0])?;
}
```

```
    /* Append SVEC_PSD domain and the corresponding ACC */
    {
    let dom = task.append_svec_psd_cone_domain(3)?;
    task.append_acc(dom, &[1,2,3], &[0.0,0.0,0.0])?;
    }
    /* Run optimizer */
    let _ = task.optimize()?;
    /* Print a summary containing information
    about the solution for debugging purposes*/
    task.solution_summary (mosek::Streamtype::MSG)?;
    let solsta = task.get_sol_sta(mosek::Soltype::ITR)?;
    match solsta {
        Solsta::OPTIMAL => {
            let mut xx = vec![0.0; numvar as usize];
            task.get_xx(Soltype::ITR,xx.as_mut_slice())?;
            let mut barx = vec![0.0; lenbarvar[0]];
            task.get_barx_j(Soltype::ITR, 0, barx.as_mut_slice())?; /* Request\sqcup
->the interior solution. */
            println!("Optimal primal solution");
            println!(" x = {:?}",xx);
            println!(" barx = {:?}",barx);
        },
        Solsta::DUAL_INFEAS_CER|Solsta::PRIM_INFEAS_CER =>
        println!("Primal or dual infeasibility certificate found."),
        Solsta::UNKNOWN =>
        println!("The status of the solution could not be determined."),
        _ =>
        println!("Other solution status.")
    }
    0k(())
}
```


6.8 Integer Optimization

An optimization problem where one or more of the variables are constrained to integer values is called a (mixed) integer optimization problem. MOSEK supports integer variables in combination with linear, quadratic and quadratically constrtained and conic problems (except semidefinite). See the previous tutorials for an introduction to how to model these types of problems.

6.8.1 Example MILO1

We use the example

$$
\begin{array}{lc}
\operatorname{maximize} & x_{0}+0.64 x_{1} \\
\text { subject to } & 50 x_{0}+31 x_{1} \leq 250, \tag{6.27}\\
& 3 x_{0}-2 x_{1} \geq-4, \\
& x_{0}, x_{1} \geq 0
\end{array}
$$

to demonstrate how to set up and solve a problem with integer variables. It has the structure of a linear optimization problem (see Sec. 6.1) except for integrality constraints on the variables. Therefore, only the specification of the integer constraints requires something new compared to the linear optimization problem discussed previously.

First, the integrality constraints are imposed using the function Task.put_var_type or one of its bulk analogues:

```
for j in 0..numvar {
    task.put_var_type(j, Variabletype::TYPE_INT)?;
}
```

Next, the example demonstrates how to set various useful parameters of the mixed-integer optimizer. See Sec. 13.4 for details.

```
task.put_dou_param(Dparam::MIO_MAX_TIME, 60.0)?;
```

The complete source for the example is listed Listing 6.13. Please note that when we fetch the solution then the integer solution is requested by using Soltype::ITG. No dual solution is defined for integer optimization problems.

Listing 6.13: Source code implementing problem (6.27).

```
extern crate mosek;
use mosek::{Task,Boundkey,Objsense,Streamtype,Solsta,Prosta,Soltype,Variabletype,
Dparam};
fn main() -> Result<(),String> {
    let numcon : i32 = 2;
    let numvar : i32 = 2;
    let infinity = 0.0; // only for symbolic purposes, value never used
    let bkc = vec![Boundkey::UP, Boundkey::LO];
    let blc = vec![ -infinity, -4.0 ];
    let buc = vec![ 250.0, infinity ];
    let bkx = vec![ Boundkey::LO, Boundkey::LO ];
    let blx = vec![ 0.0, 0.0 ];
    let bux = vec![ infinity, infinity ];
    let c = vec![1.0, 0.64];
    let asub = vec![0, 1,
                            0, 1];
    let aval = vec![50.0, 3.0, 31.0, -2.0];
    let ptrb : Vec<usize> = vec![ 0, 2 ];
    let ptre : Vec<usize> = vec![ 2, 4 ];
    /* Create the optimization task. */
    Task::new().expect("Failed to create task")
        .with_stream_callback(
            Streamtype::LOG,
            &mut |msg| print!("{}",msg),
                |task| task.with_itg_sol_callback(
                        &mut |xx| { println!("Found a new solution = {:?}",xx); false },
                        |task| {
                            /* Append 'numcon' empty constraints.
                            The constraints will initially have no bounds. */
                            task.append_cons(numcon)?;
                            /* Append 'numvar' variables.
```

```
    The variables will initially be fixed at zero ( }x=0\mathrm{ ). */
    task.append_vars(numvar)?;
    for ((((j,cj),bk),bl),bu) in (0..numvar).zip(c.iter()).zip(bkx.
\hookrightarrowiter()).zip(blx.iter()).zip(bux.iter()) {
    /* Set the linear term c_j in the objective.*/
    task.put_c_j(j, *cj)?;
    /* Set the bounds on variable j.
        blx[j] <= x_j <= bux[j] */
    task.put_var_bound(j, *bk, *bl, *bu)?;
    /* Input column j of A */
    task.put_a_col(j, /* Variable (column)
\hookrightarrowindex.*/
                            &asub[ptrb[j as usize]..ptre[j as usize]],
/* Row index of non-zeros in column j.*/
                                &aval[ptrb[j as usize]..ptre[j as usize]])?;
/* Non-zero Values of column j. */
    }
    // Set the bounds on constraints.
    // for i=1, ...,numcon : blc[i] <= constraint i <= buc[i]
    for (((i,bk),bl),bu) in (0..numcon).zip(bkc.iter()).zip(blc.
๑iter()).zip(buc.iter()) {
    task.put_con_bound(i, *bk, *bl, *bu)?;
    }
    /* Specify integer variables. */
    for j in 0..numvar {
        task.put_var_type(j, Variabletype::TYPE_INT)?;
    }
    /* Set max solution time */
    task.put_dou_param(Dparam::MIO_MAX_TIME, 60.0)?;
    /* A maximization problem */
    task.put_obj_sense(Objsense::MAXIMIZE)?;
    /* Solve the problem */
    let _trm = task.optimize()?;
    // Print a summary containing information
    // about the solution for debugging purposes
    task.solution_summary (Streamtype::MSG)?;
    let mut xx = vec![0.0; numvar as usize];
    task.get_xx(Soltype::ITG, xx.as_mut_slice())?;
    /* Get status information about the solution */
    match task.get_sol_sta(Soltype::ITG)? {
    Solsta::INTEGER_OPTIMAL => {
        println!("Optimal solution");
        for (j,xj) in (0..numvar).zip(xx.iter()) {
                println!("x[{}]: {}", j,xj);
            }
        }
        Solsta::PRIM_FEAS => {
        println!("Feasible solution");
```

```
        for (j,xj) in (0..numvar).zip(xx.iter()) {
```

 for (j,xj) in (0..numvar).zip(xx.iter()) {
 println!("x[{}]: {}", j,xj);
 println!("x[{}]: {}", j,xj);
 }
 }
 }
 }
 Solsta::UNKNOWN => {
 Solsta::UNKNOWN => {
 match task.get_pro_sta(Soltype::ITG)? {
 match task.get_pro_sta(Soltype::ITG)? {
 Prosta::PRIM_INFEAS_OR_UNBOUNDED => {
 Prosta::PRIM_INFEAS_OR_UNBOUNDED => {
 println!("Problem status Infeasible or unbounded");
 println!("Problem status Infeasible or unbounded");
 }
 }
 Prosta::PRIM_INFEAS => {
 Prosta::PRIM_INFEAS => {
 println!("Problem status Infeasible.");
 println!("Problem status Infeasible.");
 }
 }
 Prosta::UNKNOWN => {
 Prosta::UNKNOWN => {
 println!("Problem status unknown.");
 println!("Problem status unknown.");
 }
 }
 _ => {
 _ => {
 println!("Other problem status.");
 println!("Other problem status.");
 }
 }
 }
 }
 }
 }
 _ => {
 _ => {
 println!("Other solution status");
 println!("Other solution status");
 }
 }
 }
 }
 0k(())
 0k(())
 }))
 }))
 }

```

\subsection*{6.8.2 Specifying an initial solution}

It is a common strategy to provide a starting feasible point (if one is known in advance) to the mixedinteger solver. This can in many cases reduce solution time.

There are two modes for MOSEK to utilize an initial solution.
- A complete solution. MOSEK will first try to check if the current value of the primal variable solution is a feasible point. The solution can either come from a previous solver call or can be entered by the user, however the full solution with values for all variables (both integer and continuous) must be provided. This check is always performed and does not require any extra action from the user. The outcome of this process can be inspected via information items Iinfitem: : MIO_INITIAL_FEASIBLE_SOLUTION and Dinfitem::MIO_INITIAL_FEASIBLE_SOLUTION_OBJ, and via the Initial feasible solution objective entry in the log.
- A partial integer solution. MOSEK can also try to construct a feasible solution by fixing integer variables to the values provided by the user (rounding if necessary) and optimizing over the remaining continuous variables. In this setup the user must provide initial values for all integer variables. This action is only performed if the parameter Iparam: : MIO_CONSTRUCT_SOL is switched on. The outcome of this process can be inspected via information items Iinfitem::MIO_CONSTRUCT_SOLUTION and Dinfitem::MIO_CONSTRUCT_SOLUTION_OBJ, and via the Construct solution objective entry in the log.

In the following example we focus on inputting a partial integer solution.
\[
\begin{array}{ll}
\operatorname{maximize} & 7 x_{0}+10 x_{1}+x_{2}+5 x_{3} \\
\text { subject to } & x_{0}+x_{1}+x_{2}+x_{3} \leq 2.5  \tag{6.28}\\
& x_{0}, x_{1}, x_{2} \in \mathbb{Z} \\
& x_{0}, x_{1}, x_{2}, x_{3} \geq 0
\end{array}
\]

Solution values can be set using Task.put_xx, Task.put_xx_slice or similar .

Listing 6.14: Implementation of problem (6.28) specifying an initial solution.
```

task.put_xx_slice(Soltype::ITG, 0, 3, \&[1.0,1.0,0.0])?;
// Request constructing the solution from integer variable values
task.put_int_param(mosek::Iparam::MIO_CONSTRUCT_SOL, mosek::Onoffkey::ON)?;

```

The log output from the optimizer will in this case indicate that the inputted values were used to construct an initial feasible solution:
```

Construct solution objective : 1.9500000000000e+01

```

The same information can be obtained from the API:
Listing 6.15: Retrieving information about usage of initial solution
```

let constr = task.get_int_inf(mosek::Iinfitem::MIO_CONSTRUCT_SOLUTION)?;
let constr_val = task.get_dou_inf(mosek::Dinfitem::MIO_CONSTRUCT_SOLUTION_OBJ)?;
println!("Construct solution utilization: {}", constr);
println!("Construct solution objective: {}", constr_val);

```

\subsection*{6.8.3 Example MICO1}

Integer variables can also be used arbitrarily in conic problems (except semidefinite). We refer to the previous tutorials for how to set up a conic optimization problem. Here we present sample code that sets up a simple optimization problem:
\[
\begin{array}{ll}
\operatorname{minimize} & x^{2}+y^{2} \\
\text { subject to } & x \geq e^{y}+3.8  \tag{6.29}\\
& x, y \text { integer }
\end{array}
\]

The canonical conic formulation of (6.29) suitable for Optimizer API for Rust is
\[
\begin{array}{llr}
\text { minimize } & t & \\
\text { subject to } & (t, x, y) \in \mathcal{Q}^{3} & \left(t \geq \sqrt{x^{2}+y^{2}}\right) \\
& (x-3.8,1, y) \in K_{\exp } & \left(x-3.8 \geq e^{y}\right)  \tag{6.30}\\
& x, y \text { integer, } & \\
& t \in \mathbb{R} . &
\end{array}
\]

Listing 6.16: Implementation of problem (6.30).
```

fn main() -> Result<(),String> {
/* Create the optimization task. */
let mut task = match Task::new() {
Some(t) => t,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
let infinity = 0.0; // for symbolic use, value is irrelevant
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
task.append_vars(6)?;
task.append_cons(3)?;
task.put_var_bound_slice_const(0, 6, Boundkey::FR, -infinity, infinity)?;
// Integrality constraints
task.put_var_type_list(vec![1i32,2i32].as_slice(),

```
```

๑slice())?;
// Set up the three auxiliary linear constraints
task.put_aij_list(vec![0i32,0i32,1i32,2i32,2i32].as_slice(),
vec![1i32,3i32,4i32,2i32,5i32].as_slice(),
vec![-1.0,1.0,1.0,1.0,-1.0].as_slice())?;
task.put_con_bound_slice(0, 3,
vec![Boundkey::FX, Boundkey::FX, Boundkey::FX].as_
->slice(),
vec![-3.8, 1.0, 0.0].as_slice(),
vec![-3.8, 1.0, 0.0].as_slice())?;
// Objective
task.put_obj_sense(Objsense::MINIMIZE)?;
task.put_c_j(0, 1.0)?;
// Conic part of the problem
task.append_afes(6)?;
for i in 0..6 {
task.put_afe_f_entry(i as i64, i as i32, 1.0)?;
}
{
let domidx = task.append_quadratic_cone_domain(3)?;
task.append_acc(domidx,
vec![0i64,1i64,2i64].as_slice(),
vec![0.0,0.0,0.0].as_slice())?;
}
{
let domidx = task.append_primal_exp_cone_domain()?;
task.append_acc(domidx,vec![3i64,4i64,5i64].as_slice(),vec![0.0,0.0,0.0].as_
Glice())?;
}
// Optimize the task
let _trm = task.optimize()?;
task.solution_summary(Streamtype::MSG)?;
let mut xx = vec![0.0; 2];
task.get_xx_slice(Soltype::ITG, 1, 3, xx.as_mut_slice())?;
println!("x = {} y = {}",xx[0],xx[1]);
Ok(())
}

```

Error and solution status handling were omitted for readability.

\subsection*{6.9 Disjunctive constraints}

A disjunctive constraint (DJC) involves of a number of affine conditions combined with the logical operators or \((\vee)\) and optionally and \((\wedge)\) into a formula in disjunctive normal form, that is a disjunction of conjunctions. Specifically, a disjunctive constraint has the form of a disjunction
\[
\begin{equation*}
T_{1} \text { or } T_{2} \text { or } \cdots \text { or } T_{t} \tag{6.31}
\end{equation*}
\]
where each \(T_{i}\) is written as a conjunction
\[
\begin{equation*}
T_{i}=T_{i, 1} \text { and } T_{i, 2} \text { and } \cdots \text { and } T_{i, s_{i}} \tag{6.32}
\end{equation*}
\]
and each \(T_{i, j}\) is an affine condition (affine equation or affine inequality) of the form \(D_{i j} x+d_{i j} \in \mathcal{D}_{i j}\) with \(\mathcal{D}_{i j}\) being one of the affine domains from Sec. 15.9.1. A disjunctive constraint (DJC) can therefore be succinctly written as
\[
\begin{equation*}
\bigvee_{i=1}^{t} \bigwedge_{j=1}^{s_{i}} T_{i, j} \tag{6.33}
\end{equation*}
\]
where each \(T_{i, j}\) is an affine condition.
Each \(T_{i}\) is called a term of the disjunctive constraint and \(t\) is the number of terms. Each condition \(T_{i, j}\) is called a simple term and \(s_{i}\) is called the size of the \(i\)-th term.

A disjunctive constraint is satisfied if at least one of its terms is satisfied. A term is satisfied if all of its constituent simple terms are satisfied. A problem containing DJCs will be solved by the mixed-integer optimizer.

Note that nonlinear cones are not allowed as one of the domains \(\mathcal{D}_{i j}\) inside a DJC.

\subsection*{6.9.1 Applications}

Disjunctive constraints are a convenient and expressive syntactical tool. Then can be used to phrase many constructions appearing especially in mixed-integer modelling. Here are some examples.
- Complementarity. The condition \(x y=0\), where \(x, y\) are scalar variables, is equivalent to
\[
x=0 \text { or } y=0 .
\]

It is a DJC with two terms, each of size 1.
- Semicontinuous variable. A semicontinuous variable is a scalar variable which takes values in \(\{0\} \cup[a,+\infty]\). This can be expressed as
\[
x=0 \text { or } x \geq a .
\]

It is again a DJC with two terms, each of size 1 .
- Exact absolute value. The constraint \(t=|x|\) is not convex, but can be written as
\[
(x \geq 0 \text { and } t=x) \text { or }(x \leq 0 \text { and } t=-x)
\]

It is a DJC with two terms, each of size 2.
- Indicator. Suppose \(z\) is a Boolean variable. Then we can write the indicator constraint \(z=1 \Longrightarrow\) \(a^{T} x \leq b\) as
\[
\left(z=1 \text { and } a^{T} x \leq b\right) \text { or }(z=0)
\]
which is a DJC with two terms, of sizes, respectively, 2 and 1.
- Piecewise linear functions. Suppose \(a_{1} \leq \cdots \leq a_{k+1}\) and \(f:\left[a_{1}, a_{k+1}\right] \rightarrow \mathbb{R}\) is a piecewise linear function, given on the \(i\)-th of \(k\) intervals \(\left[a_{i}, a_{i+1}\right]\) by a different affine expression \(f_{i}(x)\). Then we can write the constraint \(y=f(x)\) as
\[
\bigvee_{i=1}^{k}\left(a_{i} \leq y \text { and } y \leq a_{i+1} \text { and } y-f_{i}(x)=0\right)
\]
making it a DJC with \(k\) terms, each of size 3.
On the other hand most DJCs are equivalent to a mixed-integer linear program through a big-M reformulation. In some cases, when a suitable big-M is known to the user, writing such a formulation directly may be more efficient than formulating the problem as a DJC. See Sec. 13.4.6 for a discussion of this topic.

Disjunctive constraints can be added to any problem which includes linear constraints, affine conic constraints (without semidefinite domains) or integer variables.

\subsection*{6.9.2 Example DJC1}

In this tutorial we will consider the following sample demonstration problem:
\[
\begin{array}{ll}
\operatorname{minimize} & 2 x_{0}+x_{1}+3 x_{2}+x_{3} \\
\text { subject to } & x_{0}+x_{1}+x_{2}+x_{3} \geq-10, \\
& \left(\begin{array}{c}
x_{0}-2 x_{1} \leq-1 \\
\text { and } \\
x_{2}=x_{3}=0
\end{array}\right) \text { or }\left(\begin{array}{c}
x_{2}-3 x_{3} \leq-2 \\
\text { and } \\
x_{0}=x_{1}=0
\end{array}\right),  \tag{6.34}\\
& x_{i}=2.5 \text { for at least one } i \in\{0,1,2,3\} .
\end{array}
\]

The problem has two DJCs: the first one has 2 terms. The second one, which we can write as \(\bigvee_{i=0}^{3}\left(x_{i}=\right.\) 2.5), has 4 terms.

We begin by expressing problem (6.34) in the format where all simple terms are of the form \(D_{i j} x+d_{i j} \in\) \(\mathcal{D}_{i j}\), that is of the form a sequence of affine expressions belongs to a linear domain:
\[
\begin{array}{ll}
\operatorname{minimize} & 2 x_{0}+x_{1}+3 x_{2}+x_{3} \\
\text { subject to } & x_{0}+x_{1}+x_{2}+x_{3} \geq-10, \\
& \left(\begin{array}{c}
x_{0}-2 x_{1}+1 \in \mathbb{R}_{\leq 0}^{1} \\
\text { and } \\
\left(x_{2}, x_{3}\right) \in 0^{2}
\end{array}\right) \text { or }\left(\begin{array}{c}
x_{2}-3 x_{3}+2 \in \mathbb{R}_{\leq 0}^{1} \\
\text { and } \\
\left(x_{0}, x_{1}\right) \in 0^{2}
\end{array}\right),  \tag{6.35}\\
& \left(x_{0}-2.5 \in 0^{1}\right) \text { or }\left(x_{1}-2.5 \in 0^{1}\right) \text { or }\left(x_{2}-2.5 \in 0^{1}\right) \text { or }\left(x_{3}-2.5 \in 0^{1}\right),
\end{array}
\]
where \(0^{n}\) denotes the \(n\)-dimensional zero domain and \(\mathbb{R}_{\leq 0}^{n}\) denotes the \(n\)-dimensional nonpositive orthant, as in Sec. 15.9.

Now we show how to add the two DJCs from (6.35). This involves three steps:
- storing the affine expressions which appear in the DJCs,
- creating the required domains, and
- combining the two into the description of the DJCs.

Readers familiar with Sec. 6.2 will find that the process is completely analogous to the process of adding affine conic constraints (ACCs). In fact we would recommend Sec. 6.2 as a means of familiarizing with the structures used here at a slightly lower level of complexity.

\subsection*{6.9.3 Step 1: add affine expressions}

In the first step we need to store all affine expressions appearing in the problem, that is the rows of the expressions \(D_{i j} x+d_{i j}\). In problem (6.35) the disjunctive constraints contain altogether the following affine expressions:
(0) \(x_{0}-2 x_{1}+1\)
(1) \(x_{2}-3 x_{3}+2\)
(2) \(x_{0}\)
(3) \(x_{1}\)
(4) \(x_{2}\)
(5) \(x_{3}\)
(6) \(x_{0}-2.5\)
(7) \(x_{1}-2.5\)
(8) \(x_{2}-2.5\)
(9) \(x_{3}-2.5\)

To store affine expressions (AFE for short) MOSEK provides a matrix \(\mathbf{F}\) and a vector \(\mathbf{g}\) with the understanding that every row of
\[
\mathbf{F} x+\mathbf{g}
\]
defines one affine expression. The API functions with infix afe are used to operate on \(\mathbf{F}\) and \(\mathbf{g}\), add rows, add columns, set individual elements, set blocks etc. similarly to the methods for operating on the
\(A\) matrix of linear constraints. The storage matrix \(\mathbf{F}\) is a sparse matrix, therefore only nonzero elements have to be explicitly added.

Remark: the storage \(\mathbf{F}, \mathbf{g}\) may, but does not have to be, kept in the same order in which the expressions enter DJCs. In fact in (6.36) we have chosen to list the linear expressions in a different, convenient order. It is also possible to store some expressions only once if they appear multiple times in DJCs.

Given the list (6.36), we initialize the AFE storage as (only nonzeros are listed and for convenience we list the content of (6.36) alongside in the leftmost column):
\begin{tabular}{ll}
\((0)\) & \(x_{0}-2 x_{1}+1\) \\
(1) & \(x_{2}-3 x_{3}+2\) \\
\((2)\) & \(x_{0}\) \\
\((3)\) & \(x_{1}\) \\
\((4)\) & \(x_{2}\) \\
\((5)\) & \(x_{3}\) \\
\((6)\) & \(x_{0}-2.5\) \\
\((7)\) & \(x_{1}-2.5\) \\
\((8)\) & \(x_{2}-2.5\) \\
\((9)\) & \(x_{3}-2.5\)
\end{tabular}\(\quad \mathbf{F}=\left[\begin{array}{llll}1 & -2 & & \\
& & 1 & -3 \\
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & \\
1 & & \\
& 1 & & \\
& & 1 & \\
& & & 1\end{array}\right], \quad \mathbf{g}=\left[\begin{array}{c}1 \\
2 \\
\\
\\
-2.5 \\
-2.5 \\
-2.5 \\
-2.5\end{array}\right]\).

Initially \(\mathbf{F}\) and \(\mathbf{g}\) are empty (have 0 rows). We construct them as follows. First, we append a number of empty rows:
```

task.append_afes(numafe)?;

```

We now have \(\mathbf{F}\) and \(\mathbf{g}\) with 10 rows of zeros and we fill them up to obtain (6.37).
```

 let fafeidx : \& [i64] = \& [0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9];
 let fvaridx : \& [i32] = \& [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3];
 let fval \(=\&[1.0,-2.0,1.0,-3.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, \sqcup\)
 $\rightarrow 1.0]$;
let $\mathrm{g} \quad=\&[1.0,2.0,0.0,0.0,0.0,0.0,-2.5,-2.5,-2.5,-2.5]$;
task.put_afe_f_entry_list(fafeidx, fvaridx, fval)?;
task.put_afe_g_slice(0, numafe, g)?;

```

We have now created the matrices from (6.37). Note that at this point we have not defined any DJCs yet. All we did was define some affine expressions and place them in a generic AFE storage facility to be used later.

\subsection*{6.9.4 Step 2: create domains}

Next, we create all the domains \(\mathcal{D}_{i j}\) appearing in all the simple terms of all DJCs. Domains are created with functions with infix domain. In the case of (6.35) there are three different domains appearing:
\[
0^{1}, 0^{2}, \mathbb{R}_{\leq 0}^{1}
\]

We create them with the corresponding functions:
```

let zero1 = task.append_rzero_domain(1)?;
let zero2 = task.append_rzero_domain(2)?;
let rminus1 = task.append_rminus_domain(1)?;

```

The function returns a domain index, which is just the position in the list of all domains (potentially) created for the problem. At this point the domains are just stored in the list of domains, but not yet used for anything.

\subsection*{6.9.5 Step 3: create the actual disjunctive constraints}

We are now in position to create the disjunctive constraints. DJCs are created with functions with infix djc. The function Task.append_djcs will append a number of initially empty DJCs to the task:
```

let numdjc : i64 = 2;
task.append_djcs(numdjc)?;

```

We can then define each disjunction with the method Task.put_djc. It will require the following data:
- the list termsizelist of the sizes of all terms of the DJC,
- the list afeidxlist of indices of AFEs to be used in the constraint. These are the row numbers in \(\mathbf{F}, \mathbf{g}\) which contain the required affine expressions.
- the list domidxlist of the domains for all the simple terms.

For example, consider the first DJC of (6.35). Below we format this DJC by replacing each affine expression with the index of that expression in (6.37) and each domain with its index we obtained in Step 2:
\[
\begin{array}{ll}
\left(x_{0}-2 x_{1}+1 \in \mathbb{R}_{\leq 0}^{1} \text { and }\left(x_{2}, x_{3}\right) \in 0^{2}\right) & \text { or } \\
\underbrace{((0) \in \text { rminus } 1 \text { and }((4),(5)) \in \text { zero2) }}_{\text {term of size } 2} & \text { or } \tag{6.38}
\end{array}
\]

It implies that the DJC will be represented by the following data:
- termsizelist \(=[2,2]\),
- afeidxlist \(=[0,4,5,1,2,3]\),
- domidxlist \(=\) [rminus1, zero2, rminus1, zero2].

The code adding this DJC will therefore look as follows:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{task.put_djc (0,} & // DJC index \\
\hline & \&[rminus1, zero2, rminus1, zero2], & // Domains \\
\hline \multicolumn{3}{|l|}{\(\rightarrow(\) domidxlist)} \\
\hline & \& \([0,4,5,1,2,3]\), & // AFE indices \\
\hline \multicolumn{3}{|l|}{\(\rightarrow(a f e i d x l i s t)\)} \\
\hline & \& [0.0, 0.0, 0.0, 0.0,0.0,0.0], & // Unused \\
\hline & \& \([2,2]) ?\); & // Term sizes \(\sqcup\) \\
\hline \(\rightarrow\) (termsizelist) & & \\
\hline
\end{tabular}

Note that number of AFEs used in afeidxlist must match the sum of dimensions of all the domains (here: \(6==1+2+1+2\) ) and the number of domains must match the sum of all term sizes (here: \(4==2+2\) ).

For similar reasons the second DJC of problem (6.35) will have the description:

- termsizelist = [1, 1, 1, 1],
- afeidxlist \(=[6,7,8,9]\),
- domidxlist \(=\) [zero1, zero1, zero1, zero1].
\begin{tabular}{|c|c|}
\hline task.put_djc (1, & // DJC index \\
\hline \& [zero1, zero1, zero1, zero1], & // Domains ப \\
\hline \(\rightarrow(\) domidxlist) & \\
\hline \& [6, 7, 8, 9], & // AFE indices \({ }_{\sqcup}\) \\
\hline \(\rightarrow(a f e i d x l i s t)\) & \\
\hline \& \([0.0,0.0,0.0,0.0]\), & // Unused \\
\hline \& [1, 1, 1, 1])?; & // Term sizes \(\sqcup\) \\
\hline \(\rightarrow\) (termidxlist) & \\
\hline
\end{tabular}

This completes the setup of the disjunctive constraints.

\subsection*{6.9.6 Example DJC1 full code}

We refer to Sec. 6.1 for instructions how to initialize a MOSEK session, add variables and set up the objective and linear constraints. All else that remains is to call the solver with Task.optimize and retrieve the solution with Task.get_xx. Since our problem contains a DJC, and thus is solved by the mixed-integer optimizer, we fetch the integer solution. The full code solving problem (6.34) is shown below.

Listing 6.17: Full code of example DJC1.
```

extern crate mosek;
use mosek::{Task,Boundkey,Objsense,Streamtype,Solsta,Soltype};
// Since the value of infinity is ignored, we define it solely
// for symbolic purposes
const INF : f64 = 0.0;
fn main() -> Result<(),String> {
// Create a task object
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
// Append free variables
let numvar : i32 = 4;
task.append_vars(numvar)?;
let x : Vec<i32> = (0..numvar).collect();
task.put_var_bound_slice_const(0, numvar, Boundkey::FR, -INF, INF)?;
// The linear part: the linear constraint
task.append_cons(1)?;
task.put_a_row(0, x.as_slice(), vec![1.0; numvar as usize].as_slice())?;
task.put_con_bound(0, Boundkey::LO, -10.0, -10.0)?;
// The linear part: objective
task.put_obj_sense(Objsense::MINIMIZE)?;
task.put_c_list(x.as_slice(), \&[2.0, 1.0, 3.0, 1.0])?;
// Fill in the affine expression storage F, g
let numafe : i64 = 10;
task.append_afes(numafe)?;

```
```

 let fafeidx : &[i64] = &[0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9];
 let fvaridx : &[i32] = &[0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3];
 let fval = &[1.0, -2.0, 1.0, -3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 \hookrightarrow1.0];
let g = \&[1.0, 2.0, 0.0, 0.0, 0.0, 0.0, -2.5, -2.5, -2.5, -2.5];
task.put_afe_f_entry_list(fafeidx, fvaridx, fval)?;
task.put_afe_g_slice(0, numafe, g)?;
// Create domains
let zero1 = task.append_rzero_domain(1)?;
let zero2 = task.append_rzero_domain(2)?;
let rminus1 = task.append_rminus_domain(1)?;
// Append disjunctive constraints
let numdjc : i64 = 2;
task.append_djcs(numdjc)?;
// First disjunctive constraint
task.put_djc(0,
\&[rminus1, zero2, rminus1, zero2],
\hookrightarrow(domidxlist)
\&[0, 4, 5, 1, 2, 3],
\&[0.0,0.0,0.0,0.0,0.0,0.0],
\&[2, 2])?;
\hookrightarrow(termsizelist)
// Second disjunctive constraint
task.put_djc(1, // DJC index
\&[zero1, zero1, zero1, zero1], // Domains ப
\hookrightarrow(domidxlist)
\&[6, 7, 8, 9], // AFE indices
\hookrightarrow(afeidxlist)
\&[0.0,0.0,0.0,0.0], // Unused
\&[1, 1, 1, 1])?;
// Term sizes ப
\hookrightarrow(termidxlist)
// Useful for debugging
task.write_data("djc1.ptf")?; // Write file in human-
\hookrightarrowreadable format
// Solve the problem
let _ = task.optimize()?;
// Print a summary containing information
// about the solution for debugging purposes
task.solution_summary(Streamtype::MSG)?;
// Get status information about the solution
let sta = task.get_sol_sta(Soltype::ITG)?;
let mut xx = vec![0.0; numvar as usize];
task.get_xx(Soltype::ITG,xx.as_mut_slice())?;

```
```

 println!("Optimal solution: ");
 for (i,&xi) in xx.iter().enumerate() {
 println!("x[{}]={}",i,xi);
 }
 0k(())
 }

```

The answer is
```

[0, 0, -12.5, 2.5]

```

\subsection*{6.9.7 Summary and extensions}

In this section we presented the most basic usage of the affine expression storage \(\mathbf{F}, \mathbf{g}\) to input affine expressions used together with domains to create disjunctive constraints (DJC). Now we briefly point out additional features of his interface which can be useful in some situations for more demanding users. They will be demonstrated in various examples in other tutorials and case studies in this manual.
- It is important to remember that \(\mathbf{F}, \mathbf{g}\) has only a storage function and during the DJC construction we can pick an arbitrary list of row indices and place them in a domain. It means for example that:
- It is not necessary to store the AFEs in the same order they will appear in DJCs.
- The same AFE index can appear more than once in one and/or more conic constraints (this can be used to reduce storage if the same affine expression is used in multiple DJCs).
- The \(\mathbf{F}, \mathbf{g}\) storage can even include rows that are not presently used in any DJC.
- Domains can be reused: multiple DJCs can use the same domain. On the other hand the same type of domain can appear under many domidx positions. In this sense the list of created domains also plays only a storage role: the domains are only used when they enter a DJC.
- The same affine expression storage \(\mathbf{F}, \mathbf{g}\) is shared between disjunctive constraints and affine conic constraints (ACCs, see Sec. 6.2).
- When defining an DJC an additional constant vector \(b\) can be provided to modify the constant terms coming from \(\mathbf{g}\) but only for this particular DJC. This could be useful to reduce \(\mathbf{F}\) storage space if, for example, many expressions \(D^{T} x-b_{i}\) with the same linear part \(D^{T} x\), but varying constant terms \(b_{i}\), are to be used throughout DJCs.

\subsection*{6.10 Quadratic Optimization}

MOSEK can solve quadratic and quadratically constrained problems, as long as they are convex. This class of problems can be formulated as follows:
\[
\begin{array}{lccc}
\operatorname{minimize} & \frac{1}{2} x^{T} Q^{o} x+c^{T} x+c^{f} \\
\text { subject to } & l_{k}^{c} \leq \frac{1}{2} x^{T} Q^{k} x+\sum_{j=0}^{n-1} a_{k, j} x_{j} & \leq u_{k}^{c}, \quad k=0, \ldots, m-1  \tag{6.40}\\
& l_{j}^{x} \leq & x_{j} & \leq u_{j}^{x}, \quad j=0, \ldots, n-1
\end{array}
\]

Without loss of generality it is assumed that \(Q^{o}\) and \(Q^{k}\) are all symmetric because
\[
x^{T} Q x=\frac{1}{2} x^{T}\left(Q+Q^{T}\right) x
\]

This implies that a non-symmetric \(Q\) can be replaced by the symmetric matrix \(\frac{1}{2}\left(Q+Q^{T}\right)\).
The problem is required to be convex. More precisely, the matrix \(Q^{o}\) must be positive semi-definite and the \(k\) th constraint must be of the form
\[
\begin{equation*}
l_{k}^{c} \leq \frac{1}{2} x^{T} Q^{k} x+\sum_{j=0}^{n-1} a_{k, j} x_{j} \tag{6.41}
\end{equation*}
\]
with a negative semi-definite \(Q^{k}\) or of the form
\[
\frac{1}{2} x^{T} Q^{k} x+\sum_{j=0}^{n-1} a_{k, j} x_{j} \leq u_{k}^{c}
\]
with a positive semi-definite \(Q^{k}\). This implies that quadratic equalities are not allowed. Specifying a non-convex problem will result in an error when the optimizer is called.

A matrix is positive semidefinite if all the eigenvalues of \(Q\) are nonnegative. An alternative statement of the positive semidefinite requirement is
\[
x^{T} Q x \geq 0, \quad \forall x
\]

If the convexity (i.e. semidefiniteness) conditions are not met MOSEK will not produce reliable results or work at all.

\subsection*{6.10.1 Example: Quadratic Objective}

We look at a small problem with linear constraints and quadratic objective:
\[
\begin{array}{ll}
\operatorname{minimize} & \\
x_{1}^{2}+0.1 x_{2}^{2}+x_{3}^{2}-x_{1} x_{3}-x_{2}  \tag{6.42}\\
\text { subject to } & 1 \leq x_{1}+x_{2}+x_{3} \\
& 0 \leq x
\end{array}
\]

The matrix formulation of (6.42) has:
\[
Q^{o}=\left[\begin{array}{ccc}
2 & 0 & -1 \\
0 & 0.2 & 0 \\
-1 & 0 & 2
\end{array}\right], c=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right], A=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]
\]
with the bounds:
\[
l^{c}=1, u^{c}=\infty, l^{x}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { and } u^{x}=\left[\begin{array}{l}
\infty \\
\infty \\
\infty
\end{array}\right]
\]

Please note the explicit \(\frac{1}{2}\) in the objective function of (6.40) which implies that diagonal elements must be doubled in \(Q\), i.e. \(Q_{11}=2\) even though 1 is the coefficient in front of \(x_{1}^{2}\) in (6.42).

\section*{Setting up the linear part}

The linear parts (constraints, variables, objective) are set up using exactly the same methods as for linear problems, and we refer to Sec. 6.1 for all the details. The same applies to technical aspects such as defining an optimization task, retrieving the solution and so on.

\section*{Setting up the quadratic objective}

The quadratic objective is specified using the function Task.put_q_obj. Since \(Q^{o}\) is symmetric only the lower triangular part of \(Q^{o}\) is inputted. In fact entries from above the diagonal may not appear in the input.

The lower triangular part of the matrix \(Q^{\circ}\) is specified using an unordered sparse triplet format (for details, see Sec. 15.1.4):
```

let qsubi = vec![0, 1, 2, 2];
let qsubj = vec![0, 1, 0, 2];
let qval = vec![2.0,0.2,-1.0,2.0];

```

Please note that
- only non-zero elements are specified (any element not specified is 0 by definition),
- the order of the non-zero elements is insignificant, and
- only the lower triangular part should be specified.

Finally, this definition of \(Q^{o}\) is loaded into the task:
```

task.put_q_obj(\&qsubi,\&qsubj,\&qval)?;

```

\section*{Source code}

Listing 6.18: Source code implementing problem (6.42).
```

extern crate mosek;
use mosek::{Task,Boundkey,Streamtype,Solsta,Soltype};
const INF : f64 = 0.0;
const NUMCON : usize = 1; /* Number of constraints. */
const NUMVAR : usize = 3; /* Number of variables. */
fn main() -> Result<(),String> {
let c = vec![0.0,-1.0,0.0];
let bkc = vec![mosek::Boundkey::LO];
let blc = vec![1.0];
let buc = vec![INF];
let bkx = vec![Boundkey::LO,
Boundkey::LO,
Boundkey::LO];
let blx = vec![0.0,
0.0,
0.0];
let bux = vec![INF,
INF,
INF];
let aptrb = vec![0, 1, 2];
let aptre = vec![1, 2, 3];
let asub = vec![0, 0, 0];
let aval = vec![1.0, 1.0, 1.0];
let qsubi = vec![0, 1, 2, 2];
let qsubj = vec![0, 1, 0, 2];
let qval = vec![2.0,0.2,-1.0,2.0];
/* Create the optimization task. */
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
//r = MSK_linkfunctotaskstream(task,MSK_STREAM_LOG,NULL,printstr);
task.append_cons(NUMCON as i32)?;

```
```

/* Append 'NUMVAR' variables.
* The variables will initially be fixed at zero (x=0). */
task.append_vars(NUMVAR as i32)?;
/* Optionally add a constant term to the objective. */
task.put_cfix(0.0)?;
for j in 0..NUMVAR
{
/* Set the linear term c_j in the objective.*/
task.put_c_j(j as i32,c[j])?;
/* Set the bounds on variable j.
* blx[j] <= x_j <= bux[j] */
task.put_var_bound(j as i32, /* Index of variable.*/
bkx[j], /* Bound key.*/
blx[j], /* Numerical value of lower bound.*/
bux[j])?; /* Numerical value of upper bound.*/
/* Input column j of A */
task.put_a_col(j as i32, /* Variable (column) index.*/
\&asub[aptrb[j]..aptre[j]], /* Pointer to row indexes of\sqcup
column j.*/
\&aval[aptrb[j]..aptre[j]])?; /* Pointer to Values of column j.
}
/* Set the bounds on constraints.
* for i=1, ...,NUMCON : blc[i] <= constraint i <= buc[i] */
for i in O..NUMCON
{
task.put_con_bound(i as i32, /* Index of constraint.*/
bkc[i], /* Bound key.*/
blc[i], /* Numerical value of lower bound.*/
buc[i])?; /* Numerical value of upper bound.*/
/*
* The lower triangular part of the Q
* matrix in the objective is specified.
*/
/* Input the Q for the objective. */
task.put_q_obj(\&qsubi,\&qsubj,\&qval)?;
}
let _trmcode = task.optimize()?;
/* Run optimizer */
/* Print a summary containing information
about the solution for debugging purposes */
task.solution_summary(Streamtype::MSG)?;
let solsta = task.get_sol_sta(Soltype::ITR)?;
match solsta
{
Solsta::OPTIMAL =>
{

```
\(\rightarrow * /\)
```

 let mut xx = vec![0.0, 0.0, 0.0];
 task.get_xx(Soltype::ITR, /* Request the interior solution. */
 & mut xx[..])?;
 println!("Optimal primal solution");
 for j in O..NUMVAR
 {
 println!("x[{}]: {}",j,xx[j]);
 }
 }
 Solsta::DUAL_INFEAS_CER |
 Solsta::PRIM_INFEAS_CER =>
 {
 println!("Primal or dual infeasibility certificate found.");
 }
 Solsta::UNKNOWN =>
 {
 println!("The status of the solution could not be determined.");
 }
 {
 println!("Other solution status.");
 }
 }
 return Ok(());
 } /* main */

```

\subsection*{6.10.2 Example: Quadratic constraints}

In this section we show how to solve a problem with quadratic constraints. Please note that quadratic constraints are subject to the convexity requirement (6.41).

Consider the problem:
\[
\begin{aligned}
& \text { minimize } \\
& \text { mubject to } \quad 1 \leq x_{1}^{2}+0.1 x_{2}^{2}+x_{3}^{2}-x_{1} x_{3}-x_{2} \\
&
\end{aligned}
\]

This is equivalent to
\[
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} x^{T} Q^{o} x+c^{T} x \\
\text { subject to } & \frac{1}{2} x^{T} Q^{0} x+A x \geq b  \tag{6.43}\\
& x \geq 0
\end{array}
\]
where
\[
\begin{gathered}
Q^{o}=\left[\begin{array}{ccc}
2 & 0 & -1 \\
0 & 0.2 & 0 \\
-1 & 0 & 2
\end{array}\right], c=\left[\begin{array}{ccc}
0 & -1 & 0
\end{array}\right]^{T}, A=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right], b=1 . \\
Q^{0}=\left[\begin{array}{ccc}
-2 & 0 & 0.2 \\
0 & -2 & 0 \\
0.2 & 0 & -0.2
\end{array}\right] .
\end{gathered}
\]

The linear parts and quadratic objective are set up the way described in the previous tutorial.

\section*{Setting up quadratic constraints}

To add quadratic terms to the constraints we use the function Task.put_q-con_k.
```

{
let qsubi = \&[0, 1, 2, 2];
let qsubj = \&[0, 1, 2, 0];
let qval = \&[-2.0, -2.0, -0.2, 0.2];
/* put Q^O in constraint with index 0. */
task.put_q_con_k(0,
qsubi,
qsubj,
qval)?;
}

```

While Task.put_q_con_k adds quadratic terms to a specific constraint, it is also possible to input all quadratic terms in one chunk using the Task.put_q_con function.

\section*{Source code}

Listing 6.19: Implementation of the quadratically constrained problem (6.43).
```

extern crate mosek;
extern crate itertools;
use mosek::{Task,Boundkey,Objsense,Streamtype,Solsta,Soltype};
use itertools::izip;
const INF : f64 = 0.0;
fn main() -> Result<(),String> {
const NUMCON : i32 = 1; /* Number of constraints. */
const NUMVAR : i32 = 3; /* Number of variables. */
let c = [0.0, -1.0, 0.0];
let bkc = [Boundkey::LO];
let blc = [1.0];
let buc = [INF];
let bkx = [Boundkey::LO,
Boundkey::LO,
Boundkey::LO];
let blx = [0.0,
0.0,
0.0];
let bux = [INF,
INF,
INF];
let asub = [\& [0i32], \&[0i32], \&[0i32]];
let aval = [\&[1.0], \&[1.0], \&[1.0]];
let mut task = Task::new().unwrap().with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;

```
```

// Give MOSEK an estimate of the size of the input data.
// This is done to increase the speed of inputting data.
// However, it is optional.
// Append 'numcon' empty constraints.
// The constraints will initially have no bounds.
task.append_cons(NUMCON)?;
// Append 'numvar' variables.
// The variables will initially be fixed at zero (x=0).
task.append_vars(NUMVAR)?;
for (j,cj,bkj,blj,buj) in izip!(0..NUMVAR,c,bkx,blx,bux) {
// Set the linear term c_j in the objective.
task.put_c_j(j, cj)?;
// Set the bounds on variable j.
// blx[j] <= x_j <= bux[j]
task.put_var_bound(j, bkj, blj, buj)?;
}
for (j,asubj,avalj) in izip!(0..NUMVAR, asub, aval) {
/* Input column j of A */
task.put_a_col(j, /* Variable (column) index.*/
asubj, /* Row index of non-zeros in column j.*/
avalj)?; /* Non-zero Values of column j. */
}
// Set the bounds on constraints.
// for i=1, ...,numcon : blc[i] <= constraint i <= buc[i]
for (i,bki,bli,bui) in izip!(0..NUMCON,bkc,blc,buc) {
task.put_con_bound(i, bki, bli, bui)?;
}
{
// The lower triangular part of the Q
// matrix in the objective is specified.
let qosubi = \&[0, 1, 2, 2];
let qosubj = \&[0, 1, 0, 2];
let qoval = \&[2.0, 0.2, -1.0, 2.0];
// Input the Q for the objective.
task.put_q_obj(qosubi, qosubj, qoval)?;
}
// The lower triangular part of the Q^0
// matrix in the first constraint is specified.
// This corresponds to adding the term
// x0^2 - x1^2 - 0.1 x2^2 + 0.2 x0 x2
{
let qsubi = \&[0, 1, 2, 2];
let qsubj = \&[0, 1, 2, 0];
let qval = \&[-2.0, -2.0, -0.2, 0.2];
/* put Q^O in constraint with index 0. */
task.put_q_con_k(0,

```
```

 qsubi,
 qsubj,
 qval)?;
 }
 task.put_obj_sense(Objsense::MINIMIZE)?;
 /* Solve the problem */
 let _trm = task.optimize()?;
 // Print a summary containing information
 // about the solution for debugging purposes
 task.solution_summary(Streamtype::MSG)?;
 /* Get status information about the solution */
 let solsta = task.get_sol_sta(Soltype::ITR)?;
 let mut xx = vec![0.O; NUMVAR as usize];
 task.get_xx(Soltype::ITR, // Interior solution.
 xx.as_mut_slice())?;
 match solsta {
 Solsta::OPTIMAL => {
 println!("Optimal primal solution");
 for (j,xj) in izip!(0..NUMVAR,xx) {
 println!("x[{}]: {}",j,xj);
 }
 },
 Solsta::DUAL_INFEAS_CER|
 Solsta::PRIM_INFEAS_CER =>
 println!("Primal or dual infeasibility.\n"),
 Solsta::UNKNOWN =>
 println!("Unknown solution status.\n"),
 _ =>
 println!("Other solution status")
 }
 Ok(())
 } /* Main */

```

\subsection*{6.11 Problem Modification and Reoptimization}

Often one might want to solve not just a single optimization problem, but a sequence of problems, each differing only slightly from the previous one. This section demonstrates how to modify and re-optimize an existing problem.

The example we study is a simple production planning model.
Problem modifications regarding variables, cones, objective function and constraints can be grouped in categories:
- add/remove,
- coefficient modifications,
- bounds modifications.

Especially removing variables and constraints can be costly. Special care must be taken with respect to constraints and variable indexes that may be invalidated.

Depending on the type of modification, MOSEK may be able to optimize the modified problem more efficiently exploiting the information and internal state from the previous execution. After optimization, the solution is always stored internally, and is available before next optimization. The former optimal solution may be still feasible, but no longer optimal; or it may remain optimal if the modification of the objective function was small. This special case is discussed in Sec. 14.3.

In general, MOSEK exploits dual information and availability of an optimal basis from the previous execution. The simplex optimizer is well suited for exploiting an existing primal or dual feasible solution. Restarting capabilities for interior-point methods are still not as reliable and effective as those for the simplex algorithm. More information can be found in Chapter 10 of the book [Chvatal83].

Parameter settings (see Sec. 7.5) can also be changed between optimizations.

\subsection*{6.11.1 Example: Production Planning}

A company manufactures three types of products. Suppose the stages of manufacturing can be split into three parts: Assembly, Polishing and Packing. In the table below we show the time required for each stage as well as the profit associated with each product.
\begin{tabular}{|l|l|l|l|l|}
\hline Product no. & Assembly (minutes) & Polishing (minutes) & Packing (minutes) & Profit (\$) \\
\hline 0 & 2 & 3 & 2 & 1.50 \\
\hline 1 & 4 & 2 & 3 & 2.50 \\
\hline 2 & 3 & 3 & 2 & 3.00 \\
\hline
\end{tabular}

With the current resources available, the company has 100,000 minutes of assembly time, 50,000 minutes of polishing time and 60,000 minutes of packing time available per year. We want to know how many items of each product the company should produce each year in order to maximize profit?

Denoting the number of items of each type by \(x_{0}, x_{1}\) and \(x_{2}\), this problem can be formulated as a linear optimization problem:
\[
\begin{array}{lcl}
\operatorname{maximize} & 1.5 x_{0}+2.5 x_{1}+3.0 x_{2} & \\
\text { subject to } & 2 x_{0}+4 x_{1}+3 x_{2} \leq 100000  \tag{6.44}\\
& 3 x_{0}+2 x_{1}+3 x_{2} \leq 50000 \\
& 2 x_{0}+3 x_{1}+3 x_{2} \leq 60000
\end{array}
\]
and
\[
x_{0}, x_{1}, x_{2} \geq 0
\]

Code in Listing 6.20 loads and solves this problem.
Listing 6.20: Setting up and solving problem (6.44)
```

let numcon = 3;
let numvar = 3;
let c = \&[1.5, 2.5, 3.0];
let bkc = \&[Boundkey::UP,
Boundkey::UP,
Boundkey::UP];
let blc = \&[-INF,
-INF,
-INF];
let buc = \&[100000.0,
50000.0,
60000.0];
let bkx = \&[Boundkey::LO,
Boundkey::LO,
Boundkey::LO
];
let blx = \&[0.0, 0.0, 0.0];
let bux = \&[INF,

```

INF,
INF ];
```

let asub = \&[
\&[0i32, 1, 2],
\&[0i32, 1, 2],
\&[0i32, 1, 2]];
let aval = \&[
\&[2.0, 3.0, 2.0],
\& [4.0, 2.0, 3.0],
\&[3.0, 3.0, 2.0]];
let mut task = Task::new().unwrap();
/* Append the constraints. */
task.append_cons(numcon)?;
/* Append the variables. */
task.append_vars(numvar)?;
/* Put C. */
for (j,\&cj) in (0..numvar).zip(c.iter()) {
task.put_c_j(j,cj)?;
}
/* Put constraint bounds. */
for (i,\&bki,\&bli,\&bui) in izip!(0..numcon,bkc,blc,buc) {
task.put_con_bound(i, bki, bli, bui)?;
}
/* Put variable bounds. */
for (j,\&bki,\&bli,\&bui) in izip!(0..numvar,bkx,blx,bux) {
task.put_var_bound(j, bki, bli, bui)?;
}
/* Put A. */
if numcon > 0 {
for (j,\&asubj,\&avalj) in izip!(0..numvar,asub,aval) {
task.put_a_col(j,
asubj,
avalj)?;
}
}
/* A maximization problem */
task.put_obj_sense(Objsense::MAXIMIZE)?;
/* Solve the problem */
let _trm = task.optimize()?;
let mut xx = vec![0.0; task.get_num_var()? as usize];
task.get_xx(Soltype::BAS, // Request the basic solution.
xx.as_mut_slice())?;

```

\subsection*{6.11.2 Changing the Linear Constraint Matrix}

Suppose we want to change the time required for assembly of product 0 to 3 minutes. This corresponds to setting \(a_{0,0}=3\), which is done by calling the function Task.put_aij as shown below.
```

task.put_aij(0, 0, 3.0)?;

```

The problem now has the form:
\[
\begin{array}{lclcll}
\operatorname{maximize} & 1.5 x_{0} & +2.5 x_{1}+3.0 x_{2} & \\
\text { subject to } & 3 x_{0}+4 x_{1}+3 x_{2} \leq 100000  \tag{6.45}\\
& 3 x_{0}+2 x_{1}+3 x_{2} & \leq 50000 \\
& 2 x_{0}+3 x_{1}+3 x_{2} & \leq 60000
\end{array}
\]
and
\[
x_{0}, x_{1}, x_{2} \geq 0
\]

After this operation we can reoptimize the problem.

\subsection*{6.11.3 Appending Variables}

We now want to add a new product with the following data:
\begin{tabular}{|l|l|l|l|l|}
\hline Product no. & Assembly (minutes) & Polishing (minutes) & Packing (minutes) & Profit (\$) \\
\hline 3 & 4 & 0 & 1 & 1.00 \\
\hline
\end{tabular}

This corresponds to creating a new variable \(x_{3}\), appending a new column to the \(A\) matrix and setting a new term in the objective. We do this in Listing 6.21

Listing 6.21: How to add a new variable (column)
```

 /***************** Add a new variable\sqcup
 \hookrightarrow * /
/* Get index of new variable. */
let varidx = task.get_num_var()?;
/* Append a new variable x_3 to the problem */
task.append_vars(1)?;
let numvar = numvar + 1;
/* Set bounds on new varaible */
task.put_var_bound(varidx, Boundkey::LO, 0.0, INF)?;
/* Change objective */
task.put_c_j(varidx, 1.0)?;
/* Put new values in the A matrix */
let acolsub = \&[0i32, 2];
let acolval = \&[4.0, 1.0];
task.put_a_col(varidx, /* column index */
acolsub,
acolval)?;

```

After this operation the new problem is:
\[
\begin{array}{lcccccll}
\operatorname{maximize} & 1.5 x_{0} & +2.5 x_{1} & +3.0 x_{2} & +1.0 x_{3} & \\
\text { subject to } & 3 x_{0} & +4 x_{1} & + & 3 x_{2} & + & 4 x_{3} & \leq 100000 \\
& 3 x_{0} & +2 x_{1} & +3 x_{2} & & \leq & \leq 0000  \tag{6.46}\\
& 2 x_{0} & +3 x_{1} & +2 x_{2} & +1 x_{3} & \leq 60000
\end{array}
\]
and
\[
x_{0}, x_{1}, x_{2}, x_{3} \geq 0
\]

\subsection*{6.11.4 Appending Constraints}

Now suppose we want to add a new stage to the production process called Quality control for which 30000 minutes are available. The time requirement for this stage is shown below:
\begin{tabular}{|l|l|}
\hline Product no. & Quality control (minutes) \\
\hline 0 & 1 \\
\hline 1 & 2 \\
\hline 2 & 1 \\
\hline 3 & 1 \\
\hline
\end{tabular}

This corresponds to adding the constraint
\[
x_{0}+2 x_{1}+x_{2}+x_{3} \leq 30000
\]
to the problem. This is done as follows.
Listing 6.22: Adding a new constraint.
```

 /********************** Add a new constraint
 /* Get index of new constraint. */
 let conidx = task.get_num_con()?;
 /* Append a new constraint */
 task.append_cons(1)?;
 let numcon = numcon + 1;
 /* Set bounds on new constraint */
 task.put_con_bound(conidx,
 Boundkey::UP,
 -INF,
 30000.0)?;
 /* Put new values in the A matrix */
 let arowsub = &[0i32, 1, 2, 3];
 let arowval = &[1.0, 2.0, 1.0, 1.0];
 task.put_a_row(conidx, /* row index */
 arowsub,
 arowval)?;
    ```

Again, we can continue with re-optimizing the modified problem.

\subsection*{6.11.5 Changing bounds}

One typical reoptimization scenario is to change bounds. Suppose for instance that we must operate with limited time resources, and we must change the upper bounds in the problem as follows:
\begin{tabular}{|l|l|l|}
\hline Operation & Time available (before) & Time available (new) \\
\hline Assembly & 100000 & 80000 \\
\hline Polishing & 50000 & 40000 \\
\hline Packing & 60000 & 50000 \\
\hline Quality control & 30000 & 22000 \\
\hline
\end{tabular}

That means we would like to solve the problem:
\[
\begin{array}{lclclcllll}
\operatorname{maximize} & 1.5 x_{0} & + & 2.5 x_{1} & + & 3.0 x_{2} & + & 1.0 x_{3} & & \\
\text { subject to } & 3 x_{0} & + & 4 x_{1} & + & 3 x_{2} & + & 4 x_{3} & \leq & 80000 \\
& 3 x_{0} & + & 2 x_{1} & + & 3 x_{2} & & & \leq & 40000  \tag{6.47}\\
& 2 x_{0} & + & 3 x_{1} & + & 2 x_{2} & + & 1 x_{3} & \leq & 50000 \\
& x_{0} & + & 2 x_{1} & + & x_{2} & + & x_{3} & \leq & 22000
\end{array}
\]

In this case all we need to do is redefine the upper bound vector for the constraints, as shown in the next listing.

Listing 6.23: Change constraint bounds.
```

/*********************** Change constraint bounds
*******************/
let newbkc = \&[Boundkey::UP,
Boundkey::UP,
Boundkey::UP,
Boundkey::UP];
let newblc = \&[-INF,
-INF,
-INF,
-INF];
let newbuc = \& [80000.0, 40000.0, 50000.0, 22000.0];
task.put_con_bound_slice(0, numcon, newbkc, newblc, newbuc)?;

```

Again, we can continue with re-optimizing the modified problem.

\subsection*{6.11.6 Advanced hot-start}

If the optimizer used the data from the previous run to hot-start the optimizer for reoptimization, this will be indicated in the log:
```

Optimizer - hotstart : yes

```

When performing re-optimizations, instead of removing a basic variable it may be more efficient to fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis. This makes it easier for MOSEK to restart the simplex optimizer.

\subsection*{6.12 Parallel optimization}

In this section we demonstrate the method Env.optimize_batch which is a parallel optimization mechanism built-in in MOSEK. It has the following features:
- One license token checked out by the environment will be shared by the tasks.
- It allows to fine-tune the balance between the total number of threads in use by the parallel solver and the number of threads used for each individual task.
- It is very efficient for optimizing a large number of task of similar size, for example tasks obtained by cloning an initial task and changing some coefficients.

In the example below we simply load a few different tasks and optimize them together. When all tasks complete we access the response codes, solutions and other information in the standard way, as if each task was optimized separately.

Listing 6.24: Calling the parallel optimizer.
```

fn parallel(files : Vec<FileOrText>) -> Result<(),String> {
// Create an example list of tasks to optimize
let mut tasks : Vec<(String,Task)> = files.iter().filter_map(|fname| {
let mut t = Task::new().unwrap();
match fname {
FileOrText::File(fname) => {
if let Err(_) = t.read_data(fname.as_str()) { None }
else {
t.put_int_param(mosek::Iparam::NUM_THREADS, 2).unwrap();
Some((fname.as_str().to_string(),t))
}
},
FileOrText::Text(data) => {
if let Err(_) = t.read_ptf_string(data.as_str()) { None }
else {
t.put_int_param(mosek::Iparam::NUM_THREADS, 2).unwrap();
Some(("-".to_string(),t))
}
}
}
}).collect();
let mut res = vec![0i32; tasks.len()];
let mut trm = vec![0i32; tasks.len()];
{
let taskrs : Vec<\& mut Task> = tasks.iter_mut().map(|(_a,b)| b).collect();
// Size of thread pool available for all tasks
let threadpoolsize : i32 = 6;
// Optimize all the given tasks in parallel
mosek::optimize_batch(false, // No race
-1.0, // No time limit
threadpoolsize,
taskrs.as_slice(), // Array of tasks to\sqcup
\rightarrow o p t i m i z e
trm.as_mut_slice(),
res.as_mut_slice())?;
}
for (resi,trmi,(fname,ti)) in izip!(res,trm,tasks.iter()) {
println!("Task {} res {} trm {} obj_val {} time {}",
fname,
resi,
trmi,
ti.get_dou_inf(mosek::Dinfitem::INTPNT_PRIMAL_OBJ)?,
ti.get_dou_inf(mosek::Dinfitem::OPTIMIZER_TIME)?);
}
0k(())
}

```

Another, slightly more advanced application of the parallel optimizer is presented in Sec. 11.3.

\subsection*{6.13 Retrieving infeasibility certificates}

When a continuous problem is declared as primal or dual infeasible, MOSEK provides a Farkas-type infeasibility certificate. If, as it happens in many cases, the problem is infeasible due to an unintended mistake in the formulation or because some individual constraint is too tight, then it is likely that infeasibility can be isolated to a few linear constraints/bounds that mutually contradict each other. In this case it is easy to identify the source of infeasibility. The tutorial in Sec. 8.3 has instructions on how to deal with this situation and debug it by hand. We recommend Sec. 8.3 as an introduction to infeasibility certificates and how to deal with infeasibilities in general.

Some users, however, would prefer to obtain the infeasibility certificate using Optimizer API for Rust, for example in order to repair the issue automatically, display the information to the user, or perhaps simply because the infeasibility was one of the intended outcomes that should be analyzed in the code.

In this tutorial we show how to obtain such an infeasibility certificate with Optimizer API for Rust in the most typical case, that is when the linear part of a problem is primal infeasible. A Farkas-type primal infeasibility certificate consists of the dual values of linear constraints and bounds. The names of duals corresponding to various parts of the problem are defined in Sec. 12.1.2. Each of the dual values (multipliers) indicates that a certain multiple of the corresponding constraint should be taken into account when forming the collection of mutually contradictory equalities/inequalities.

\subsection*{6.13.1 Example PINFEAS}

For the purpose of this tutorial we use the same example as in Sec. 8.3, that is the primal infeasible problem


\section*{Checking infeasible status and adjusting settings}

After the model has been solved we check that it is indeed infeasible. If yes, then we choose a threshold for when a certificate value is considered as an important contributor to infeasibility (ideally we would like to list all nonzero duals, but just like an optimal solution, an infeasibility certificate is also subject to floating-point rounding errors). All these steps are demonstrated in the snippet below:
```

// Check problem status, we use the interior point solution
if task.get_pro_sta(Soltype::ITR)? == Prosta::PRIM_INFEAS {
// Set the tolerance at which we consider a dual value as essential
let eps = 1e-7;

```

\section*{Going through the certificate for a single item}

We can define a fairly generic function which takes an array of lower and upper dual values and all other required data and prints out the positions of those entries whose dual values exceed the given threshold. These are precisely the values we are interested in:
```

// Analyzes and prints infeasibility contributing elements
// sl - dual values for lower bounds
// su - dual values for upper bounds
// eps - tolerance for when a nunzero dual value is significant
fn analyze_certificate(sl : \&[f64], su : \&[f64], eps : f64) {
for (i,(\&sli,\&sui)) in sl.iter().zip(su.iter()).enumerate() {

```
(continues on next page)
```

 if sli > eps {
 println!("#{}, lower, dual = {:e}\n", i, sli);
 }
 if sui > eps {
 println!("#{}, upper, dual = {:e}\n", i, sui);
 }
 }
 }

```

\section*{Full source code}

All that remains is to call this function for all variable and constraint bounds for which we want to know their contribution to infeasibility. Putting all these pieces together we obtain the following full code:

Listing 6.25: Demonstrates how to retrieve a primal infeasibility certificate.
```

extern crate mosek;
use mosek::{Streamtype,Boundkey,Soltype,Prosta};
const INF : f64 = 0.0;
fn test_problem() -> Resultmosek::Task,String {
let mut task = mosek::Task::new().unwrap();
task.append_vars(7)?;
task.append_cons(7)?;
task.put_c_list(\&[0,1,2,3,4,5,6],
\&[1.0,2.0,5.0,2.0,1.0,2.0,1.0])?;
task.put_aij_list(\&[0,0,1,1,2,2,2,3,3,4,5,5,6,6],
\& [0,1,2,3,4,5,6,0,4,1,2,5,3,6],
\&[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0])?;
task.put_con_bound_slice(0, 7,
\&[Boundkey::UP,Boundkey::UP,Boundkey::UP,Boundkey::FX,
Boundkey::FX,Boundkey::FX,Boundkey::FX],
\&[-INF, -INF, -INF, 1100.0, 200.0, 500.0, 500.0],
\&[200.0, 1000.0, 1000.0, 1100.0, 200.0, 500.0, 500.0])?;
task.put_var_bound_slice_const(0, 7, Boundkey::UP, 0.0, INF)?;
0k(task)
}
// Analyzes and prints infeasibility contributing elements
// sl - dual values for lower bounds
// su - dual values for upper bounds
// eps - tolerance for when a nunzero dual value is significant
fn analyze_certificate(sl : \&[f64], su : \&[f64], eps : f64) {
for (i,(\&sli,\&sui)) in sl.iter().zip(su.iter()).enumerate() {
if sli > eps {
println!("\#{}, lower, dual = {:e}\n", i, sli);
}
if sui > eps {
println!("\#{}, upper, dual = {:e}\n", i, sui);
}
}
}
fn main() -> Result<(),String> {

```
```

 // In this example we set up a simple problem
 // One could use any task or a task read from a file
 let mut task = test_problem()?.with_callbacks();
 let n = task.get_num_var()?;
 let m = task.get_num_con()?;
 // Useful for debugging
 task.write_data("pinfeas.ptf")?; // Write file in human-readable format
 // Attach a log stream printer to the task
 task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
 // Perform the optimization.
 task.optimize()?;
 task.solution_summary(Streamtype::LOG)?;
 // Check problem status, we use the interior point solution
 if task.get_pro_sta(Soltype::ITR)? == Prosta::PRIM_INFEAS {
 // Set the tolerance at which we consider a dual value as essential
 let eps = 1e-7;
 println!("Variable bounds important for infeasibility: ");
 let mut slx = vec![0.0; n as usize]; task.get_slx(Soltype::ITR, slx.as_mut_
 Glice())?;
let mut sux = vec![0.0; n as usize]; task.get_sux(Soltype::ITR, sux.as_mut_
Gslice())?;
analyze_certificate(slx.as_slice(), sux.as_slice(), eps);
println!("Constraint bounds important for infeasibility: ");
let mut slc = vec![0.0; m as usize]; task.get_slc(Soltype::ITR, slc.as_mut_
Gslice())?;
let mut suc = vec![0.0; m as usize]; task.get_suc(Soltype::ITR, suc.as_mut_
\hookrightarrowslice())?;
analyze_certificate(slc.as_mut_slice(), suc.as_mut_slice(), eps);
}
else {
println!("The problem is not primal infeasible, no certificate to show");
}
Ok(())
}

```

Running this code will produce the following output:
```

Variable bounds important for infeasibility:
\#6: lower, dual = 1.000000e+00
\#7: lower, dual = 1.000000e+00
Constraint bounds important for infeasibility:
\#1: upper, dual = 1.000000e+00
\#3: upper, dual = 1.000000e+00
\#4: lower, dual = 1.000000e+00
\#5: lower, dual = 1.000000e+00

```
indicating the positions of bounds which appear in the infeasibility certificate with nonzero values.
For a more in-depth treatment see the following sections:
- Sec. 11 for more advanced and complicated optimization examples
- Sec. 11.1 for examples related to portfolio optimization.
- Sec. 12 for formal mathematical formulations of problems MOSEK can solve, dual problems and infeasibility certificates.

\section*{Chapter 7}

\section*{Solver Interaction Tutorials}

In this section we cover the interaction with the solver.

\subsection*{7.1 Environment and task}

All interaction with Optimizer API for Rust proceeds through one of two entry points: the MOSEK tasks and, to a lesser degree the MOSEK environment .

\subsection*{7.1.1 Task}

The MOSEK task Task provides a representation of one optimization problem. It is the main interface through which all optimization is performed. Many tasks can be created and disposed of in one process.

A typical scenario for working with a task is shown below:
```

let mut task = mosek::Task::new().unwrap();
// Define and solve an optimization problem here
// ...

```

\subsection*{7.1.2 Environment}

The MOSEK environment Env coordinates access to MOSEK from the current process. It provides various general functionalities, in particular those related to license management, linear algebra, parallel optimization and certain other auxiliary functions. All tasks are explicitly or implicitly attached to some environment. It is recommended to have at most one environment per process.

Creating an environment is optional and only recommended for those users who will require some of the features it provides. Most users will NOT need their own environment and can skip this object. In this case MOSEK will internally create a global environment transparently for the user. The user can access this global environment by using the static variants (with no environment argument) of any function that otherwise belongs to the environment.

A typical scenario for working with MOSEK through an explicit environment is shown below:
```

let mut env = mosek::Env::new().unwrap();
// Create one or more tasks
let mut task = env.task().unwrap();
// Define and solve an optimization problem here
// ...

```

\subsection*{7.2 Accessing the solution}

This section contains important information about the status of the solver and the status of the solution, which must be checked in order to properly interpret the results of the optimization.

\subsection*{7.2.1 Solver termination}

The optimizer provides two status codes relevant for error handling:
- Response code of type Rescode. It indicates if any unexpected error (such as an out of memory error, licensing error etc.) has occurred. The expected value for a successful optimization is Rescode::OK.
- Termination code: It provides information about why the optimizer terminated, for instance if a predefined time limit has been reached. These are not errors, but ordinary events that can be expected (depending on parameter settings and the type of optimizer used).

If the optimization was successful then the method Task.optimize returns normally and its output is the termination code. If an error occurs then the method throws an exception, which contains the response code. See Sec. 7.3 for how to access it.

If a runtime error causes the program to crash during optimization, the first debugging step is to enable logging and check the log output. See Sec. 7.4.

If the optimization completes successfully, the next step is to check the solution status, as explained below.

\subsection*{7.2.2 Available solutions}

MOSEK uses three kinds of optimizers and provides three types of solutions:
- basic solution from the simplex optimizer,
- interior-point solution from the interior-point optimizer,
- integer solution from the mixed-integer optimizer.

Under standard parameters settings the following solutions will be available for various problem types:
Table 7.1: Types of solutions available from MOSEK
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l} 
Simplex opti- \\
mizer
\end{tabular} & \begin{tabular}{l} 
Interior-point opti- \\
mizer
\end{tabular} & \begin{tabular}{l} 
Mixed-integer opti- \\
mizer
\end{tabular} \\
\hline Linear problem & Soltype: \(:\) BAS & Soltype::ITR & \\
\hline \begin{tabular}{l} 
Nonlinear continuous prob- \\
lem
\end{tabular} & & Soltype::ITR & \\
\hline \begin{tabular}{l} 
Problem with integer vari- \\
ables
\end{tabular} & & & Soltype::ITG \\
\hline
\end{tabular}

For linear problems the user can force a specific optimizer choice making only one of the two solutions available. For example, if the user disables basis identification, then only the interior point solution will be available for a linear problem. Numerical issues may cause one of the solutions to be unknown even if another one is feasible.

Not all components of a solution are always available. For example, there is no dual solution for integer problems and no dual conic variables from the simplex optimizer.

The user will always need to specify which solution should be accessed.

\subsection*{7.2.3 Problem and solution status}

Assuming that the optimization terminated without errors, the next important step is to check the problem and solution status. There is one for every type of solution, as explained above.

\section*{Problem status}

Problem status (Prosta) determines whether the problem is certified as feasible. Its values can roughly be divided into the following broad categories:
- feasible - the problem is feasible. For continuous problems and when the solver is run with default parameters, the feasibility status should ideally be Prosta: :PRIM_AND_DUAL_FEAS.
- primal/dual infeasible - the problem is infeasible or unbounded or a combination of those. The exact problem status will indicate the type of infeasibility.
- unknown - the solver was unable to reach a conclusion, most likely due to numerical issues.

\section*{Solution status}

Solution status (Solsta) provides the information about what the solution values actually contain. The most important broad categories of values are:
- optimal (Solsta::OPTIMAL) - the solution values are feasible and optimal.
- certificate - the solution is in fact a certificate of infeasibility (primal or dual, depending on the solution).
- unknown/undefined - the solver could not solve the problem or this type of solution is not available for a given problem.

Problem and solution status for each solution can be retrieved with Task.get_pro_sta and Task. get_sol_sta, respectively.

The solution status determines the action to be taken. For example, in some cases a suboptimal solution may still be valuable and deserve attention. It is the user's responsibility to check the status and quality of the solution.

\section*{Typical status reports}

Here are the most typical optimization outcomes described in terms of the problem and solution statuses. Note that these do not cover all possible situations that can occur.

Table 7.2: Continuous problems (solution status for interior-point and basic solution)
\begin{tabular}{|l|l|l|}
\hline Outcome & Problem status & Solution status \\
\hline Optimal & \begin{tabular}{l} 
Prosta:: \\
PRIM_AND_DUAL_FEAS
\end{tabular} & Solsta::OPTIMAL \\
\hline Primal infeasible & Prosta::PRIM_INFEAS & \begin{tabular}{l} 
Solsta:: \\
PRIM_INFEAS_CER
\end{tabular} \\
\hline Dual infeasible (unbounded) & Prosta::DUAL_INFEAS & \begin{tabular}{l} 
Solsta:: \\
DUAL_INFEAS_CER
\end{tabular} \\
\hline \begin{tabular}{l} 
Uncertain (stall, numerical issues, \\
etc.)
\end{tabular} & Prosta::UNKNOWN & Solsta::UNKNOWN \\
\hline
\end{tabular}

Table 7.3: Integer problems (solution status for integer solution, others undefined)
\begin{tabular}{|l|l|l|}
\hline Outcome & Problem status & Solution status \\
\hline Integer optimal & Prosta \(::\) PRIM_FEAS & Solsta \(:\) INTEGER_OPTIMAL \\
\hline Infeasible & Prosta::PRIM_INFEAS & Solsta::UNKNOWN \\
\hline Integer feasible point & Prosta \(::\) PRIM_FEAS & Solsta::PRIM_FEAS \\
\hline No conclusion & Prosta::UNKNOWN & Solsta::UNKNOWN \\
\hline
\end{tabular}

\subsection*{7.2.4 Retrieving solution values}

After the meaning and quality of the solution (or certificate) have been established, we can query for the actual numerical values. They can be accessed using:
- Task.get_primal_obj, Task.get_dual_obj - the primal and dual objective value.
- Task.get_ \(x x\) - solution values for the variables.
- Task.get_solution - a full solution with primal and dual values and many more specialized methods, see the API reference.

\subsection*{7.2.5 Source code example}

Below is a source code example with a simple framework for assessing and retrieving the solution to a conic optimization problem.

Listing 7.1: Sample framework for checking optimization result.
```

extern crate mosek;
use mosek::{Task,Streamtype,Solsta,Soltype};
use std::env;
const CQO1_PTF : \&str = "Task 'CQO1 EXAMPLE'
Objective obj
Minimize + x4 + x5 + x6
Constraints
c1 [1] + x1 + x2 + 2 x3
Variables
k1 [QUAD(3)]
x4
x1 [0;+inf]
x2 [0;+inf]
k2 [RQUAD(3)]
x5
x6
x3 [0;+inf]
";
fn main() -> Result<(),String> {
let args: Vec<String> = env::args().collect();
let mut task = Task::new().unwrap().with_callbacks();
if args.len() < 2 {
task.read_ptf_string(CQO1_PTF)?;
}
else {
task.read_data(args[1].as_str())?;
}
// Perform optimization.
let trm = task.optimize()?;
task.solution_summary(Streamtype::LOG)?;
// Handle solution status. We expect Optimal
let solsta = task.get_sol_sta(Soltype::ITR)?;

```
```

 match solsta {
 Solsta::OPTIMAL => {
 // Fetch and print the solution
 println!("An optimal interior point solution is located.");
 let numvar = task.get_num_var()?;
 let mut xx = vec![0.0; numvar as usize];
 task.get_xx(Soltype::ITR, xx.as_mut_slice())?;
 println!("xx = {:?}",xx)
 },
 Solsta::DUAL_INFEAS_CER =>
 println!("Dual infeasibility certificate found."),
 Solsta::PRIM_INFEAS_CER =>
 println!("Primal infeasibility certificate found."),
 Solsta::UNKNOWN => {
 // The solutions status is unknown. The termination code
 // indicates why the optimizer terminated prematurely.
 println!("The solution status is unknown.");
 let (symname,desc) = mosek::get_code_desc(trm)?;
 println!(" Termination code: {} {}\n", symname, desc)
 },
 _ =>
 println!("Unexpected solution status {}\n",solsta)
 }
 Ok(())
 }

```

\subsection*{7.3 Errors and exceptions}

\section*{Exceptions}

Almost every function in Optimizer API for Rust can throw an exception informing that the requested operation was not performed correctly, and indicating the type of error that occurred. This is the case in situations such as for instance:
- referencing a nonexisting variable (for example with too large index),
- defining an invalid value for a parameter,
- accessing an undefined solution,
- repeating a variable name, etc.

It is therefore a good idea to catch errors. The one case where it is extremely important to do so is when Task.optimize is invoked. We will say more about this in Sec. 7.2.

The error is contains a response code (element of the enum Rescode) and short diagnostic messages. They can be accessed as in the following example.
```

if let Err(e) = task.put_dou_param(Dparam::INTPNT_CO_TOL_REL_GAP, -1.0e-7) {
println!("{}", e);
}

```

It will produce as output:
```

Error in call to put_dou_param: (1216) "The parameter value -1e-07 is too small for
๑parameter 'MSK_DPAR_INTPNT_CO_TOL_REL_GAP'.\0"

```

Another way to obtain a human-readable string corresponding to a response code is the method Env.get_code_desc. A full list of exceptions, as well as response codes, can be found in the API reference.

\section*{Optimizer errors and warnings}

The optimizer may also produce warning messages. They indicate non-critical but important events, that will not prevent solver execution, but may be an indication that something in the optimization problem might be improved. Warning messages are normally printed to a log stream (see Sec. 7.4). A typical warning is, for example:
```

MOSEK warning 53: A numerically large upper bound value 6.6e+09 is specified for
->constraint 'C69200' (46020).

```

Warnings can also be suppressed by setting the Iparam::MAX_NUM_WARNINGS parameter to zero, if they are well-understood.

\section*{Error and solution status handling example}

Below is a source code example with a simple framework for handling major errors when assessing and retrieving the solution to a conic optimization problem.

Listing 7.2: Sample framework for checking optimization result.
```

extern crate mosek;
use mosek::{Task,Streamtype,Solsta,Soltype};
use std::env;
const CQ01_PTF : \&str = "Task 'CQ01 EXAMPLE'
Objective obj
Minimize + x4 + x5 + x6
Constraints
c1 [1] + x1 + x2 + 2 x3
Variables
k1 [QUAD(3)]
x4
x1 [0;+inf]
x2 [0;+inf]
k2 [RQUAD(3)]
x5
x6
x3 [0;+inf]
";
fn main() -> Result<(),String> {
let args: Vec<String> = env::args().collect();
let mut task = Task::new().unwrap().with_callbacks();
if args.len() < 2 {
task.read_ptf_string(CQO1_PTF)?;
}
else {
task.read_data(args[1].as_str())?;
}
// Perform optimization.
let trm = task.optimize()?;
task.solution_summary(Streamtype::LOG)?;
// Handle solution status. We expect Optimal
let solsta = task.get_sol_sta(Soltype::ITR)?;

```
```

 match solsta {
 Solsta::OPTIMAL => {
 // Fetch and print the solution
 println!("An optimal interior point solution is located.");
 let numvar = task.get_num_var()?;
 let mut xx = vec![0.0; numvar as usize];
 task.get_xx(Soltype::ITR, xx.as_mut_slice())?;
 println!("xx = {:?}",xx)
 },
 Solsta::DUAL_INFEAS_CER =>
 println!("Dual infeasibility certificate found."),
 Solsta::PRIM_INFEAS_CER =>
 println!("Primal infeasibility certificate found."),
 Solsta::UNKNOWN => {
 // The solutions status is unknown. The termination code
 // indicates why the optimizer terminated prematurely.
 println!("The solution status is unknown.");
 let (symname,desc) = mosek::get_code_desc(trm)?;
 println!(" Termination code: {} {}\n", symname, desc)
 },
 _ =>
 println!("Unexpected solution status {}\n",solsta)
 }
 Ok(())
 }

```

\subsection*{7.4 Input/Output}

The logging and I/O features are provided mainly by the MOSEK task and to some extent by the MOSEK environment objects.

\subsection*{7.4.1 Stream logging}

By default the solver runs silently and does not produce any output to the console or otherwise. However, the log output can be redirected to a user-defined output stream or stream callback function. The log output is analogous to the one produced by the command-line version of MOSEK.

The log messages are partitioned in three streams:
- messages, Streamtype::MSG
- warnings, Streamtype: :WRN
- errors, Streamtype: :ERR

These streams are aggregated in the Streamtype::LOG stream. A stream handler can be defined for each stream separately.

A stream handler is simply a function which accepts a string, for example:
```

fn my_stream(msg : \&str) {
print!("{}",msg);
}

```

In order to attach a stream handler we must use an object with callbacks (struct TaskCB), created with Task.with_callbacks. In most cases it is natural just to create all tasks as tasks with callbacks, for example:
```

let mut task = env.task().unwrap().with_callbacks();

```

When a handler is attached to the stream using Task.put_stream_callback any text that is printed to that stream will be passed to the handler:
```

task.put_stream_callback(Streamtype::LOG, my_stream)?;

```

The stream can be detached by calling
```

task.clear_stream_callback(Streamtype::LOG)?;

```

A log stream can also be redirected to a file:
```

task.link_file_to_stream(Streamtype::LOG, "mosek.log", 0)?;

```

After optimization is completed an additional short summary of the solution and optimization process can be printed to any stream using the method Task. solution_summary.

\subsection*{7.4.2 Log verbosity}

The logging verbosity can be controlled by setting the relevant parameters, as for instance
- Iparam::LOG,
- Iparam::LOG_INTPNT,
- Iparam::LOG_MIO,
- Iparam::LOG_CUT_SECOND_OPT,
- Iparam::LOG_SIM, and
- Iparam::LOG_SIM_MINOR.

Each parameter controls the output level of a specific functionality or algorithm. The main switch is Iparam: : LOG which affect the whole output. The actual log level for a specific functionality is determined as the minimum between Iparam::LOG and the relevant parameter. For instance, the log level for the output produce by the interior-point algorithm is tuned by the Iparam::LOG_INTPNT; the actual log level is defined by the minimum between Iparam::LOG and Iparam::LOG_INTPNT.

Tuning the solver verbosity may require adjusting several parameters. It must be noticed that verbose logging is supposed to be of interest during debugging and tuning. When output is no more of interest, the user can easily disable it globally with Iparam: :LOG. Larger values of Iparam: :LOG do not necessarily result in increased output.

By default MOSEK will reduce the amount of log information after the first optimization on a given problem. To get full log output on subsequent re-optimizations set Iparam::LOG_CUT_SECOND_OPT to zero.

\subsection*{7.4.3 Saving a problem to a file}

An optimization problem can be dumped to a file using the method Task.write_data. The file format will be determined from the extension of the filename. Supported formats are listed in Sec. 16 together with a table of problem types supported by each.

For instance the problem can be written to a human-readable PTF file (see Sec. 16.5) with
```

task.write_data("data.ptf")?;

```

All formats can be compressed with gzip by appending the .gz extension, and with ZStandard by appending the .zst extension, for example
```

task.write_data("data.task.gz")?;

```

Some remarks:
- Unnamed variables are given generic names. It is therefore recommended to use meaningful variable names if the problem file is meant to be human-readable.
- The task format is MOSEK's native file format which contains all the problem data as well as solver settings.

\subsection*{7.4.4 Reading a problem from a file}

A problem saved in any of the supported file formats can be read directly into a task using Task. read_data. The task must be created in advance. Afterwards the problem can be optimized, modified, etc. If the file contained solutions, then are also imported, but the status of any solution will be set to Solsta:: UNKNOWN (solutions can also be read separately using Task.read_solution). If the file contains parameters, they will be set accordingly.
```

let mut task = env.task().unwrap();
if let Err(_) = task.read_data("file.task.gz") {
println!("Problem reading the file")
}
else if let Err(_) = task.optimize() {
println!("Problem optimizing the file")
}

```

\subsection*{7.5 Setting solver parameters}

MOSEK comes with a large number of parameters that allows the user to tune the behavior of the optimizer. The typical settings which can be changed with solver parameters include:
- choice of the optimizer for linear problems,
- choice of primal/dual solver,
- turning presolve on/off,
- turning heuristics in the mixed-integer optimizer on/off,
- level of multi-threading,
- feasibility tolerances,
- solver termination criteria,
- behaviour of the license manager,
and more. All parameters have default settings which will be suitable for most typical users.
The API reference contains:
- Full list of parameters
- List of parameters grouped by topic

\section*{Setting parameters}

Each parameter is identified by a unique name. There are three types of parameters depending on the values they take:
- Integer parameters. They take either either simple integer values or values from an enumeration provided for readability and compatibility of the code. Set with Task.put_int_param.
- Double (floating point) parameters. Set with Task.put_dou_param.
- String parameters. Set with Task.put_str_param.

There are also parameter setting functions which operate fully on symbolic strings containing generic command-line style names of parameters and their values. See the example below. The optimizer will try to convert the given argument to the exact expected type, and will error if that fails.

If an incorrect value is provided then the parameter is left unchanged.
For example, the following piece of code sets up parameters which choose and tune the interior point optimizer before solving a problem.

Listing 7.3: Parameter setting example.
```

// Set log level (integer parameter)
task.put_int_param(Iparam::LOG, 1)?;
// Select interior-point optimizer... (integer parameter)
task.put_int_param(Iparam::OPTIMIZER, Optimizertype::INTPNT)?;
// ... without basis identification (integer parameter)
task.put_int_param(Iparam::INTPNT_BASIS,Basindtype::NEVER)?;
// Set relative gap tolerance (double parameter)
task.put_dou_param(Dparam::INTPNT_CO_TOL_REL_GAP, 1.0e-7)?;
// The same using explicit string names
task.put_param("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", "1.0e-7")?;
task.put_na_dou_param("MSK_DPAR_INTPNT_CO_TOL_REL_GAP", 1.0e-7)?;
// Incorrect value
if let Err(_) = task.put_dou_param(Dparam::INTPNT_CO_TOL_REL_GAP, -1.0) {
println!("Wrong parameter value");
}

```

\section*{Reading parameter values}

The functions Task.get_int_param, Task.get_dou_param, Task.get_str_param can be used to inspect the current value of a parameter, for example:
```

let param = task.get_dou_param(Dparam::INTPNT_CO_TOL_REL_GAP)?;
println!("Current value for parameter intpnt_co_tol_rel_gap = \$param");

```

\subsection*{7.6 Retrieving information items}

After the optimization the user has access to the solution as well as to a report containing a large amount of additional information items. For example, one can obtain information about:
- timing: total optimization time, time spent in various optimizer subroutines, number of iterations, etc.
- solution quality: feasibility measures, solution norms, constraint and bound violations, etc.
- problem structure: counts of variables of different types, constraints, nonzeros, etc.
- integer optimizer: integrality gap, objective bound, number of cuts, etc.
and more. Information items are numerical values of integer, long integer or double type. The full list can be found in the API reference:
- Double
- Integer
- Long

Certain information items make sense, and are made available, also during the optimization process. They can be accessed from a callback function, see Sec. 7.7 for details.

\section*{Remark}

For efficiency reasons, not all information items are automatically computed after optimization. To force all information items to be updated use the parameter Iparam::AUTO_UPDATE_SOL_INFO.

\section*{Retrieving the values}

Values of information items are fetched using one of the methods
- Task.get_dou_inf for a double information item,
- Task.get_int_inf for an integer information item,
- Task.get_lint_inf for a long integer information item.

Each information item is identified by a unique name. The example below reads two pieces of data from the solver: total optimization time and the number of interior-point iterations.

Listing 7.4: Information items example.
```

let tm = task.get_dou_inf(Dinfitem::OPTIMIZER_TIME)?;
let iter = task.get_int_inf(Iinfitem::INTPNT_ITER)?;

```

\subsection*{7.7 Progress and data callback}

Callbacks are a very useful mechanism that allow the caller to track the progress of the MOSEK optimizer. A callback function provided by the user is regularly called during the optimization and can be used to
- obtain a customized \(\log\) of the solver execution,
- collect information for debugging purposes or
- ask the solver to terminate.

\section*{Warning}

The callbacks functions must not invoke any functions of the solver, environment or task. Otherwise the state of the solver and its outcome are undefined. The only exception is the possibility to retrieve an integer solution, see below.

\section*{Retrieving mixed-integer solutions}

If the mixed-integer optimizer is used, the callback will take place, in particular, every time an improved integer solution is found. In that case it is possible to retrieve the current values of the best integer solution from within the callback function. It can be useful for implementing complex termination criteria for integer optimization.

\subsection*{7.7.1 Data callback}

In the data callback MOSEK passes a callback code and values of all information items to a userdefined function. The callback function is called, in particular, at the beginning of each iteration of the interior-point optimizer. For the simplex optimizers Iparam::LOG_SIM_FREQ controls how frequently the call-back is called.

In order to attach a stream handler we must use an object with callbacks (struct TaskCB), created with Task.with_callbacks. In most cases it is natural just to create all tasks as tasks with callbacks, for example:
```

let mut task = env.task().unwrap().with_callbacks();

```

The callback is set by calling the method Task.put_callback with a user-defined function which takes the callback code and values of information items.

Non-zero return value of the callback function indicates that the optimizer should be terminated.

\subsection*{7.7.2 Working example: Data callback}

The following example defines a data callback function that prints out some of the information items. It interrupts the solver after a certain time limit.

Listing 7.5: An example of a data callback function.
```

fn callback(caller : i32, dinf : \&[f64], iinf : \&[i32], _linf : \&[i64]) -> bool {
let mut opttime = 0.0;
match caller {
Callbackcode::BEGIN_INTPNT =>
println!("Starting interior-point optimizer"),
Callbackcode::INTPNT => {
let itrn = iinf[Iinfitem::INTPNT_ITER as usize];
let pobj = dinf[Dinfitem::INTPNT_PRIMAL_OBJ as usize];
let dobj = dinf[Dinfitem::INTPNT_DUAL_OBJ as usize];
let stime = dinf[Dinfitem::INTPNT_TIME as usize];
opttime = dinf[Dinfitem::OPTIMIZER_TIME as usize];
println!("Iterations: {:-3}",itrn);
println!(" Elapsed time: {:6.2}({:.2})",opttime, stime);
println!(" Primal obj.: {:-18.6e} Dual obj.: {:-18.6e}",pobj, dobj);
},
Callbackcode::END_INTPNT =>
println!("Interior-point optimizer finished."),
Callbackcode::BEGIN_PRIMAL_SIMPLEX =>
println!("Primal simplex optimizer started."),
Callbackcode::UPDATE_PRIMAL_SIMPLEX => {
let itrn = iinf[Iinfitem::SIM_PRIMAL_ITER as usize];
let pobj = dinf[Dinfitem::SIM_OBJ as usize];
let stime = dinf[Dinfitem::SIM_TIME as usize];
opttime = dinf[Dinfitem::OPTIMIZER_TIME as usize];
println!("Iterations: {:-3}",itrn);
println!(" Elapsed time: {:6.2}({:.2})",opttime, stime);
println!(" Obj.: {:-18.6e}",pobj);
},
Callbackcode::END_PRIMAL_SIMPLEX =>
println!("Primal simplex optimizer finished."),
Callbackcode::BEGIN_DUAL_SIMPLEX =>
println!("Dual simplex optimizer started."),
Callbackcode::UPDATE_DUAL_SIMPLEX => {
let itrn = iinf[Iinfitem::SIM_DUAL_ITER as usize];
let pobj = dinf[Dinfitem::SIM_OBJ as usize];
let stime = dinf[Dinfitem::SIM_TIME as usize];
opttime = dinf[Dinfitem::OPTIMIZER_TIME as usize];
println!("Iterations: {:-3}", itrn);
println!(" Elapsed time: {:6.2}({:.2})",opttime,stime);
println!(" Obj.: {:-18.6e}",pobj);
},
Callbackcode::END_DUAL_SIMPLEX =>
println!("Dual simplex optimizer finished."),
Callbackcode::NEW_INT_MIO => {
println!("New integer solution has been located.");
// let mut xx = vec![0.0;]
// xx = task.get_xx(Soltype::ITG);
// println!(xx);
println!("Obj.: {}",dinf[Dinfitem::MIO_OBJ_INT as usize]);
}

```
```

 => {
 }
 }
 if opttime >= MAXTIME {
 // mosek is spending too much time. Terminate it.
 println!("Terminating.");
 false
 }
 else {
 true
 }
 }

```

Assuming that we have defined a task task and a time limit maxtime, the callback function is attached as follows:

Listing 7.6: Attaching the data callback function to the model.
```

task.with_info_callback(
\& mut callback,
|task|

```

\subsection*{7.8 MOSEK OptServer}

MOSEK provides an easy way to offload optimization problem to a remote server. This section demonstrates related functionalities from the client side, i.e. sending optimization tasks to the remote server and retrieving solutions.

Setting up and configuring the remote server is described in a separate manual for the OptServer.

\subsection*{7.8.1 Synchronous Remote Optimization}

In synchronous mode the client sends an optimization problem to the server and blocks, waiting for the optimization to end. Once the result has been received, the program can continue. This is the simplest mode all it takes is to provide the address of the server before starting optimization. The rest of the code remains untouched.

Note that it is impossible to recover the job in case of a broken connection.

\section*{Source code example}

Listing 7.7: Using the OptServer in synchronous mode.
```

extern crate mosek;
use mosek::{Task,Streamtype,Sparam};
use std::env;
enum FileOrText {
File(String),
Text(String)
}
fn main() -> Result<(),String> {
let mut args = env::args();
if args.len() < 3 {
println!("Missing argument, syntax is:");

```
```

 println!(" opt_server_sync inputfile http[s]://HOSTNAME:PORT [certfile]");
 return Err("Missing arguments".to_string())
 }
 let _ = args.next();
 opt_server_sync(FileOrText::File(args.next().unwrap()),
 args.next().unwrap(),
 args.next())
 }
fn opt_server_sync(inputfile : FileOrText, addr : String, cert : Option<String>) ->
->Result<(),String> {
let mut task = Task::new().unwrap().with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
// Load some data into the task
match inputfile {
FileOrText::File(filename) => task.read_data(filename.as_str())?,
FileOrText::Text(data) => task.read_ptf_string(data.as_str())?
}
// Set OptServer URL
task.put_optserver_host(addr.as_str())?;
// Path to certificate, if any
if let Some(cert) = cert {
task.put_str_param(Sparam::REMOTE_TLS_CERT_PATH, cert.as_str())?;
}
// Optimize remotely, no access token
let _trm = task.optimize()?;
task.solution_summary(Streamtype::LOG)?;
0k(())
}

```

\subsection*{7.8.2 Asynchronous Remote Optimization}

In asynchronous mode the client sends a job to the remote server and the execution of the client code continues. In particular, it is the client's responsibility to periodically check the optimization status and, when ready, fetch the results. The client can also interrupt optimization. The most relevant methods are:
- Task.async_optimize : Offload the optimization task to a solver server.
- Task.async_poll : Request information about the status of the remote job.
- Task.async_get_result : Request the results from a completed remote job.
- Task.async_stop : Terminate a remote job.

\section*{Source code example}

In the example below the program enters in a polling loop that regularly checks whether the result of the optimization is available.

Listing 7.8: Using the OptServer in asynchronous mode.
```

extern crate mosek;
use mosek::{Task,Streamtype,Sparam};
use std::env;
use std::time::Duration;
use std::thread::sleep;
\#[derive(Debug)]
enum FileOrText {
File(String),
Text(String)
}
fn main() {
let mut args = env::args();
if args.len() < 3 {
println!("Missing argument, syntax is:");
println!(" opt_server_async inputfile http[s]://HOSTNAME:PORT numpolls
๑[certfile]");
panic!("Missing arguments");
}
let _ = args.next();
opt_server_async(FileOrText::File(args.next().unwrap()),
args.next().unwrap(),
args.next().unwrap().parse().unwrap(),
args.next()).unwrap();
}
fn opt_server_async(inputfile : FileOrText, addr : String, numpolls : usize, cert :\sqcup
Option<String>) -> Result<(),String> {
// Path to certificate, if any
let token = {
Task::new().unwrap()
.with_stream_callback(
Streamtype::LOG,
\&mut |msg| print!("{}",msg),
|task| {
match inputfile {
FileOrText::File(ref filename) => task.read_data(filename.as_
\leftrightarrowsstr()).unwrap(),
FileOrText::Text(ref data) => task.read_ptf_string(data.
\hookrightarrowas_str()).unwrap()
}
if let Some(ref cert) = cert {
task.put_str_param(Sparam::REMOTE_TLS_CERT_PATH,cert.as_
\leftrightarrowsstr())?;
}
task.async_optimize(addr.as_str(),"")
}).expect("Failed to submit async optimization")
};
println!("Task token = '{}'", token);

```
```

 println!("Setting log stream...");
 Task::new().unwrap().with_stream_callback(
 Streamtype::LOG,
 & mut |msg| print!("{}",msg),
 |task| task.with_callback(
 &mut|caller| { println!("caller = {}",caller); false },
 |task| {
 println!("Reading input file '{:?}'...",inputfile);
 match inputfile {
 FileOrText::File(ref filename) => task.read_data(filename.as_
 \iotastr()).unwrap(),
FileOrText::Text(ref data) => task.read_ptf_string(data.as_
๑str()).unwrap()
}
if let Some(ref cert) = cert {
task.put_str_param(Sparam::REMOTE_TLS_CERT_PATH,cert.as_str())?;
}
println!("Starting polling loop...");
for i in O..numpolls {
sleep(Duration::new (1,0));
println!("\tpoll {}...", i);
let mut trm : i32 = 0;
let mut resp : i32 = 0;
let respavailable = task.async_poll(addr.as_str(),
"",
token.as_str(),
\& mut resp,
\& mut trm)?;
if respavailable {
println!("solution available!");
task.async_get_result(addr.as_str(),
"",
token.as_str(),
\& mut resp,
\& mut trm)?;
task.solution_summary (Streamtype::LOG)?;
return Ok(());
}
}
println!("max num polls reached, stopping host.");
task.async_stop (addr.as_str(), "", token.as_str())?;
Err("Max num polls".to_string())
}))
}

```

\section*{Chapter 8}

\section*{Debugging Tutorials}

This collection of tutorials contains basic techniques for debugging optimization problems using tools available in MOSEK: optimizer log, solution summary, infeasibility report, command-line tools. It is intended as a first line of technical help for issues such as: Why do I get solution status unknown and how can I fix it? Why is my model infeasible while it shouldn't be? Should I change some parameters? Can the model solve faster? etc.

\section*{The major steps when debugging a model are always:}
- Enable log output. See Sec. 7.4.1 for how to do it. In the simplest case:

Create a \(\log\) handler function:
```

fn my_stream(msg : \&str) {
print!("{}",msg);
}

```
attach it to the log stream:
```

task.put_stream_callback(Streamtype::LOG, my_stream)?;

```
and include solution summary after the optimization:
```

task.optimize()?;
task.solution_summary(Streamtype::LOG)?;

```
- Run the optimization and analyze the log output, see Sec. 8.1. In particular:
- check if the problem setup (number of constraints/variables etc.) matches your expectation.
- check solution summary and solution status.
- Dump the problem to disk if necessary to continue analysis. See Sec. 7.4.3.
- use a human-readable text format, preferably *.ptf if you want to check the problem structure by hand. Assign names to variables and constraints to make them easier to identify.
```

task.write_data("data.ptf")?;

```
- use the MOSEK native format *.task.gz when submitting a bug report or support question.
```

task.write_data("data.task.gz")?;

```
- Fix problem setup, improve the model, locate infeasibility or adjust parameters, depending on the diagnosis.

See the following sections for details.

\subsection*{8.1 Understanding optimizer log}

The optimizer produces a log which splits roughly into four sections:
1. summary of the input data,
2. presolve and other pre-optimize problem setup stages,
3. actual optimizer iterations,
4. solution summary.

In this tutorial we show how to analyze the most important parts of the log when initially debugging a model: input data (1) and solution summary (4). For the iterations \(\log\) (3) see Sec. 13.3.4 or Sec. 13.4.4.

\subsection*{8.1.1 Input data}

If MOSEK behaves very far from expectations it may be due to errors in problem setup. The log file will begin with a summary of the structure of the problem, which looks for instance like:
```

Problem
Name :
Objective sense : minimize
Type : CONIC (conic optimization problem)
Constraints : 234
Affine conic cons. : 5348 (6444 rows)
Disjunctive cons. : 0
Cones : 0
Scalar variables : 20693
Matrix variables : 1 (scalarized: 45)
Integer variables : 0

```

This can be consulted to eliminate simple errors: wrong objective sense, wrong number of variables etc. Note that some modeling tools can introduce additional variables and constraints to the model and perturb the model even further (such as by dualizing). In most MOSEK APIs the problem dimensions should match exactly what the user specified.

If this is not sufficient a bit more information can be obtained by dumping the problem to a file (see Sec. 8) and using the anapro option of any of the command line tools. It can also be done directly with the function Task. analyze_problem. This will produce a longer summary similar to:
```

** Variables
scalar: 20414 integer: 0 matrix: 0
low: 2082 up: 5014 ranged: 0
** Constraints
all: 20413
low: 10028 up: 0
low: 10028 up: 0
low: 10028 up: 0
low: 10028 up: 0
** Problem data (numerics)
|c| nnz: 10028
|A| nnz: 597023
blx fin: 2508
bux fin: 5440
blc fin: 20413
buc fin: }1038
fixed: 426
ranged: 0
free: 0
fixed: 10385
fin: 10385

```
```

min=2.09e-05

```
```

min=2.09e-05

```
\begin{tabular}{|llll|}
\hline\(|F|\) & & & (continued from previous page) \\
\(|g|\) & \(\mathrm{nnz}:\) & 612301 & \(\min =8.29 \mathrm{e}-06\)
\end{tabular} \begin{tabular}{l}
\(\max =9.31 \mathrm{e}+01\) \\
\hline
\end{tabular}

Again, this can be used to detect simple errors, such as:
- Wrong type of conic constraint was used or it has wrong dimension.
- The bounds for variables or constraints are incorrect or incomplete. Check if you defined bound keys for all variables. A variable for which no bound was defined is by default fixed at 0 .
- The model is otherwise incomplete.
- Suspicious values of coefficients.
- For various data sizes the model does not scale as expected.

Finally saving the problem in a human-friendly text format such as LP or PTF (see Sec. 8) and analyzing it by hand can reveal if the model is correct.

\section*{Warnings and errors}

At this stage the user can encounter warnings which should not be ignored, unless they are wellunderstood. They can also serve as hints as to numerical issues with the problem data. A typical warning of this kind is
```

MOSEK warning 53: A numerically large upper bound value 2.9e+08 is specified for
\leftrightarrowsvariable 'absh[107]' (2613).

```

Warnings do not stop the problem setup. If, on the other hand, an error occurs then the model will become invalid. The user should make sure to test for errors/exceptions from all API calls that set up the problem and validate the data. See Sec. 7.3 for more details.

\subsection*{8.1.2 Solution summary}

The last item in the log is the solution summary. In the Optimizer API it is only printed by invoking the function Task.solution_summary.

\section*{Continuous problem}

\section*{Optimal solution}

A typical solution summary for a continuous (linear, conic, quadratic) problem looks like:
```

Problem status : PRIMAL_AND_DUAL_FEASIBLE
Solution status : OPTIMAL
Primal. obj: 8.7560516107e+01 nrm: 1e+02 Viol. con: 3e-12 var: 0e+00
->acc: 3e-11
Dual. obj: 8.7560521345e+01 nrm: 1e+00 Viol. con: 5e-09 var: 9e-11 \sqcup
acc: 0e+00

```

It contains the following elements:
- Problem and solution status. For details see Sec. 7.2.3.
- A summary of the primal solution: objective value, infinity norm of the solution vector and maximal violations of variables and constraints of different types. The violation of a linear constraint such as \(a^{T} x \leq b\) is \(\max \left(a^{T} x-b, 0\right)\). The violation of a conic constraint is the distance to the cone.
- The same for the dual solution.

The features of the solution summary which characterize a very good and accurate solution and a well-posed model are:
- Status: The solution status is OPTIMAL.
- Duality gap: The primal and dual objective values are (almost) identical, which proves the solution is (almost) optimal.
- Norms: Ideally the norms of the solution and the objective values should not be too large. This of course depends on the input data, but a huge solution norm can be an indicator of issues with the scaling, conditioning and/or well-posedness of the model. It may also indicate that the problem is borderline between feasibility and infeasibility and sensitive to small perturbations in this respect.
- Violations: The violations are close to zero, which proves the solution is (almost) feasible. Observe that due to rounding errors it can be expected that the violations are proportional to the norm ( nrm :) of the solution. It is rarely the case that violations are exactly zero.

\section*{Solution status UNKNOWN}

A typical example with solution status UNKNOWN due to numerical problems will look like:
```

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 1.3821656824e+01 nrm: 1e+01 Viol. con: 2e-03 var: 0e+00 ப
\hookrightarrowacc: 0e+00
Dual. obj: 3.0119004098e-01 nrm: 5e+07 Viol. con: 4e-16 var: 1e-01 ப
acc: 0e+00

```

Note that:
- The primal and dual objective are very different.
- The dual solution has very large norm.
- There are considerable violations so the solution is likely far from feasible.

Follow the hints in Sec. 8.2 to resolve the issue.

\section*{Solution status UNKNOWN with a potentially useful solution}

Solution status UNKNOWN does not necessarily mean that the solution is completely useless. It only means that the solver was unable to make any more progress due to numerical difficulties, and it was not able to reach the accuracy required by the termination criteria (see Sec. 13.3.2). Consider for instance:
```

Problem status : UNKNOWN
Solution status : UNKNOWN
Primal. obj: 3.4531019648e+04 nrm: 1e+05 Viol. con: 7e-02 var: 0e+00 \sqcup
acc: 0e+00
Dual. obj: 3.4529720645e+04 nrm: 8e+03 Viol. con: 1e-04 var: 2e-04 ப
@acc: 0e+00

```

Such a solution may still be useful, and it is always up to the user to decide. It may be a good enough approximation of the optimal point. For example, the large constraint violation may be due to the fact that one constraint contained a huge coefficient.

\section*{Infeasibility certificate}

A primal infeasibility certificate is stored in the dual variables:
```

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 2.9238975853e+02 nrm: 6e+02 Viol. con: 0e+00 var: 1e-11 \sqcup
acc: 0e+00

```

It is a Farkas-type certificate as described in Sec. 12.2.2. In particular, for a good certificate:
- The dual objective is positive for a minimization problem, negative for a maximization problem. Ideally it is well bounded away from zero.
- The norm is not too big and the violations are small (as for a solution).

If the model was not expected to be infeasible, the likely cause is an error in the problem formulation. Use the hints in Sec. 8.1.1 and Sec. 8.3 to locate the issue.

Just like a solution, the infeasibility certificate can be of better or worse quality. The infeasibility certificate above is very solid. However, there can be less clear-cut cases, such as for example:
```

Problem status : PRIMAL_INFEASIBLE
Solution status : PRIMAL_INFEASIBLE_CER
Dual. obj: 1.6378689238e-06 nrm: 6e+05 Viol. con: 7e-03 var: 2e-04 u
->acc: 0e+00

```

This infeasibility certificate is more dubious because the dual objective is positive, but barely so in comparison with the large violations. It also has rather large norm. This is more likely an indication that the problem is borderline between feasibility and infeasibility or simply ill-posed and sensitive to tiny variations in input data. See Sec. 8.3 and Sec. 8.2.

The same remarks apply to dual infeasibility (i.e. unboundedness) certificates. Here the primal objective should be negative a minimization problem and positive for a maximization problem.

\subsection*{8.1.3 Mixed-integer problem}

\section*{Optimal integer solution}

For a mixed-integer problem there is no dual solution and a typical optimal solution report will look as follows:
```

Problem status : PRIMAL_FEASIBLE
Solution status : INTEGER_OPTIMAL
Primal. obj: 6.0111122960e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-14 ப
->itg: 5e-15

```

The interpretation of all elements is as for a continuous problem. The additional field itg denotes the maximum violation of an integer variable from being an exact integer.

\section*{Feasible integer solution}

If the solver found an integer solution but did not prove optimality, for instance because of a time limit, the solution status will be PRIMAL_FEASIBLE:
```

Problem status : PRIMAL_FEASIBLE
Solution status : PRIMAL_FEASIBLE
Primal. obj: 6.0114607792e+06 nrm: 1e+03 Viol. con: 2e-13 var: 2e-13 ப
->itg: 4e-15

```

In this case it is valuable to go back to the optimizer summary to see how good the best solution is:
\begin{tabular}{|llllllll|}
\hline 31 & 35 & 1 & 0 & \(6.0114607792 \mathrm{e}+06\) & \(6.0078960892 \mathrm{e}+06\) & 0.06 \\
\(\hookrightarrow\) & 4.1 & & & & & \\
\\
Objective of best integer solution & \(:\) & \(6.011460779193 \mathrm{e}+06\) & & \\
Best objective bound & & \(: 6.00789608925 \mathrm{e}+06\) & & \\
\hline
\end{tabular}

In this case the best integer solution found has objective value \(6.011460779193 \mathrm{e}+06\), the best proved lower bound is \(6.007896089225 \mathrm{e}+06\) and so the solution is guaranteed to be within \(0.06 \%\) from optimum. The same data can be obtained as information items through an API. See also Sec. 13.4 for more details.

\section*{Infeasible problem}

If the problem is declared infeasible the summary is simply
```

Problem status : PRIMAL_INFEASIBLE
Solution status : UNKNOWN
Primal. obj: 0.0000000000e+00 nrm: 0e+00 Viol. con: 0e+00 var: 0e+00 ப
\hookrightarrowitg: 0e+00

```

If infeasibility was not expected, consult Sec. 8.3.

\subsection*{8.2 Addressing numerical issues}

The suggestions in this section should help diagnose and solve issues with numerical instability, in particular UNKNOWN solution status or solutions with large violations. Since numerically stable models tend to solve faster, following these hints can also dramatically shorten solution times.

We always recommend that issues of this kind are addressed by reformulating or rescaling the model, since it is the modeler who has the best insight into the structure of the problem and can fix the cause of the issue.

Some information about the numerical properties of the data can be obtained by dumping the problem to a file (see Sec. 8) and using the anapro option of any of the command line tools. It can also be done directly with the function Task. analyze_problem.

\subsection*{8.2.1 Formulating problems}

\section*{Scaling}

Make sure that all the data in the problem are of comparable orders of magnitude. This applies especially to the linear constraint matrix. Use Sec. 8.1.1 if necessary. For example a report such as
```

|A| nnz: 597023 min=1.17e-6 max=2.21e+5

```
means that the ratio of largest to smallest elements in A is \(10^{11}\). In this case the user should rescale or reformulate the model to avoid such spread which makes it difficult for MOSEK to scale the problem internally. In many cases it may be possible to change the units, i.e. express the model in terms of rescaled variables (for instance work with millions of dollars instead of dollars, etc.).

Similarly, if the objective contains very different coefficients, say
\[
\operatorname{maximize} 10^{10} x+y
\]
then it is likely to lead to inaccuracies. The objective will be dominated by the contribution from \(x\) and \(y\) will become insignificant.

\section*{Removing huge bounds}

Never use a very large number as replacement for \(\infty\). Instead define the variable or constraint as unbounded from below/above. Similarly, avoid artificial huge bounds if you expect they will not become tight in the optimal solution.

\section*{Avoiding linear dependencies}

As much as possible try to avoid linear dependencies and near-linear dependencies in the model. See Example 8.3.

\section*{Avoiding ill-posedness}

Avoid continuous models which are ill-posed: the solution space is degenerate, for example consists of a single point (technically, the Slater condition is not satisfied). In general, this refers to problems which are borderline between feasible and infeasible. See Example 8.1.

\section*{Scaling the expected solution}

Try to formulate the problem in such a way that the expected solution (both primal and dual) is not very large. Consult the solution summary Sec. 8.1.2 to check the objective values or solution norms.

\subsection*{8.2.2 Further suggestions}

Here are other simple suggestions that can help locate the cause of the issues. They can also be used as hints for how to tune the optimizer if fixing the root causes of the issue is not possible.
- Remove the objective and solve the feasibility problem. This can reveal issues with the objective.
- Change the objective or change the objective sense from minimization to maximization (if applicable). If the two objective values are almost identical, this may indicate that the feasible set is very small, possibly degenerate.
- Perturb the data, for instance bounds, very slightly, and compare the results.
- For linear problems: solve the problem using a different optimizer by setting the parameter Iparam: :OPTIMIZER and compare the results.
- Force the optimizer to solve the primal/dual versions of the problem by setting the parameter Iparam: :INTPNT_SOLVE_FORM or Iparam: :SIM_SOLVE_FORM. MOSEK has a heuristic to decide whether to dualize, but for some problems the guess is wrong an explicit choice may give better results.
- Solve the problem without presolve or some of its parts by setting the parameter Iparam: : PRESOLVE_USE, see Sec. 13.1.
- Use different numbers of threads (Iparam: : NUM_THREADS ) and compare the results. Very different results indicate numerical issues resulting from round-off errors.

If the problem was dumped to a file, experimenting with various parameters is facilitated with the MOSEK Command Line Tool or MOSEK Python Console Sec. 8.4.

\subsection*{8.2.3 Typical pitfalls}

Example 8.1 (Ill-posedness). A toy example of this situation is the feasibility problem
\[
(x-1)^{2} \leq 1, \quad(x+1)^{2} \leq 1
\]
whose only solution is \(x=0\) and moreover replacing any 1 on the right hand side by \(1-\varepsilon\) makes the problem infeasible and replacing it by \(1+\varepsilon\) yields a problem whose solution set is an interval (fully-dimensional). This is an example of ill-posedness.

Example 8.2 (Huge solution). If the norm of the expected solution is very large it may lead to numerical issues or infeasibility. For example the problem
\[
\left(10^{-4}, x, 10^{3}\right) \in \mathcal{Q}_{r}^{3}
\]
may be declared infeasible because the expected solution must satisfy \(x \geq 5 \cdot 10^{9}\).

Example 8.3 (Near linear dependency). Consider the following problem:
\[
\begin{aligned}
& \text { minimize } \\
& \text { subject to } \begin{aligned}
x_{1}+x_{2} & =1, \\
x_{3}+x_{4} & =1,
\end{aligned} \\
& \begin{array}{rlrl}
-x_{1} & & -x_{3} & \\
& -x_{2} & & -1+\varepsilon, \\
x_{1}, & x_{2}, & x_{3}, & =-1, \\
x_{4} & \geq 0 .
\end{array}
\end{aligned}
\]

If we add the equalities together we obtain:
\[
0=\varepsilon
\]
which is infeasible for any \(\varepsilon \neq 0\). Here infeasibility is caused by a linear dependency in the constraint matrix coupled with a precision error represented by the \(\varepsilon\). Indeed if a problem contains linear dependencies then the problem is either infeasible or contains redundant constraints. In the above case any of the equality constraints can be removed while not changing the set of feasible solutions. To summarize linear dependencies in the constraints can give rise to infeasible problems and therefore it is better to avoid them.

Example 8.4 (Presolving very tight bounds). Next consider the problem
\[
\begin{array}{llll}
\operatorname{minimize} & & \\
\text { subject to } & x_{1}-0.01 x_{2} & =0 \\
& x_{2}-0.01 x_{3} & =0 \\
& x_{3}-0.01 x_{4} & =0, \\
& x_{1} & \geq-10^{-9} \\
& x_{1} & \leq 10^{-9} \\
& x_{4} & \geq 10^{-4}
\end{array}
\]

Now the MOSEK presolve will, for the sake of efficiency, fix variables (and constraints) that have tight bounds where tightness is controlled by the parameter Dparam: :PRESOLVE_TOL_X. Since the bounds
\[
-10^{-9} \leq x_{1} \leq 10^{-9}
\]
are tight, presolve will set \(x_{1}=0\). It easy to see that this implies \(x_{4}=0\), which leads to the incorrect conclusion that the problem is infeasible. However a tiny change of the value \(10^{-9}\) makes the problem feasible. In general it is recommended to avoid ill-posed problems, but if that is not possible then one solution is to reduce parameters such as Dparam: :PRESOLVE_TOL_X to say \(10^{-10}\). This will at least make sure that presolve does not make the undesired reduction.

\subsection*{8.3 Debugging infeasibility}

When solving an optimization problem one typically expects to get an optimal solution, but in some cases, either by design, or (most frequently) due to an error in the formulation, the problem may become infeasible (have no solution at all).

This section
- describes the intuitions behind infeasibility,
- helps to debug (unexpectedly) infeasible problems using the command line tool and by inspecting infeasibility reports and problem data by hand,
- gives some hints for how to modify the formulation to identify the reasons for infeasibility.

If, instead, you want to fetch an infeasibility certificate directly using Optimizer API for Rust, see the tutorial in Sec. 6.13.

An infeasibility certificate is only available for continuous problems, however the hints in Sec. 8.3.4 apply to a large extent also to mixed-integer problems.

\subsection*{8.3.1 Numerical issues}

Infeasible problem status may be just an artifact of numerical issues appearing when the problem is badly-scaled, barely feasible or otherwise ill-conditioned so that it is unstable under small perturbations of the data or round-off errors. This may be visible in the solution summary if the infeasibility certificate has poor quality. See Sec. 8.1.2 for how to diagnose that and Sec. 8.2 for possible hints. Sec. 8.2.3 contains examples of situations which may lead to infeasibility for numerical reasons.

We refer to Sec. 8.2 for further information on dealing with those sort of issues. For the rest of this section we concentrate on the case when the solution summary leaves little doubt that the problem solved by the optimizer actually is infeasible.

\subsection*{8.3.2 Locating primal infeasibility}

As an example of a primal infeasible problem consider minimizing the cost of transportation between a number of production plants and stores: Each plant produces a fixed number of goods, and each store has a fixed demand that must be met. Supply, demand and cost of transportation per unit are given in Fig. 8.1.


Fig. 8.1: Supply, demand and cost of transportation.
The problem represented in Fig. 8.1 is infeasible, since the total demand
\[
2300=1100+200+500+500
\]
exceeds the total supply
\[
2200=200+1000+1000
\]

If we denote the number of transported goods from plant \(i\) to store \(j\) by \(x_{i j}\), the problem can be
formulated as the LP:

Solving problem (8.1) using MOSEK will result in an infeasibility status. The infeasibility certificate is contained in the dual variables an can be accessed from an API. The variables and constraints with nonzero solution values form an infeasible subproblem, which frequently is very small. See Sec. 12.1.2 or Sec. 12.2.2 for detailed specifications of infeasibility certificates.

A short infeasibility report can also be printed to the log stream. It can be turned on by setting the parameter Iparam: :INFEAS_REPORT_AUTO to Onoffkey::ON. This causes MOSEK to print a report on variables and constraints which are involved in infeasibility in the above sense, i.e. have nonzero values in the certificate. The parameter Iparam: :INFEAS \(A_{-}\)REPORT_LEVEL controls the amount of information presented in the infeasibility report. The default value is 1 . For the above example the report is
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Primal infeasibility report} \\
\hline \multicolumn{6}{|l|}{Problem status: The problem is primal infeasible} \\
\hline \multicolumn{6}{|l|}{The following constraints are involved in the primal infeasibility.} \\
\hline Index & Name & Lower bound & Upper bound & Dual lower & Dual upper \\
\hline 0 & s0 & none & 200 & 0 & 1 \\
\hline 2 & s2 & none & 1000 & 0 & 1 \\
\hline 3 & d0 & 1100 & 1100 & 1 & 0 \\
\hline 4 & d1 & 200 & 200 & 1 & 0 \\
\hline \multicolumn{6}{|l|}{The following bound constraints are involved in the primal infeasibility.} \\
\hline Index & Name & Lower bound & Upper bound & Dual lower & Dual upper \\
\hline 5 & x33 & 0 & none & 1 & 0 \\
\hline 6 & x34 & 0 & none & 1 & 0 \\
\hline
\end{tabular}

The infeasibility report is divided into two sections corresponding to constraints and variables. It is a selection of those lines from the problem solution which are important in understanding primal infeasibility. In this case the constraints s0, s2, d0, d1 and variables x33, x34 are of importance because of nonzero dual values. The columns Dual lower and Dual upper contain the values of dual variables \(s_{l}^{c}, s_{u}^{c}, s_{l}^{x}\) and \(s_{u}^{x}\) in the primal infeasibility certificate (see Sec. 12.1.2).

In our example the certificate means that an appropriate linear combination of constraints s0, s1 with coefficient \(s_{u}^{c}=1\), constraints d0 and d1 with coefficient \(s_{u}^{c}-s_{l}^{c}=0-1=-1\) and lower bounds on x33 and x34 with coefficient \(-s_{l}^{x}=-1\) gives a contradiction. Indeed, the combination of the four involved constraints is \(x_{33}+x_{34} \leq-100\) (as indicated in the introduction, the difference between supply and demand).

It is also possible to extract the infeasible subproblem with the command-line tool. For an infeasible problem called infeas.lp the command:
```

mosek -d MSK_IPAR_INFEAS_REPORT_AUTO MSK_ON infeas.lp -info rinfeas.lp

```
will produce the file rinfeas.bas.inf.lp which contains the infeasible subproblem. Because of its size it may be easier to work with than the original problem file.

Returning to the transportation example, we discover that removing the fifth constraint \(x_{12}=200\) makes the problem feasible. Almost all undesired infeasibilities should be fixable at the modeling stage.

\subsection*{8.3.3 Locating dual infeasibility}

A problem may also be dual infeasible. In this case the primal problem is usually unbounded, meaning that feasible solutions exists such that the objective tends towards infinity. For example, consider the problem
\[
\begin{array}{lr}
\operatorname{maximize} & 200 y_{1}+1000 y_{2}+1000 y_{3}+1100 y_{4}+200 y_{5}+500 y_{6}+500 y_{7} \\
\text { subject to } & y_{1}+y_{4} \leq 1, y_{1}+y_{5} \leq 2, y_{2}+y_{6} \leq 5, y_{2}+y_{7} \leq 2, \\
y_{3}+y_{4} \leq 1, y_{3}+y_{6} \leq 2, y_{3}+y_{7} \leq 1 \\
y_{1}, y_{2}, y_{3} \leq 0
\end{array}
\]
which is dual to (8.1) (and therefore is dual infeasible). The dual infeasibility report may look as follows:
```

Dual infeasibility report
Problem status: The problem is dual infeasible
The following constraints are involved in the dual infeasibility.

| Index | Name | Activity | Objective | Lower bound | Upper bound |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | x33 | -1 | none | 2 | |
| 6 | x34 | -1 | none | 1 | |

The following variables are involved in the dual infeasibility.

| Index | Name | Activity | Objective | Lower bound | Upper bound |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | y1 | -1 | 200 | none | 0 |
| 2 | y3 | -1 | 1000 | none | 0 |
| 3 | y4 | 1 | 1100 | none | none |
| 4 | y5 | 1 | 200 | none | none |

```

In the report we see that the variables \(\mathrm{y} 1, \mathrm{y} 3, \mathrm{y} 4, \mathrm{y} 5\) and two constraints contribute to infeasibility with non-zero values in the Activity column. Therefore
\[
\left(y_{1}, \ldots, y_{7}\right)=(-1,0,-1,1,1,0,0)
\]
is the dual infeasibility certificate as in Sec. 12.1.2. This just means, that along the ray
\[
(0,0,0,0,0,0,0)+t\left(y_{1}, \ldots, y_{7}\right)=(-t, 0,-t, t, t, 0,0), t>0
\]
which belongs to the feasible set, the objective value \(100 t\) can be arbitrarily large, i.e. the problem is unbounded.

In the example problem we could
- Add a lower bound on y3. This will directly invalidate the certificate of dual infeasibility.
- Increase the objective coefficient of y3. Changing the coefficients sufficiently will invalidate the inequality \(c^{T} y^{*}>0\) and thus the certificate.

\subsection*{8.3.4 Suggestions}

\section*{Primal infeasibility}

When trying to understand what causes the unexpected primal infeasible status use the following hints:
- Remove the objective function. This does not change the infeasibility status but simplifies the problem, eliminating any possibility of issues related to the objective function.
- Remove cones, semidefinite variables and integer constraints. Solve only the linear part of the problem. Typical simple modeling errors will lead to infeasibility already at this stage.
- Consider whether your problem has some obvious necessary conditions for feasibility and examine if these are satisfied, e.g. total supply should be greater than or equal to total demand.
- Verify that coefficients and bounds are reasonably sized in your problem.
- See if there are any obvious contradictions, for instance a variable is bounded both in the variables and constraints section, and the bounds are contradictory.
- Consider replacing suspicious equality constraints by inequalities. For instance, instead of \(x_{12}=200\) see what happens for \(x_{12} \geq 200\) or \(x_{12} \leq 200\).
- Relax bounds of the suspicious constraints or variables.
- For integer problems, remove integrality constraints on some/all variables and see if the problem solves.
- Remember that variables without explicitly initialized bounds are fixed at zero.
- Form an elastic model: allow to violate constraints at a cost. Introduce slack variables and add them to the objective as penalty. For instance, suppose we have a constraint
\[
\begin{array}{lr}
\operatorname{minimize} & c^{T} x, \\
\text { subject to } & a^{T} x \leq b
\end{array}
\]
which might be causing infeasibility. Then create a new variable \(y\) and form the problem which contains:
\[
\begin{array}{lr}
\operatorname{minimize} & c^{T} x+y \\
\text { subject to } & a^{T} x \leq b+y
\end{array}
\]

Solving this problem will reveal by how much the constraint needs to be relaxed in order to become feasible. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.
- If you think you have a feasible solution or its part, fix all or some of the variables to those values. Presolve will propagate them through the model and potentially reveal more localized sources of infeasibility.
- Dump the problem in PTF or LP format and verify that the problem that was passed to the optimizer corresponds to the problem expressed in the high-level modeling language, if any such was used.

\section*{Dual infeasibility}

When trying to understand what causes the unexpected dual infeasible status use the following hints:
- Verify that the objective coefficients are reasonably sized.
- Check if no bounds and constraints are missing, for example if all variables that should be nonnegative have been declared as such etc.
- Strengthen bounds of the suspicious constraints or variables.
- Remember that constraints without explicitly initialized bounds are free (no bound).
- Form an series of models with decreasing bounds on the objective, that is, instead of objective
\[
\operatorname{minimize} c^{T} x
\]
solve the problem with an additional constraint such as
\[
c^{T} x=-10^{5}
\]
and inspect the solution to figure out the mechanism behind arbitrarily decreasing objective values. This is equivalent to inspecting the infeasibility certificate but may be more intuitive.
- Dump the problem in PTF or LP format and verify that the problem that was passed to the optimizer corresponds to the problem expressed in the high-level modeling language, if any such was used.

Please note that modifying the problem to invalidate the reported certificate does not imply that the problem becomes feasible - the reason for infeasibility may simply move, resulting a problem that is still infeasible, but for a different reason. More often, the reported certificate can be used to give a hint about errors or inconsistencies in the model that produced the problem.

\subsection*{8.4 Python Console}

The MOSEK Python Console is an alternative to the MOSEK Command Line Tool. It can be used for interactive loading, solving and debugging optimization problems stored in files, for example MOSEK task files. It facilitates debugging techniques described in Sec. 8.

\subsection*{8.4.1 Usage}

The tool requires Python 3. The MOSEK interface for Python must be installed following the installation instructions for Python API or Python Fusion API. The easiest option is
```

pip install Mosek

```

The Python Console is contained in the file mosekconsole. py in the folder with MOSEK binaries. It can be copied to an arbitrary location. The file is also available for download here (mosekconsole.py).

To run the console in interactive mode use
```

python mosekconsole.py

```

To run the console in batch mode provide a semicolon-separated list of commands as the second argument of the script, for example:
```

python mosekconsole.py "read data.task.gz; solve form=dual; writesol data"

```

The script is written using the MOSEK Python API and can be extended by the user if more specific functionality is required. We refer to the documentation of the Python API.

\subsection*{8.4.2 Examples}

To read a problem from data.task.gz, solve it, and write solutions to data.sol, data.bas or data.itg:
```

read data.task.gz; solve; writesol data

```

To convert between file formats:
```

read data.task.gz; write data.mps

```

To set a parameter before solving:
```

read data.task.gz; param INTPNT_CO_TOL_DFEAS 1e-9; solve"

```

To list parameter values related to the mixed-integer optimizer in the task file:

\section*{read data.task.gz; param MIO}

To print a summary of problem structure:
```

read data.task.gz; anapro

```

To solve a problem forcing the dual and switching off presolve:
```

read data.task.gz; solve form=dual presolve=no

```

To write an infeasible subproblem to a file for debugging purposes:
```

read data.task.gz; solve; infsub; write inf.opf

```

\subsection*{8.4.3 Full list of commands}

Below is a brief description of all the available commands. Detailed information about a specific command cmd and its options can be obtained with
```

help cmd

```

Table 8.1: List of commands of the MOSEK Python Console.
\begin{tabular}{|l|l|}
\hline Command & Description \\
\hline help [command] & Print list of commands or info about a specific command \\
\hline log filename & Save the session to a file \\
\hline intro & Print MOSEK splashscreen \\
\hline testlic & Test the license system \\
\hline read filename & Load problem from file \\
\hline reread & Reload last problem file \\
\hline \begin{tabular}{l} 
solve \\
[options]
\end{tabular} & Solve current problem \\
\hline write filename & Write current problem to file \\
\hline \begin{tabular}{l} 
param [name \\
[value]]
\end{tabular} & Set a parameter or get parameter values \\
\hline paramdef & Set all parameters to default values \\
\hline paramdiff & Show parameters with non-default values \\
\hline paramval name & Show available values for a parameter \\
\hline info [name] & Get an information item \\
\hline anapro & Analyze problem data \\
\hline anapro+ & Analyze problem data with the internal analyzer \\
\hline hist & Plot a histogram of problem data \\
\hline histsol & Plot a histogram of the solutions \\
\hline spy & Plot the sparsity pattern of the data matrices \\
\hline \begin{tabular}{l} 
truncate \\
epsilon
\end{tabular} & Truncate small coefficients down to 0 \\
\hline resobj [fac] & Rescale objective by a factor \\
\hline anasol & Analyze solutions \\
\hline removeitg & Remove integrality constraints \\
\hline removecones & Remove all cones and leave just the linear part \\
\hline delsol & Remove solutions \\
\hline infsub & Replace current problem with its infeasible subproblem \\
\hline \begin{tabular}{l} 
writesol \\
basename
\end{tabular} & Write solution(s) to file(s) with given basename \\
\hline \begin{tabular}{l} 
writejsonsol \\
name
\end{tabular} & Write solutions to JSON file with given name \\
\hline \begin{tabular}{l} 
optserver \\
[url]
\end{tabular} & Use an OptServer to optimize \\
\hline exit & Leave \\
\hline
\end{tabular}

\section*{Chapter 9}

\section*{Advanced Numerical Tutorials}

\subsection*{9.1 Solving Linear Systems Involving the Basis Matrix}

A linear optimization problem always has an optimal solution which is also a basic solution. In an optimal basic solution there are exactly \(m\) basic variables where \(m\) is the number of rows in the constraint matrix A. Define
\[
B \in \mathbb{R}^{m \times m}
\]
as a matrix consisting of the columns of \(A\) corresponding to the basic variables. The basis matrix \(B\) is always non-singular, i.e.
\[
\operatorname{det}(B) \neq 0
\]
or, equivalently, \(B^{-1}\) exists. This implies that the linear systems
\[
\begin{equation*}
B \bar{x}=w \tag{9.1}
\end{equation*}
\]
and
\[
\begin{equation*}
B^{T} \bar{x}=w \tag{9.2}
\end{equation*}
\]
each have a unique solution for all \(w\).
MOSEK provides functions for solving the linear systems (9.1) and (9.2) for an arbitrary \(w\).
In the next sections we will show how to use MOSEK to
- identify the solution basis,
- solve arbitrary linear systems.

\subsection*{9.1.1 Basis identification}

To use the solutions to (9.1) and (9.2) it is important to know how the basis matrix \(B\) is constructed. Internally MOSEK employs the linear optimization problem
\[
\begin{array}{llll}
\operatorname{maximize} & & c^{T} x \\
\text { mubject to } & & A x-x^{c} & =0, \\
& l^{x} \leq x & x & \leq u^{x},  \tag{9.3}\\
& l^{c} \leq x^{c} & \leq u^{c} .
\end{array}
\]
where
\[
x^{c} \in \mathbb{R}^{m} \text { and } x \in \mathbb{R}^{n} .
\]

The basis matrix is constructed of \(m\) columns taken from
\[
\left[\begin{array}{ll}
A & -I
\end{array}\right] .
\]

If variable \(x_{j}\) is a basis variable, then the \(j\)-th column of \(A\), denoted \(a_{:, j}\), will appear in \(B\). Similarly, if \(x_{i}^{c}\) is a basis variable, then the \(i\)-th column of \(-I\) will appear in the basis. The ordering of the basis variables and therefore the ordering of the columns of \(B\) is arbitrary. The ordering of the basis variables may be retrieved by calling the function Task. init_basis_solve. This function initializes data structures for later use and returns the indexes of the basic variables in the array basis. The interpretation of the basis is as follows. If we have
\[
\text { basis }[i]<\text { numcon }
\]
then the \(i\)-th basis variable is
\[
x_{\text {basis }[i]}^{c} .
\]

Moreover, the \(i\)-th column in \(B\) will be the \(i\)-th column of \(-I\). On the other hand if
\[
\text { basis }[i] \geq \text { numcon, }
\]
then the \(i\)-th basis variable is the variable
\[
x_{\text {basis }}[i] \text {-numcon }
\]
and the \(i\)-th column of \(B\) is the column
\[
A_{:,(\text {basis }[i]-\text { numcon })}
\]

For instance if basis \([0]=4\) and numcon \(=5\), then since basis \([0]<\) numcon, the first basis variable is \(x_{4}^{c}\). Therefore, the first column of \(B\) is the fourth column of \(-I\). Similarly, if basis \([1]=7\), then the second variable in the basis is \(x_{\text {basis[1]-numcon }}=x_{2}\). Hence, the second column of \(B\) is identical to \(a_{:, 2}\).

\section*{An example}

Consider the linear optimization problem:
\[
\begin{array}{lc}
\operatorname{minimize} & x_{0}+x_{1} \\
\text { subject to } & x_{0}+2 x_{1} \leq 2  \tag{9.4}\\
& x_{0}+x_{1} \\
& x_{0}, x_{1} \geq 0
\end{array}
\]

Suppose a call to Task.init_basis_solve returns an array basis so that
```

basis[0] = 1,
basis[1] = 2.

```

Then the basis variables are \(x_{1}^{c}\) and \(x_{0}\) and the corresponding basis matrix \(B\) is
\[
\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right] .
\]

Please note the ordering of the columns in \(B\).
Listing 9.1: A program showing how to identify the basis.
```

fn solve() -> Result<(),String> {
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
task.put_obj_name("solvebasis")?;

```
```

 let numcon : i32 = 2;
 let numvar : i32 = 2;
 let mut w1 = vec![2.0, 6.0];
 let mut w2 = vec![1.0, 0.0];
 task.input_data(numcon, numvar,
 &[1.0, 1.0], // c
 0.0, // cfix
 &[0,2], // ptrb
 &[2,3], // ptre
 & [0,1,
 0,1], // sub
 &[1.0, 1.0,
 2.0, 1.0], // val
 &[Boundkey::UP,
 Boundkey::UP], // bkc
 &[0.0,0.0], // blc
 &[2.0,6.0], // buc
 &[Boundkey::LO,
 Boundkey::LO], // bkx
 &[0.0, 0.0], // blx
 &[0.0,0.0])?; // bux;
 task.put_obj_sense(Objsense::MAXIMIZE)?;
 let _ = task.optimize()?;
 let mut basis = vec![0i32; numcon as usize];
 task.init_basis_solve(basis.as_mut_slice())?;
 // List basis variables corresponding to columns of B
 let mut varsub = vec![0i32, 1];
 for i in 0..numcon {
 if basis[varsub[i as usize] as usize] < numcon {
 println!("Basis variable no {} is xc{}",i,basis[varsub[i as usize] as\sqcup
 ५usize]);
}
else {
println!("Basis variable no {} is x{}",i,basis[i as usize]-numcon);
// solve Bx = w1
// varsub contains index of non-zeros in b.
// On return b contains the solution }x\mathrm{ and
// varsub the index of the non-zeros in x.
{
let nz = task.solve_with_basis(false, 2, varsub.as_mut_slice(), w1.as_
->mut_slice())?;
println!("nz = {}",nz);
println!("Solution to Bx = {:?}",w1);
for vsubi in \&varsub[0..nz as usize] {
if basis[*vsubi as usize] < numcon {
println!("xc {} = {}",basis[*vsubi as usize],w1[*vsubi as\sqcup
@usize]);

```
```

 }
 else {
 println!("x{} = {}",basis[*vsubi as usize] - numcon,w1[*vsubi\sqcup
 \hookrightarrowas usize])
 }
 }
 }
 // Solve B^Tx = w2
 {
 varsub[0] = 1;
 let nz = task.solve_with_basis(true,1,varsub.as_mut_slice(),w2.as_mut_
 \leftrightarrowsslice())?;
println!("nz = {}",nz);
println!("Solution to B^Tx = {:?}",w2);
for vsubi in \&varsub[0..nz as usize] {
if basis[*vsubi as usize] < numcon {
print!("xc{} = {}",basis[*vsubi as usize],w2[*vsubi as\sqcup
\hookrightarrowusize]);
}
else {
print!("x{} = {}",basis[*vsubi as usize] - numcon,w2[*vsubi\sqcup
๑as usize]);
}
}
}
}
}
Ok(())
}
fn main() -> Result<(),String> {
solve()
}

```

In the example above the linear system is solved using the optimal basis for (9.4) and the original right-hand side of the problem. Thus the solution to the linear system is the optimal solution to the problem. When running the example program the following output is produced.
```

basis[0] = 1
Basis variable no 0 is xc1.
basis[1] = 2
Basis variable no 1 is x0.
Solution to Bx = b:
x0 = 2.000000e+00
xc1 = -4.000000e+00
Solution to B^Tx = c:
x1 = -1.000000e+00
x0 = 1.000000e+00

```

Please note that the ordering of the basis variables is
\[
\left[\begin{array}{l}
x_{1}^{c} \\
x_{0}
\end{array}\right]
\]
and thus the basis is given by:
\[
B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right]
\]

It can be verified that
\[
\left[\begin{array}{l}
x_{1}^{c} \\
x_{0}
\end{array}\right]=\left[\begin{array}{c}
-4 \\
2
\end{array}\right]
\]
is a solution to
\[
\left[\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}^{c} \\
x_{0}
\end{array}\right]=\left[\begin{array}{l}
2 \\
6
\end{array}\right] .
\]

\subsection*{9.1.2 Solving arbitrary linear systems}

MOSEK can be used to solve an arbitrary (rectangular) linear system
\[
A x=b
\]
using the Task.solve_with_basis function without optimizing the problem as in the previous example. This is done by setting up an \(A\) matrix in the task, setting all variables to basic and calling the Task. solve_with_basis function with the \(b\) vector as input. The solution is returned by the function.

\section*{An example}

Below we demonstrate how to solve the linear system
\[
\left[\begin{array}{cc}
0 & 1  \tag{9.5}\\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
\]
with two inputs \(b=(1,-2)\) and \(b=(7,0)\).
```

extern crate mosek;
use mosek::{Task,Boundkey,Streamtype,Soltype,Stakey};
const INF : f64 = 0.0;
fn setup(task : \& mut mosek::Task,
aval : \&[f64],
asub : \&[i32],
ptrb : \&[i64],
ptre : \&[i64],
numvar : i32) -> Result<Vec<i32>,String> {
// mosek.stakey[] skx = new mosek.stakey [numvar];
// mosek.stakey[] skc = new mosek.stakey [numvar];
// for (int i = 0; i < numvar ; ++i) {
// skx[i] = mosek.stakey.bas;
// skc[i] = mosek.stakey.fix;
// }
task.append_vars(numvar)?;

```
```

 task.append_cons(numvar)?;
 task.put_a_col_slice(0,numvar,ptrb,ptre,asub,aval)?;
 task.put_con_bound_slice_const(0,numvar,Boundkey::FX,0.0,0.0)?;
 task.put_var_bound_slice_const(0,numvar,Boundkey::FR,-INF,INF)?;
 /* Define a basic solution by specifying
 status keys for variables & constraints. */
 task.delete_solution(Soltype::BAS)?;
 task.put_skc_slice(Soltype::BAS, 0, numvar, vec![Stakey::FIX; numvar as usize].as_
 \checkmarkslice())?;
task.put_skx_slice(Soltype::BAS, 0, numvar, vec![Stakey::BAS; numvar as usize].as_
->slice())?;
let mut basis = vec![0; numvar as usize];
task.init_basis_solve(basis.as_mut_slice())?;
Ok(basis)
}
fn main() -> Result<(),String> {
let numcon : i32 = 2;
let numvar : i32 = 2;
let aval = \&[-1.0 ,
1.0, 1.0];
let asub = \& [1,
0, 1];
let ptrb = \&[0, 1];
let ptre = \&[1, 3];
// int[] bsub = new int[numvar];
// double[] b = new double[numvar];
// int[] basis = new int[numvar];
let mut task = Task::new().unwrap();
// Put A matrix and factor A. Call this function only once for a
// given task.
let basis = setup(\& mut task,
aval,
asub,
ptrb,
ptre,
numvar)?;
let mut task = task.with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
/* now solve rhs */
let mut b = vec![0.0; numvar as usize];
let mut bsub = vec![0; numvar as usize];
b[0] = 1.0; b[1] = -2.0;

```
```

bsub[0] = 0; bsub[1] = 1;
let nz = task.solve_with_basis(false, 2, bsub.as_mut_slice(), b.as_mut_slice())?;
println!("\nSolution to Bx = b:\n");
// Print solution and show correspondents to original variables in
// the problem
for \&bsubi in bsub[..nz as usize].iter() {
if basis[bsubi as usize] < numcon {
println!("This should never happen");
}
else {
println!("x{} = {}",basis[bsubi as usize] - numcon, b[bsubi as usize]);
}
}
b[0] = 7.0;
bsub[0] = 0;
let nz = task.solve_with_basis(false, 1, bsub.as_mut_slice(), b.as_mut_slice())?;
println!("Solution to Bx = b:");
// Print solution and show correspondents to original variables in
// the problem
for \&bsubi in bsub[..nz as usize].iter() {
if basis[bsubi as usize] < numcon {
println!("This should never happen");
}
else {
println!("x{} = {}",basis[bsubi as usize] - numcon,b[bsubi as usize]);
}
}
Ok(())

```
\}

The most important step in the above example is the definition of the basic solution, where we define the status key for each variable. The actual values of the variables are not important and can be selected arbitrarily, so we set them to zero. All variables corresponding to columns in the linear system we want to solve are set to basic and the slack variables for the constraints, which are all non-basic, are set to their bound.

The program produces the output:
```

Solution to Bx = b:
x1 = 1
x0 = 3
Solution to Bx = b:
x1 = 7
x0 = 7

```

\subsection*{9.2 Calling BLAS/LAPACK Routines from MOSEK}

Sometimes users need to perform linear algebra operations that involve dense matrices and vectors. Also MOSEK extensively uses high-performance linear algebra routines from the BLAS and LAPACK packages and some of these routines are included in the package shipped to the users.

The MOSEK versions of BLAS/LAPACK routines:
- use MOSEK data types and return value conventions,
- preserve the BLAS/LAPACK naming convention.

Therefore the user can leverage on efficient linear algebra routines, with a simplified interface, with no need for additional packages.

\section*{List of available routines}

Table 9.1: BLAS routines available.
\begin{tabular}{|l|l|l|}
\hline BLAS Name & MOSEK function & Math Expression \\
\hline AXPY & Env.axpy & \(y=\alpha x+y\) \\
\hline DOT & Env.dot & \(x^{T} y\) \\
\hline GEMV & Env.gemv & \(y=\alpha A x+\beta y\) \\
\hline GEMM & Env.gemm & \(C=\alpha A B+\beta C\) \\
\hline SYRK & Env.syrk & \(C=\alpha A A^{T}+\beta C\) \\
\hline
\end{tabular}

Table 9.2: LAPACK routines available.
\begin{tabular}{|l|l|l|}
\hline LAPACK Name & MOSEK function & Description \\
\hline POTRF & Env.potrf & Cholesky factorization of a semidefinite symmetric matrix \\
\hline SYEVD & Env.syevd & Eigenvalues and eigenvectors of a symmetric matrix \\
\hline SYEIG & Env.syeig & Eigenvalues of a symmetric matrix \\
\hline
\end{tabular}

\section*{Source code examples}

In Listing 9.2 we provide a simple working example. It has no practical meaning except showing how to organize the input and call the methods.

Listing 9.2: Calling BLAS and LAPACK routines from Optimizer API for Rust.
```

extern crate mosek;
fn print_matrix(x : \&[f64], r : i32, c : i32) {
let mut k = Ousize;
print!("[");
println!(" {:?}",\&x[k..k+c as usize]); k += c as usize;
for _i in 1..r {
println!(" {:?}",\&x[k..k+c as usize]);
}
println!("]");
}
\#[allow(non_snake_case)]
fn main() -> Result<(),String> {
let n = 3i32;
let m = 2i32;
let k = 3i32;

```
```

let alpha = 2.0;
let beta = 0.5;
let x = \&[1.0, 1.0, 1.0];
let mut y = vec![1.0, 2.0, 3.0];
let mut z = vec![1.0, 1.0];
let A = \&[1.0, 1.0, 2.0, 2.0, 3.0, 3.0];
let B = \&[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
let mut C = vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0];
let mut D = vec![1.0, 1.0, 1.0, 1.0];
let mut Q = vec![1.0, 0.0, 0.0, 2.0];
let mut v = vec![0.0, 0.0, 0.0];
let mut xy : f64 = 0.0;
/* BLAS routines */
println!("n={} m={} k={}", m, n, k);
println!("alpha={}", alpha);
println!("beta={}", beta);
mosek::dot(n,x,y.as_slice(),\& mut xy)?;
println!("dot results = {}\n", xy);
print_matrix(x, 1, n);
print_matrix(y.as_slice(), 1, n);
mosek::axpy(n, alpha, x, y.as_mut_slice())?;
println!("axpy results is:\n");
print_matrix(y.as_slice(), 1, n);
mosek::gemv(mosek::Transpose::NO, m, n, alpha, A, x, beta, z.as_mut_slice())?;
println!("gemv results is:");
print_matrix(z.as_slice(), 1, m);
mosek::gemm(mosek::Transpose::NO, mosek::Transpose::NO,m, n, k, alpha, A, B,\sqcup
@beta, C.as_mut_slice())?;
println!("gemm results is");
print_matrix(C.as_slice(), m, n);
mosek::syrk(mosek::Uplo::LO, mosek::Transpose::NO, m, k, 1., A, beta, D.as_mut_
Glice())?;
println!("syrk results is");
print_matrix(D.as_slice(), m, m);
/* LAPACK routines */
mosek::potrf(mosek::Uplo::LO, m, Q.as_mut_slice())?;
println!("potrf results is");
print_matrix(Q.as_slice(), m, m);
mosek::syeig(mosek::Uplo::LO, m, Q.as_slice(), \& mut v[0..m as usize])?;
println!("syeig results is");
print_matrix(v.as_slice(), 1, m);
mosek::syevd(mosek::Uplo::LO, m, Q.as_mut_slice(), \&mut v[0..m as usize])?;
println!("syevd results is");

```
    print_matrix(v.as_slice(), 1, m);
    print_matrix(Q.as_slice(), m, m);
    0k(())
\}

\subsection*{9.3 Computing a Sparse Cholesky Factorization}

Given a positive semidefinite symmetric (PSD) matrix
\[
A \in \mathbb{R}^{n \times n}
\]
it is well known there exists a matrix \(L\) such that
\[
A=L L^{T}
\]

If the matrix \(L\) is lower triangular then it is called a Cholesky factorization. Given \(A\) is positive definite (nonsingular) then \(L\) is also nonsingular. A Cholesky factorization is useful for many reasons:
- A system of linear equations \(A x=b\) can be solved by first solving the lower triangular system \(L y=b\) followed by the upper triangular system \(L^{T} x=y\).
- A quadratic term \(x^{T} A x\) in a constraint or objective can be replaced with \(y^{T} y\) for \(y=L^{T} x\), potentially leading to a more robust formulation (see [And13]).

Therefore, MOSEK provides a function that can compute a Cholesky factorization of a PSD matrix. In addition a function for solving linear systems with a nonsingular lower or upper triangular matrix is available.

In practice \(A\) may be very large with \(n\) is in the range of millions. However, then \(A\) is typically sparse which means that most of the elements in \(A\) are zero, and sparsity can be exploited to reduce the cost of computing the Cholesky factorization. The computational savings depend on the positions of zeros in \(A\). For example, below a matrix \(A\) is given together with a Cholesky factor up to 5 digits of accuracy:
\[
A=\left[\begin{array}{llll}
4 & 1 & 1 & 1  \tag{9.6}\\
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right], \quad L=\left[\begin{array}{cccc}
2.0000 & 0 & 0 & 0 \\
0.5000 & 0.8660 & 0 & 0 \\
0.5000 & -0.2887 & 0.8165 & 0 \\
0.5000 & -0.2887 & -0.4082 & 0.7071
\end{array}\right]
\]

However, if we symmetrically permute the rows and columns of \(A\) using a permutation matrix \(P\)
\[
P=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right], \quad A^{\prime}=P A P^{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 4
\end{array}\right]
\]
then the Cholesky factorization of \(A^{\prime}=L^{\prime} L^{T}\) is
\[
L^{\prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
\]
which is sparser than \(L\).
Computing a permutation matrix that leads to the sparsest Cholesky factorization or the minimal amount of work is NP-hard. Good permutations can be chosen by using heuristics, such as the minimum degree heuristic and variants. The function Env. compute_sparse_cholesky provided by MOSEK for computing a Cholesky factorization has a build in permutation aka. reordering heuristic. The following code illustrates the use of Env. compute_sparse_cholesky and Env.sparse_triangular_solve_dense.

Listing 9.3: How to use the sparse Cholesky factorization routine available in MOSEK.
```

 mosek::compute_sparse_cholesky(0, //Mosek chooses number of threads
 1, //Apply reordering heuristic
 1.0e-14, //Singularity tolerance
 &anzc, &aptrc, &asubc, &avalc,
 & mut perm, & mut diag,
 & mut lnzc, & mut lptrc, & mut lensubnval, & mut\sqcup
 ->lsubc, \& mut lvalc)?;
print_sparse(n, perm.as_slice(), diag.as_slice(), lnzc.as_slice(), lptrc.as_
\leftrightarrowslice(), lsubc.as_slice(), lvalc.as_slice());
/* Permuted b is stored as x. */
let mut x : Vec<f64> = perm.iter().map(|\&i| b[i as usize]).collect();
/*Compute inv(L)*x.*/
mosek::sparse_triangular_solve_dense(Transpose::NO, lnzc.as_slice(), lptrc.as_
\hookrightarrowslice(), lsubc.as_slice(), lvalc.as_slice(), x.as_mut_slice())?;
/*Compute inv(L^T)*x.*/
mosek::sparse_triangular_solve_dense(Transpose::YES, lnzc.as_slice(), lptrc.as_
\leftrightarrowsslice(), lsubc.as_slice(), lvalc.as_slice(), x.as_mut_slice())?;
print!("\nSolution A x = b, x = [{:?}]",
iproduct!(0..n,izip!(perm.iter(),x.iter()))
.filter_map(|(i,(\&pj,\&xj))|if pj as usize == i { Some(xj) } else { None })
.collect::<Vec<f64>>());

```

We can set up the data to recreate the matrix \(A\) from (9.6):
```

 //Observe that anzc, aptrc, asubc and avalc only specify the lower triangular
 ๑part.
let n = 4;
let anzc = [4, 1, 1, 1];
let asubc = [0, 1, 2, 3, 1, 2, 3];
let aptrc = [0, 4, 5, 6];
let avalc = [4.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
let b = [13.0, 3.0, 4.0, 5.0];

```
and we obtain the following output:
```

Example with positive definite A.
P = [3 2 0 1]
diag(D) = [lllllll
L=
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
1.00 1.00 1.41 0.00
0.00 0.00 0.71 0.71
Solution A x = b, x = [1.00 2.00 3.00 4.00]

```

The output indicates that with the permutation matrix
\[
P=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\]
there is a Cholesky factorization \(P A P^{T}=L L^{T}\), where
\[
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1.4142 & 0 \\
0 & 0 & 0.7071 & 0.7071
\end{array}\right]
\]

The remaining part of the code solvers the linear system \(A x=b\) for \(b=[13,3,4,5]^{T}\). The solution is reported to be \(x=[1,2,3,4]^{T}\), which is correct.

The second example shows what happens when we compute a sparse Cholesky factorization of a singular matrix. In this example \(A\) is a rank 1 matrix
\[
A=\left[\begin{array}{lll}
1 & 1 & 1  \tag{9.7}\\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]^{T}
\]
```

let n = 3;
let anzc = [3, 2, 1];
let asubc = [0, 1, 2, 1, 2, 2];
let aptrc = [0, 3, 5,];
let avalc = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

```

Now we get the output
```

P = [llllll
diag(D) = [0.00e+00 1.00e-14 1.00e-14]
L=
1.00e+00 0.00e+00 0.00e+00
1.00e+00 1.00e-07 0.00e+00
1.00e+00 0.00e+00 1.00e-07

```
which indicates the decomposition
\[
P A P^{T}=L L^{T}-D
\]
where
\[
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 10^{-7} & 0 \\
1 & 0 & 10^{-7}
\end{array}\right], \quad D=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 10^{-14} & 0 \\
0 & 0 & 10^{-14}
\end{array}\right] .
\]

Since \(A\) is only positive semdefinite, but not of full rank, some of diagonal elements of \(A\) are boosted to make it truely positive definite. The amount of boosting is passed as an argument to Env. compute_sparse_cholesky, in this case \(10^{-14}\). Note that
\[
P A P^{T}=L L^{T}-D
\]
where \(D\) is a small matrix so the computed Cholesky factorization is exact of slightly perturbed \(A\). In general this is the best we can hope for in finite precision and when \(A\) is singular or close to being singular.

We will end this section by a word of caution. Computing a Cholesky factorization of a matrix that is not of full rank and that is not suffciently well conditioned may lead to incorrect results i.e. a matrix that is indefinite may declared positive semidefinite and vice versa.

\section*{Chapter 10}

\section*{Technical guidelines}

This section contains some more in-depth technical guidelines for Optimizer API for Rust, not strictly necessary for basic use of MOSEK.

\subsection*{10.1 Memory management and garbage collection}

Users who experience memory leaks, especially:
- memory usage not decreasing after the solver terminates,
- memory usage increasing when solving a sequence of problems,
should observe that the MOSEK task and environment objects are subject to standard garbage collection rules and will be cleaned up by the runtime when they go out of scope.

\subsection*{10.2 Names}

All elements of an optimization problem in MOSEK (objective, constraints, variables, etc.) can be given names. Assigning meaningful names to variables and constraints makes it much easier to understand and debug optimization problems dumped to a file. On the other hand, note that assigning names can substantially increase setup time, so it should be avoided in time-critical applications.

Names of various elements of the problem can be set and retrieved using various functions listed in the Names section of Sec. 15.2.

Note that file formats impose various restrictions on names, so not all names can be written verbatim to each type of file. If at least one name cannot be written to a given format then generic names and substitutions of offending characters will be used when saving to a file, resulting in a transformation of all names in the problem. See Sec. 16.

\subsection*{10.3 Multithreading}

\section*{Thread safety}

Sharing a task between threads is safe, as long as it is not accessed from more than one thread at a time. Multiple tasks can be created and used in parallel without any problems.

A task with callbacks (created with Task.with_callbacks) cannot be shared between threads.

\section*{Parallelization}

The interior-point and mixed-integer optimizers in MOSEK are parallelized. By default MOSEK will automatically select the number of threads. However, the maximum number of threads allowed can be changed by setting the parameter Iparam::NUM_THREADS and related parameters. This should never exceed the number of cores.

The speed-up obtained when using multiple threads is highly problem and hardware dependent. We recommend experimenting with various thread numbers to determine the optimal settings. For small problems using multiple threads may be counter-productive because of the associated overhead. Note also that not all parts of the algorithm can be parallelized, so there are times when CPU utilization is only 1 even if more cores are available.

\section*{Determinism}

By default the optimizer is run-to-run deterministic, which means that it will return the same answer each time it is run on the same machine with the same input, the same parameter settings (including number of threads) and no time limits.

\section*{Setting the number of threads}

The number of threads the optimizer uses can be changed with the parameter Iparam: :NUM_THREADS.

\subsection*{10.4 Efficiency}

Although MOSEK is implemented to handle memory efficiently, the user may have valuable knowledge about a problem, which could be used to improve the performance of MOSEK This section discusses some tricks and general advice that hopefully make MOSEK process your problem faster.

\section*{Reduce the number of function calls and avoid input loops}

For example, instead of setting the entries in the linear constraint matrix one by one (Task.put_aij) define them all at once (Task.put_aij_list) or in convenient large chunks (Task.put_a_col_list etc.)

\section*{Use one environment only}

If possible share the environment between several tasks. For most applications you need to create only a single environment.

\section*{Read part of the solution}

When fetching the solution, data has to be copied from the optimizer to the user's data structures. Instead of fetching the whole solution, consider fetching only the interesting part (see for example Task. get_xx_slice and similar).

\section*{Avoiding memory fragmentation}

MOSEK stores the optimization problem in internal data structures in the memory. Initially MOSEK will allocate structures of a certain size, and as more items are added to the problem the structures are reallocated. For large problems the same structures may be reallocated many times causing memory fragmentation. One way to avoid this is to give MOSEK an estimated size of your problem using the functions:
- Task.put_max_num_var. Estimate for the number of variables.
- Task.put_max_num_con. Estimate for the number of constraints.
- Task.put_max_num_barvar. Estimate for the number of semidefinite matrix variables.
- Task.put_max_num_a_nz. Estimate for the number of non-zeros in \(A\).
- Task.put_max_num_q_nz. Estimate for the number of non-zeros in the quadratic terms.

None of these functions changes the problem, they only serve as hints. If the problem ends up growing larger, the estimates are automatically increased.

\section*{Do not mix put- and get- functions}

MOSEK will queue put- requests internally until a get- function is called. If put-and get- calls are interleaved, the queue will have to be flushed more frequently, decreasing efficiency.

In general get-commands should not be called often (or at all) during problem setup.

\section*{Use the LIFO principle}

When removing constraints and variables, try to use a LIFO (Last In First Out) approach. MOSEK can more efficiently remove constraints and variables with a high index than a small index.

An alternative to removing a constraint or a variable is to fix it at 0 , and set all relevant coefficients to 0 . Generally this will not have any impact on the optimization speed.

\section*{Add more constraints and variables than you need (now)}

The cost of adding one constraint or one variable is about the same as adding many of them. Therefore, it may be worthwhile to add many variables instead of one. Initially fix the unused variable at zero, and then later unfix them as needed. Similarly, you can add multiple free constraints and then use them as needed.

\section*{Do not remove basic variables}

When performing re-optimizations, instead of removing a basic variable it may be more efficient to fix the variable at zero and then remove it when the problem is re-optimized and it has left the basis. This makes it easier for MOSEK to restart the simplex optimizer.

\subsection*{10.5 The license system}

MOSEK is a commercial product that always needs a valid license to work. MOSEK uses a third party license manager to implement license checking. The number of license tokens provided determines the number of optimizations that can be run simultaneously.

By default a license token remains checked out from the first optimization until the end of the MOSEK session, i.e.
- a license token is checked out when Task.optimize is first called, and
- it is returned when the MOSEK environment is deleted.

Calling Task.optimize from different threads using the same MOSEK environment only consumes one license token.

Starting the optimization when no license tokens are available will result in an error.
Default behaviour of the license system can be changed in several ways:
- Setting the parameter Iparam: :CACHE_LICENSE to Onoffkey::OFF will force MOSEK to return the license token immediately after the optimization completed.
- Setting the license wait flag with the parameter Iparam::LICENSE_WAIT will force MOSEK to wait until a license token becomes available instead of returning with an error. The wait time between checks can be set with Env.put_license_wait.
- Additional license checkouts and checkins can be performed with the functions Env. check_in_license and Env.check_out_license.
- Usually the license system is stopped automatically when the MOSEK library is unloaded. However, when the user explicitly unloads the library (using e.g. FreeLibrary), the license system must be stopped before the library is unloaded. This can be done by calling the function Env. license_cleanup as the last function call to MOSEK.

\subsection*{10.6 Deployment}

When redistributing a Rust application using the MOSEK Optimizer API for Rust 10.2.2, the following shared libraries from the MOSEK bin folder are required:
- Linux : libmosek64, libtbb,
- Windows : mosek64, tbb, svml_dispmd,
- OSX : libmosek64, libtbb.

\section*{Chapter 11}

\section*{Case Studies}

In this section we present some case studies in which the Optimizer API for Rust is used to solve real-life applications. These examples involve some more advanced modeling skills and possibly some input data. The user is strongly recommended to first read the basic tutorials of Sec. 6 before going through these advanced case studies.
- Portfolio Optimization
- Keywords: Markowitz model, variance, risk, efficient frontier, factor model, transaction cost, market impact cost
- Type: Conic Quadratic, Power Cone, Mixed-Integer Optimization
- Logistic regression
- Keywords: machine learning, logistic regression, classifier, log-sum-exp, softplus, regularization
- Type: Exponential Cone, Quadratic Cone
- Concurrent Optimizer
- Keywords: Concurrent optimization
- Type: Linear Optimization, Mixed-Integer Optimization

\subsection*{11.1 Portfolio Optimization}

In this section the Markowitz portfolio optimization problem and variants are implemented using Optimizer API for Rust.

Familiarity with Sec. 6.2 is recommended to follow the syntax used to create affine conic constraints (ACCs) throughout all the models appearing in this case study.
- Basic Markowitz model
- Efficient frontier
- Factor model and efficiency
- Market impact costs
- Transaction costs
- Cardinality constraints

\subsection*{11.1.1 The Basic Model}

The classical Markowitz portfolio optimization problem considers investing in \(n\) stocks or assets held over a period of time. Let \(x_{j}\) denote the amount invested in asset \(j\), and assume a stochastic model where the return of the assets is a random variable \(r\) with known mean
\[
\mu=\mathbf{E} r
\]
and covariance
\[
\Sigma=\mathbf{E}(r-\mu)(r-\mu)^{T} .
\]

The return of the investment is also a random variable \(y=r^{T} x\) with mean (or expected return)
\[
\mathbf{E} y=\mu^{T} x
\]
and variance
\[
\mathbf{E}(y-\mathbf{E} y)^{2}=x^{T} \Sigma x .
\]

The standard deviation
\[
\sqrt{x^{T \Sigma x}}
\]
is usually associated with risk.
The problem facing the investor is to rebalance the portfolio to achieve a good compromise between risk and expected return, e.g., maximize the expected return subject to a budget constraint and an upper bound (denoted \(\gamma\) ) on the tolerable risk. This leads to the optimization problem
\[
\begin{align*}
\operatorname{maximize} & \mu^{T} x \\
\text { subject to } & e^{T} x  \tag{11.1}\\
& =w+e^{T} x^{0}, \\
x^{T} \Sigma x & \leq \gamma^{2}, \\
x & \geq 0 .
\end{align*}
\]

The variables \(x\) denote the investment i.e. \(x_{j}\) is the amount invested in asset \(j\) and \(x_{j}^{0}\) is the initial holding of asset \(j\). Finally, \(w\) is the initial amount of cash available.

A popular choice is \(x^{0}=0\) and \(w=1\) because then \(x_{j}\) may be interpreted as the relative amount of the total portfolio that is invested in asset \(j\).

Since \(e\) is the vector of all ones then
\[
e^{T} x=\sum_{j=1}^{n} x_{j}
\]
is the total investment. Clearly, the total amount invested must be equal to the initial wealth, which is
\[
w+e^{T} x^{0} .
\]

This leads to the first constraint
\[
e^{T} x=w+e^{T} x^{0}
\]

The second constraint
\[
x^{T} \Sigma x \leq \gamma^{2}
\]
ensures that the variance, is bounded by the parameter \(\gamma^{2}\). Therefore, \(\gamma\) specifies an upper bound of the standard deviation (risk) the investor is willing to undertake. Finally, the constraint
\[
x_{j} \geq 0
\]
excludes the possibility of short-selling. This constraint can of course be excluded if short-selling is allowed.

The covariance matrix \(\Sigma\) is positive semidefinite by definition and therefore there exist a matrix \(G \in \mathbb{R}^{n \times k}\) such that
\[
\begin{equation*}
\Sigma=G G^{T} \tag{11.2}
\end{equation*}
\]

In general the choice of \(G\) is not unique and one possible choice of \(G\) is the Cholesky factorization of \(\Sigma\). However, in many cases another choice is better for efficiency reasons as discussed in Sec. 11.1.3. For a given \(G\) we have that
\[
\begin{aligned}
x^{T} \Sigma x & =x^{T} G G^{T} x \\
& =\left\|G^{T} x\right\|^{2}
\end{aligned}
\]

Hence, we may write the risk constraint as
\[
\gamma \geq\left\|G^{T} x\right\|
\]
or equivalently
\[
\left(\gamma, G^{T} x\right) \in \mathcal{Q}^{k+1}
\]
where \(\mathcal{Q}^{k+1}\) is the \((k+1)\)-dimensional quadratic cone. Note that specifically when \(G\) is derived using Cholesky factorization, \(k=n\).

Therefore, problem (11.1) can be written as
\[
\begin{align*}
& \operatorname{maximize} \mu^{T} x \\
& e^{T} x=w+e^{T} x^{0} \\
& \text { subject to }  \tag{11.3}\\
&\left(\gamma, G^{T} x\right) \in \mathcal{Q}^{k+1} \\
& x \geq 0
\end{align*}
\]
which is a conic quadratic optimization problem that can easily be formulated and solved with Optimizer API for Rust. Subsequently we will use the example data
\[
\mu=[0.0720,0.1552,0.1754,0.0898,0.4290,0.3929,0.3217,0.1838]^{T}
\]
and
\[
\Sigma=\left[\begin{array}{llllllll}
0.0946 & 0.0374 & 0.0349 & 0.0348 & 0.0542 & 0.0368 & 0.0321 & 0.0327 \\
0.0374 & 0.0775 & 0.0387 & 0.0367 & 0.0382 & 0.0363 & 0.0356 & 0.0342 \\
0.0349 & 0.0387 & 0.0624 & 0.0336 & 0.0395 & 0.0369 & 0.0338 & 0.0243 \\
0.0348 & 0.0367 & 0.0336 & 0.0682 & 0.0402 & 0.0335 & 0.0436 & 0.0371 \\
0.0542 & 0.0382 & 0.0395 & 0.0402 & 0.1724 & 0.0789 & 0.0700 & 0.0501 \\
0.0368 & 0.0363 & 0.0369 & 0.0335 & 0.0789 & 0.0909 & 0.0536 & 0.0449 \\
0.0321 & 0.0356 & 0.0338 & 0.0436 & 0.0700 & 0.0536 & 0.0965 & 0.0442 \\
0.0327 & 0.0342 & 0.0243 & 0.0371 & 0.0501 & 0.0449 & 0.0442 & 0.0816
\end{array}\right] .
\]

Using Cholesky factorization, this implies
\[
G^{T}=\left[\begin{array}{cccccccc}
0.3076 & 0.1215 & 0.1134 & 0.1133 & 0.1763 & 0.1197 & 0.1044 & 0.1064 \\
0 . & 0.2504 & 0.0995 & 0.0916 & 0.0669 & 0.0871 & 0.0917 & 0.0851 \\
0 . & 0 . & 0.1991 & 0.0587 & 0.0645 & 0.0737 & 0.0647 & 0.0191 \\
0 . & 0 . & 0 . & 0.2088 & 0.0493 & 0.0365 & 0.0938 & 0.0774 \\
0 . & 0 . & 0 . & 0 . & 0.3609 & 0.1257 & 0.1016 & 0.0571 \\
0 . & 0 . & 0 . & 0 . & 0 . & 0.2155 & 0.0566 & 0.0619 \\
0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0.2251 & 0.0333 \\
0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0.2202
\end{array}\right]
\]

In Sec. 11.1.3, we present a different way of obtaining \(G\) based on a factor model, that leads to more efficient computation.

\section*{Why a Conic Formulation?}

Problem (11.1) is a convex quadratically constrained optimization problem that can be solved directly using MOSEK. Why then reformulate it as a conic quadratic optimization problem (11.3)? The main reason for choosing a conic model is that it is more robust and usually solves faster and more reliably. For instance it is not always easy to numerically validate that the matrix \(\Sigma\) in (11.1) is positive semidefinite due to the presence of rounding errors. It is also very easy to make a mistake so \(\Sigma\) becomes indefinite. These problems are completely eliminated in the conic formulation.

Moreover, observe the constraint
\[
\left\|G^{T} x\right\| \leq \gamma
\]
more numerically robust than
\[
x^{T} \Sigma x \leq \gamma^{2}
\]
for very small and very large values of \(\gamma\). Indeed, if say \(\gamma \approx 10^{4}\) then \(\gamma^{2} \approx 10^{8}\), which introduces a scaling issue in the model. Hence, using conic formulation we work with the standard deviation instead of variance, which usually gives rise to a better scaled model.

\section*{Example code}

Listing 11.1 demonstrates how the basic Markowitz model (11.3) is implemented.
Listing 11.1: Code implementing problem (11.3).
```

extern crate mosek;
extern crate itertools;
use mosek::{Task,Objsense,Streamtype,Soltype,Solsta};
use itertools::{iproduct};
/// Solve basic Markowitz portfolio problem: Maximize expected return
/// while bounded the estimated risk.
///
/// ``
/// Maximize mu'x
/// Subject to
/// budget : }\operatorname{sum}(x)=\operatorname{sum}(x0)+
/// risk: gamma^2 >= || G'x ||^2
/// x >= 0
//// \cdots
///
/// \# Arguments
///
/// - `n` number of assets
/// - `gamma` risk bound (bound on the standard deviation)
/// - `mu` vector of expected returns
/// - `GT` Covariance matrix factor
/// - `x0` vector if initial investment
/// - `w` initial uninvested wealth
\#[allow(non_snake_case)]
fn portfolio(n : i32, // number of assets
gamma : f64, // risk bound: maximum stddev
mu : \&[f64], // vector of expected returns
GT : \&[f64], // covariance matrix factor
x0 : \&[f64], // initial investment
w : f64) // initial wealth
-> Result<(Vec<f64>,f64),String> {

```
```

let k = (GT.len() / n as usize) as i32;
/* Create the optimization task. */
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
/* Total budget */
let total_budget = w + x0.iter().sum::<f64>();
/* Constraints. */
task.append_cons(1i32)?;
/* Variables. */
task.append_vars(n)?;
let x : Vec<i32> = (0i32..n).collect();
/* Total budget constraint - set bounds l^c = u^c */
task.put_con_bound(0i32, mosek::Boundkey::FX, total_budget, total_budget)?;
task.put_con_name(0i32,"budget")?;
task.put_obj_sense(Objsense::MAXIMIZE)?;
task.put_c_slice(0,n,mu)?;
/* x variables. */
for (j,xj) in x.iter().enumerate() {
/* Coefficients in the first row of A */
task.put_aij(0, *xj, 1.0)?;
/* No short-selling - x^l = 0, x^u = inf */
task.put_var_bound(*xj, mosek::Boundkey::LO, 0.0, 0.0)?;
task.put_var_name(*xj, format!("x[{}]",j+1).as_str())?;
}
// risk bound
{
let acci = task.get_num_acc()?;
let afei = task.get_num_afe()?;
task.append_afes(k as i64 + 1)?;
let dom = task.append_quadratic_cone_domain(k as i64+1)?;
task.append_acc_seq(dom,
afei,
vec![0.0; k as usize + 1].as_slice())?;
task.put_acc_name(acci,"risk")?;
task.put_afe_g(afei,gamma)?;
for ((i,j),v) in iproduct!(0..n,0..n).zip(GT).filter(|(_,v)| **v != 0.0) {
task.put_afe_f_entry(afei + i as i64 + 1, j as i32, *v)?;
}
}
/* Dump the problem to a human readable OPF file. */
// task.write_data("portfolio_1_basic.ptf")?;
let _trm = task.optimize()?;

```
```

 // Check if the interior point solution is an optimal point
 if task.get_sol_sta(Soltype::ITR)? != Solsta::OPTIMAL {
 // See https://docs.mosek.com/latest/rustapi/accessing-solution.html about\sqcup
 \hookrightarrowhandling solution statuses.
eprintln!("Solution not optimal!");
std::process::exit(1);
}
/* Display the solution summary for quick inspection of results. */
task.solution_summary(Streamtype::MSG)?;
task.write_data("portfolio_1_basic.ptf")?;
/* Read the x variables one by one and compute expected return. */
/* Can also be obtained as value of the objective. */
let mut level = vec![0.0;n as usize];
task.get_xx_slice(Soltype::ITR,0,n,level.as_mut_slice())?;
let expret = task.get_primal_obj(Soltype::ITR)?;
Ok((level.to_vec(), expret))
}

[allow(non_snake_case)]

fn main() -> Result<(),String> {
let n = 8i32;
let w = 59.0;
let mu = \&[0.07197349, 0.15518171, 0.17535435, 0.0898094 , 0.42895777,0.
\hookrightarrow39291844, 0.32170722, 0.18378628];
let x0 = \&[8.0, 5.0, 3.0, 5.0, 2.0, 9.0, 3.0, 6.0];
let gamma = 36.0;
let GT = \&[0.30758, 0.12146, 0.11341, 0.11327, 0.17625,0.11973,0.10435,0.
\hookrightarrow10638,
0. , 0.25042,0.09946,0.09164, 0.06692, 0.08706, 0.09173,0.
\hookrightarrow08506,
\hookrightarrow01914,
0. , 0. , 0.19914, 0.05867, 0.06453, 0.07367,0.06468,0.
0. , 0. , 0. , 0.20876,0.04933,0.03651, 0.09381,0.
\hookrightarrow07742,
0. , 0. , 0. , 0. , 0.36096,0.12574,0.10157,0.
\hookrightarrow0571 ,
\hookrightarrow06187,
0. , 0. , 0. , 0. 0. , 0.21552,0.05663,0.
0. , 0. , 0. , 0. 0. , 0. , 0.22514, 0.
\hookrightarrow03327,
\hookrightarrow2202] ;
let (level,expret) = portfolio(n,gamma,mu,GT,x0,w)?;
println!("Solution x = {:?}",level);
println!("Expected return {:.4e} for gamma = {:.4e}", expret, gamma);
Ok(())
}

```

The code is organized as follows:
- We have \(n\) optimization variables, one per each asset in the portfolio. They correspond to the variable \(x\) from (11.1) and their indices as variables in the task are from 0 to \(n-1\) (inclusive).
- The linear part of the problem: budget constraint, no-short-selling bounds and the objective are added in the linear data of the task ( \(A\) matrix, \(c\) vector and bounds) following the techniques introduced in the tutorial of Sec. 6.1.
- For the quadratic constraint we follow the path introduced in the tutorial of Sec. 6.2. We add the vector \(\left(\gamma, G^{T} x\right)\) to the affine expression storage (AFE), create a quadratic domain of suitable length, and add the affine conic constraint (ACC) with the selected affine expressions. In the segment
```

let dom = task.append_quadratic_cone_domain(k as i64+1)?;
task.append_acc_seq(dom,
afei,
vec![0.0; k as usize + 1].as_slice())?;

```
we use Task.append_acc_seq to append a single ACC with the quadratic domain qdom and with a sequence of affine expressions starting at position 0 in the AFE storage and of length equal to the dimension of qdom. This is the simplest way to achieve what we need, since previously we also stored the required rows in AFE in the same order.

\subsection*{11.1.2 The Efficient Frontier}

The portfolio computed by the Markowitz model is efficient in the sense that there is no other portfolio giving a strictly higher return for the same amount of risk. An efficient portfolio is also sometimes called a Pareto optimal portfolio. Clearly, an investor should only invest in efficient portfolios and therefore it may be relevant to present the investor with all efficient portfolios so the investor can choose the portfolio that has the desired tradeoff between return and risk.

Given a nonnegative \(\alpha\) the problem
\[
\begin{array}{ll}
\operatorname{maximize} & \mu^{T} x-\alpha x^{T} \Sigma x \\
\text { subject to } & e^{T} x=w+e^{T} x^{0}  \tag{11.4}\\
& x \geq 0
\end{array}
\]
is one standard way to trade the expected return against penalizing variance. Note that, in contrast to the previous example, we explicitly use the variance ( \(\left\|G^{T} x\right\|_{2}^{2}\) ) rather than standard deviation ( \(\left\|G^{T} x\right\|_{2}\) ), therefore the conic model includes a rotated quadratic cone:
\[
\begin{align*}
\operatorname{maximize} & \mu^{T} x-\alpha s \\
e^{T} x & =w+e^{T} x^{0}, \\
\text { subject to } & \left.\quad \text { (equiv. to } s \geq\left\|G^{T} x\right\|_{2}^{2}=x^{T} \Sigma x\right), \\
\left(s, 0.5, G^{T} x\right) & \in Q_{r}^{k+2} \\
x & \geq 0 . \tag{11.5}
\end{align*}
\]

The parameter \(\alpha\) specifies the tradeoff between expected return and variance. Ideally the problem (11.4) should be solved for all values \(\alpha \geq 0\) but in practice it is impossible. Using the example data from Sec. 11.1.1, the optimal values of return and variance for several values of \(\alpha\) are shown in the figure.

\section*{Example code}

Listing 11.2 demonstrates how to compute the efficient portfolios for several values of \(\alpha\).

Listing 11.2: Code for the computation of the efficient frontier based on problem (11.4).
```

extern crate mosek;
extern crate itertools;
use mosek::{Task,Objsense,Solsta,Soltype};
use itertools::{iproduct};

```


Fig. 11.1: The efficient frontier for the sample data.
```

/// Solve basic Markowitz portfolio problem for different risk bounds
/// to produce a list of points on the efficient frontier.
///
/// \cdots
/// Maximize mu'x - alpha * s
/// Subject to
/// budget : sum(x) = sum(x0)+w
/// risk: s >= || G'x ||
/// x >= 0
///
///
/// \# Arguments
///
/// - `n` number of assets
/// - `alphas` list of risk bound (bound on the standard deviation)
/// - `mu` vector of expected returns
/// - `GT` Covariance matrix factor
/// - `x0` vector if initial investment
/// - `w` initial uninvested wealth
\#[allow(non_snake_case)]
fn portfolio(n : i32,
mu : \&[f64],
GT : \&[f64],
x0 : \&[f64],
alphas : \&[f64],
w : f64) -> Result<Vec<(f64,f64)>,String> {
let k = (GT.len() / n as usize) as i32;
/* Create the optimization task. */
let mut task = match Task::new() {
Some(t) => t,
None => return Err("Failed to create task".to_string()),
};
//task.put_stream_callback(Streamtype::LOG, Imsg| print!("{}",msg))?;
task.append_vars(n+1)?;
task.append_cons(1)?;
/* Objective */
task.put_obj_sense(Objsense::MAXIMIZE)?;
let x : Vec<i32> = (0i32..n).collect();
let s = n;
/* Total budget */
let total_budget = w + x0.iter().sum::<f64>();
/* Total budget constraint - set bounds l^c = u^c */
task.put_con_bound(0i32, mosek::Boundkey::FX, total_budget, total_budget)?;
task.put_con_name(0i32,"budget")?;
task.put_c_slice(0,n,mu)?;
/* x variables. */
for (j,xj) in x.iter().enumerate() {
/* Coefficients in the first row of A */
task.put_aij(0, *xj, 1.0)?;

```
```

 /* No short-selling - x^l = 0, x^u = inf */
 task.put_var_bound(*xj, mosek::Boundkey::LO, 0.0, 0.0)?;
 task.put_var_name(*xj, format!("x[{}]",j+1).as_str())?;
 }
 task.put_var_name(s, "s")?;
 task.put_var_bound(s, mosek::Boundkey::FR, 0.0, 0.0)?;
 // risk bound
 // (s,0.5,GT * x) in Q_r
 {
 let acci = task.get_num_acc()?;
 let afei = task.get_num_afe()?;
 task.append_afes(k as i64 + 2)?;
 let dom = task.append_r_quadratic_cone_domain(k as i64+2)?;
 task.append_acc_seq(dom,
 afei,
 vec![0.0; k as usize + 2].as_slice())?;
 task.put_acc_name(acci,"risk")?;
 task.put_afe_f_entry(afei,s,1.0)?;
 task.put_afe_g(afei+1,0.5)?;
 for ((i,j),v) in iproduct!(0..n,0..n).zip(GT).filter(|(_,v)| **v != 0.0) {
 task.put_afe_f_entry(afei + i as i64 + 2, j as i32, *v)?;
 }
 }
 let frontier : Vec<(f64,f64)> = alphas.iter().filter_map(|alpha| {
 /* Sets the objective function coefficient for s. */
 if let Err(_) = task.put_c_j(s, - *alpha) { None }
 else if let Err(_) = task.optimize() { None }
 else if let Err(_) = task.write_data(format!("portfolio_2_frontier-{}.ptf",
 \mapstoalpha).as_str()) { None }
else if let Ok(solsta) = task.get_sol_sta(Soltype::ITR) {
// See https://docs.mosek.com/latest/rustapi/accessing-solution.html\sqcup
Gabout handling solution statuses.
match solsta {
Solsta::OPTIMAL => {
let mut xx = vec![0.0; n as usize+1];
if let Err(_) = task.get_xx(Soltype::ITR,xx.as_mut_slice()) {\sqcup
\one }
else {
Some((*alpha,mu.iter().zip(xx.iter()).map(|(m,x)| m * x).sum::
๑<f64>()))
}
}
_ => None
}
}
else {
None
}
}).collect();
0k(frontier)
}

```
```

\#[allow(non_snake_case)]
fn main() -> Result<(),String> {
let n : i32 = 8;
let w = 1.0;
let mu = \&[0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.
\hookrightarrow18379];
let x0 = \&[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
let GT = \&[0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.
\hookrightarrow10638,
0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.
\hookrightarrow08506,
\hookrightarrow01914,
\leftrightarrows07742,
0. , 0. , 0. , 0. , 0.36096, 0.12574, 0.10157, 0.0571」
0. , 0. , 0. , 0. , 0. , 0.21552, 0.05663,0.
\leftrightarrows06187,
↔03327,
๑];
let alphas = \&[0.0, 0.01, 0.1, 0.25, 0.30, 0.35, 0.4, 0.45, 0.5, 0.75, 1.0, 1.5,\sqcup
->2.0, 3.0, 10.0];
println!("{:10} {:10}","alpha","exp.ret.");
for (alpha,expret) in portfolio(n,
mu,
GT,
x0,
alphas,
w)? {
println!("{:10.3e} : {:10.e}",alpha,expret);
}
0k(())
}

```

Note that we changed the coefficient \(\alpha\) of the variable \(s\) in a loop. This way we were able to reuse the same model for all solves along the efficient frontier, simply changing the value of \(\alpha\) between the solves.

\subsection*{11.1.3 Factor model and efficiency}

In practice it is often important to solve the portfolio problem very quickly. Therefore, in this section we discuss how to improve computational efficiency at the modeling stage.

The computational cost is of course to some extent dependent on the number of constraints and variables in the optimization problem. However, in practice a more important factor is the sparsity: the number of nonzeros used to represent the problem. Indeed it is often better to focus on the number of nonzeros in \(G\) see (11.2) and try to reduce that number by for instance changing the choice of \(G\).

In other words if the computational efficiency should be improved then it is always good idea to start with focusing at the covariance matrix. As an example assume that
\[
\Sigma=D+V V^{T}
\]
where \(D\) is a positive definite diagonal matrix. Moreover, \(V\) is a matrix with \(n\) rows and \(k\) columns. Such a model for the covariance matrix is called a factor model and usually \(k\) is much smaller than \(n\).

In practice \(k\) tends to be a small number independent of \(n\), say less than 100 .
One possible choice for \(G\) is the Cholesky factorization of \(\Sigma\) which requires storage proportional to \(n(n+1) / 2\). However, another choice is
\[
G=\left[\begin{array}{ll}
D^{1 / 2} & V
\end{array}\right]
\]
because then
\[
G G^{T}=D+V V^{T}
\]

This choice requires storage proportional to \(n+k n\) which is much less than for the Cholesky choice of \(G\). Indeed assuming \(k\) is a constant storage requirements are reduced by a factor of \(n\).

The example above exploits the so-called factor structure and demonstrates that an alternative choice of \(G\) may lead to a significant reduction in the amount of storage used to represent the problem. This will in most cases also lead to a significant reduction in the solution time.

The lesson to be learned is that it is important to investigate how the covariance matrix is formed. Given this knowledge it might be possible to make a special choice for \(G\) that helps reducing the storage requirements and enhance the computational efficiency. More details about this process can be found in [And13].

\section*{Factor model in finance}

Factor model structure is typical in financial context. It is common to model security returns as the sum of two components using a factor model. The first component is the linear combination of a small number of factors common among a group of securities. The second component is a residual, specific to each security. It can be written as \(R=\sum_{j} \beta_{j} F_{j}+\theta\), where \(R\) is a random variable representing the return of a security at a particular point in time, \(F_{j}\) is the random variable representing the common factor \(j, \beta_{j}\) is the exposure of the return to factor \(j\), and \(\theta\) is the specific component.

Such a model will result in the covariance structure
\[
\Sigma=\Sigma_{\theta}+\beta \Sigma_{F} \beta^{T}
\]
where \(\Sigma_{F}\) is the covariance of the factors and \(\Sigma_{\theta}\) is the residual covariance. This structure is of the form discussed earlier with \(D=\Sigma_{\theta}\) and \(V=\beta P\), assuming the decomposition \(\Sigma_{F}=P P^{T}\). If the number of factors \(k\) is low and \(\Sigma_{\theta}\) is diagonal, we get a very sparse \(G\) that provides the storage and solution time benefits.

\section*{Example code}

Here we will work with the example data of a two-factor model \((k=2)\) built using the variables
\[
\begin{gathered}
\beta=\left[\begin{array}{cc}
0.4256 & 0.1869 \\
0.2413 & 0.3877 \\
0.2235 & 0.3697 \\
0.1503 & 0.4612 \\
1.5325 & -0.2633 \\
1.2741 & -0.2613 \\
0.6939 & 0.2372 \\
0.5425 & 0.2116
\end{array}\right] \\
\theta=[0.0720,0.0508,0.0377,0.0394,0.0663,0.0224,0.0417,0.0459]
\end{gathered}
\]
and the factor covariance matrix is
\[
\Sigma_{F}=\left[\begin{array}{ll}
0.0620 & 0.0577 \\
0.0577 & 0.0908
\end{array}\right]
\]
giving
\[
P=\left[\begin{array}{cc}
0.2491 & 0 . \\
0.2316 & 0.1928
\end{array}\right]
\]

Then the matrix \(G\) would look like
\(G=\left[\begin{array}{ll}\beta P & \Sigma_{\theta}^{1 / 2}\end{array}\right]=\left[\begin{array}{cccccccccc}0.1493 & 0.0360 & 0.2683 & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . \\ 0.1499 & 0.0747 & 0 . & 0.2254 & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . \\ 0.1413 & 0.0713 & 0 . & 0 . & 0.1942 & 0 . & 0 . & 0 . & 0 . & 0 . \\ 0.1442 & 0.0889 & 0 . & 0 . & 0 . & 0.1985 & 0 . & 0 . & 0 . & 0 . \\ 0.3207 & -0.0508 & 0 . & 0 . & 0 . & 0 . & 0.2576 & 0 . & 0 . & 0 . \\ 0.2568 & -0.0504 & 0 . & 0 . & 0 . & 0 . & 0 . & 0.1497 & 0 . & 0 . \\ 0.2277 & 0.0457 & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0.2042 & 0 . \\ 0.1841 & 0.0408 & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0 . & 0.2142\end{array}\right]\).

This matrix is indeed very sparse.
In general, we get an \(n \times(n+k)\) size matrix this way with \(k\) full columns and an \(n \times n\) diagonal part. In order to maintain a sparse representation we do not construct the matrix \(G\) explicitly in the code but instead work with two pieces of data: the dense matrix \(G_{\text {factor }}=\beta P\) of shape \(n \times k\) and the diagonal vector \(\theta\) of length \(n\).

\section*{Example code}

In the following we demonstrate how to write code to compute the matrix \(G_{\text {factor }}\) of the factor model. We start with the inputs

Listing 11.3: Inputs for the computation of the matrix \(G_{\text {factor }}\) from the factor model.
```

// Factor exposure matrix, $n x 2$
let $B=$ Matrix::new_by_row(n as usize, 2,
[0.4256, 0.1869,
$0.2413,0.3877$,
$0.2235,0.3697$,
$0.1503,0.4612$,
$1.5325,-0.2633$,
$1.2741,-0.2613$,
$0.6939,0.2372$,
0.5425, 0.2116].to_vec()).unwrap();
// Factor covariance matrix, $2 x 2$
let S_F = Matrix: :new_by_row (2,2,
[0.0620, 0.0577,
0.0577, 0.0908].to_vec()).unwrap();
// Specific risk components
let theta $: \&[f 64]=\&[0.0720,0.0508,0.0377,0.0394,0.0663,0.0224,0.0417,0$.

```
\(\hookrightarrow 0459\) ]

Then the matrix \(G_{\text {factor }}\) is obtained as:
```

let S_sqrt_theta = Matrix::diag_matrix(theta.iter().map(|\&v| v.sqrt()).collect());
let P = S_F.cholesky().unwrap();
let BP = B.mul(\&P).unwrap();

```

The code for computing an optimal portfolio in the factor model is very similar to the one from the basic model in Listing 11.1 with one notable exception: we construct the expression \(G^{T} x\) appearing in the conic constraint by stacking together two separate vectors \(G_{\text {factor }}^{T} x\) and \(\Sigma_{\theta}^{1 / 2} x\) :
```

 // Input (gamma, G_factor_T \(x\), diag(sqrt(theta))*x) in the AFE (affine \({ }_{\sqcup}\)
 \rightarrow expression) storage
// We need $k+n+1$ rows and we fill them in in three parts
task.append_afes((k+n) as i64 + 1)?;
// 1. The first affine expression = gamma, will be specified later

```
```

 // 2. The next }k\mathrm{ expressions comprise G_factor_T*x, we add them row by row
 // transposing the matrix G_factor on the fly
 task.put_afe_f_row_list((1..1+k as i64).collect::<Vec<i64>>().as_slice(), // f\sqcup
 \hookrightarrowrow idxs
vec![n; k as usize].as_slice(), // row lengths
(0..GT.len() as i64).step_by(n as usize).collect::<Vec
\hookrightarrow<i64>>().as_slice(), // row ptr
iproduct!(0..k,0..n).map(|(_,b)| b).collect::<Vec<i32>>().
as_slice(), // varidx, 0..n repeated k times
GT.data_by_row().as_slice())?;
// 3. The remaining n rows contain sqrt(theta) on the diagonal
for (i,thetai) in (0..n).zip(theta.iter()) {
task.put_afe_f_entry(i as i64 + 1 + k as i64, voff_x + i, thetai.sqrt())?;
}

```

The full code is demonstrated below:
Listing 11.4: Implementation of portfolio optimization in the factor model.
```


[allow(non_snake_case)]

fn portfolio(w : f64,
mu : \&[f64],
x0 : \&[f64],
gammas : \&[f64],
theta : \&[f64],
GT : \&Matrix) -> Result<Vec<(f64,f64)>,String> {
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
let (kx,nx) = GT.size();
if mu.len() != nx { panic!("Mismatching data"); }
let k : i32 = kx.try_into().unwrap();
let n : i32 = nx.try_into().unwrap();
let total_budget : f64 = w + x0.iter().sum::<f64>();
//Offset of variables into the API variable.
let numvar = n;
let voff_x : i32 = 0;
// Constraint offset
let coff_bud : i32 = 0;
// Holding variable x of length n
// No other auxiliary variables are needed in this formulation
task.append_vars(numvar)?;
// Setting up variable x
for j in 0..n {
task.put_var_name(voff_x+j,format!("x[{}]",j+1).as_str())?;
}
task.put_var_bound_slice_const(voff_x,voff_x+n, Boundkey::LO,0.0, INF)?;

```
```

 // One linear constraint: total budget
 task.append_cons(1)?;
 task.put_con_name(coff_bud, "budget")?;
 /* Coefficients in the first row of A */
 for j in 0..n {
 task.put_aij(coff_bud,voff_x + j, 1.0)?;
 }
 task.put_con_bound(coff_bud, Boundkey::FX, total_budget, total_budget)?;
 // Input (gamma, G_factor_T x, diag(sqrt(theta))*x) in the AFE (affine
 @xpression) storage
// We need k+n+1 rows and we fill them in in three parts
task.append_afes((k+n) as i64 + 1)?;
// 1. The first affine expression = gamma, will be specified later
// 2. The next k expressions comprise G_factor_T*x, we add them row by row
// transposing the matrix G_factor on the fly
task.put_afe_f_row_list((1..1+k as i64).collect::<Vec<i64>>().as_slice(), // f\sqcup
\hookrightarrowow idxs
vec![n; k as usize].as_slice(), // row lengths
(0..GT.len() as i64).step_by(n as usize).collect::<Vec
\hookrightarrow<i64>>().as_slice(), // row ptr
iproduct!(0..k,0..n).map(|(_,b)| b).collect::<Vec<i32>>().
as_slice(), // varidx, 0..n repeated k times
GT.data_by_row().as_slice())?;
// 3. The remaining n rows contain sqrt(theta) on the diagonal
for (i,thetai) in (0..n).zip(theta.iter()) {
task.put_afe_f_entry(i as i64 + 1 + k as i64, voff_x + i, thetai.sqrt())?;
}
// Input the affine conic constraint (gamma, GT*x) Iin QCone
// Add the quadratic domain of dimension k+1
let qdom = task.append_quadratic_cone_domain(k as i64+ 1)?;
// Add the constraint
task.append_acc_seq(qdom, 0, vec![0.0; k as usize+1].as_slice())?;
task.put_acc_name(0, "risk")?;
// Objective: maximize expected return mu^T x
for (j,\&muj) in (0..n).zip(mu.iter()) {
task.put_c_j(voff_x + j, muj)?;
}
task.put_obj_sense(Objsense::MAXIMIZE)?;
Ok(gammas.iter().filter_map(|\&gamma| {
// Specify gamma in ACC
task.put_afe_g(0, gamma).ok()?;
task.optimize().ok()?;
/* Display solution summary for quick inspection of results */
let _ = task.solution_summary(Streamtype::LOG);
let _ = task.write_data(format!("portfolio_6_factor-{}.ptf",gamma).as_str());
// Check if the interior point solution is an optimal point
if task.get_sol_sta(Soltype::ITR).ok()? != Solsta::OPTIMAL {
// See https://docs.mosek.com/latest/rustapi/accessing-solution.html\sqcup

```
```

\hookrightarrowabout handling solution statuses.
eprintln!("Solution not optimal!");
std::process::exit(1);
}
/* Read the results */
let mut xx = vec![0.0; n as usize];
task.get_xx_slice(Soltype::ITR, voff_x, voff_x + n, xx.as_mut_slice()).ok()?;
Some((gamma,xx.iter().zip(mu.iter()).map(|(\&xj,\&muj)| xj*muj).sum::<f64>()))
}).collect::<Vec< (f64,f64)>> ())
}

```

\subsection*{11.1.4 Slippage Cost}

The basic Markowitz model assumes that there are no costs associated with trading the assets and that the returns of the assets are independent of the amount traded. Neither of those assumptions is usually valid in practice. Therefore, a more realistic model is
\[
\begin{array}{lrl}
\operatorname{maximize} & \mu^{T} x &  \tag{11.6}\\
\text { subject to } & e^{T} x+\sum_{j=1}^{n} T_{j}\left(\Delta x_{j}\right) & =w+e^{T} x^{0} \\
x^{T} \Sigma x & \leq \gamma^{2} \\
x & \geq 0
\end{array}
\]

Here \(\Delta x_{j}\) is the change in the holding of asset \(j\) i.e.
\[
\Delta x_{j}=x_{j}-x_{j}^{0}
\]
and \(T_{j}\left(\Delta x_{j}\right)\) specifies the transaction costs when the holding of asset \(j\) is changed from its initial value. In the next two sections we show two different variants of this problem with two nonlinear cost functions \(T\).

\subsection*{11.1.5 Market Impact Costs}

If the initial wealth is fairly small and no short selling is allowed, then the holdings will be small and the traded amount of each asset must also be small. Therefore, it is reasonable to assume that the prices of the assets are independent of the amount traded. However, if a large volume of an asset is sold or purchased, the price, and hence return, can be expected to change. This effect is called market impact costs. It is common to assume that the market impact cost for asset \(j\) can be modeled by
\[
T_{j}\left(\Delta x_{j}\right)=m_{j}\left|\Delta x_{j}\right|^{3 / 2}
\]
where \(m_{j}\) is a constant that is estimated in some way by the trader. See [GK00] [p. 452] for details. From the Modeling Cookbook we know that \(t \geq|z|^{3 / 2}\) can be modeled directly using the power cone \(\mathcal{P}_{3}^{2 / 3,1 / 3}\) :
\[
\left\{(t, z): t \geq|z|^{3 / 2}\right\}=\left\{(t, z):(t, 1, z) \in \mathcal{P}_{3}^{2 / 3,1 / 3}\right\}
\]

Hence, it follows that \(\sum_{j=1}^{n} T_{j}\left(\Delta x_{j}\right)=\sum_{j=1}^{n} m_{j}\left|x_{j}-x_{j}^{0}\right|^{3 / 2}\) can be modeled by \(\sum_{j=1}^{n} m_{j} t_{j}\) under the constraints
\[
\begin{aligned}
z_{j} & =\left|x_{j}-x_{j}^{0}\right| \\
\left(t_{j}, 1, z_{j}\right) & \in \mathcal{P}_{3}^{2 / 3,1 / 3}
\end{aligned}
\]

Unfortunately this set of constraints is nonconvex due to the constraint
\[
\begin{equation*}
z_{j}=\left|x_{j}-x_{j}^{0}\right| \tag{11.7}
\end{equation*}
\]
but in many cases the constraint may be replaced by the relaxed constraint
\[
\begin{equation*}
z_{j} \geq\left|x_{j}-x_{j}^{0}\right| \tag{11.8}
\end{equation*}
\]

For instance if the universe of assets contains a risk free asset then
\[
\begin{equation*}
z_{j}>\left|x_{j}-x_{j}^{0}\right| \tag{11.9}
\end{equation*}
\]
cannot hold for an optimal solution.
If the optimal solution has the property (11.9) then the market impact cost within the model is larger than the true market impact cost and hence money are essentially considered garbage and removed by generating transaction costs. This may happen if a portfolio with very small risk is requested because the only way to obtain a small risk is to get rid of some of the assets by generating transaction costs. We generally assume that this is not the case and hence the models (11.7) and (11.8) are equivalent.

The above observations lead to
\[
\begin{array}{lrl}
\operatorname{maximize} & \mu^{T} x & \\
\text { subject to } & e^{T} x+m^{T} t & =w+e^{T} x^{0},  \tag{11.10}\\
\left(\gamma, G^{T} x\right) & \in \mathcal{Q}^{k+1}, \\
\left(t_{j}, 1, x_{j}-x_{j}^{0}\right) & \in \mathcal{P}_{3}^{2 / 3,1 / 3}, \quad j=1, \ldots, n, \\
x & \geq 0 .
\end{array}
\]

The revised budget constraint
\[
e^{T} x+m^{T} t=w+e^{T} x^{0}
\]
specifies that the initial wealth covers the investment and the transaction costs. It should be mentioned that transaction costs of the form
\[
t_{j} \geq\left|z_{j}\right|^{p}
\]
where \(p>1\) is a real number can be modeled with the power cone as
\[
\left(t_{j}, 1, z_{j}\right) \in \mathcal{P}_{3}^{1 / p, 1-1 / p} .
\]

See the Modeling Cookbook for details.

\section*{Example code}

Listing 11.5 demonstrates how to compute an optimal portfolio when market impact cost are included.
Listing 11.5: Implementation of model (11.10).
```

extern crate mosek;
extern crate itertools;
use mosek::{Task,Objsense,Streamtype,Solsta,Soltype,Boundkey};
use itertools::{izip,iproduct};
const INF : f64 = 0.0;
/// Solve portfolio with market impact terms.
///
/// \cdots
/// Maximize mu'x
/// Subject to
/// budget : sum(x)+m'c = sum(x0)+w
/// risk : (gamma,G'x) in Q^{k+1}
/// MI : (c_j,1,|\mp@subsup{x}{-}{}j-x\mp@subsup{0}{_}{\prime}j|) in P^3(2/3,1/3), j = 1..
/// x >= 0
/// ``
///
/// Where
///

```
```

/// - m_i is the transaction cost associated with asset i
/// - gamma is the bound on the standard deviation if the portfolio
/// - mu_i is the expected return on asset i
/// - w is the initial wealth held in cash
/// - x0_i is the initial investment in asset i
/// - G'G is the covariance matrix for assets
///
/// The MI constraint is not convex due tot he /./ term, so we relax it:
/// \cdots`/// MI : (c_j,1,\mp@subsup{z}{-}{}j) in P^3 (2/3,1/3),j = 1.. //| \quadz_j >= |x_j-x\mp@subsup{0}{-}{}j| /// implemented as /// z_ l > = x_j-x\mp@subsup{O}{-}{}j /// /// \cdots /// /// # Arguments /// /// -`n`number of assets /// -`mu`vector of expected returns /// -`m`vector of market impact estimates /// -`GT`factored covariance matrix /// -`x0`vector if initial investment /// -`gamma`bound on risk /// -`w`initial uninvested wealth /// /// # Returns /// /// Returns '(solution,objval)' /// /// -`solution`is the primal investment solution vector /// -`objval` is the solution expected return
\#[allow(non_snake_case)]
pub fn portfolio(n : i32,
mu : \&[f64],
m : \&[f64],
GT : \&[f64],
x0 : \&[f64],
gamma : f64,
w : f64) -> Result<(Vec<f64>,f64),String> {
let k = (GT.len() / n as usize) as i32;
/* Create the optimization task. */
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
task.append_vars(3*n)?;
let allvars : Vec<i32> = (0i32..3*n).collect();
let var_x = \&allvars[0..n as usize];
let var_c = \&allvars[n as usize.. 2*n as usize];
let var_xc = \&allvars[0.. 2*n as usize];
let var_z = \&allvars[2*n as usize..3*n as usize];

```
```

 for (i,j) in var_x.iter().enumerate() {
 task.put_var_bound(*j,mosek::Boundkey::LO, 0.0, 0.0)?;
 task.put_var_name(*j,format!("x[{}]",i+1).as_str())?; }
 for (i,j) in var_c.iter().enumerate() {
 task.put_var_bound(*j,mosek::Boundkey::FR, 0.0, 0.0)?;
 task.put_var_name(*j,format!("c[{}]",i+1).as_str())?;
 }
 for (i,j) in var_z.iter().enumerate() {
 task.put_var_bound(*j,mosek::Boundkey::FR, 0.0, 0.0)?;
 task.put_var_name(*j,format!("z[{}]",i+1).as_str())?;
 }
 task.put_obj_sense(Objsense::MAXIMIZE)?;
 for i in var_x {
 task.put_c_j(*i,mu[*i as usize])?;
 }
 task.append_cons(1)?;
 let con_budget = 0i32;
 // budget
 task.put_con_name(0,"budget")?;
 let wealth = w + x0.iter().sum::<f64>();
 task.put_a_row(con_budget,
 &var_xc,
 (0..n).map(|_| 1.0).chain(m.iter().map(|v| *v)).collect::<Vec<f64>>
 ().as_slice())?;
task.put_con_bound(con_budget,mosek::Boundkey::FX, wealth,wealth)?;
// |x-x0| <= z
{
let coni = task.get_num_con()?;
task.append_cons(2 * n)?;
for i in 0..n {
task.put_con_name(coni+i, format!("zabs1[{}]",1 + i).as_str())?;
task.put_con_name(coni+n+i, format!("zabs2[{}]",1 + i).as_str())?;
}
let ones = vec![1.0; n as usize];
let minusones = vec![-1.0; n as usize];
let con_abs1 : Vec<i32> = (coni..coni+n).collect();
let con_abs2 : Vec<i32> = (coni+n..coni+2*n).collect();
task.put_aij_list(con_abs1.as_slice(), var_x, minusones.as_slice())?;
task.put_aij_list(con_abs1.as_slice(), var_z, ones.as_slice())?;
task.put_con_bound_slice(coni,coni+n, vec![Boundkey::LO; n as usize].as_
->slice(), x0.iter().map(|\&v| -v).collect::<Vec<f64>>().as_slice(), vec![INF; n as
Gsize].as_slice())?;
task.put_aij_list(con_abs2.as_slice(), var_x, ones.as_slice())?;
task.put_aij_list(con_abs2.as_slice(), var_z, ones.as_slice())?;
task.put_con_bound_slice(coni+n,coni+n*2, vec![Boundkey::LO; n as usize].as_
๑slice(), x0, vec![INF; n as usize].as_slice())?;
}
// GT
{
let acci = task.get_num_acc()?;

```
```

 let afei = task.get_num_afe()?;
 task.append_afes(k as i64 + 1)?;
 let dom = task.append_quadratic_cone_domain(k as i64+1)?;
 task.append_acc_seq(dom,
 afei,
 vec![0.0; k as usize + 1].as_slice())?;
 task.put_acc_name(acci,"risk")?;
 task.put_afe_g(afei,gamma)?;
 for ((i,j),v) in iproduct!(0..n,0..n).zip(GT).filter(|(_,v)| **v != 0.0) {
 task.put_afe_f_entry(afei + i as i64 + 1, j as i32, *v)?;
 }
 }
// MI
{
let mut acci = task.get_num_acc()?;
let mut afei = task.get_num_afe()?;
let afe0 = afei;
task.append_afes(n as i64 * 2+1)?;
let dom = task.append_primal_power_cone_domain(3,\&[2.0, 1.0])?;
task.put_afe_g(afe0,1.0)?;
afei += 1;
for (i,\&cj,\&zj,\&x0j) in izip!(0..n,var_c,var_z,x0) {
task.put_afe_f_entry(afei,cj,1.0)?;
task.put_afe_f_entry(afei+1,zj,1.0)?;
task.put_afe_g(afei+1, - x0j)?;
task.append_acc(dom,
\&[afei,afe0,afei+1],
\&[0.0, 0.0, 0.0])?;
task.put_acc_name(acci,format!("market_impact[{}]",i+1).as_str())?;
afei += 2;
acci += 1;
}
}
let _ = task.optimize()?;
task.write_data("portfolio_3_impact.ptf")?;
/* Display the solution summary for quick inspection of results. */
task.solution_summary(Streamtype::MSG)?;
if ! task.solution_def(Soltype::ITR)? {
return Err("No solultion defined".to_string());
}
// See https://docs.mosek.com/latest/rustapi/accessing-solution.html about\sqcup
\hookrightarrowhandling solution statuses.
let solsta = task.get_sol_sta(Soltype::ITR)?;
if solsta != Solsta::OPTIMAL {
return Err("Unexpected solution status".to_string());
}
let mut level = vec![0.0;n as usize];
task.get_xx_slice(Soltype::ITR,0,n,level.as_mut_slice())?;
let obj = task.get_primal_obj(Soltype::ITR)?;

```
```

 Ok((level,obj))
 }
\#[allow(non_snake_case)]
fn main() -> Result<(),String> {
let n : i32 = 8;
let w = 1.0;
let mu = \&[0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171, 0.
\hookrightarrow18379];
let x0 = \&[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
let GT = \&[0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973, 0.10435, 0.10638,
0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.08506,
0. , 0. , 0.19914, 0.05867, 0.06453, 0.07367, 0.06468, 0.01914,
0. , 0. , 0. , 0.20876, 0.04933, 0.03651, 0.09381, 0.07742,
0. , 0. , 0. , 0. , 0.36096, 0.12574, 0.10157, 0.0571,
0. , 0. , 0. , 0. , 0. , 0.21552, 0.05663, 0.06187,
0. , 0. , 0. , 0. , 0. , 0. , 0.22514, 0.03327,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.2202\sqcup
\hookrightarrow];
let gamma = 0.36;
let m = vec![0.01; n as usize];
let (level,obj) = portfolio(n,
mu,
m.as_slice(),
GT,
x0,
gamma,
w)?;
println!("Solution x = {:?}",level);
println!("Objective value x = {:?}",obj);
0k(())
}

```

Note that in the following part of the code:
```

let mut acci = task.get_num_acc()?;
let mut afei = task.get_num_afe()?;
let afe0 = afei;
task.append_afes(n as i64 * 2+1)?;
let dom = task.append_primal_power_cone_domain(3,\&[2.0, 1.0])?;
task.put_afe_g(afe0,1.0)?;
afei += 1;
for (i,\&cj,\&zj,\&x0j) in izip!(0..n,var_c,var_z,x0) {
task.put_afe_f_entry(afei,cj,1.0)?;
task.put_afe_f_entry(afei+1,zj,1.0)?;
task.put_afe_g(afei+1, - x0j)?;
task.append_acc(dom,
\&[afei,afe0,afei+1],
\&[0.0, 0.0, 0.0])?;
task.put_acc_name(acci,format!("market_impact[{}]",i+1).as_str())?;
afei += 2;

```
```

 acci += 1;
 }
 }
    ```
we create a sequence of power cones of the form \(\left(t_{k}, 1, x_{k}-x_{k}^{0}\right) \in \mathcal{P}_{3}^{2 / 3,1 / 3}\). The power cones are determined by the sequence of exponents \((2,1)\); we create a single domain to account for that.

Moreover, note that the second coordinate of all these affine conic constraints is the same affine expression equal to 1 , and we use the feature that allows us to define this affine expression only once (as AFE number aoff_pow \(+2 * \mathrm{n}\) ) and reuse it in all the ACCs.

\subsection*{11.1.6 Transaction Costs}

Now assume there is a cost associated with trading asset \(j\) given by
\[
T_{j}\left(\Delta x_{j}\right)= \begin{cases}0, & \Delta x_{j}=0 \\ f_{j}+g_{j}\left|\Delta x_{j}\right|, & \text { otherwise }\end{cases}
\]

Hence, whenever asset \(j\) is traded we pay a fixed setup cost \(f_{j}\) and a variable cost of \(g_{j}\) per unit traded. Given the assumptions about transaction costs in this section problem (11.6) may be formulated as
\[
\begin{array}{llll}
\operatorname{maximize} & \mu^{T} x & & \\
\text { subject to } & e^{T} x+f^{T} y+g^{T} z & =w+e^{T} x^{0}, & \\
\left(\gamma, G^{T} x\right) & \in \mathcal{Q}^{k+1}, & \\
z_{j} & \geq x_{j}-x_{j}^{0}, & j=1, \ldots, n, \\
z_{j} & \geq x_{j}^{0}-x_{j}, & j=1, \ldots, n,  \tag{11.11}\\
z_{j} & \leq U_{j} y_{j}, & j=1, \ldots, n, \\
y_{j} & \in\{0,1\}, & j=1, \ldots, n, \\
x & \geq 0 &
\end{array}
\]

First observe that
\[
z_{j} \geq\left|x_{j}-x_{j}^{0}\right|=\left|\Delta x_{j}\right|
\]

We choose \(U_{j}\) as some a priori upper bound on the amount of trading in asset \(j\) and therefore if \(z_{j}>0\) then \(y_{j}=1\) has to be the case. This implies that the transaction cost for asset \(j\) is given by
\[
f_{j} y_{j}+g_{j} z_{j}
\]

\section*{Example code}

The following example code demonstrates how to compute an optimal portfolio when transaction costs are included.

Listing 11.6: Code solving problem (11.11).
```

extern crate mosek;
use mosek::{Task,Objsense,Streamtype,Soltype,Variabletype,Boundkey,Solsta};
extern crate itertools;
use itertools::{iproduct};
const INF : f64 = 0.0;
/// Optimize expected return on an investment with transaction cost.
///
/// \cdots
/// Maximize mu'x
/// Such That

```
```

/// budget: sum(x) + f'y + g'z = w0+\operatorname{sum}(x0)
/// risk: gamma > /| G'x /|
/// ACC: }\quad\mp@subsup{z}{-}{}j>|x\mp@subsup{0}{-}{}j-\mp@subsup{x}{-}{}j
/// DJC: [y-j == 0 AND xO_j == x_j] OR y_j == 1
/// // z_j< U_j y_j, y in {0,1}
/// y free
/// x > 0
/// Where f_i is the fixed cost of a transaction in asset i,
/// g_i is the cost per unit of a transaction in asset i
/// \cdots`/// # Arguments /// /// -`n`number of assets /// -`mu`vector of expected returns /// -`f`vector of fixed transaction costs /// - 'g' vector of continuous proportional transaction costs /// -`GT`Covariance matrix factor /// -`x0`vector if initial investment /// -`gamma`risk bound (bound on the standard deviation) /// -`w` initial uninvested wealth

[allow(non_snake_case)]

fn portfolio(n : i32,
mu : \&[f64],
f : \&[f64],
g : \&[f64],
GT : \&[f64],
x0 : \& [f64],
gamma : f64,
W : f64) -> Result<(Vec<f64>,f64),String> {
/* Create the optimization task. */
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
let k = (GT.len() / n as usize) as i32;
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
/* Compute total wealth */
let w0 = w + x0.iter().sum::<f64>();
task.append_cons(1i32)?;
task.append_vars(3*n)?;
for i in Oi32..n {
task.put_var_name(i, format!("x[{}]",i+1).as_str())?;
task.put_var_name(i+n, format!("y[{}]",i+1).as_str())?;
task.put_var_name(i+2*n,format!("z[{}]",i+1).as_str())?;
task.put_var_type(i+n, Variabletype::TYPE_INT)?;
}
let all_vars : Vec<i32> = (0i32..3*n).collect();
let x = \&all_vars[0..n as usize];
let y = \&all_vars[n as usize.. 2*n as usize];
let z = \&all_vars[2*n as usize.. 3*n as usize];

```
(continues on next page)
```

 task.put_var_bound_slice_const(0i32,n, mosek::Boundkey::LO, 0.0,0.0)?;
 task.put_var_bound_slice_const(n,2*n, mosek::Boundkey::RA, 0.0,1.0)?;
 task.put_var_bound_slice_const(2*n,3*n, mosek::Boundkey::FR, 0.0,0.0)?;
 /* Constraints. */
 task.put_con_name(0,"budget")?;
 {
 let zeros = vec![0i32; n as usize];
 let fones = vec![1.0; n as usize];
 task.put_aij_list(zeros.as_slice(), x, fones.as_slice())?;
 task.put_aij_list(zeros.as_slice(), y, f)?;
 task.put_aij_list(zeros.as_slice(), z, g)?;
 task.put_con_bound(0i32,mosek::Boundkey::FX,w0,w0)?;
 }
 // objective
 task.put_obj_sense(Objsense::MAXIMIZE)?;
 for (xi,mui) in x.iter().zip(mu.iter()) {
 task.put_c_j(*xi, *mui)?;
 }
 // risk bound
 {
 let acci = task.get_num_acc()?;
 let afei = task.get_num_afe()?;
 task.append_afes(k as i64 + 1)?;
 let dom = task.append_quadratic_cone_domain(k as i64+1)?;
 task.append_acc_seq(dom,
 afei,
 vec![0.0; k as usize + 1].as_slice())?;
 task.put_acc_name(acci,"risk")?;
 task.put_afe_g(afei,gamma)?;
 for ((i,j),v) in iproduct!(0..n,0..n).zip(GT).filter(|(_,v)| **v != 0.0) {
 task.put_afe_f_entry(afei + i as i64 + 1, j as i32, *v)?;
 }
 }
// |x-x0| <= z
{
let coni = task.get_num_con()?;
task.append_cons(2 * n)?;
for i in 0..n {
task.put_con_name(coni+i, format!("zabs1[{}]",1 + i).as_str())?;
task.put_con_name(coni+n+i, format!("zabs2[{}]",1 + i).as_str())?;
}
let ones = vec![1.0; n as usize];
let minusones = vec![-1.0; n as usize];
let con_abs1 : Vec<i32> = (coni..coni+n).collect();
let con_abs2 : Vec<i32> = (coni+n..coni+2*n).collect();
task.put_aij_list(con_abs1.as_slice(), x, minusones.as_slice())?;
task.put_aij_list(con_abs1.as_slice(), z, ones.as_slice())?;
task.put_con_bound_slice(coni,coni+n, vec![Boundkey::LO; n as usize].as_
->slice(), x0.iter().map(|\&v| -v).collect::<Vec<f64>>().as_slice(), vec![INF; n as\sqcup

```
```

\hookrightarrowusize].as_slice())?;
task.put_aij_list(con_abs2.as_slice(), x, ones.as_slice())?;
task.put_aij_list(con_abs2.as_slice(), z, ones.as_slice())?;
task.put_con_bound_slice(coni+n,coni+n*2, vec![Boundkey::LO; n as usize].as_
\hookrightarrowslice(), x0, vec![INF; n as usize].as_slice())?;
}
// Switch
{
let coni = task.get_num_con()?;
task.append_cons(n)?;
for i in 0..n {
task.put_con_name(coni + i, format!("switch[{}]",i+1).as_str())?;
}
let conlist : Vec<i32> = (coni..coni+n).collect();
task.put_aij_list(conlist.as_slice(), z, vec![1.0; n as usize].as_slice())?;
task.put_aij_list(conlist.as_slice(), y, vec![-w0; n as usize].as_slice())?;
task.put_con_bound_slice_const(coni,coni+n, Boundkey::UP, 0.0,0.0)?;
}
let _ = task.optimize()?;
task.write_data("portfolio_4_transcost.ptf")?;
/* Display the solution summary for quick inspection of results. */
task.solution_summary(Streamtype::MSG)?;
// Check if the integer solution is an optimal point
if task.get_sol_sta(Soltype::ITG)? != Solsta::INTEGER_OPTIMAL {
// See https://docs.mosek.com/latest/rustapi/accessing-solution.html about⿱亠䒑⿱⺊又一
\hookrightarrowhandling solution statuses.
eprintln!("Solution not optimal!");
std::process::exit(1);
}
let mut xx = vec![0.0;n as usize];
task.get_xx_slice(Soltype::ITG, 0,n, xx.as_mut_slice())?;
let expret = xx[0..n as usize].iter().zip(mu.iter()).map(|(a,b)| a*b).sum::<f64>
\hookrightarrow();
Ok((xx,expret))
}
\#[allow(non_snake_case)]
fn main() -> Result<(),String> {
let n = 8i32;
let w = 1.0;
let mu = \&[0.07197, 0.15518, 0.17535, 0.08981, 0.42896, 0.39292, 0.32171,0.
\hookrightarrow18379];
let x0 = \&[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
let GT = \& [0.30758, 0.12146, 0.11341, 0.11327, 0.17625, 0.11973,0.10435,0.
\hookrightarrow10638,
0. , 0.25042, 0.09946, 0.09164, 0.06692, 0.08706, 0.09173, 0.
\leftrightarrows08506,
0. , 0. , 0.19914,0.05867,0.06453, 0.07367,0.06468,0.

```
```

\hookrightarrow01914,
0. , 0. , 0. , 0.20876, 0.04933, 0.03651, 0.09381, 0.
\checkmark 0 7 7 4 2 ,
\leftrightarrows
\hookrightarrow06187,
\leftrightarrows03327,
๑];
let f = vec![0.01; n as usize];
let g = vec![0.001; n as usize];
let gamma = 0.36;
let (level,expret) = portfolio(n,
mu,
f.as_slice(),
g.as_slice(),
GT,
x0,
gamma,
w)?;
println!("Expected return {:.4e} for gamma {:.4e}\n", expret, gamma);
println!("Solution vector = {:?}\n", level);
Ok(())
}

```

\subsection*{11.1.7 Cardinality constraints}

Another method to reduce costs involved with processing transactions is to only change positions in a small number of assets. In other words, at most \(K\) of the differences \(\left|\Delta x_{j}\right|=\left|x_{j}-x_{j}^{0}\right|\) are allowed to be non-zero, where \(K\) is (much) smaller than the total number of assets \(n\).

This type of constraint can be again modeled by introducing a binary variable \(y_{j}\) which indicates if \(\Delta x_{j} \neq 0\) and bounding the sum of \(y_{j}\). The basic Markowitz model then gets updated as follows:
\[
\begin{array}{rlrl}
\mu^{T} x & & & \\
e^{T} x & =w+e^{T} x^{0}, & \\
\text { subject to } & \left(\gamma, G^{T} x\right) & \in \mathcal{Q}^{k+1}, & \\
z_{j} & \geq x_{j}-x_{j}^{0}, & j=1, \ldots, n, \\
z_{j} & \geq x_{j}^{0}-x_{j}, & j=1, \ldots, n,  \tag{11.12}\\
z_{j} & \leq U_{j} y_{j}, & j=1, \ldots, n, \\
y_{j} & \in\{0,1\}, & j=1, \ldots, n, \\
e^{T} y & \leq K, & & \\
x & \geq 0, & & \\
& x & & \\
& & &
\end{array}
\]
were \(U_{j}\) is some a priori chosen upper bound on the amount of trading in asset \(j\).

\section*{Example code}

The following example code demonstrates how to compute an optimal portfolio with cardinality bounds.
Listing 11.7: Code solving problem (11.12).
```

\#[allow(non_snake_case)]
fn portfolio(n : i32,
mu : \&[f64],
GT : \&[f64],
x0 : \&[f64],
gamma : f64,
p : i32,
w : f64) -> Result<(Vec<f64>,f64),String> {
/* Create the optimization task. */
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
};
let k = (GT.len() / n as usize) as i32;
// task.put_stream_callback(Streamtype::LOG, /msg| print!("{}",msg))?;
/* Compute total wealth */
let w0 = w + x0.iter().sum::<f64>();
task.append_vars(3*n)?;
let all_vars : Vec<i32> = (0..3*n).collect();
let x = \&all_vars[0..n as usize];
let y = \&all_vars[n as usize.. 2*n as usize];
let z = \&all_vars[2*n as usize.. 3*n as usize];
task.put_var_bound_slice_const(0,n,mosek::Boundkey::LO,0.0,INF)?;
task.put_var_bound_slice_const(n,2*n,mosek::Boundkey::RA,0.0,1.0)?;
task.put_var_bound_slice_const(2*n, 3*n, mosek::Boundkey::FR, -INF,INF)?;
for (i,xj,yj,zj) in izip!(0..n,x,y,z) {
task.put_var_name(*xj,format!("x[{}]",i+1).as_str())?;
task.put_var_name(*yj,format!("y[{}]",i+1).as_str())?;
task.put_var_name(*zj,format!("z[{}]",i+1).as_str())?;
task.put_var_type(*yj, Variabletype::TYPE_INT)?;
}
// objective
task.put_obj_sense(Objsense::MAXIMIZE)?;
for (j,mui) in x.iter().zip(mu.iter()) {
task.put_c_j(*j, *mui)?;
}
let n_ones = vec![1.0; n as usize];
// budget constraint
{
let coni = task.get_num_con()?;
task.append_cons(1)?;
task.put_con_name(coni,"budget")?;
task.put_a_row(coni,

```
```

 x,
 n_ones.as_slice())?;
 task.put_con_bound(coni,mosek::Boundkey::FX,w0,w0)?;
 }
 // |x-x0| <= z
 {
let coni = task.get_num_con()?;
task.append_cons(2 * n)?;
for i in 0..n {
task.put_con_name(coni+i, format!("zabs1[{}]",1 + i).as_str())?;
task.put_con_name(coni+n+i, format!("zabs2[{}]",1 + i).as_str())?;
}
let ones = vec![1.0; n as usize];
let minusones = vec![-1.0; n as usize];
let con_abs1 : Vec<i32> = (coni..coni+n).collect();
let con_abs2 : Vec<i32> = (coni+n..coni+2*n).collect();
task.put_aij_list(con_abs1.as_slice(), x, minusones.as_slice())?;
task.put_aij_list(con_abs1.as_slice(), z, ones.as_slice())?;
task.put_con_bound_slice(coni,coni+n, vec![Boundkey::LO; n as usize].as_
->slice(), x0.iter().map(|\&v| -v).collect::<Vec<f64>>().as_slice(), vec![INF; n as\sqcup
\hookrightarrowusize].as_slice())?;
task.put_aij_list(con_abs2.as_slice(), x, ones.as_slice())?;
task.put_aij_list(con_abs2.as_slice(), z, ones.as_slice())?;
task.put_con_bound_slice(coni+n,coni+n*2, vec![Boundkey::LO; n as usize].as_
\hookrightarrowslice(), x0, vec![INF; n as usize].as_slice())?;
}
// cardinality constraint
{
let coni = task.get_num_con()?;
task.append_cons(1)?;
task.put_con_name(coni,"cardinality")?;
task.put_a_row(coni, y, n_ones.as_slice())?;
task.put_con_bound(coni,mosek::Boundkey::UP,p as f64,p as f64)?;
}
// (gamma,G'x) in Q
{
let afei = task.get_num_afe()?;
let acci = task.get_num_acc()?;
task.append_afes(k as i64+1)?;
let dom = task.append_quadratic_cone_domain(k as i64+1)?;
task.append_acc_seq(dom,
afei,
vec![0.0; k as usize + 1].as_slice())?;
task.put_acc_name(acci,"risk")?;
task.put_afe_g(afei,gamma)?;
for ((i,j),v) in iproduct!(0..n,0..n).zip(GT).filter(|(_,v)| **v != 0.0) {
task.put_afe_f_entry(afei + i as i64 + 1, j as i32, *v)?;
}
}
// Switch

```
```

 {
 let coni = task.get_num_con()?;
 task.append_cons(n)?;
 for i in 0..n {
 task.put_con_name(coni + i, format!("switch[{}]",i+1).as_str())?;
 }
 let conlist : Vec<i32> = (coni..coni+n).collect();
 task.put_aij_list(conlist.as_slice(), z, vec![1.0; n as usize].as_slice())?;
 task.put_aij_list(conlist.as_slice(), y, vec![-w0; n as usize].as_slice())?;
 task.put_con_bound_slice_const(coni,coni+n, Boundkey::UP, 0.0,0.0)?;
 }
 let _ = task.optimize()?;
 task.write_data(format!("portfolio_5_card-{}.ptf",p).as_str())?;
 // Check if the integer solution is an optimal point
 if task.get_sol_sta(Soltype::ITG)? != Solsta::INTEGER_OPTIMAL {
 // See https://docs.mosek.com/latest/rustapi/accessing-solution.html about\sqcup
 ->handling solution statuses.
eprintln!("Solution not optimal!");
std::process::exit(1);
}
let mut xx = vec![0.0;n as usize];
task.get_xx_slice(Soltype::ITG, 0,n,xx.as_mut_slice())?;
Ok((xx[0..n as usize].to_vec(),task.get_primal_obj(Soltype::ITG)?))
}

```

If we solve our running example with \(K=1, \ldots, n\) then we get the following solutions, with increasing expected returns:


\subsection*{11.2 Logistic regression}

Logistic regression is an example of a binary classifier, where the output takes one two values 0 or 1 for each data point. We call the two values classes.

\section*{Formulation as an optimization problem}

Define the sigmoid function
\[
S(x)=\frac{1}{1+\exp (-x)}
\]

Next, given an observation \(x \in \mathbb{R}^{d}\) and a weights \(\theta \in \mathbb{R}^{d}\) we set
\[
h_{\theta}(x)=S\left(\theta^{T} x\right)=\frac{1}{1+\exp \left(-\theta^{T} x\right)} .
\]

The weights vector \(\theta\) is part of the setup of the classifier. The expression \(h_{\theta}(x)\) is interpreted as the probability that \(x\) belongs to class 1 . When asked to classify \(x\) the returned answer is
\[
x \mapsto \begin{cases}1 & h_{\theta}(x) \geq 1 / 2 \\ 0 & h_{\theta}(x)<1 / 2\end{cases}
\]

When training a logistic regression algorithm we are given a sequence of training examples \(x_{i}\), each labelled with its class \(y_{i} \in\{0,1\}\) and we seek to find the weights \(\theta\) which maximize the likelihood function
\[
\prod_{i} h_{\theta}\left(x_{i}\right)^{y_{i}}\left(1-h_{\theta}\left(x_{i}\right)\right)^{1-y_{i}}
\]

Of course every single \(y_{i}\) equals 0 or 1 , so just one factor appears in the product for each training data point. By taking logarithms we can define the logistic loss function:
\[
J(\theta)=-\sum_{i: y_{i}=1} \log \left(h_{\theta}\left(x_{i}\right)\right)-\sum_{i: y_{i}=0} \log \left(1-h_{\theta}\left(x_{i}\right)\right) .
\]

The training problem with regularization (a standard technique to prevent overfitting) is now equivalent to
\[
\min _{\theta} J(\theta)+\lambda\|\theta\|_{2} .
\]

This can equivalently be phrased as
\[
\begin{array}{llll}
\operatorname{minimize} & \sum_{i} t_{i}+\lambda r & & \\
\text { subject to } & t_{i} & \geq-\log \left(h_{\theta}(x)\right) & =\log \left(1+\exp \left(-\theta^{T} x_{i}\right)\right) \\
& \text { if } y_{i}=1, \\
t_{i} & \geq-\log \left(1-h_{\theta}(x)\right) & =\log \left(1+\exp \left(\theta^{T} x_{i}\right)\right) & \text { if } y_{i}=0,  \tag{11.13}\\
r & \geq\|\theta\|_{2}
\end{array}
\]

\section*{Implementation}

As can be seen from (11.13) the key point is to implement the softplus bound \(t \geq \log \left(1+e^{u}\right)\), which is the simplest example of a log-sum-exp constraint for two terms. Here \(t\) is a scalar variable and \(u\) will be the affine expression of the form \(\pm \theta^{T} x_{i}\). This is equivalent to
\[
\exp (u-t)+\exp (-t) \leq 1
\]
and further to
\[
\begin{array}{rlr}
\left(z_{1}, 1, u-t\right) & \in K_{\exp } \quad\left(z_{1} \geq \exp (u-t)\right) \\
\left(z_{2}, 1,-t\right) & \in K_{\exp } & \left(z_{2} \geq \exp (-t)\right)  \tag{11.14}\\
z_{1}+z_{2} & \leq 1
\end{array}
\]

This formulation can be entered using affine conic constraints (see Sec. 6.2).

Listing 11.8: Implementation of \(t \geq \log \left(1+e^{u}\right)\) as in (11.14).
```

\#[allow(non_snake_case)]
fn softplus(task : \& mut TaskCB, d : i32, n : i32, theta : i32, t : i32, X : \&[f64],\sqcup
\hookrightarrow : \&[bool]) -> Result<(),String> {
let nvar = task.get_num_var()?;
let ncon = task.get_num_con()?;
let nafe = task.get_num_afe()?;
task.append_vars(2*n)?; // z1, z2
task.append_cons(n)?; // z1 + z2 = 1
task.append_afes(4*n as i64)?; //theta * X[i] - t[i], -t[i], z1[i], z2[i]
let z1 = nvar;
let z2 = nvar+n;
let zcon = ncon;
let thetaafe = nafe;
let tafe = nafe+n as i64;
let z1afe = tafe+n as i64;
let z2afe = z1afe+n as i64;
// Linear constraints
{
let mut subi = vec![0i32; 2*n as usize];
let mut subj = vec![0i32; 2*n as usize];
let mut aval = vec![0.0; 2*n as usize];
for i in 0..n {
task.put_var_name(z1+i,format!("z1[{}]",i).as_str())?;
task.put_var_name(z2+i,format!("z2[{}]",i).as_str())?;
}
for ((i,\&zx),si, sj, av) in izip!(iproduct!(0..n,\&[z1,z2]),
subi.iter_mut(),
subj.iter_mut(),
aval.iter_mut()) {
*si = zcon+i;
*sj = zx+i as i32;
*av = 1.0;
}
task.put_aij_list(subi.as_slice(), subj.as_slice(), aval.as_slice())?;
task.put_con_bound_slice_const(zcon, zcon+n, Boundkey::FX, 1.0, 1.0)?;
task.put_var_bound_slice_const(nvar, nvar+2*n, Boundkey::FR, -INF, INF)?;
}
// Affine conic expressions
let mut afeidx = vec![0i64; (d*n+4*n) as usize];
let mut varidx = vec![0i32; (d*n+4*n) as usize];
let mut fval = vec![0.0; (d*n+4*n) as usize];
// Thetas
let mut k : usize = 0;
for ((i,j),afei,vari) in izip!(iproduct!(0..n,0..d),
\& mut afeidx[k..k+(n*d) as usize],
\& mut varidx[k..k+(n*d) as usize]) {
*afei = thetaafe + i as i64;
*vari = theta +j;
}
for ((\&yi,_j),\&xij,fv) in izip!(iproduct!(Y,0..d), X, \& mut fval[k..k+(n*d) as

```
```

Gusize]) {
*fv = (if yi {-1.0} else {1.0}) * xij;
}
k += (n*d) as usize;
for fv in fval[k..k+(2*n) as usize].iter_mut() { *fv = -1.0; }
for (i,afei,vari) in izip!(0..n,
\&mut afeidx[k..k+(2*n) as usize].iter_mut().step_by(2),
\&mut varidx[k..k+(2*n) as usize].iter_mut().step_
Gyy(2)) {
*afei = thetaafe+i as i64; *vari = t+i;
}
for (i,afei,vari) in izip!(0..n,
\&mut afeidx[k+1..k+(2*n) as usize].iter_mut().step_
Gy (2) ,
Gy(2)) {
*afei = tafe+i as i64; *vari = t+i;
}
k += (n*2) as usize;
for fv in fval[k..k+(2*n) as usize].iter_mut() { *fv = 1.0; }
for (i,afei,vari) in izip!(0..n,
\&mut afeidx[k..k+(2*n) as usize].iter_mut().step_by(2),
\&mut varidx[k..k+(2*n) as usize].iter_mut().step_
Gy(2)) {
*afei = z1afe+i as i64; *vari = z1+i;
}
for (i,afei,vari) in izip!(0..n,
\&mut afeidx[k+1..k+(2*n) as usize].iter_mut().step_
Gy (2) ,
\&mut varidx[k+1..k+(2*n) as usize].iter_mut().step_
Gy(2)) {
*afei = z2afe+i as i64; *vari = z2+i;
}
// Add the expressions
task.put_afe_f_entry_list(afeidx.as_slice(), varidx.as_slice(), fval.as_slice())?;
{
// Add a single row with the constant expression "1.0"
let oneafe = task.get_num_afe()?;
task.append_afes(1)?;
task.put_afe_g(oneafe, 1.0)?;
// Add an exponential cone domain
let dom = task.append_primal_exp_cone_domain()?;
// Conic constraints
let zeros = \&[0.0,0.0,0.0];
let mut acci = task.get_num_acc()?;
for i in 0..n as i64 {
task.append_acc(dom, \&[z1afe+i, oneafe, thetaafe+i], zeros)?;
task.append_acc(dom, \&[z2afe+i, oneafe, tafe+i], zeros)?;
task.put_acc_name(acci,format!("z1:theta[{}]",i).as_str())?;

```
```

 task.put_acc_name(acci+1,format!("z2:t[{}]",i).as_str())?;
 acci += 2;
 }
 }
 0k(())
 }

```

Once we have this subroutine, it is easy to implement a function that builds the regularized loss function model (11.13).

Listing 11.9: Implementation of (11.13).
```


[allow(non_snake_case)]

fn logistic_regression(X : \&[f64],
Y : \&[bool],
lamb : f64) -> Result<Vec<f64>,String> {
let n = Y.len() as i32;
let d = (X.len()/Y.len()) as i32; // num samples, dimension
/* Create the optimization task. */
let mut task = match Task::new() {
Some(e) => e,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
// Variables [r; theta; t]
let nvar : i32 = 1+d+n;
task.append_vars(nvar)?;
task.put_var_bound_slice_const(0, nvar, Boundkey::FR, -INF, INF)?;
let (r,theta,t) = (0i32,1i32,1+d);
task.put_var_name(r,"r")?;
for j in 0..d { task.put_var_name(theta+j,format!("theta[{}]",j).as_str())?; }
for j in 0..n { task.put_var_name(t+j,format!("t[{}]",j).as_str())?; }
// Objective lambda*r + sum(t)
task.put_c_j(r, lamb)?;
for i in 0..n { task.put_c_j(t+i, 1.0)?; }
task.put_obj_sense(Objsense::MINIMIZE)?;
// Softplus function constraints
softplus(\& mut task, d, n, theta, t, X, Y)?;
// Regularization
// Append a sequence of linear expressions (r, theta) to F
let numafe = task.get_num_afe()?;
task.append_afes(1+d as i64)?;
task.put_afe_f_entry(numafe, r, 1.0)?;
for i in 0..d {
task.put_afe_f_entry(numafe + i as i64 + 1, theta + i, 1.0)?;
}
// Add the constraint
{
let dom = task.append_quadratic_cone_domain((1+d) as i64)?;

```
```

 task.append_acc_seq(dom,
 numafe,
 vec![0.0; 1+d as usize].as_slice())?;
 }
 // Solution
 task.write_data("logistic.ptf")?;
 task.optimize()?;
 let mut xx = vec![0.0; d as usize];
 task.get_xx_slice(Soltype::ITR, theta, theta+d as i32,xx.as_mut_slice())?;
 0k(xx)
 }

```

\section*{Example: 2D dataset fitting}

In the next figure we apply logistic regression to the training set of 2 D points taken from the example ex2data2.txt. The two-dimensional dataset was converted into a feature vector \(x \in \mathbb{R}^{28}\) using monomial coordinates of degrees at most 6 .


Fig. 11.2: Logistic regression example with none, medium and strong regularization (small, medium, large \(\lambda\) ). Without regularization we get obvious overfitting.

\subsection*{11.3 Concurrent optimizer}

The idea of the concurrent optimizer is to run multiple optimizations of the same problem simultaneously, and pick the one that provides the fastest or best answer. This approach is especially useful for problems which require a very long time and it is hard to say in advance which optimizer or algorithm will perform best.

The major applications of concurrent optimization we describe in this section are:
- Using the interior-point and simplex optimizers simultaneously on a linear problem. Note that any solution present in the task will also be used for hot-starting the simplex algorithms. One possible scenario would therefore be running a hot-start simplex in parallel with interior point, taking advantage of both the stability of the interior-point method and the ability of the simplex method to use an initial solution.
- Using multiple instances of the mixed-integer optimizer to solve many copies of one mixed-integer problem. This is not in contradiction with the run-to-run determinism of MOSEK if a different value of the MIO seed parameter Iparam::MIO_SEED is set in each instance. As a result each setting leads to a different optimizer run (each of them being deterministic in its own right).

The downloadable file contains usage examples of both kinds.

\subsection*{11.3.1 Common setup}

We first define a method that runs a number of optimization tasks in parallel, using the standard multithreading setup available in the language. All tasks register for a callback function which will signal them to interrupt as soon as the first task completes successfully (with response code Rescode: : OK).

Listing 11.10: Simple callback function which signals the optimizer to stop.
```

if let Some(trm) = t.with_callback(

```
    \&mut |_| cbstop.lock().and_then(|p| Ok(*p)).unwrap_or(false),

When all remaining tasks respond to the stop signal, response codes and statuses are returned to the caller, together with the index of the task which won the race.

Listing 11.11: A routine for parallel task race.
```

fn optimize(mut t : mosek::Task, stop : Arc<Mutex<bool>>) -> Option<(i32,mosek::Task)>
@ {
let cbstop = Arc::clone(\&stop);
if let Some(trm) = t.with_callback(
\&mut |_| cbstop.lock().and_then(|p| Ok(*p)).unwrap_or(false),
|task|
if let Ok(trm) = task.optimize() {
let mut st = stop.lock().unwrap();
*st = true;
Some(trm)
} else {
None
}) {
Some((trm,t))
}
else {
None
}
}

```

\subsection*{11.3.2 Linear optimization}

We use the multithreaded setup to run the interior-point and simplex optimizers simultaneously on a linear problem. The next methods simply clones the given task and sets a different optimizer for each. The result is the clone which finished first.

Listing 11.12: Concurrent optimization with different optimizers.
```

fn optimize_concurrent(task : \&mut mosek::Task,
optimizers : \&[i32]) -> Vec<(usize,i32,mosek::Task)> {
let stop = Arc::new(Mutex::new(false));
optimizers.iter().enumerate()
.filter_map(|(i,\&ot)|
if let Some(mut t) = task.clone() {
if let Err(_) = t.put_int_param(mosek::Iparam::OPTIMIZER, ot
\hookrightarrowas i32) { None }
else {
let stopopt = Arc::clone(\&stop);
Some((i,thread::spawn(move || optimize(t,stopopt))))
}
}

```
```

 else { None })
 .filter_map(| (i,th)|
 match th.join().unwrap() {
 None => None,
 Some((r,t)) => Some((i,r,t)) })
 .collect()
 }

```

It remains to call the method with a choice of optimizers, for example:
Listing 11.13: Calling concurrent linear optimization.
```

let r = if numintvar == 0 {
let optimizers = \&[mosek::Optimizertype::CONIC,
mosek::Optimizertype::DUAL_SIMPLEX,
mosek::Optimizertype::PRIMAL_SIMPLEX];
optimize_concurrent(\& mut task, optimizers)
}

```

\subsection*{11.3.3 Mixed-integer optimization}

We use the multithreaded setup to run many, differently seeded copies of the mixed-integer optimizer. This approach is most useful for hard problems where we don't expect an optimal solution in reasonable time. The input task would typically contain a time limit. It is possible that all the cloned tasks reach the time limit, in which case it doesn't really mater which one terminated first. Instead we examine all the task clones for the best objective value.

Listing 11.14: Concurrent optimization of a mixed-integer problem.
```

fn optimize_concurrent_mio(task : \& mut mosek::Task,
seeds : \&[i32]) -> Vec<(usize,i32,mosek::Task)> {
let stop = Arc::new(Mutex::new(false));
seeds.iter().enumerate()
.filter_map(|(i,\&seed)| {
if let Some(mut t) = task.clone() {
if let Err(_) = t.put_int_param(mosek::Iparam::MIO_SEED, seed) { None\sqcup
\hookrightarrow
else {
let stopopt = Arc::clone(\&stop);
Some((i,thread::spawn(move || optimize(t,stopopt))))
}
}
else { None }})
.filter_map(|(i,th)|
match th.join().unwrap() {
None => None,
Some((r,t)) => Some((i,r,t)) })
.collect()
}

```

It remains to call the method with a choice of seeds, for example:
Listing 11.15: Calling concurrent integer optimization.
```

 else {
 let seeds = &[42, 13, 71749373];
 optimize_concurrent_mio(& mut task, seeds)
    ```

\section*{Chapter 12}

\section*{Problem Formulation and Solutions}

In this chapter we will discuss the following topics:
- The formal, mathematical formulations of the problem types that MOSEK can solve and their duals.
- The solution information produced by MOSEK.
- The infeasibility certificate produced by MOSEK if the problem is infeasible.

For the underlying mathematical concepts, derivations and proofs see the Modeling Cookbook or any book on convex optimization. This chapter explains how the related data is organized specifically within the MOSEK API.

\subsection*{12.1 Linear Optimization}

MOSEK accepts linear optimization problems of the form
\[
\begin{equation*}
 \tag{12.1}
\end{equation*}
\]
where
- \(m\) is the number of constraints.
- \(n\) is the number of decision variables.
- \(x \in \mathbb{R}^{n}\) is a vector of decision variables.
- \(c \in \mathbb{R}^{n}\) is the linear part of the objective function.
- \(c^{f} \in \mathbb{R}\) is a constant term in the objective
- \(A \in \mathbb{R}^{m \times n}\) is the constraint matrix.
- \(l^{c} \in \mathbb{R}^{m}\) is the lower limit on the activity for the constraints.
- \(u^{c} \in \mathbb{R}^{m}\) is the upper limit on the activity for the constraints.
- \(l^{x} \in \mathbb{R}^{n}\) is the lower limit on the activity for the variables.
- \(u^{x} \in \mathbb{R}^{n}\) is the upper limit on the activity for the variables.

Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.
A primal solution \((x)\) is (primal) feasible if it satisfies all constraints in (12.1). If (12.1) has at least one primal feasible solution, then (12.1) is said to be (primal) feasible. In case (12.1) does not have a feasible solution, the problem is said to be (primal) infeasible

\subsection*{12.1.1 Duality for Linear Optimization}

Corresponding to the primal problem (12.1), there is a dual problem
\[
\begin{array}{lc}
\text { maximize } & \left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}+c^{f} \\
\text { subject to } \quad A^{T} y+s_{l}^{x}-s_{u}^{x} & =c,  \tag{12.2}\\
& -y+s_{l}^{c}-s_{u}^{c}=0 \\
& s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x}
\end{array}
\]
where
- \(s_{l}^{c}\) are the dual variables for lower bounds of constraints,
- \(s_{u}^{c}\) are the dual variables for upper bounds of constraints,
- \(s_{l}^{x}\) are the dual variables for lower bounds of variables,
- \(s_{u}^{x}\) are the dual variables for upper bounds of variables.

If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0 , and we use the convention that the product of the bound value and the corresponding dual variable is 0 . This is equivalent to removing the corresponding dual variable from the dual problem. For example:
\[
l_{j}^{x}=-\infty \quad \Rightarrow \quad\left(s_{l}^{x}\right)_{j}=0 \text { and } l_{j}^{x} \cdot\left(s_{l}^{x}\right)_{j}=0
\]

A solution
\[
\left(y, s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x}\right)
\]
to the dual problem is feasible if it satisfies all the constraints in (12.2). If (12.2) has at least one feasible solution, then (12.2) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution
\[
\left(x^{*}, y^{*},\left(s_{l}^{c}\right)^{*},\left(s_{u}^{c}\right)^{*},\left(s_{l}^{x}\right)^{*},\left(s_{u}^{x}\right)^{*}\right)
\]
is denoted a primal-dual feasible solution, if \(\left(x^{*}\right)\) is a solution to the primal problem (12.1) and \(\left(y^{*},\left(s_{l}^{c}\right)^{*},\left(s_{u}^{c}\right)^{*},\left(s_{l}^{x}\right)^{*},\left(s_{u}^{x}\right)^{*}\right)\) is a solution to the corresponding dual problem (12.2). We also define an auxiliary vector
\[
\left(x^{c}\right)^{*}:=A x^{*}
\]
containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and the dual objective value,
\[
\begin{align*}
& c^{T} x^{*}+c^{f}-\left\{\left(l^{c}\right)^{T}\left(s_{l}^{c}\right)^{*}-\left(u^{c}\right)^{T}\left(s_{u}^{c}\right)^{*}+\left(l^{x}\right)^{T}\left(s_{l}^{x}\right)^{*}-\left(u^{x}\right)^{T}\left(s_{u}^{x}\right)^{*}+c^{f}\right\} \\
& =\sum_{i=0}^{m-1}\left[\left(s_{l}^{c}\right)_{i}^{*}\left(\left(x_{i}^{c}\right)^{*}-l_{i}^{c}\right)+\left(s_{u}^{c}\right)_{i}^{*}\left(u_{i}^{c}-\left(x_{i}^{c}\right)^{*}\right)\right]  \tag{12.3}\\
& +\sum_{j=0}^{n-1}\left[\left(s_{l}^{x}\right)_{j}^{*}\left(x_{j}-l_{j}^{x}\right)+\left(s_{u}^{x}\right)_{j}^{*}\left(u_{j}^{x}-x_{j}^{*}\right)\right] \geq 0
\end{align*}
\]
where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by \(x^{*}\) and \(\left(x^{c}\right)^{*}\) respectively, and the second relation comes from the fact that each term in each sum is nonnegative. It follows that the primal objective will always be greater than or equal to the dual objective.

It is well-known that a linear optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity conditions
\[
\begin{aligned}
\left(s_{l}^{c}\right)_{i}^{*}\left(\left(x_{i}^{c}\right)^{*}-l_{i}^{c}\right) & =0, \quad i=0, \ldots, m-1, \\
\left(s_{u}^{c}\right)_{i}^{*}\left(u_{i}^{c}-\left(x_{i}^{c}\right)^{*}\right) & =0, \quad i=0, \ldots, m-1, \\
\left(s_{l}^{x}\right)_{j}^{*}\left(x_{j}^{*}-l_{j}^{x}\right) & =0, \quad j=0, \ldots, n-1, \\
\left(s_{u}^{x}\right)_{j}^{*}\left(u_{j}^{x}-x_{j}^{*}\right) & =0, \quad j=0, \ldots, n-1,
\end{aligned}
\]
are satisfied.
If (12.1) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual solution are reported, including a status indicating the exact state of the solution.

\subsection*{12.1.2 Infeasibility for Linear Optimization}

\section*{Primal Infeasible Problems}

If the problem (12.1) is infeasible (has no feasible solution), MOSEK will report a certificate of primal infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem
\[
\begin{gather*}
\operatorname{maximize} \quad\left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x} \\
\text { subject to } \\
A^{T} y+s_{l}^{x}-s_{u}^{x}=0,  \tag{12.4}\\
-y+s_{l}^{c}-s_{u}^{c}=0 \\
s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0
\end{gather*}
\]
such that the objective value is strictly positive, i.e. a solution
\[
\left(y^{*},\left(s_{l}^{c}\right)^{*},\left(s_{u}^{c}\right)^{*},\left(s_{l}^{x}\right)^{*},\left(s_{u}^{x}\right)^{*}\right)
\]
to (12.4) so that
\[
\left(l^{c}\right)^{T}\left(s_{l}^{c}\right)^{*}-\left(u^{c}\right)^{T}\left(s_{u}^{c}\right)^{*}+\left(l^{x}\right)^{T}\left(s_{l}^{x}\right)^{*}-\left(u^{x}\right)^{T}\left(s_{u}^{x}\right)^{*}>0 .
\]

Such a solution implies that (12.4) is unbounded, and that (12.1) is infeasible.

\section*{Dual Infeasible Problems}

If the problem (12.2) is infeasible (has no feasible solution), MOSEK will report a certificate of dual infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem
\[
\begin{array}{lll}
\operatorname{minimize} & & c^{T} x \\
\text { subject to } & \hat{l}^{c} & \leq A x \leq \hat{u}^{c}  \tag{12.5}\\
& \hat{l}^{x} & \leq x \leq \hat{u}^{x}
\end{array}
\]
where
\[
\hat{l}_{i}^{c}=\left\{\begin{array}{ll}
0 & \text { if } l_{i}^{c}>-\infty, \\
-\infty & \text { otherwise, }
\end{array}\right\} \quad \text { and } \quad \hat{u}_{i}^{c}:=\left\{\begin{array}{ll}
0 & \text { if } u_{i}^{c}<\infty \\
\infty & \text { otherwise }
\end{array}\right\}
\]
and
\[
\hat{l}_{j}^{x}=\left\{\begin{array}{ll}
0 & \text { if } l_{j}^{x}>-\infty, \\
-\infty & \text { otherwise, }
\end{array}\right\} \quad \text { and } \quad \hat{u}_{j}^{x}:=\left\{\begin{array}{ll}
0 & \text { if } u_{j}^{x}<\infty \\
\infty & \text { otherwise }
\end{array}\right\}
\]
such that
\[
c^{T} x<0
\]

Such a solution implies that (12.5) is unbounded, and that (12.2) is infeasible.
In case that both the primal problem (12.1) and the dual problem (12.2) are infeasible, MOSEK will report only one of the two possible certificates - which one is not defined (MOSEK returns the first certificate found).

\subsection*{12.1.3 Minimalization vs. Maximalization}

When the objective sense of problem (12.1) is maximization, i.e.
\[

\]
the objective sense of the dual problem changes to minimization, and the domain of all dual variables changes sign in comparison to (12.2). The dual problem thus takes the form
\[
\begin{aligned}
& \operatorname{minimize} \quad\left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}+c^{f} \\
& \text { subject to } \\
& A^{T} y+s_{l}^{x}-s_{u}^{x}=c \\
& -y+s_{l}^{c}-s_{u}^{c}=0 \\
& s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \leq 0
\end{aligned}
\]

This means that the duality gap, defined in (12.3) as the primal minus the dual objective value, becomes nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective. The primal infeasibility certificate will be reported by MOSEK as a solution to the system
\[
\begin{gather*}
A^{T} y+s_{l}^{x}-s_{u}^{x}=0 \\
-y+s_{l}^{c}-s_{u}^{c}=0  \tag{12.6}\\
s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \leq 0
\end{gather*}
\]
such that the objective value is strictly negative
\[
\left(l^{c}\right)^{T}\left(s_{l}^{c}\right)^{*}-\left(u^{c}\right)^{T}\left(s_{u}^{c}\right)^{*}+\left(l^{x}\right)^{T}\left(s_{l}^{x}\right)^{*}-\left(u^{x}\right)^{T}\left(s_{u}^{x}\right)^{*}<0 .
\]

Similarly, the certificate of dual infeasibility is an \(x\) satisfying the requirements of (12.5) such that \(c^{T} x>0\).

\subsection*{12.2 Conic Optimization}

Conic optimization is an extension of linear optimization (see Sec. 12.1) allowing conic domains to be specified for affine expressions. A conic optimization problem to be solved by MOSEK can be written as
\[
\begin{array}{llll}
\operatorname{minimize} & & c^{T} x+c^{f} \\
\text { subject to } & l^{c} & \leq & A x  \tag{12.7}\\
& l^{x} & \leq u^{c}, \\
x & \leq u^{x}, \\
& & & \\
& & & \in \mathcal{D},
\end{array}
\]
where
- \(m\) is the number of constraints.
- \(n\) is the number of decision variables.
- \(x \in \mathbb{R}^{n}\) is a vector of decision variables.
- \(c \in \mathbb{R}^{n}\) is the linear part of the objective function.
- \(c^{f} \in \mathbb{R}\) is a constant term in the objective
- \(A \in \mathbb{R}^{m \times n}\) is the constraint matrix.
- \(l^{c} \in \mathbb{R}^{m}\) is the lower limit on the activity for the constraints.
- \(u^{c} \in \mathbb{R}^{m}\) is the upper limit on the activity for the constraints.
- \(l^{x} \in \mathbb{R}^{n}\) is the lower limit on the activity for the variables.
- \(u^{x} \in \mathbb{R}^{n}\) is the upper limit on the activity for the variables.
is the same as in Sec. 12.1 and moreover:
- \(F \in \mathbb{R}^{k \times n}\) is the affine conic constraint matrix.,
- \(g \in \mathbb{R}^{k}\) is the affine conic constraint constant term vector.,
- \(\mathcal{D}\) is a Cartesian product of conic domains, namely \(\mathcal{D}=\mathcal{D}_{1} \times \cdots \times \mathcal{D}_{p}\), where \(p\) is the number of individual affine conic constraints (ACCs), and each domain is one from Sec. 15.9.
The total dimension of the domain \(\mathcal{D}\) must be equal to \(k\), the number of rows in \(F\) and \(g\). Lower and upper bounds can be infinite, or in other words the corresponding bound may be omitted.

MOSEK supports also the cone of positive semidefinite matrices. In order not to obscure this section with additional notation, that extension is discussed in Sec. 12.3.

\subsection*{12.2.1 Duality for Conic Optimization}

Corresponding to the primal problem (12.7), there is a dual problem
\[
\begin{align*}
& \operatorname{maximize} \quad\left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}-g^{T} \dot{y}+c^{f} \\
& \text { subject to } \\
& \qquad A^{T} y+s_{l}^{x}-s_{u}^{x}+F^{T} \dot{y}=c,  \tag{12.8}\\
& -y+s_{l}^{c}-s_{u}^{c}=0, \\
& s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0 \\
& \dot{y} \in \mathcal{D}^{*},
\end{align*}
\]
where
- \(s_{l}^{c}\) are the dual variables for lower bounds of constraints,
- \(s_{u}^{c}\) are the dual variables for upper bounds of constraints,
- \(s_{l}^{x}\) are the dual variables for lower bounds of variables,
- \(s_{u}^{x}\) are the dual variables for upper bounds of variables,
- \(\dot{y}\) are the dual variables for affine conic constraints,
- the dual domain \(\mathcal{D}^{*}=\mathcal{D}_{1}^{*} \times \cdots \times \mathcal{D}_{p}^{*}\) is a Cartesian product of cones dual to \(\mathcal{D}_{i}\).

One can check that the dual problem of the dual problem is identical to the original primal problem.
If a bound in the primal problem is plus or minus infinity, the corresponding dual variable is fixed at 0 , and we use the convention that the product of the bound value and the corresponding dual variable is 0 . This is equivalent to removing the corresponding dual variable \(\left(s_{l}^{x}\right)_{j}\) from the dual problem. For example:
\[
l_{j}^{x}=-\infty \quad \Rightarrow \quad\left(s_{l}^{x}\right)_{j}=0 \text { and } l_{j}^{x} \cdot\left(s_{l}^{x}\right)_{j}=0
\]

A solution
\[
\left(y, s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x}, \dot{y}\right)
\]
to the dual problem is feasible if it satisfies all the constraints in (12.8). If (12.8) has at least one feasible solution, then (12.8) is (dual) feasible, otherwise the problem is (dual) infeasible.

A solution
\[
\left(x^{*}, y^{*},\left(s_{l}^{c}\right)^{*},\left(s_{u}^{c}\right)^{*},\left(s_{l}^{x}\right)^{*},\left(s_{u}^{x}\right)^{*},(\dot{y})^{*}\right)
\]
is denoted a primal-dual feasible solution, if \(\left(x^{*}\right)\) is a solution to the primal problem (12.7) and \(\left(y^{*},\left(s_{l}^{c}\right)^{*},\left(s_{u}^{c}\right)^{*},\left(s_{l}^{x}\right)^{*},\left(s_{u}^{x}\right)^{*},(\dot{y})^{*}\right)\) is a solution to the corresponding dual problem (12.8). We also define an auxiliary vector
\[
\left(x^{c}\right)^{*}:=A x^{*}
\]
containing the activities of linear constraints.
For a primal-dual feasible solution we define the duality gap as the difference between the primal and the dual objective value,
\[
\begin{align*}
& c^{T} x^{*}+c^{f}-\left\{\left(l^{c}\right)^{T}\left(s_{l}^{c}\right)^{*}-\left(u^{c}\right)^{T}\left(s_{u}^{c}\right)^{*}+\left(l^{x}\right)^{T}\left(s_{l}^{x}\right)^{*}-\left(u^{x}\right)^{T}\left(s_{u}^{x}\right)^{*}-g^{T}(\dot{y})^{*}+c^{f}\right\} \\
& =\sum_{i=0}^{m-1}\left[\left(s_{l}^{c}\right)_{i}^{*}\left(\left(x_{i}^{c}\right)^{*}-l_{i}^{c}\right)+\left(s_{u}^{c}\right)_{i}^{*}\left(u_{i}^{c}-\left(x_{i}^{c}\right)^{*}\right)\right] \\
& +\sum_{j=0}^{n-1}\left[\left(s_{l}^{x}\right)_{j}^{*}\left(x_{j}-l_{j}^{x}\right)+\left(s_{u}^{x}\right)_{j}^{*}\left(u_{j}^{x}-x_{j}^{*}\right)\right]  \tag{12.9}\\
& +\left(\left(()^{*}\right)^{T}\left(F x^{*}+g\right) \geq 0\right.
\end{align*}
\]
where the first relation can be obtained by transposing and multiplying the dual constraints (12.2) by \(x^{*}\) and \(\left(x^{c}\right)^{*}\) respectively, and the second relation comes from the fact that each term in each sum is nonnegative. It follows that the primal objective will always be greater than or equal to the dual objective.

It is well-known that, under some non-degeneracy assumptions that exclude ill-posed cases, a conic optimization problem has an optimal solution if and only if there exist feasible primal-dual solution so that the duality gap is zero, or, equivalently, that the complementarity conditions
\[
\begin{align*}
\left(s_{l}^{c}\right)_{i}^{*}\left(\left(x_{i}^{c}\right)^{*}-l_{i}^{c}\right) & =0, \quad i=0, \ldots, m-1, \\
\left(s_{u}^{c}\right)_{i}^{*}\left(u_{i}^{c}-\left(x_{i}^{c}\right)^{*}\right) & =0, \quad i=0, \ldots, m-1, \\
\left(s_{l}^{x}\right)_{j}^{*}\left(x_{j}^{*}-l_{j}^{x}\right) & =0, \quad j=0, \ldots, n-1,  \tag{12.10}\\
\left(s_{u}^{x}\left(u_{j}^{x}-x_{j}^{*}\right)\right. & =0, \quad j=0, \ldots, n-1, \\
\left((\dot{y})^{*}\right)^{T}\left(F x^{*}+g\right) & =0,
\end{align*}
\]
are satisfied.
If (12.7) has an optimal solution and MOSEK solves the problem successfully, both the primal and dual solution are reported, including a status indicating the exact state of the solution.

\subsection*{12.2.2 Infeasibility for Conic Optimization}

\section*{Primal Infeasible Problems}

If the problem (12.7) is infeasible (has no feasible solution), MOSEK will report a certificate of primal infeasibility: The dual solution reported is the certificate of infeasibility, and the primal solution is undefined.

A certificate of primal infeasibility is a feasible solution to the modified dual problem
\[
\begin{gather*}
\operatorname{maximize} \quad\left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}-g^{T} \dot{y} \\
\text { subject to } \\
A^{T} y+s_{l}^{x}-s_{u}^{x}+F^{T} \dot{y}=0,  \tag{12.11}\\
-y+s_{l}^{c}-s_{u}^{c}=0 \\
s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0 \\
\dot{y} \in \mathcal{D}^{*},
\end{gather*}
\]
such that the objective value is strictly positive, i.e. a solution
\[
\left(y^{*},\left(s_{l}^{c}\right)^{*},\left(s_{u}^{c}\right)^{*},\left(s_{l}^{x}\right)^{*},\left(s_{u}^{x}\right)^{*},(\dot{y})^{*}\right)
\]
to (12.11) so that
\[
\left(l^{c}\right)^{T}\left(s_{l}^{c}\right)^{*}-\left(u^{c}\right)^{T}\left(s_{u}^{c}\right)^{*}+\left(l^{x}\right)^{T}\left(s_{l}^{x}\right)^{*}-\left(u^{x}\right)^{T}\left(s_{u}^{x}\right)^{*}-g^{T} \dot{y}>0 .
\]

Such a solution implies that (12.11) is unbounded, and that (12.7) is infeasible.

\section*{Dual Infeasible Problems}

If the problem (12.8) is infeasible (has no feasible solution), MOSEK will report a certificate of dual infeasibility: The primal solution reported is the certificate of infeasibility, and the dual solution is undefined.

A certificate of dual infeasibility is a feasible solution to the modified primal problem
\[
\begin{array}{llll}
\operatorname{minimize} & & c^{T} x \\
 \tag{12.12}\\
\text { subject to } & \hat{l}^{c} & \leq A x \quad \hat{u}^{c}, \\
& \hat{l}^{x} & \leq x & x \\
& & & F x \in \mathcal{D}
\end{array}
\]
where
\[
\hat{l}_{i}^{c}=\left\{\begin{array}{ll}
0 & \text { if } l_{i}^{c}>-\infty,  \tag{12.13}\\
-\infty & \text { otherwise, }
\end{array}\right\} \quad \text { and } \quad \hat{u}_{i}^{c}:=\left\{\begin{array}{ll}
0 & \text { if } u_{i}^{c}<\infty \\
\infty & \text { otherwise }
\end{array}\right\}
\]
and
\[
\hat{l}_{j}^{x}=\left\{\begin{array}{ll}
0 & \text { if } l_{j}^{x}>-\infty,  \tag{12.14}\\
-\infty & \text { otherwise, }
\end{array}\right\} \quad \text { and } \quad \hat{u}_{j}^{x}:=\left\{\begin{array}{ll}
0 & \text { if } u_{j}^{x}<\infty \\
\infty & \text { otherwise }
\end{array}\right\}
\]
such that
\[
c^{T} x<0
\]

Such a solution implies that (12.12) is unbounded, and that (12.8) is infeasible.
In case that both the primal problem (12.7) and the dual problem (12.8) are infeasible, MOSEK will report only one of the two possible certificates - which one is not defined (MOSEK returns the first certificate found).

\subsection*{12.2.3 Minimalization vs. Maximalization}

When the objective sense of problem (12.7) is maximization, i.e.
\[
\begin{array}{lllll}
\operatorname{maximize} & & c^{T} x+c^{f} \\
\text { subject to } & l^{c} & \leq & A x & \leq u^{c}, \\
& l^{x} & \leq & x & \leq u^{x}, \\
F x+g & \in \mathcal{D},
\end{array}
\]
the objective sense of the dual problem changes to minimization, and the domain of all dual variables changes sign in comparison to (12.2). The dual problem thus takes the form
\[
\begin{array}{lc}
\operatorname{minimize} & \left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}-g^{T} \dot{y}+c^{f} \\
\text { subject to } & A^{T} y+s_{l}^{x}-s_{u}^{x}+F^{T} \dot{y}=c, \\
-y+s_{l}^{c}-s_{u}^{c}=0, \\
s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \leq 0, \\
-\dot{y} \in \mathcal{D}^{*}
\end{array}
\]

This means that the duality gap, defined in (12.9) as the primal minus the dual objective value, becomes nonpositive. It follows that the dual objective will always be greater than or equal to the primal objective. The primal infeasibility certificate will be reported by MOSEK as a solution to the system
\[
\begin{gather*}
A^{T} y+s_{l}^{x}-s_{u}^{x}+F^{T} \dot{y}=0, \\
-y+s_{l}^{c}-s_{u}^{c}=0  \tag{12.15}\\
s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \leq 0 \\
-\dot{y} \in \mathcal{D}^{*}
\end{gather*}
\]
such that the objective value is strictly negative
\[
\left(l^{c}\right)^{T}\left(s_{l}^{c}\right)^{*}-\left(u^{c}\right)^{T}\left(s_{u}^{c}\right)^{*}+\left(l^{x}\right)^{T}\left(s_{l}^{x}\right)^{*}-\left(u^{x}\right)^{T}\left(s_{u}^{x}\right)^{*}-g^{T} \dot{y}<0 .
\]

Similarly, the certificate of dual infeasibility is an \(x\) satisfying the requirements of (12.12) such that \(c^{T} x>0\).

\subsection*{12.3 Semidefinite Optimization}

Semidefinite optimization is an extension of conic optimization (see Sec. 12.2) allowing positive semidefinite matrix variables to be used in addition to the usual scalar variables. All the other parts of the input are defined exactly as in Sec. 12.2, and the discussion from that section applies verbatim to all properties of problems with semidefinite variables. We only briefly indicate how the corresponding formulae should be modified with semidefinite terms.

A semidefinite optimization problem can be written as
\[
\begin{array}{lllc}
\operatorname{minimize} & & c^{T} x+\langle\bar{C}, \bar{X}\rangle+c^{f} \\
\text { subject to } & l^{c} & \leq & A x+\langle\bar{A}, \bar{X}\rangle \\
& l^{x} & \leq & \leq u^{c}, \\
& & & F x+\langle\bar{F}, \bar{X}\rangle+g \\
\bar{X}_{j} & \in u^{x}, \\
& & & \in \mathcal{S}_{+}^{r_{j}}, j=1, \ldots, s
\end{array}
\]
where
- \(m\) is the number of constraints.
- \(n\) is the number of decision variables.
- \(x \in \mathbb{R}^{n}\) is a vector of decision variables.
- \(c \in \mathbb{R}^{n}\) is the linear part of the objective function.
- \(c^{f} \in \mathbb{R}\) is a constant term in the objective
- \(A \in \mathbb{R}^{m \times n}\) is the constraint matrix.
- \(l^{c} \in \mathbb{R}^{m}\) is the lower limit on the activity for the constraints.
- \(u^{c} \in \mathbb{R}^{m}\) is the upper limit on the activity for the constraints.
- \(l^{x} \in \mathbb{R}^{n}\) is the lower limit on the activity for the variables.
- \(u^{x} \in \mathbb{R}^{n}\) is the upper limit on the activity for the variables.
- \(F \in \mathbb{R}^{k \times n}\) is the affine conic constraint matrix.,
- \(g \in \mathbb{R}^{k}\) is the affine conic constraint constant term vector.,
- \(\mathcal{D}\) is a Cartesian product of conic domains, namely \(\mathcal{D}=\mathcal{D}_{1} \times \cdots \times \mathcal{D}_{p}\), where \(p\) is the number of individual affine conic constraints (ACCs), and each domain is one from Sec. 15.9.
is the same as in Sec. 12.2 and moreover:
- there are \(s\) symmetric positive semidefinite variables, the \(j\)-th of which is \(\bar{X}_{j} \in \mathcal{S}_{+}^{r_{j}}\) of dimension \(r_{j}\),
- \(\bar{C}=\left(\bar{C}_{j}\right)_{j=1, \ldots, s}\) is a collection of symmetric coefficient matrices in the objective, with \(\bar{C}_{j} \in \mathcal{S}^{r_{j}}\), and we interpret the notation \(\langle\bar{C}, \bar{X}\rangle\) as a shorthand for
\[
\langle\bar{C}, \bar{X}\rangle:=\sum_{j=1}^{s}\left\langle\bar{C}_{j}, \bar{X}_{j}\right\rangle .
\]
- \(\bar{A}=\left(\bar{A}_{i j}\right)_{i=1, \ldots, m, j=1, \ldots, s}\) is a collection of symmetric coefficient matrices in the constraints, with \(\bar{A}_{i j} \in \mathcal{S}^{r_{j}}\), and we interpret the notation \(\langle\bar{A}, \bar{X}\rangle\) as a shorthand for the vector
\[
\langle\bar{A}, \bar{X}\rangle:=\left(\sum_{j=1}^{s}\left\langle\bar{A}_{i j}, \bar{X}_{j}\right\rangle\right)_{i=1, \ldots, m}
\]
- \(\bar{F}=\left(\bar{F}_{i j}\right)_{i=1, \ldots, k, j=1, \ldots, s}\) is a collection of symmetric coefficient matrices in the affine conic constraints, with \(\bar{F}_{i j} \in \mathcal{S}^{r_{j}}\), and we interpret the notation \(\langle\bar{F}, \bar{X}\rangle\) as a shorthand for the vector
\[
\langle\bar{F}, \bar{X}\rangle:=\left(\sum_{j=1}^{s}\left\langle\bar{F}_{i j}, \bar{X}_{j}\right\rangle\right)_{i=1, \ldots, k}
\]

In each case the matrix inner product between symmetric matrices of the same dimension \(r\) is defined as
\[
\langle U, V\rangle:=\sum_{i=1}^{r} \sum_{j=1}^{r} U_{i j} V_{i j} .
\]

To summarize, above the formulation extends that from Sec. 12.2 by the possibility of including semidefinite terms in the objective, constraints and affine conic constraints.

\section*{Duality}

The definition of the dual problem (12.8) becomes:
\[
\begin{array}{lcl}
\operatorname{maximize} & \left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}-g^{T} \dot{y}+c^{f} & \\
\text { subject to } & A^{T} y+s_{l}^{x}-s_{u}^{x}+F^{T} \dot{y}=c, & \\
-y+s_{l}^{c}-s_{u}^{c}=0, & j=1, \ldots, s, \\
\bar{C}_{j}-\sum_{i=1}^{m} y_{i} \bar{A}_{i j}-\sum_{i=1}^{k} \dot{y}_{i} \bar{F}_{i j}=S_{j}, & \\
s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0, & j=1, \ldots, s .  \tag{12.16}\\
\dot{y} \in \mathcal{D}^{*}, & \bar{S}_{j} \in \mathcal{S}_{+}^{r_{j}}, &
\end{array}
\]

Complementarity conditions (12.10) include the additional relation:
\[
\begin{equation*}
\left\langle\bar{X}_{j}, \bar{S}_{j}\right\rangle=0 \quad j=1, \ldots, s \tag{12.17}
\end{equation*}
\]

\section*{Infeasibility}

A certificate of primal infeasibility (12.11) is now a feasible solution to:
\[
\begin{array}{lcc}
\operatorname{maximize} & \left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}-g^{T} \dot{y} & \\
\text { subject to } & A^{T} y+s_{l}^{x}-s_{u}^{x}+F^{T} \dot{y}=0, & \\
-y+s_{l}^{c}-s_{u}^{c}=0, & j=1, \ldots, s, \\
-\sum_{i=1}^{m} y_{i} \bar{A}_{i j}-\sum_{i=1}^{k} \dot{y}_{i} \bar{F}_{i j}=S_{j}, & \\
s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0, & j=1, \ldots, s .  \tag{12.18}\\
\dot{y} \in \mathcal{D}^{*}, & \bar{S}_{j} \in \mathcal{S}_{+}^{r_{j}}, &
\end{array}
\]
such that the objective value is strictly positive.
Similarly, a dual infeasibility certificate (12.12) is a feasible solution to
\[
\begin{array}{lccc}
\operatorname{minimize} & & c^{T} x+\langle\bar{C}, \bar{X}\rangle \\
\text { subject to } & \hat{l}^{c} & \leq A x+\langle\bar{A}, \bar{X}\rangle & \leq \hat{u}^{c}, \\
& \hat{l}^{x} & \leq \quad x & \leq \hat{u}^{x},  \tag{12.19}\\
& & F x+\langle\bar{F}, \bar{X}\rangle & \in \mathcal{D}, \\
& & & X_{j}
\end{array} \in \mathcal{S}_{+}^{r_{j}}, j=1, \ldots, s
\]
where the modified bounds are as in (12.13) and (12.14) and the objective value is strictly negative.

\subsection*{12.4 Quadratic and Quadratically Constrained Optimization}

A convex quadratic and quadratically constrained optimization problem has the form
\[
\begin{array}{lccc}
\operatorname{minimize} & \frac{1}{2} x^{T} Q^{o} x+c^{T} x+c^{f} &  \tag{12.20}\\
\text { subject to } & l_{k}^{c} \leq \frac{1}{2} x^{T} Q^{k} x+\sum_{j=0}^{n-1} a_{k j} x_{j} & \leq u_{k}^{c}, \quad k=0, \ldots, m-1, \\
& l_{j}^{x} \leq 5 & x_{j} & \leq u_{j}^{x}, \quad j=0, \ldots, n-1,
\end{array}
\]
where all variables and bounds have the same meaning as for linear problems (see Sec. 12.1) and \(Q^{o}\) and all \(Q^{k}\) are symmetric matrices. Moreover, for convexity, \(Q^{o}\) must be a positive semidefinite matrix and \(Q^{k}\) must satisfy
\[
\begin{aligned}
-\infty<l_{k}^{c} & \Rightarrow Q^{k} \text { is negative semidefinite }, \\
u_{k}^{c}<\infty & \Rightarrow Q^{k} \text { is positive semidefinite } \\
-\infty<l_{k}^{c} \leq u_{k}^{c}<\infty & \Rightarrow Q^{k}=0 .
\end{aligned}
\]

The convexity requirement is very important and MOSEK checks whether it is fulfilled.

\subsection*{12.4.1 A Recommendation}

Any convex quadratic optimization problem can be reformulated as a conic quadratic optimization problem, see Modeling Cookbook and [And13]. In fact MOSEK does such conversion internally as a part of the solution process for the following reasons:
- the conic optimizer is numerically more robust than the one for quadratic problems.
- the conic optimizer is usually faster because quadratic cones are simpler than quadratic functions, even though the conic reformulation usually has more constraints and variables than the original quadratic formulation.
- it is easy to dualize the conic formulation if deemed worthwhile potentially leading to (huge) computational savings.

However, instead of relying on the automatic reformulation we recommend to formulate the problem as a conic problem from scratch because:
- it saves the computational overhead of the reformulation including the convexity check. A conic problem is convex by construction and hence no convexity check is needed for conic problems.
- usually the modeler can do a better reformulation than the automatic method because the modeler can exploit the knowledge of the problem at hand.

To summarize we recommend to formulate quadratic problems and in particular quadratically constrained problems directly in conic form.

\subsection*{12.4.2 Duality for Quadratic and Quadratically Constrained Optimization}

The dual problem corresponding to the quadratic and quadratically constrained optimization problem (12.20) is given by
maximize \(\quad\left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c}+\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}+\frac{1}{2} x^{T}\left\{\sum_{k=0}^{m-1} y_{k} Q^{k}-Q^{o}\right\} x+c^{f}\)
subject to
\[
\begin{equation*}
A^{T} y+s_{l}^{x}-s_{u}^{x}+\left\{\sum_{k=0}^{m-1} y_{k} Q^{k}-Q^{o}\right\} x=c \tag{12.21}
\end{equation*}
\]
\[
-y+s_{l}^{c}-s_{u}^{c}=0
\]
\[
s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0
\]

The dual problem is related to the dual problem for linear optimization (see Sec. 12.1.1), but depends on the variable \(x\) which in general can not be eliminated. In the solutions reported by MOSEK, the value of \(x\) is the same for the primal problem (12.20) and the dual problem (12.21).

\subsection*{12.4.3 Infeasibility for Quadratic Optimization}

In case MOSEK finds a problem to be infeasible it reports a certificate of infeasibility. We write them out explicitly for quadratic problems, that is when \(Q^{k}=0\) for all \(k\) and quadratic terms appear only in the objective \(Q^{o}\). In this case the constraints both in the primal and dual problem are linear, and MOSEK produces for them the same infeasibility certificate as for linear problems.

The certificate of primal infeasibility is a solution to the problem (12.4) such that the objective value is strictly positive.

The certificate of dual infeasibility is a solution to the problem (12.5) together with an additional constraint
\[
Q^{o} x=0
\]
such that the objective value is strictly negative.
Below is an outline of the different problem types for quick reference.

\section*{Continuous problem formulations}
- Linear optimization (LO)
\[
\begin{array}{lll}
\operatorname{minimize} & & c^{T} x+c^{f} \\
\text { subject to } & l^{c} \leq & A x \\
& l^{x} \leq u^{c}, \\
& x & \leq u^{x} .
\end{array}
\]
- Conic optimization (CO)

Conic optimization extends linear optimization with affine conic constraints (ACC):
\[

\]
where \(\mathcal{D}\) is a product of domains from Sec. 15.9.

\section*{- Semidefinite optimization (SDO)}

A conic optimization problem can be further extended with semidefinite variables:
\[
\begin{array}{llll}
\operatorname{minimize} & & c^{T} x+\langle\bar{C}, \bar{X}\rangle+c^{f} & \\
\text { subject to } & l^{c} \leq & A x+\langle\bar{A}, \bar{X}\rangle & \leq u^{c}, \\
& l^{x} \leq & x & \leq u^{x}, \\
& & & F x+\langle\bar{F}, \bar{X}\rangle+g \\
\in \mathcal{D}, \\
& & & \in \mathcal{S}_{+},
\end{array}
\]
\(\frac{\text { where }}{\mathcal{D}}\) is a product of domains from Sec. 15.9 and \(\mathcal{S}_{+}\)is a product of PSD cones meaning that \(\bar{X}\) is a sequence of PSD matrix variables.

\section*{- Quadratic and quadratically constrained optimization (QO, QCQO)}

A quadratic problem or quadratically constrained problem has the form
\[
\begin{array}{llll}
\operatorname{minimize} & & \frac{1}{2} x^{T} Q^{o} x+c^{T} x+c^{f} & \\
\text { subject to } & l^{c} \leq & \frac{1}{2} x^{T} Q^{c} x+A x & \leq u^{c} \\
& l^{x} \leq & x & \leq u^{x}
\end{array}
\]

\section*{Mixed-integer extensions}

Coninuous problems can be extended with constraints requiring the mixed-integer optimizer. We outline them briefly here. The continuous part of a mixed-integer problem is formulated according to one of the continuous types above, however only the primal information and solution fields are relevant, there are no dual values and no infeasibility certificates.
- Integer variables. Specifies that a subset of variables take integer values, that is
\[
x_{I} \in \mathbb{Z}
\]
for some index set \(I\). Available for problems of type LO, CO, QO and QCQO.
- Disjunctive constraints. Appends disjunctions of the form
\[
\bigvee_{i=1}^{t} \bigwedge_{j=1}^{s_{i}}\left(D_{i j} x+d_{i j} \in \mathcal{D}_{i j}\right)
\]
ie. a disjunction of conjunctions of linear constraints, where each \(D_{i j} x+d_{i j}\) is an affine expression of the optimization variables and each \(\mathcal{D}_{i j}\) is an affine domain. Available for problems of type LO and CO.

\section*{Chapter 13}

\section*{Optimizers}

The most essential part of MOSEK are the optimizers:
- primal simplex (linear problems),
- dual simplex (linear problems),
- interior-point (linear, quadratic and conic problems),
- mixed-integer (problems with integer variables).

The structure of a successful optimization process is roughly:
- Presolve
1. Elimination: Reduce the size of the problem.
2. Dualizer: Choose whether to solve the primal or the dual form of the problem.
3. Scaling: Scale the problem for better numerical stability.

\section*{- Optimization}
1. Optimize: Solve the problem using selected method.
2. Terminate: Stop the optimization when specific termination criteria have been met.
3. Report: Return the solution or an infeasibility certificate.

The preprocessing stage is transparent to the user, but useful to know about for tuning purposes. The purpose of the preprocessing steps is to make the actual optimization more efficient and robust. We discuss the details of the above steps in the following sections.

\subsection*{13.1 Presolve}

Before an optimizer actually performs the optimization the problem is preprocessed using the so-called presolve. The purpose of the presolve is to
1. remove redundant constraints,
2. eliminate fixed variables,
3. remove linear dependencies,
4. substitute out (implied) free variables, and
5. reduce the size of the optimization problem in general.

After the presolved problem has been optimized the solution is automatically postsolved so that the returned solution is valid for the original problem. Hence, the presolve is completely transparent. For further details about the presolve phase, please see [AA95] and [AGMeszarosX96].

It is possible to fine-tune the behavior of the presolve or to turn it off entirely. If presolve consumes too much time or memory compared to the reduction in problem size gained it may be disabled. This is done by setting the parameter Iparam::PRESOLVE_USE to Presolvemode::OFF.

In the following we describe in more detail the presolve applied to continuous, i.e., linear and conic optimization problems, see Sec. 13.2 and Sec. 13.3. The mixed-integer optimizer, Sec. 13.4, applies similar techniques. The two most time-consuming steps of the presolve for continuous optimization problems are
- the eliminator, and
- the linear dependency check.

Therefore, in some cases it is worthwhile to disable one or both of these.

\section*{Numerical issues in the presolve}

During the presolve the problem is reformulated so that it hopefully solves faster. However, in rare cases the presolved problem may be harder to solve then the original problem. The presolve may also be infeasible although the original problem is not. If it is suspected that presolved problem is much harder to solve than the original, we suggest to first turn the eliminator off by setting the parameter Iparam: :PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0 . If that does not help, then trying to turn entire presolve off may help.

Since all computations are done in finite precision, the presolve employs some tolerances when concluding a variable is fixed or a constraint is redundant. If it happens that MOSEK incorrectly concludes a problem is primal or dual infeasible, then it is worthwhile to try to reduce the parameters Dparam: :PRESOLVE_TOL_X and Dparam::PRESOLVE_TOL_S. However, if reducing the parameters actually helps then this should be taken as an indication that the problem is badly formulated.

\section*{Eliminator}

The purpose of the eliminator is to eliminate free and implied free variables from the problem using substitution. For instance, given the constraints
\[
\begin{aligned}
y & =\sum_{j} x_{j}, \\
y, x & \geq 0,
\end{aligned}
\]
\(y\) is an implied free variable that can be substituted out of the problem, if deemed worthwhile. If the eliminator consumes too much time or memory compared to the reduction in problem size gained it may be disabled. This can be done by setting the parameter Iparam: :PRESOLVE_ELIMINATOR_MAX_NUM_TRIES to 0 . In rare cases the eliminator may cause that the problem becomes much hard to solve.

\section*{Linear dependency checker}

The purpose of the linear dependency check is to remove linear dependencies among the linear equalities. For instance, the three linear equalities
\[
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+0.5 x_{2} & =0.5 \\
0.5 x_{2}+x_{3} & =0.5
\end{aligned}
\]
contain exactly one linear dependency. This implies that one of the constraints can be dropped without changing the set of feasible solutions. Removing linear dependencies is in general a good idea since it reduces the size of the problem. Moreover, the linear dependencies are likely to introduce numerical problems in the optimization phase. It is best practice to build models without linear dependencies, but that is not always easy for the user to control. If the linear dependencies are removed at the modeling stage, the linear dependency check can safely be disabled by setting the parameter Iparam: : PRESOLVE_LINDEP_USE to Onoffkey::OFF.

\section*{Dualizer}

All linear, conic, and convex optimization problems have an equivalent dual problem associated with them. MOSEK has built-in heuristics to determine if it is more efficient to solve the primal or dual problem. The form (primal or dual) is displayed in the MOSEK log and available as an information item from the solver. Should the internal heuristics not choose the most efficient form of the problem it may be worthwhile to set the dualizer manually by setting the parameters:
- Iparam: :INTPNT_SOLVE_FORM: In case of the interior-point optimizer.
- Iparam: :SIM_SOLVE_FORM: In case of the simplex optimizer.

Note that currently only linear and conic (but not semidefinite) problems may be automatically dualized.

\section*{Scaling}

Problems containing data with large and/or small coefficients, say \(1.0 e+9\) or \(1.0 e-7\), are often hard to solve. Significant digits may be truncated in calculations with finite precision, which can result in the optimizer relying on inaccurate data. Since computers work in finite precision, extreme coefficients should be avoided. In general, data around the same order of magnitude is preferred, and we will refer to a problem, satisfying this loose property, as being well-scaled. If the problem is not well scaled, MOSEK will try to scale (multiply) constraints and variables by suitable constants. MOSEK solves the scaled problem to improve the numerical properties.

The scaling process is transparent, i.e. the solution to the original problem is reported. It is important to be aware that the optimizer terminates when the termination criterion is met on the scaled problem, therefore significant primal or dual infeasibilities may occur after unscaling for badly scaled problems. The best solution of this issue is to reformulate the problem, making it better scaled.

By default MOSEK heuristically chooses a suitable scaling. The scaling for interior-point and simplex optimizers can be controlled with the parameters Iparam::INTPNT_SCALING and Iparam:: SIM_SCALING respectively.

\subsection*{13.2 Linear Optimization}

\subsection*{13.2.1 Optimizer Selection}

Two different types of optimizers are available for linear problems: The default is an interior-point method, and the alternative is the simplex method (primal or dual). The optimizer can be selected using the parameter Iparam: :OPTIMIZER.

\section*{The Interior-point or the Simplex Optimizer?}

Given a linear optimization problem, which optimizer is the best: the simplex or the interior-point optimizer? It is impossible to provide a general answer to this question. However, the interior-point optimizer behaves more predictably: it tends to use between 20 and 100 iterations, almost independently of problem size, but cannot perform warm-start. On the other hand the simplex method can take advantage of an initial solution, but is less predictable from cold-start. The interior-point optimizer is used by default.

\section*{The Primal or the Dual Simplex Variant?}

MOSEK provides both a primal and a dual simplex optimizer. Predicting which simplex optimizer is faster is impossible, however, in recent years the dual optimizer has seen several algorithmic and computational improvements, which, in our experience, make it faster on average than the primal version. Still, it depends much on the problem structure and size. Setting the Iparam: :OPTIMIZER parameter to Optimizertype::FREE_SIMPLEX instructs MOSEK to choose one of the simplex variants automatically.

To summarize, if you want to know which optimizer is faster for a given problem type, it is best to try all the options.

\subsection*{13.2.2 The Interior-point Optimizer}

The purpose of this section is to provide information about the algorithm employed in the MOSEK interior-point optimizer for linear problems and about its termination criteria.

\section*{The homogeneous primal-dual problem}

In order to keep the discussion simple it is assumed that MOSEK solves linear optimization problems of standard form
\[
\begin{array}{lc}
\operatorname{minimize} & c^{T} x  \tag{13.1}\\
\text { subject to } & A x \\
& x \geq 0
\end{array}
\]

This is in fact what happens inside MOSEK; for efficiency reasons MOSEK converts the problem to standard form before solving, then converts it back to the input form when reporting the solution.

Since it is not known beforehand whether problem (13.1) has an optimal solution, is primal infeasible or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason why MOSEK solves the so-called homogeneous model
\[
\begin{align*}
A x-b \tau & =0, \\
A^{T} y+s-c \tau & =0, \\
-c^{T} x+b^{T} y-\kappa & =0,  \tag{13.2}\\
x, s, \tau, \kappa & \geq 0,
\end{align*}
\]
where \(y\) and \(s\) correspond to the dual variables in (13.1), and \(\tau\) and \(\kappa\) are two additional scalar variables. Note that the homogeneous model (13.2) always has solution since
\[
(x, y, s, \tau, \kappa)=(0,0,0,0,0)
\]
is a solution, although not a very interesting one. Any solution
\[
\left(x^{*}, y^{*}, s^{*}, \tau^{*}, \kappa^{*}\right)
\]
to the homogeneous model (13.2) satisfies
\[
x_{j}^{*} s_{j}^{*}=0 \text { and } \tau^{*} \kappa^{*}=0 .
\]

Moreover, there is always a solution that has the property \(\tau^{*}+\kappa^{*}>0\).
First, assume that \(\tau^{*}>0\). It follows that
\[
\begin{aligned}
A \frac{x^{*}}{\tau^{*}} & =b, \\
A^{T} \frac{y^{*}}{\tau^{*}}+\frac{s^{*}}{\tau^{*}} & =c, \\
-c^{T} \frac{x^{*}}{\tau^{*}}+b^{T} \frac{y^{*}}{\tau^{*}} & =0, \\
x^{*}, s^{*}, \tau^{*}, \kappa^{*} & \geq 0 .
\end{aligned}
\]

This shows that \(\frac{x^{*}}{\tau^{*}}\) is a primal optimal solution and \(\left(\frac{y^{*}}{\tau^{*}}, \frac{s^{*}}{\tau *}\right)\) is a dual optimal solution; this is reported as the optimal interior-point solution since
\[
(x, y, s)=\left\{\frac{x^{*}}{\tau^{*}}, \frac{y^{*}}{\tau^{*}}, \frac{s^{*}}{\tau^{*}}\right\}
\]
is a primal-dual optimal solution (see Sec. 12.1 for the mathematical background on duality and optimality).

On other hand, if \(\kappa^{*}>0\) then
\[
\begin{aligned}
A x^{*} & =0 \\
A^{T} y^{*}+s^{*} & =0 \\
-c^{T} x^{*}+b^{T} y^{*} & =\kappa^{*}, \\
x^{*}, s^{*}, \tau^{*}, \kappa^{*} & \geq 0 .
\end{aligned}
\]

This implies that at least one of
\[
\begin{equation*}
c^{T} x^{*}<0 \tag{13.3}
\end{equation*}
\]
or
\[
\begin{equation*}
b^{T} y^{*}>0 \tag{13.4}
\end{equation*}
\]
is satisfied. If (13.3) is satisfied then \(x^{*}\) is a certificate of dual infeasibility, whereas if (13.4) is satisfied then \(y^{*}\) is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required for a solution to the original problem is obtained. A solution to the homogeneous model can be computed using a primal-dual interior-point algorithm [And09].

\section*{Interior-point Termination Criterion}

For efficiency reasons it is not practical to solve the homogeneous model exactly. Hence, an exact optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion has to be employed.

In the \(k\)-th iteration of the interior-point algorithm a trial solution
\[
\left(x^{k}, y^{k}, s^{k}, \tau^{k}, \kappa^{k}\right)
\]
to homogeneous model is generated, where
\[
x^{k}, s^{k}, \tau^{k}, \kappa^{k}>0
\]

\section*{Optimal case}

Whenever the trial solution satisfies the criterion
\[
\begin{align*}
\left\|A \frac{x^{k}}{\tau^{k}}-b\right\|_{\infty} & \leq \epsilon_{p}\left(1+\|b\|_{\infty}\right),  \tag{13.5}\\
\left\|A^{T} \frac{y^{k}}{\tau^{k}}+\frac{s^{k}}{\tau^{k}}-c\right\|_{\infty} & \leq \epsilon_{d}\left(1+\|c\|_{\infty}\right), \text { and } \\
\min \left(\frac{\left(x^{k}\right)^{T} s^{k}}{\left(\tau^{k}\right)^{2}},\left|\frac{c^{T} x^{k}}{\tau^{k}}-\frac{b^{T} y^{k}}{\tau^{k}}\right|\right) & \leq \epsilon_{g} \max \left(1, \frac{\min \left(\left|c^{T} x^{k}\right|| | b^{T} y^{k} \mid\right)}{\tau^{k}}\right),
\end{align*}
\]
the interior-point optimizer is terminated and
\[
\frac{\left(x^{k}, y^{k}, s^{k}\right)}{\tau^{k}}
\]
is reported as the primal-dual optimal solution. The interpretation of (13.5) is that the optimizer is terminated if
- \(\frac{x^{k}}{\tau^{k}}\) is approximately primal feasible,
- \(\left\{\frac{y^{k}}{\tau^{k}}, \frac{s^{k}}{\tau^{k}}\right\}\) is approximately dual feasible, and
- the duality gap is almost zero.

\section*{Dual infeasibility certificate}

On the other hand, if the trial solution satisfies
\[
-\epsilon_{i} c^{T} x^{k}>\frac{\|c\|_{\infty}}{\max \left(1,\|b\|_{\infty}\right)}\left\|A x^{k}\right\|_{\infty}
\]
then the problem is declared dual infeasible and \(x^{k}\) is reported as a certificate of dual infeasibility. The motivation for this stopping criterion is as follows: First assume that \(\left\|A x^{k}\right\|_{\infty}=0\); then \(x^{k}\) is an exact certificate of dual infeasibility. Next assume that this is not the case, i.e.
\[
\left\|A x^{k}\right\|_{\infty}>0
\]
and define
\[
\bar{x}:=\epsilon_{i} \frac{\max \left(1,\|b\|_{\infty}\right)}{\left\|A x^{k}\right\|_{\infty}\|c\|_{\infty}} x^{k}
\]

It is easy to verify that
\[
\|A \bar{x}\|_{\infty}=\epsilon_{i} \frac{\max \left(1,\|b\|_{\infty}\right)}{\|c\|_{\infty}} \text { and }-c^{T} \bar{x}>1
\]
which shows \(\bar{x}\) is an approximate certificate of dual infeasibility, where \(\varepsilon_{i}\) controls the quality of the approximation. A smaller value means a better approximation.

\section*{Primal infeasibility certificate}

Finally, if
\[
\epsilon_{i} b^{T} y^{k}>\frac{\|b\|_{\infty}}{\max \left(1,\|c\|_{\infty}\right)}\left\|A^{T} y^{k}+s^{k}\right\|_{\infty}
\]
then \(y^{k}\) is reported as a certificate of primal infeasibility.

\section*{Adjusting optimality criteria}

It is possible to adjust the tolerances \(\varepsilon_{p}, \varepsilon_{d}, \varepsilon_{g}\) and \(\varepsilon_{i}\) using parameters; see table for details.
Table 13.1: Parameters employed in termination criterion
\begin{tabular}{|l|l|}
\hline ToleranceParameter & name \\
\hline\(\varepsilon_{p}\) & Dparam: \(:\) INTPNT_TOL_PFEAS \\
\hline\(\varepsilon_{d}\) & Dparam: \(:\) INTPNT_TOL_DFEAS \\
\hline\(\varepsilon_{g}\) & Dparam: \(:\) INTPNT_TOL_REL_GAP \\
\hline\(\varepsilon_{i}\) & Dparam: \(:\) INTPNT_TOL_INFEAS \\
\hline
\end{tabular}

The default values of the termination tolerances are chosen such that for a majority of problems appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually is not worthwhile. However, an inspection of (13.5) reveals that the quality of the solution depends on \(\|b\|_{\infty}\) and \(\|c\|_{\infty}\); the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most cases all the tolerances, \(\varepsilon_{p}, \varepsilon_{d}, \varepsilon_{g}\) and \(\varepsilon_{i}\), have to be relaxed together to achieve an effect.

The basis identification discussed in Sec. 13.2.2 requires an optimal solution to work well; hence basis identification should be turned off if the termination criterion is relaxed.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

\section*{Basis Identification}

An interior-point optimizer does not return an optimal basic solution unless the problem has a unique primal and dual optimal solution. Therefore, the interior-point optimizer has an optional post-processing step that computes an optimal basic solution starting from the optimal interior-point solution. More information about the basis identification procedure may be found in [AY96]. In the following we provide an overall idea of the procedure.

There are some cases in which a basic solution could be more valuable:
- a basic solution is often more accurate than an interior-point solution,
- a basic solution can be used to warm-start the simplex algorithm in case of reoptimization,
- a basic solution is in general more sparse, i.e. more variables are fixed to zero. This is particularly appealing when solving continuous relaxations of mixed integer problems, as well as in all applications in which sparser solutions are preferred.

To illustrate how the basis identification routine works, we use the following trivial example:
\[
\begin{array}{lc}
\operatorname{minimize} & x+y \\
\text { subject to } & x+y=1, \\
& x, y \geq 0 .
\end{array}
\]

It is easy to see that all feasible solutions are also optimal. In particular, there are two basic solutions, namely
\[
\begin{aligned}
& \left(x_{1}^{*}, y_{1}^{*}\right)=(1,0), \\
& \left(x_{2}^{*}, y_{2}^{*}\right)=(0,1) .
\end{aligned}
\]

The interior point algorithm will actually converge to the center of the optimal set, i.e. to \(\left(x^{*}, y^{*}\right)=\) \((1 / 2,1 / 2)\) (to see this in MOSEK deactivate Presolve).

In practice, when the algorithm gets close to the optimal solution, it is possible to construct in polynomial time an initial basis for the simplex algorithm from the current interior point solution. This basis is used to warm-start the simplex algorithm that will provide the optimal basic solution. In most cases the constructed basis is optimal, or very few iterations are required by the simplex algorithm to make it optimal and hence the final clean-up phase be short. However, for some cases of ill-conditioned problems the additional simplex clean up phase may take of lot a time.

By default MOSEK performs a basis identification. However, if a basic solution is not needed, the basis identification procedure can be turned off. The parameters
- Iparam: : INTPNT_BASIS,
- Iparam: : \(B I_{-}\)IGNORE_MAX_ITER, and
- Iparam: : BI_IGNORE_NUM_ERROR
control when basis identification is performed.
The type of simplex algorithm to be used (primal/dual) can be tuned with the parameter Iparam::BI_CLEAN_OPTIMIZER, and the maximum number of iterations can be set with Iparam:: BI_MAX_ITERATIONS.

Finally, it should be mentioned that there is no guarantee on which basic solution will be returned.

\section*{The Interior-point Log}

Below is a typical log output from the interior-point optimizer:
```

Optimizer - threads : 1
Optimizer - solved problem : the dual
Optimizer - Constraints : 2
Optimizer - Cones : 0
Optimizer - Scalar variables : 6 conic : 0
Optimizer - Semi-definite variables: 0
Factor - setup time : 0.00
Factor _ ML order time : 0.00

```

```

Factor - dense dim. : 0 flops : 7.
400e+001

```

```

TIME
0 1.0e+000 8.6e+000 6.1e+000 1.00e+000 0.000000000e+000 -2.208000000e+003 1.
4e+000 0.00
1 1.1e+000 2.5e+000 1.6e-001 0.00e+000 -7.901380925e+003-7.394611417e+003 2.
S + 000 0.00
2 1.4e-001 3.4e-001 2.1e-002 8.36e-001 -8.113031650e+003 -8.055866001e+003 3.3e-
\hookrightarrow001 0.00
3 2.4e-002 5.8e-002 3.6e-003 1.27e+000 -7.777530698e+003 -7.766471080e+003 5.7e-
<002 0.01

```
(continues on next page)
```

4 1.3e-004 3.2e-004 2.0e-005 1.08e+000 -7.668323435e+003 -7.668207177e+003 3.2e-
@004 0.01
5 1.3e-008 3.2e-008 2.0e-009 1.00e+000 -7.668000027e+003 -7.668000015e+003 3.2e-
@008 0.01
6 1.3e-012 3.2e-012 2.0e-013 1.00e+000 -7.667999994e+003 -7.667999994e+003 3.2e-
๑012 0.01

```

The first line displays the number of threads used by the optimizer and the second line indicates if the optimizer chose to solve the primal or dual problem (see Iparam: :INTPNT_SOLVE_FORM). The next lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.2.2 the columns of the iteration log have the following meaning:
- ITE: Iteration index \(k\).
- PFEAS: \(\left\|A x^{k}-b \tau^{k}\right\|_{\infty}\). The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- DFEAS: \(\left\|A^{T} y^{k}+s^{k}-c \tau^{k}\right\|_{\infty}\). The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- GFEAS: \(\left|-c^{T} x^{k}+b^{T} y^{k}-\kappa^{k}\right|\). The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges to -1 if that is not the case.
- POBJ: \(c^{T} x^{k} / \tau^{k}\). An estimate for the primal objective value.
- DOBJ: \(b^{T} y^{k} / \tau^{k}\). An estimate for the dual objective value.
- MU: \(\frac{\left(x^{k}\right)^{T} s^{k}+\tau^{k} \kappa^{k}}{n+1}\). The numbers in this column should always converge to zero.
- TIME: Time spent since the optimization started.

\subsection*{13.2.3 The Simplex Optimizer}

An alternative to the interior-point optimizer is the simplex optimizer. The simplex optimizer uses a different method that allows exploiting an initial guess for the optimal solution to reduce the solution time. Depending on the problem it may be faster or slower to use an initial guess; see Sec. 13.2.1 for a discussion. MOSEK provides both a primal and a dual variant of the simplex optimizer.

\section*{Simplex Termination Criterion}

The simplex optimizer terminates when it finds an optimal basic solution or an infeasibility certificate. A basic solution is optimal when it is primal and dual feasible; see Sec. 12.1 for a definition of the primal and dual problem. Due to the fact that computations are performed in finite precision MOSEK allows violations of primal and dual feasibility within certain tolerances. The user can control the allowed primal and dual tolerances with the parameters Dparam: :BASIS_TOL_X and Dparam::BASIS_TOL_S.

Setting the parameter Iparam::OPTIMIZER to Optimizertype::FREE_SIMPLEX instructs MOSEK to select automatically between the primal and the dual simplex optimizers. Hence, MOSEK tries to choose the best optimizer for the given problem and the available solution. The same parameter can also be used to force one of the variants.

\section*{Starting From an Existing Solution}

When using the simplex optimizer it may be possible to reuse an existing solution and thereby reduce the solution time significantly. When a simplex optimizer starts from an existing solution it is said to perform a warm-start. If the user is solving a sequence of optimization problems by solving the problem, making modifications, and solving again, MOSEK will warm-start automatically.

By default MOSEK uses presolve when performing a warm-start. If the optimizer only needs very few iterations to find the optimal solution it may be better to turn off the presolve.

\section*{Numerical Difficulties in the Simplex Optimizers}

Though MOSEK is designed to minimize numerical instability, completely avoiding it is impossible when working in finite precision. MOSEK treats a "numerically unexpected behavior" event inside the optimizer as a set-back. The user can define how many set-backs the optimizer accepts; if that number is exceeded, the optimization will be aborted. Set-backs are a way to escape long sequences where the optimizer tries to recover from an unstable situation.

Examples of set-backs are: repeated singularities when factorizing the basis matrix, repeated loss of feasibility, degeneracy problems (no progress in objective) and other events indicating numerical difficulties. If the simplex optimizer encounters a lot of set-backs the problem is usually badly scaled; in such a situation try to reformulate it into a better scaled problem. Then, if a lot of set-backs still occur, trying one or more of the following suggestions may be worthwhile:
- Raise tolerances for allowed primal or dual feasibility: increase the value of
- Dparam::BASIS_TOL_X, and
- Dparam::BASIS_TOL_S.
- Raise or lower pivot tolerance: Change the Dparam: :SIMPLEX_ABS_TOL_PIV parameter.
- Switch optimizer: Try another optimizer.
- Switch off crash: Set both Iparam::SIM_PRIMAL_CRASH and Iparam::SIM_DUAL_CRASH to 0.
- Experiment with other pricing strategies: Try different values for the parameters
- Iparam::SIM_PRIMAL_SELECTION and
- Iparam::SIM_DUAL_SELECTION.
- If you are using warm-starts, in rare cases switching off this feature may improve stability. This is controlled by the Iparam: :SIM_HOTSTART parameter.
- Increase maximum number of set-backs allowed controlled by Iparam: : SIM_MAX_NUM_SETBACKS.
- If the problem repeatedly becomes infeasible try switching off the special degeneracy handling. See the parameter Iparam: :SIM_DEGEN for details.

\section*{The Simplex Log}

Below is a typical log output from the simplex optimizer:

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|r|}{(continued from previous page)} \\
\hline \(\rightarrow\) & 0.21 & 0.22 & & & & & \\
\hline 3000 & 0.67 & & \(0.00 \mathrm{e}+00\) & NA & \(6.0509727712 \mathrm{e}+03\) & NA & \(\sqcup\) \\
\hline \(\rightarrow\) & 0.29 & 0.31 & & & & & \\
\hline 4000 & 0.52 & & \(0.00 \mathrm{e}+00\) & NA & \(5.5771203906 \mathrm{e}+03\) & NA & \(\sqcup\) \\
\hline \(\rightarrow\) & 0.38 & 0.39 & & & & & \\
\hline 4533 & 0.49 & & \(0.00 \mathrm{e}+00\) & NA & \(5.5018458883 \mathrm{e}+03\) & NA & \(\sqcup\) \\
\hline \(\rightarrow\) & 0.42 & 0.44 & & & & & \\
\hline
\end{tabular}

The first lines summarize the problem the optimizer is solving. This is followed by the iteration log, with the following meaning:
- ITER: Number of iterations.
- DEGITER (\%): Ratio of degenerate iterations.
- PFEAS: Primal feasibility measure reported by the simplex optimizer. The numbers should be 0 if the problem is primal feasible (when the primal variant is used).
- DFEAS: Dual feasibility measure reported by the simplex optimizer. The number should be 0 if the problem is dual feasible (when the dual variant is used).
- POBJ: An estimate for the primal objective value (when the primal variant is used).
- DOBJ: An estimate for the dual objective value (when the dual variant is used).
- TIME: Time spent since this instance of the simplex optimizer was invoked (in seconds).
- TOTTIME: Time spent since optimization started (in seconds).

\subsection*{13.3 Conic Optimization - Interior-point optimizer}

For conic optimization problems only an interior-point type optimizer is available. The same optimizer is used for quadratic optimization problems which are internally reformulated to conic form.

\subsection*{13.3.1 The homogeneous primal-dual problem}

The interior-point optimizer is an implementation of the so-called homogeneous and self-dual algorithm. For a detailed description of the algorithm, please see [ART03]. In order to keep our discussion simple we will assume that MOSEK solves a conic optimization problem of the form:
\[
\begin{array}{lc}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x  \tag{13.6}\\
& x \in \mathcal{K}
\end{array}=b,
\]
where \(K\) is a convex cone. The corresponding dual problem is
\[
\begin{array}{lc}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & A^{T} y+s=c  \tag{13.7}\\
& s \in \mathcal{K}^{*}
\end{array}
\]
where \(\mathcal{K}^{*}\) is the dual cone of \(\mathcal{K}\). See Sec. 12.2 for definitions.
Since it is not known beforehand whether problem (13.6) has an optimal solution, is primal infeasible or is dual infeasible, the optimization algorithm must deal with all three situations. This is the reason that MOSEK solves the so-called homogeneous model
\[
\begin{align*}
A x-b \tau & =0, \\
A^{T} y+s-c \tau & =0, \\
-c^{T} x+b^{T} y-\kappa & =0,  \tag{13.8}\\
x & \in \mathcal{K}, \\
s & \in \mathcal{K}^{*}, \\
\tau, \kappa & \geq 0,
\end{align*}
\]
where \(y\) and \(s\) correspond to the dual variables in (13.6), and \(\tau\) and \(\kappa\) are two additional scalar variables. Note that the homogeneous model (13.8) always has a solution since
\[
(x, y, s, \tau, \kappa)=(0,0,0,0,0)
\]
is a solution, although not a very interesting one. Any solution
\[
\left(x^{*}, y^{*}, s^{*}, \tau^{*}, \kappa^{*}\right)
\]
to the homogeneous model (13.8) satisfies
\[
\left(x^{*}\right)^{T} s^{*}+\tau^{*} \kappa^{*}=0
\]
i.e. complementarity. Observe that \(x^{*} \in \mathcal{K}\) and \(s^{*} \in \mathcal{K}^{*}\) implies
\[
\left(x^{*}\right)^{T} s^{*} \geq 0
\]
and therefore
\[
\tau^{*} \kappa^{*}=0
\]
since \(\tau^{*}, \kappa^{*} \geq 0\). Hence, at least one of \(\tau^{*}\) and \(\kappa^{*}\) is zero.
First, assume that \(\tau^{*}>0\) and hence \(\kappa^{*}=0\). It follows that
\[
\begin{aligned}
A \frac{x^{*}}{\tau^{*}} & =b, \\
A^{T} \frac{y^{*}}{\tau^{*}}+\frac{s^{*}}{\tau^{*}} & =c, \\
c^{T} \frac{x^{*}}{\tau^{*}}+b^{T} \frac{y^{*}}{\tau^{*}} & =0, \\
x^{*} / \tau^{*} & \in \mathcal{K}, \\
s^{*} / \tau^{*} & \in \mathcal{K}^{*} .
\end{aligned}
\]

This shows that \(\frac{x^{*}}{\tau^{*}}\) is a primal optimal solution and \(\left(\frac{y^{*}}{\tau^{*}}, \frac{s^{*}}{\tau^{*}}\right)\) is a dual optimal solution; this is reported as the optimal interior-point solution since
\[
(x, y, s)=\left(\frac{x^{*}}{\tau^{*}}, \frac{y^{*}}{\tau^{*}}, \frac{s^{*}}{\tau^{*}}\right)
\]
is a primal-dual optimal solution.
On other hand, if \(\kappa^{*}>0\) then
\[
\begin{aligned}
A x^{*} & =0 \\
A^{T} y^{*}+s^{*} & =0, \\
-c^{T} x^{*}+b^{T} y^{*} & =\kappa^{*}, \\
x^{*} & \in \mathcal{K}, \\
s^{*} & \in \mathcal{K}^{*} .
\end{aligned}
\]

This implies that at least one of
\[
\begin{equation*}
c^{T} x^{*}<0 \tag{13.9}
\end{equation*}
\]
or
\[
\begin{equation*}
b^{T} y^{*}>0 \tag{13.10}
\end{equation*}
\]
holds. If (13.9) is satisfied, then \(x^{*}\) is a certificate of dual infeasibility, whereas if (13.10) holds then \(y^{*}\) is a certificate of primal infeasibility.

In summary, by computing an appropriate solution to the homogeneous model, all information required for a solution to the original problem is obtained. A solution to the homogeneous model can be computed using a primal-dual interior-point algorithm [And09].

\subsection*{13.3.2 Interior-point Termination Criterion}

Since computations are performed in finite precision, and for efficiency reasons, it is not possible to solve the homogeneous model exactly in general. Hence, an exact optimal solution or an exact infeasibility certificate cannot be computed and a reasonable termination criterion has to be employed.

In every iteration \(k\) of the interior-point algorithm a trial solution
\[
\left(x^{k}, y^{k}, s^{k}, \tau^{k}, \kappa^{k}\right)
\]
to the homogeneous model is generated, where
\[
x^{k} \in \mathcal{K}, s^{k} \in \mathcal{K}^{*}, \tau^{k}, \kappa^{k}>0 .
\]

Therefore, it is possible to compute the values:
\[
\begin{aligned}
\rho_{p}^{k} & =\arg \min _{\rho}\left\{\rho \left\lvert\,\left\|A \frac{x^{k}}{\tau^{k}}-b\right\|_{\infty} \leq \rho \varepsilon_{p}\left(1+\|b\|_{\infty}\right)\right.\right\}, \\
\rho_{d}^{k} & =\arg \min _{\rho}\left\{\rho \left\lvert\,\left\|A^{T} \frac{y^{k}}{\tau^{k}}+\frac{s^{k}}{\tau^{k}}-c\right\|_{\infty} \leq \rho \varepsilon_{d}\left(1+\|c\|_{\infty}\right)\right.\right\}, \\
\rho_{g}^{k} & =\arg \min _{\rho}\left\{\rho \left\lvert\,\left(\frac{\left(x^{k}\right)^{T} s^{k}}{\left(\tau^{k}\right)^{2}},\left|\frac{c^{T} x^{k}}{\tau^{k}}-\frac{b^{T} y^{k}}{\tau^{k}}\right|\right) \leq \rho \varepsilon_{g} \max \left(1, \frac{\min \left(\left|c^{T} x^{k}\right|,\left|b^{T} y^{k}\right|\right)}{\tau^{k}}\right)\right.\right\}, \\
\rho_{p i}^{k} & =\arg \min _{\rho}\left\{\rho \mid\left\|A^{T} y^{k}+s^{k}\right\|_{\infty} \leq \rho \varepsilon_{i} b^{T} y^{k}, b^{T} y^{k}>0\right\} \text { and } \\
\rho_{d i}^{k} & =\arg \min _{\rho}\left\{\rho \mid\left\|A x^{k}\right\|_{\infty} \leq-\rho \varepsilon_{i} c^{T} x^{k}, c^{T} x^{k}<0\right\} .
\end{aligned}
\]

Note \(\varepsilon_{p}, \varepsilon_{d}, \varepsilon_{g}\) and \(\varepsilon_{i}\) are nonnegative user specified tolerances.

\section*{Optimal Case}

Observe \(\rho_{p}^{k}\) measures how far \(x^{k} / \tau^{k}\) is from being a good approximate primal feasible solution. Indeed if \(\rho_{p}^{k} \leq 1\), then
\[
\begin{equation*}
\left\|A \frac{x^{k}}{\tau^{k}}-b\right\|_{\infty} \leq \varepsilon_{p}\left(1+\|b\|_{\infty}\right) \tag{13.11}
\end{equation*}
\]

This shows the violations in the primal equality constraints for the solution \(x^{k} / \tau^{k}\) is small compared to the size of \(b\) given \(\varepsilon_{p}\) is small.

Similarly, if \(\rho_{d}^{k} \leq 1\), then \(\left(y^{k}, s^{k}\right) / \tau^{k}\) is an approximate dual feasible solution. If in addition \(\rho_{g} \leq 1\), then the solution \(\left(x^{k}, y^{k}, s^{k}\right) / \tau^{k}\) is approximate optimal because the associated primal and dual objective values are almost identical.

In other words if \(\max \left(\rho_{p}^{k}, \rho_{d}^{k}, \rho_{g}^{k}\right) \leq 1\), then
\[
\frac{\left(x^{k}, y^{k}, s^{k}\right)}{\tau^{k}}
\]
is an approximate optimal solution.

\section*{Dual Infeasibility Certificate}

Next assume that \(\rho_{d i}^{k} \leq 1\) and hence
\[
\left\|A x^{k}\right\|_{\infty} \leq-\varepsilon_{i} c^{T} x^{k} \text { and }-c^{T} x^{k}>0
\]
holds. Now in this case the problem is declared dual infeasible and \(x^{k}\) is reported as a certificate of dual infeasibility. The motivation for this stopping criterion is as follows. Let
\[
\bar{x}:=\frac{x^{k}}{-c^{T} x^{k}}
\]
and it is easy to verify that
\[
\|A \bar{x}\|_{\infty} \leq \varepsilon_{i} \text { and } c^{T} \bar{x}=-1
\]
which shows \(\bar{x}\) is an approximate certificate of dual infeasibility, where \(\varepsilon_{i}\) controls the quality of the approximation.

\section*{Primal Infeasiblity Certificate}

Next assume that \(\rho_{p i}^{k} \leq 1\) and hence
\[
\left\|A^{T} y^{k}+s^{k}\right\|_{\infty} \leq \varepsilon_{i} b^{T} y^{k} \text { and } b^{T} y^{k}>0
\]
holds. Now in this case the problem is declared primal infeasible and \(\left(y^{k}, s^{k}\right)\) is reported as a certificate of primal infeasibility. The motivation for this stopping criterion is as follows. Let
\[
\bar{y}:=\frac{y^{k}}{b^{T} y^{k}} \text { and } \bar{s}:=\frac{s^{k}}{b^{T} y^{k}}
\]
and it is easy to verify that
\[
\left\|A^{T} \bar{y}+\bar{s}\right\|_{\infty} \leq \varepsilon_{i} \text { and } b^{T} \bar{y}=1
\]
which shows \(\left(y^{k}, s^{k}\right)\) is an approximate certificate of dual infeasibility, where \(\varepsilon_{i}\) controls the quality of the approximation.

\subsection*{13.3.3 Adjusting optimality criteria}

It is possible to adjust the tolerances \(\varepsilon_{p}, \varepsilon_{d}, \varepsilon_{g}\) and \(\varepsilon_{i}\) using parameters; see the next table for details. Note that although this section discusses the conic optimizer, if the problem was originally input as a quadratic or quadratically constrained optimization problem then the parameter names that apply are those from the third column (with infix QO instead of CO).

Table 13.2: Parameters employed in termination criterion
\begin{tabular}{|l|l|l|}
\hline ToleranceParameter & Name (for conic problems) & Name (for quadratic problems) \\
\hline\(\varepsilon_{p}\) & Dparam: \(:\) INTPNT_CO_TOL_PFEAS & Dparam: \(:\) INTPNT_QO_TOL_PFEAS \\
\hline\(\varepsilon_{d}\) & Dparam: \(: I N T P N T_{-} C O_{-} T O L_{-} D F E A S\) & Dparam: \(:\) INTPNT_QO_TOL_DFEAS \\
\hline\(\varepsilon_{g}\) & Dparam: \(: I N T P N T_{-} C O_{-} T O L_{-} R E L_{-} G A P\) & Dparam: \(: I N T P N T_{-} Q O_{-} T O L_{-} R E L_{-} G A P\) \\
\hline\(\varepsilon_{i}\) & Dparam: \(: I N T P N T_{-} C O_{-} T O L_{-} I N F E A S\) & Dparam: \(: I N T P N T_{-} Q O_{-} T O L_{-} I N F E A S\) \\
\hline
\end{tabular}

The default values of the termination tolerances are chosen such that for a majority of problems appearing in practice it is not possible to achieve much better accuracy. Therefore, tightening the tolerances usually is not worthwhile. However, an inspection of (13.11) reveals that the quality of the solution depends on \(\|b\|_{\infty}\) and \(\|c\|_{\infty}\); the smaller the norms are, the better the solution accuracy.

The interior-point method as implemented by MOSEK will converge toward optimality and primal and dual feasibility at the same rate [And09]. This means that if the optimizer is stopped prematurely then it is very unlikely that either the primal or dual solution is feasible. Another consequence is that in most cases all the tolerances, \(\varepsilon_{p}, \varepsilon_{d}, \varepsilon_{g}\) and \(\varepsilon_{i}\), have to be relaxed together to achieve an effect.

If the optimizer terminates without locating a solution that satisfies the termination criteria, for example because of a stall or other numerical issues, then it will check if the solution found up to that point satisfies the same criteria with all tolerances multiplied by the value of Dparam: :INTPNT_CO_TOL_NEAR_REL. If this is the case, the solution is still declared as optimal.

To conclude the discussion in this section, relaxing the termination criterion is usually not worthwhile.

\subsection*{13.3.4 The Interior-point Log}

Below is a typical log output from the interior-point optimizer:
\begin{tabular}{|c|c|c|c|c|}
\hline Optimizer & - threads & : 20 & & \\
\hline Optimizer & - solved problem & : the primal & & \\
\hline Optimizer & - Constraints & : 1 & & \\
\hline Optimizer & - Cones & : 2 & & \\
\hline Optimizer & - Scalar variables & : 6 & conic & 6 \\
\hline Optimizer & - Semi-definite variables: & : 0 & scalarized & : 0 \\
\hline Factor & - setup time & : 0.00 & dense det. time & \(: 0.00\) \\
\hline Factor & - ML order time & : 0.00 & GP order time & \(: 0.00\) \\
\hline
\end{tabular}
(continues on next page)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{(continued from previous page)} \\
\hline Factor & \multicolumn{3}{|l|}{- nonzeros before factor : 1} & \multicolumn{2}{|r|}{after factor} & \\
\hline Factor
\[
\leftrightarrow 70 \mathrm{e}+01
\] & - dense di & & : 0 & & & : 1. \\
\hline \begin{tabular}{l}
ITE PFEAS \\
\(\leftrightarrow\) TIME
\end{tabular} & DFEAS & GFEAS & PRSTATUS & POBJ & DOBJ & MU \\
\hline \[
\begin{array}{ll}
0 & 1.0 \mathrm{e}+00 \\
\rightarrow & 0.01
\end{array}
\] & \(2.9 \mathrm{e}-01\) & \(3.4 \mathrm{e}+00\) & \(0.00 \mathrm{e}+00\) & \(2.414213562 \mathrm{e}+00\) & \(0.000000000 \mathrm{e}+00\) & \(1.0 \mathrm{e}+00 \sqcup\) \\
\hline \[
\begin{array}{ll}
1 & 2.7 \mathrm{e}-01 \\
\rightarrow & 0.01
\end{array}
\] & \(7.9 \mathrm{e}-02\) & \(2.2 \mathrm{e}+00\) & 8.83e-01 & \(6.969257574 \mathrm{e}-01\) & -9.685901771e-03 & \(2.7 e-01 \pm\) \\
\hline \[
\begin{array}{ll}
2 & 6.5 \mathrm{e}-02 \\
\rightarrow & 0.01
\end{array}
\] & \(1.9 \mathrm{e}-02\) & \(1.2 \mathrm{e}+00\) & \(1.16 \mathrm{e}+00\) & \(7.606090061 \mathrm{e}-01\) & \(6.046141322 \mathrm{e}-01\) & \(6.5 e-02 \sqcup\) \\
\hline \[
\begin{array}{ll}
3 & 1.7 \mathrm{e}-03 \\
\rightarrow & 0.01
\end{array}
\] & 5.0e-04 & \(2.2 \mathrm{e}-01\) & \(1.12 \mathrm{e}+00\) & \(7.084385672 \mathrm{e}-01\) & \(7.045122560 \mathrm{e}-01\) & \(1.7 \mathrm{e}-03 \sqcup\) \\
\hline \[
\begin{array}{ll}
4 & 1.4 \mathrm{e}-08 \\
\rightarrow & 0.01
\end{array}
\] & \[
4.2 \mathrm{e}-09
\] & \[
4.9 \mathrm{e}-08
\] & \[
1.00 \mathrm{e}+00
\] & \(7.071067941 \mathrm{e}-01\) & \(7.071067599 \mathrm{e}-01\) & \(1.4 \mathrm{e}-08 \mathrm{~b}\) \\
\hline
\end{tabular}

The first line displays the number of threads used by the optimizer and the second line indicates if the optimizer chose to solve the primal or dual problem (see Iparam: :INTPNT_SOLVE_FORM). The next lines display the problem dimensions as seen by the optimizer, and the Factor... lines show various statistics. This is followed by the iteration log.

Using the same notation as in Sec. 13.3.1 the columns of the iteration log have the following meaning:
- ITE: Iteration index \(k\).
- PFEAS: \(\left\|A x^{k}-b \tau^{k}\right\|_{\infty}\). The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- DFEAS: \(\left\|A^{T} y^{k}+s^{k}-c \tau^{k}\right\|_{\infty}\). The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- GFEAS: \(\left|-c^{T} x^{k}+b^{T} y^{k}-\kappa^{k}\right|\). The numbers in this column should converge monotonically towards zero but may stall at low level due to rounding errors.
- PRSTATUS: This number converges to 1 if the problem has an optimal solution whereas it converges to -1 if that is not the case.
- POBJ: \(c^{T} x^{k} / \tau^{k}\). An estimate for the primal objective value.
- DOBJ: \(b^{T} y^{k} / \tau^{k}\). An estimate for the dual objective value.
- MU: \(\frac{\left(x^{k}\right)^{T} s^{k}+\tau^{k} \kappa^{k}}{n+1}\). The numbers in this column should always converge to zero.
- TIME: Time spent since the optimization started (in seconds).

\subsection*{13.4 The Optimizer for Mixed-Integer Problems}

Solving optimization problems where one or more of the variables are constrained to be integer valued is called Mixed-Integer Optimization (MIO). For an introduction to model building with integer variables, the reader is recommended to consult the MOSEK Modeling Cookbook, and for further reading we highlight textbooks such as [Wol98] or [CCornuejolsZ14].

MOSEK can perform mixed-integer
- linear (MILO),
- quadratic (MIQO) and quadratically constrained (MIQCQO), and
- conic (MICO)
optimization, except for mixed-integer semidefinite problems.
By default the mixed-integer optimizer is run-to-run deterministic. This means that if a problem is solved twice on the same computer with identical parameter settings and no time limit, then the obtained solutions will be identical. The mixed-integer optimizer is parallelized, i.e., it can exploit multiple cores during the optimization.

In practice, a predominant special case of integer variables are binary variables, taking values in \(\{0,1\}\). Mixed- or pure binary problems are important subclasses of mixed-integer optimization where all integer variables are of this type. In the general setting however, an integer variable may have arbitrary lower and upper bounds.

\subsection*{13.4.1 Branch-and-Bound}

In order to succeed in solving mixed-integer problems, it can be useful to have a basic understanding of the underlying solution algorithms. The most important concept in this regard is arguably the so-called Branch-and-Bound algorithm, employed also by MOSEK. In order to comprehend Branch-and-Bound, the concept of a relaxation is important.

Consider for example a mixed-integer linear optimization problem of minimization type
\[
\begin{array}{rc}
z^{*}=\begin{array}{c}
\text { minimize } \\
\text { subject to }
\end{array} & c^{T} x \\
& A x \geq 0  \tag{13.12}\\
& x_{j} \in \mathbb{Z},
\end{array} \quad \forall j \in \mathcal{J} .
\]

It has the continuous relaxation
\[
\begin{align*}
\underline{z}= & \text { minimize } \quad c^{T} x  \tag{13.13}\\
& \text { subject to } \quad A x \\
& x \geq 0
\end{align*}
\]
obtained simply by ignoring the integrality restrictions. The first step in Branch-and-Bound is to solve this so-called root relaxation, which is a continuous optimization problem. Since (13.13) is less constrained than (13.12), one certainly gets
\[
\underline{z} \leq z^{*}
\]
and \(\underline{z}\) is therefore called the objective bound: it bounds the optimal objective value from below.
After the solution of the root relaxation, in the most likely outcome there will be one or more integer constrained variables with fractional values, i.e., violating the integrality constraints. Branch-and-Bound now takes such a variable, \(x_{j}=f_{j} \in \mathbb{R} \backslash \mathbb{Z}\) with \(j \in \mathcal{J}\), say, and creates two branches leading to relaxations with the additional constraint \(x_{j} \leq\left\lfloor f_{j}\right\rfloor\) or \(x_{j} \geq\left\lceil f_{j}\right\rceil\), respectively. The intuitive idea here is to push the variable away from the fractional value, closer towards integrality. If the variable was binary, say, branching would lead to fixing its value to 0 in one branch, and to 1 in the other.

The Branch-and-Bound process continues in this way and successively solves relaxations and creates branches to refined relaxations. Whenever a relaxation solution \(\hat{x}\) does not violate any integrality constraints, it is feasible to (13.12) and is called an integer feasible solution. Clearly, its solution value \(\bar{z}:=c^{T} \hat{x}\) is an upper bound on the optimal objective value,
\[
z^{*} \leq \bar{z}
\]

Since refining a relaxation by adding constraints to it can only increase its solution value, the objective bound \(\underline{z}\), now defined as the minimum over all solution values of so far solved relaxations, can only increase during the algorithm. If as upper bound \(\bar{z}\) one records the solution value of the best integer feasible solution encountered so far, the so-called incumbent solution, \(\bar{z}\) can only decrease during the algorithm. Since at any time we also have
\[
\underline{z} \leq z^{*} \leq \bar{z}
\]
objective bound and incumbent solution value are encapsulating the optimal objective value, eventually converging to it.

The Branch-and-Bound scheme can be depicted by means of a tree, where branches and relaxations correspond to edges and nodes. Figure Fig. 13.1 shows an example of such a tree. The strength of Branch-and-Bound is its ability to prune nodes in this tree, meaning that no new child nodes will be created. Pruning can occur in several cases:
- A relaxation leads to an integer feasible solution \(\hat{x}\). In this case we may update the incumbent and its solution value \(\bar{z}\), but no new branches need to be created.
- A relaxation is infeasible. The subtree rooted at this node cannot contain any feasible relaxation, so it can be discarded.
- A relaxation has a solution value that exceeds \(\bar{z}\). The subtree rooted at this node cannot contain any integer feasible solution with a solution value better than the incumbent we already have, so it can be discarded.


Fig. 13.1: An examplary Branch-and-Bound tree. Pruned nodes are shown in light blue.

Having objective bound and incumbent solution value is a quite fundamental property of Branch-and-Bound, and helps to asses solution quality and control termination of the algorithm, as we detail in the next section. Note that the above explanation is coined for minimization problems, but the Branch-and-bound scheme has a straightforward extension to maximization problems.

\subsection*{13.4.2 Solution quality and termination criteria}

The issue of terminating the mixed-integer optimizer is rather delicate. Recalling the Branch-and-Bound scheme from the previous section, one may see that mixed-integer optimization is generally much harder than continuous optimization; in fact, solving continuous sub-problems is just one component of a mixedinteger optimizer. Despite the ability to prune nodes in the tree, the computational effort required to solve mixed-integer problems grows exponentially with the size of the problem in a worst-case scenario (solving mixed-integer problems is NP-hard). For instance, a problem with \(n\) binary variables, may require the solution of \(2^{n}\) relaxations. The value of \(2^{n}\) is huge even for moderate values of \(n\). In practice it is often advisable to accept near-optimal or appproximate solutions in order to counteract this complexity burden. The user has numerous possibilities of influencing optimizer termination with various parameters, in particular related to solution quality, and the most important ones are highlighted here.

\section*{Solution quality in terms of optimality}

In order to assess the quality of any incumbent solution in terms of its objective value, one may check the optimality gap, defined as
\[
\epsilon=\mid(\text { incumbent solution value })-(\text { objective bound })|=|\bar{z}-\underline{z}| .
\]

It measures how much the objectives of the incumbent and the optimal solution can deviate in the worst case. Often it is more meaningful to look at the relative optimality gap
\[
\epsilon_{\mathrm{rel}}=\frac{|\bar{z}-\underline{z}|}{\max \left(\delta_{1},|\bar{z}|\right)}
\]

This is essentially the above absolute optimality gap normalized against the magnitude of the incumbent solution value; the purpose of the (small) constant \(\delta_{1}\) is to avoid overweighing incumbent solution values that are very close to zero. The relative optimality gap can thus be interpreted as answering the question: "Within what fraction of the optimal solution is the incumbent solution in the worst case?"

Absolute and relative optimality gaps provide useful means to define termination criteria for the mixed-integer optimizer in MOSEK. The idea is to terminate the optimization process as soon as the quality of the incumbent solution, measured in absolute or relative gap, is good enough. In fact, whenever an incumbent solution is located, the criterion
\[
\bar{z}-\underline{z} \leq \max \left(\delta_{2}, \delta_{3} \max \left(\delta_{1},|\bar{z}|\right)\right)
\]
is checked. If satisfied, i.e., if either absolute or relative optimality gap are below the thresholds \(\delta_{2}\) or \(\delta_{3}\), respectively, the optimizer terminates and reports the incumbent as an optimal solution. The optimality gaps can always be retrieved through the information items Dinfitem::MIO_OBJ_ABS_GAP and Dinfitem::MIO_OBJ_REL_GAP.

The tolerances discussed above can be adjusted using suitable parameters, see Table 13.3. By default, the optimality parameters \(\delta_{2}\) and \(\delta_{3}\) are quite small, i.e., restrictive. These default values for the absolute and relative gap amount to solving any instance to (almost) optimality: the incumbent is required to be within at most a tiny percentage of the optimal solution. As anticipated, this is not tractable in most practical situations, and one should resort to finding near-optimal solutions quickly rather than insisting on finding the optimal one. It may happen, for example, that an optimal or close-to-optimal solution is found very early by the optimizer, but it does not terminate because the objective bound \(\underline{z}\) is of poor quality. Instead, the vast majority of computational time is spent on trying to improve \(\underline{z}\) : a typical situation that practioneers would want to avoid. The concept of optimality gaps is fundamental for controlling solution quality when resorting to near-optimal solutions.

\section*{MIO performance tweaks: termination criteria}

One of the first things to do in order to cut down excessive solution time is to increase the relative gap tolerance Dparam: :MIO_TOL_REL_GAP to some non-default value, so as to not insist on finding optimal solutions. Typical values could be \(0.01,0.05\) or 0.1 , guaranteeing that the delivered solutions lie within \(1 \%, 5 \%\) or \(10 \%\) of the optimum. Increasing the tolerance will lead to less computational time spent by the optimizer.

\section*{Solution quality in terms of feasibility}

For an optimizer relying on floating-point arithmetic like the mixed-integer optimizer in MOSEK, it may be hard to achieve exact integrality of the solution values of integer variables in most cases, and it makes sense to numerically relax this constraint. Any candidate solution \(\hat{x}\) is accepted as integer feasible if the criterion
\[
\min \left(\hat{x_{j}}-\left\lfloor\hat{x_{j}}\right\rfloor,\left\lceil\hat{x_{j}}\right\rceil-\hat{x_{j}}\right) \leq \delta_{4} \quad \forall j \in \mathcal{J}
\]
is satisfied, meaning that \(\hat{x_{j}}\) is at most \(\delta_{4}\) away from the nearest integer. As above, \(\delta_{4}\) can be adjusted using a parameter, see Table 13.3, and impacts the quality of the acieved solution in terms of integer feasibility. By influencing what solution may be accepted as imcumbent, it can also have an impact on the termination of the optimizer.

\section*{MIO performance tweaks: feasibility criteria}

Whether increasing the integer feasibility tolerance Dparam::MIO_TOL_ABS_RELAX_INT leads to less solution time is highly problem dependent. Intuitively, the optimizer is more flexible in finding new incumbent soutions so as to improve \(\bar{z}\). But this effect has do be examined with care on indivuidual instances: it may worsen solution quality with no effect at all on the solution time. It may in some cases even lead to contrary effects on the solution time.

Table 13.3: Tolerances for the mixed-integer optimizer.
\begin{tabular}{|l|l|l|}
\hline Tolerance & Parameter name & Default value \\
\hline\(\delta_{1}\) & Dparam: \(: M I O_{-}\)REL_GAP_CONST & \(1.0 \mathrm{e}-10\) \\
\hline\(\delta_{2}\) & Dparam: \(: M I O_{-}\)TOL_ABS_GAP & 0.0 \\
\hline\(\delta_{3}\) & Dparam: \(: M I O_{-}\)TOL_REL_GAP & \(1.0 \mathrm{e}-4\) \\
\hline\(\delta_{4}\) & Dparam: \(: M I O_{-}\)TOL_ABS_RELAX_INT & \(1.0 \mathrm{e}-5\) \\
\hline
\end{tabular}

\section*{Further controlling optimizer termination}

There are more ways to limit the computational effort employed by the mixed-integer optimizer by simply limiting the number of explored branches, solved relaxations or updates of the incumbent solution. When any of the imposed limits is hit, the optimizer terminates and the incumbent solution may be retrieved. See Table 13.4 for a list of corresponding parameters. In contrast to the parameters discussed in Sec. 13.4.2, interfering with these does not maintain any guarantees in terms of solution quality.

Table 13.4: Other parameters affecting the integer optimizer termination criterion.
\begin{tabular}{|l|l|}
\hline Parameter name & Explanation \\
\hline Iparam: :MIO_MAX_NUM_BRANCHES & Maximum number of branches allowed. \\
\hline Iparam: :MIO_MAX_NUM_RELAXS & Maximum number of relaxations allowed. \\
\hline Iparam: :MIO_MAX_NUM_SOLUTIONS & Maximum number of feasible integer solutions allowed. \\
\hline
\end{tabular}

\subsection*{13.4.3 Additional components of the mixed-integer Optimizer}

The Branch-and-Bound scheme from Sec. 13.4.1 is only the basic skeleton of the mixed-integer optimizer in MOSEK, and several components are built on top of that in order to enhance its functionality and increase its speed. A mixed-integer optimizer is sometimes referred to as a "giant bag of tricks", and it would be impossible to describe all of these tricks here. Yet, some of the additional components are worth mentioning to the user. They can be influenced by various user parameters, and although the default values of these parameters are optimized to work well on average mixed-integer problems, it may pay off to adjust them for an individual problem, or a specific problem class.

\section*{Presolve}

Similar to the case of continuous problems, see Sec. 13.1, the mixed-integer optimizer applies various presolve reductions before the actual solution process is initiated. Just as in the continuous case, the use of presolve can be controlled with the parameter Iparam: :PRESOLVE_USE.

\section*{Primal Heuristics}

Solving relaxations in the Branch-and-bound tree to an integer feasible solution \(\hat{x}\) is not the only way to find new incumbent solutions. There is a variety of procedures that, given a mixed-integer problem in a generic form like (13.12), attempt to produce integer feasible solutions in an ad-hoc way. These procedures are called Primal Heuristics, and several of them are implemented in MOSEK. For example, whenever a relaxation leads to a fractional solution, one may round the solution values of the integer variables, in various ways, and hope that the outcome is still feasible to the remaining constraints. Primal heuristics are mostly employed while processing the root node, but play a role throughout the whole solution process. The goal of a primal heuristic is to improve the incumbent solution and thus the bound \(\bar{z}\), and this can of course affect the quality of the solution that is returned after termination of the optimizer. The user parameters affecting primal heuristics are listed in Table 13.5.

\section*{MIO performance tweaks: primal heuristics}
- If the mixed-integer optimizer struggles to improve the incumbent solution \(\bar{z}\), see Sec. 13.4.4, it can be helpful to intensify the use of primal heuristics.
- Set parameters related to primal heuristics to more aggressive values than the default ones, so that more effort is spent in this component. A List of the respective parameters can
be found in Table 13.5. In particular, if the optimizer has difficulties finding any integer feasible solution at all, indicated by NA in the column BEST_INT_OBJ in the mixed-integer log, one may try to activate a construction heuristic like the Feasibility Pump with Iparam: :MIO_FEASPUMP_LEVEL.
- Specify a good initial solution: In many cases a good feasible solution is either known or easily computed using problem-specific knowledge that the optimizer does not have. If so, it is usually worthwhile to use this as a starting point for the mixed-integer optimizer. See Sec. 6.8.2.
- For feasibility problems, i.e., problems having a constant objective, the goal is to find a single integer feasible solution, and this can be hard by itself on some instances. Try setting the objective to something meaningful anyway, even if the underlying application does not require this. After all, the feasible set is not changed, but the optimizer might benefit from being able to pursue a concrete goal.
- In rare cases it may also happen that the optimizer spends an excessive amount of time on primal heuristics without drawing any benefit from it, and one may try to limit their use with the respective parameters.

Table 13.5: Parameters affecting primal heuristics
\begin{tabular}{|l|l|}
\hline Parameter name & Explanation \\
\hline Iparam: :MIO_HEURISTIC_LEVEL & Primal heuristics aggressivity level. \\
\hline Iparam: :MIO_RINS_MAX_NODES & Maximum number of nodes allowed in the RINS heuristic. \\
\hline Iparam: :MIO_FEASPUMP_LEVEL & Way of using the Feasibility Pump heuristic. \\
\hline
\end{tabular}

\section*{Cutting Planes}

Cutting planes (cuts) are simply constraints that are valid for a mixed-integer problem, for example in the form (13.12), meaning they do not remove any integer feasible solutions from the feasible set. Therefore they are also called valid inequalities. They do not have to be valid for the relaxation (13.13) though, and of interest and potentially useful are those cuts that do remove solutions from the feasible set of the relaxation. The latter is a superset of the feasible region of the mixed-integer problem, and the rationale behind cuts is thus to bring the integer problem and its relaxation closer together in terms of their feasible sets.

As an example, take the constraints
\[
\begin{equation*}
2 x_{1}+3 x_{2}+x_{3} \leq 4, \quad x_{1}, x_{2} \in\{0,1\}, \quad x_{3} \geq 0 \tag{13.14}
\end{equation*}
\]

One may realize that there cannot be a feasible solution in which both binary variables take on a value of 1 . So certainly
\[
\begin{equation*}
x_{1}+x_{2} \leq 1 \tag{13.15}
\end{equation*}
\]
is a valid inequality. In fact, there is no integer solution satisfying (13.14), but violating (13.15). The latter does cut off a portion of the feasible region of the continuous relaxation of (13.14) though, obtained by replacing \(x_{1}, x_{2} \in\{0,1\}\) with \(x_{1}, x_{2} \in[0,1]\). For example, the fractional point \(\left(x_{1}, x_{2}, x_{3}\right)=(0.5,1,0)\) is feasible to the relaxation, but violates the cut (13.15).

There are many classes of general-purpose cuttting planes that may be generated for a mixed-integer problem in a generic form like (13.12), and MOSEK's mixed-integer optimizer supports several of them. For instance, the above is an example of a so-called clique cut. The most effort on generating cutting planes is spent after the solution of the root relaxation, but cuts can also be generated later on in the Branch-and-Bound tree. Cuts aim at improving the objective bound \(\underline{z}\) and can thus have significant impact on the solution time. The user parameters affecting cut generation can be seen in Table 13.6.

\section*{MIO performance tweaks: cutting planes}
- If the mixed-integer optimizer struggles to improve the objective bound \(\underline{z}\), see Sec. 13.4.4, it can be helpful to intensify the use of cutting planes.
- Some types of cutting planes are not activated by default, but doing so may help to improve the objective bound.
- The parameters Dparam::MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT and Iparam:: MIO_CUT_SELECTION_LEVEL determine how aggressively cuts will be generated and selected.
- If some valid inequalities can be deduced from problem-specific knowledge that the optimizer does not have, it may be helpful to add these to the problem formulation as constraints. This has to be done with care, since there is a tradeoff between the benefit obtained from an improved objective boud, and the amount of additional constraints that make the relaxations larger.
- In rare cases it may also be observed that the optimizer spends an excessive amount of time on cutting planes, see Sec. 13.4.4, and one may limit their use with Iparam: MIO_MAX_NUM_ROOT_CUT_ROUNDS, or by disabling a certain type of cutting planes.

Table 13.6: Parameters affecting cutting planes
\begin{tabular}{|l|l|}
\hline Parameter name & Explanation \\
\hline Iparam: :MIO_CUT_CLIQUE & Should clique cuts be enabled? \\
\hline Iparam: :MIO_CUT_CMIR & Should mixed-integer rounding cuts be enabled? \\
\hline Iparam: :MIO_CUT_GMI & Should GMI cuts be enabled? \\
\hline Iparam: :MIO_CUT_IMPLIED_BOUND & Should implied bound cuts be enabled? \\
\hline Iparam: :MIO_CUT_KNAPSACK_COVER & Should knapsack cover cuts be enabled? \\
\hline Iparam::MIO_CUT_LIPRO & Should lift-and-project cuts be enabled? \\
\hline Iparam::MIO_CUT_SELECTION_LEVEL & Cut selection aggressivity level. \\
\hline \begin{tabular}{l} 
Iparam: : \\
MIO_MAX_NUM_ROOT_CUT_ROUNDS
\end{tabular} & Maximum number of root cut rounds. \\
\hline \begin{tabular}{l} 
Dparam: : \\
MIO_TOL_REL_DUAL_BOUND_IMPROVEMEN
\end{tabular} & Minimum required objective bound improvement during \\
\hline
\end{tabular}

\subsection*{13.4.4 The Mixed-Integer Log}

Below is a typical log output from the mixed-integer optimizer:
```

Presolved problem: 1176 variables, 1344 constraints, 4968 non-zeros
Presolved problem: }328\mathrm{ general integer, 392 binary, 456 continuous
Clique table size: 55
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
0 0rllllll
1 1
0.1
1 1
0.1
1 1 0
2.6047699632e+07
2.5492512136e+07
2.13
0.2
Cut generation started.
1 1
G}
0
Cut generation terminated. Time = 0.05
lclllllll

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|r|}{(continued from previous page)} \\
\hline & 0.5 & & & & & & \\
\hline 0 & 11 & 1 & 0 & \(2.5925040617 \mathrm{e}+07\) & \(2.5662741991 \mathrm{e}+07\) & 1.01 & \(\sqcup\) \\
\hline \(\hookrightarrow\) & 0.5 & & & & & & \\
\hline 0 & 12 & 1 & 0 & \(2.5915504014 \mathrm{e}+07\) & \(2.5662741991 \mathrm{e}+07\) & 0.98 & \(\sqcup\) \\
\hline & 0.5 & & & & & & \\
\hline 2 & 23 & 1 & 0 & \(2.5915504014 \mathrm{e}+07\) & \(2.5662741991 \mathrm{e}+07\) & 0.98 & \(\sqcup\) \\
\hline \(\hookrightarrow\) & 0.6 & & & & & & \\
\hline 14 & 35 & 1 & 0 & \(2.5915504014 \mathrm{e}+07\) & \(2.5662741991 \mathrm{e}+07\) & 0.98 & \(\sqcup\) \\
\hline \(\hookrightarrow\) & 0.6 & & & & & & \\
\hline \multicolumn{8}{|l|}{[ . . ]} \\
\hline \multicolumn{8}{|l|}{Objective of best integer solution : \(2.578282162804 \mathrm{e}+07\)} \\
\hline \multicolumn{8}{|l|}{Best objective bound : \(2.569877601306 \mathrm{e}+07\)} \\
\hline \multicolumn{8}{|l|}{Construct solution objective : Not employed} \\
\hline \multicolumn{8}{|l|}{User objective cut value : Not employed} \\
\hline \multicolumn{8}{|l|}{Number of cuts generated : 192} \\
\hline \multicolumn{8}{|c|}{Number of Gomory cuts : 52} \\
\hline \multicolumn{8}{|c|}{Number of CMIR cuts : 137} \\
\hline \multicolumn{8}{|c|}{Number of clique cuts : 3} \\
\hline \multicolumn{8}{|l|}{Number of branches : 29252} \\
\hline \multicolumn{8}{|l|}{Number of relaxations solved : 31280} \\
\hline \multicolumn{8}{|l|}{Number of interior point iterations: 16} \\
\hline \multicolumn{8}{|l|}{Number of simplex iterations : 105440} \\
\hline \multicolumn{8}{|l|}{Time spend presolving the root : 0.03} \\
\hline \multicolumn{8}{|l|}{Time spend optimizing the root : 0.07} \\
\hline \multicolumn{8}{|l|}{Mixed integer optimizer terminated. Time: 6.46} \\
\hline
\end{tabular}

The first lines contain a summary of the problem after mixed-integer presolve has been applied. This is followed by the iteration log, reflecting the progress made during the Branch-and-bound process. The columns have the following meanings:
- BRANCHES: Number of branches / nodes generated.
- RELAXS: Number of relaxations solved.
- ACT_NDS: Number of active / non-processed nodes.
- DEPTH: Depth of the last solved node.
- BEST_INT_OBJ: The incumbent solution / best integer objective value, \(\bar{z}\).
- BEST_RELAX_OBJ: The objective bound, \(\underline{z}\).
- REL_GAP (\%) : Relative optimality gap, \(100 \% \cdot \epsilon_{\text {rel }}\)
- TIME: Time (in seconds) from the start of optimization.

The beginning and the end of the root cut generation is highlighted as well, and the number of log lines in between reflects to the computational effort spent here.

Finally there is a summary of the optimization process, containing also information on the type of generated cuts and the total number of iterations needed to solve all occuring continuous relaxations.

When the solution time for a mixed-integer problem has to be cut down, it can sometimes be useful to examine the log in order to understand where time is spent and what might be improved. In particular, it might happen that the values in either of the colums BEST_INT_OBJ or BEST_RELAX_OBJ stall over a long period of log lines, an indication that the optimizer has a hard time improving either the incumbent solution, i.e., \(\bar{z}\), or the objective bound \(\underline{z}\), see also Sec. 13.4.3 and Sec. 13.4.3.

\subsection*{13.4.5 Mixed-Integer Nonlinear Optimization}

Due to the involved non-linearities, \(\mathrm{MI}(\mathrm{QC}) \mathrm{QO}\) or MICO problems are on average harder than MILO problems of comparable size. Yet, the Branch-and-Bound scheme can be applied to these probelm classes in a straightforward manner. The relaxations have to be solved as conic problems with the interior point algorithm in that case, see Sec. 13.3, opposed to MILO where it is often beneficial to solve relaxations with the dual simplex method, see Sec. 13.2.3. There is another solution approach for these types of problems implemented in MOSEK, namely the Outer-Approximation algorithm, making use of dynamically refined linear approximations of the non-linearities.

\section*{MICO performance tweaks: choice of algorithm}

Whether conic Branch-and-Bound or Outer-Approximation is applied to a mixed-integer conic problem can be set with Iparam: :MIO_CONIC_OUTER_APPROXIMATION. The best value for this option is highly problem dependent.

\section*{MI(QC)QO}

MOSEK is specialized in solving linear and conic optimization problems, both with or without mixedinteger variables. Just like for continuous problems, mixed-integer quadratic problems are converted internally to conic form, see Sec. 12.4.1

Contrary to the continuous case, MOSEK can solve certain mixed-integer quadratic problems where one or more of the involved matrices are not positive semidefinite, so-called non-convex \(\mathrm{MI}(\mathrm{QC}) \mathrm{QO}\) problems. These are automatically reformulated to an equivalent convex \(\mathrm{MI}(\mathrm{QC}) \mathrm{QO}\) problem, provided that such a reformulation is possible on the given instance (otherwiese MOSEK will reject the problem and issue an error message). The concept of reformulations can also affect the solution times of \(\mathrm{MI}(\mathrm{QC}) \mathrm{QO}\) problems.

\section*{MI(QC)QO performance tweaks: applying a reformulation method}

There are several reformulation methods for \(\mathrm{MI}(\mathrm{QC}) \mathrm{QO}\) problems, available through the parameter Iparam::MIO_QCQO_REFORMULATION_METHOD. The chosen method can have significant impact on the mixed-integer optimizer's speed on such problems, both convex and non-convex. The best value for this option is highly problem dependent.

\subsection*{13.4.6 Disjunctive constraints}

Problems with disjunctive constraints (DJC) see Sec. 6.9 are typically reformulated to mixed-integer problems, and even if this is not the case they are solved with an algorithm that is based on the mixedinteger optimizer. In MOSEK, these problems thus fall into the realm of MIO. In particular, MOSEK automatically attempts to replace any DJC by so called big-M constraints, potentially after transforming it to several, less complicated DJCs. As an example, take the DJC
\[
[z=0] \vee\left[z=1, x_{1}+x_{2} \geq 1000\right]
\]
where \(z \in\{0,1\}\) and \(x_{1}, x_{2} \in[0,750]\). This is an example of a DJC formulation of a so-called indicator constraint. A big-M reformulation is given by
\[
x_{1}+x_{2} \geq 1000-M \cdot(1-z)
\]
where \(M>0\) is a large constant. The practical difficulty of these constructs is that \(M\) should always be sufficiently large, but ideally not larger. Too large values for \(M\) can be harmful for the mixed-integer optimizer. During presolve, and taking into account the bounds of the involved variables, MOSEK automatically reformulates DJCs to big-M constraints if the required \(M\) values do not exceed the parameter Dparam: : MIO_DJC_MAX_BIGM. From a performance point-of-view, all DJCs would ideally be linearized to big-Ms after presolve without changing this parameter's default value of 1.0 e 6 . Whether or not this is the case can be seen by retrieving the information item Iinfitem: :MIO_PRESOLVED_NUMDJC, or by a line in the mixed-integer optimizer's \(\log\) as in the example below. Both state the number of remaining disjunctions after presolve.
```

Presolved problem: 305 variables, 204 constraints, }708\mathrm{ non-zeros
Presolved problem: O general integer, 100 binary, 205 continuous
Presolved problem: 100 disjunctions
Clique table size: 0
BRANCHES RELAXS ACT_NDS DEPTH BEST_INT_OBJ BEST_RELAX_OBJ REL_GAP(
%%) TIME
0 1
\square}0.
1 1 0
5.0574653969e+05
0.0000000000e+00
0 1
0.0
[...]

```

\section*{DJC performance tweaks: managing variable bounds}
- Always specify the tightest known bounds on the variables of any problem with DJCs, even if they seem trivial from the user-perspective. The mixed-integer optimizer can only benefit from these when reformulating DJCs and thus gain performance; even if bounds don't help with reformulations, it is very unlikely that they hurt the optimizer.
- Increasing Dparam::MIO_DJC_MAX_BIGM can lead to more DJC reformulations and thus increase optimizer speed, but it may in turn hurt numerical solution quality and has to be examined with care. The other way round, on numerically challenging instances with DJCs, decreasing Dparam: : MIO_DJC_MAX_BIGM may lead to numerically more robust solutions.

\subsection*{13.4.7 Randomization}

A mixed-integer optimizer is usually prone to performance variability, meaning that a small change in either
- problem data, or
- computer hardware, or
- algorithmic parameters
can lead to significant changes in solution time, due to different solution paths in the Branch-andBound tree. In extreme cases the exact same problem can vary from being solvable in less than a second to seemingly unsolvable in any reasonable amount of time on a different computer.

One practical implication of this is that one should ideally verify whether a seemingly beneficial set of parameters, established experimentally on a single problem, is still beneficial (on average) on a larger set of problems from the same problem class. This protects against making parameter changes that had positive effects only due to random effects on that single problem.

In the absence of a large set of test problems, one may also change the random seed of the optimizer to a series of different values in order to hedge against drawing such wrong conclusions regarding parameters. The random seed, accessible through Iparam: :MIO_SEED, impacts for example random tie-breaking in many of the mixed-integer optimizer's components. Changing the random seed can be combined with a permutation of the problem data to further incite randomness, accessible through the parameter Iparam: :MIO_DATA_PERMUTATION_METHOD.

\subsection*{13.4.8 Further performance tweaks}

In addition to what was mentioned previously, there may be other ways to speed up the solution of a given mixed-integer problem. For example, there are further user parameters affecting some algorithmic settings in the mixed-integer optimizer. As mentioned above, default parameter values are optimized to work well on average, but on individual problems they may be adjusted.

\section*{MIO performance tweaks: miscellaneous}
- When relaxations in the the Branch-and-Bound tree are linear optimization problems (e.g., in MILO or when solving MICO probelms with the Outer-Approximation method), it is usually best to employ the dual simplex method for their solution. In rare cases the primal simplex method may actually be the better choice, and this can be set with the parameter Iparam: MIO_NODE_OPTIMIZER.
- Some problems are numerically more challenging than others, for example if the ratio between the smallest and the largest involved coefficients is large, say \(\geq 1 e 9\). An indication of numerical issues are, for example, large violations in the final solution, observable in the solution summery of the log output, see Sec. 8.1.3. Similarly, a problem that is known to be feasible by the user may be declared infeasible by the optimizer. In such cases it is usually best to try to rescale the model. Otherwise, the mixed-integer optimizer can be instructed to be more cautios regarding numerics with the parameter Iparam::MIO_NUMERICAL_EMPHASIS_LEVEL. This may in turn be at the cost of solution speed though.
- Improve the formulation: A MIO problem may be impossible to solve in one form and quite easy in another form. However, it is beyond the scope of this manual to discuss good formulations for mixed-integer problems. For discussions on this topic see for example [Wol98].

\section*{Chapter 14}

\section*{Additional features}

In this section we describe additional features and tools which enable more detailed analysis of optimization problems with MOSEK.

\subsection*{14.1 Problem Analyzer}

The problem analyzer prints a survey of the structure of the problem, with information about linear constraints and objective, quadratic constraints, conic constraints and variables.

In the initial stages of model formulation the problem analyzer may be used as a quick way of verifying that the model has been built or imported correctly. In later stages it can help revealing special structures within the model that may be used to tune the optimizer's performance or to identify the causes of numerical difficulties.

The problem analyzer is run using Task.analyze_problem. It prints its output to a log stream. The output is similar to the one below (this is the problem survey of the aflow30a problem from the MIPLIB 2003 collection).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Analyzing the problem} \\
\hline \multicolumn{6}{|l|}{*** Structural report} \\
\hline & Dimensions & & & & \\
\hline & Constraints & Variables & Matrix var. & Cones & \\
\hline & 479 & 842 & 0 & 0 & \\
\hline \multicolumn{6}{|c|}{Constraint and bound types} \\
\hline & Free & Lower & Upper & Ranged & Fixed \\
\hline Constraints: & 0 & 0 & 421 & 0 & 58 \\
\hline Variables: & 0 & 0 & 0 & 842 & 0 \\
\hline & Integer cons & raint types & & & \\
\hline & Binary & General & & & \\
\hline & 421 & 0 & & & \\
\hline \multicolumn{6}{|l|}{*** Data report} \\
\hline & Nonzeros & Min & Max & & \\
\hline \(|c j|:\) & 421 & 1.1e+01 & 5.0e+02 & & \\
\hline \(|A i j|:\) & 2091 & 1.0e+00 & 1.0e+02 & & \\
\hline & \# finite & Min & Max & & \\
\hline \(\mid \mathrm{blci}\) : & 58 & \(1.0 \mathrm{e}+00\) & 1.0e+01 & & \\
\hline |buci|: & 479 & \(0.0 \mathrm{e}+00\) & 1.0e+01 & & \\
\hline \(|\mathrm{blxj}|\) : & 842 & \(0.0 \mathrm{e}+00\) & \(0.0 e+00\) & & \\
\hline \(\mid\) buxj|: & 842 & \(1.0 \mathrm{e}+00\) & 1.0e+02 & & \\
\hline
\end{tabular}
```

*** Done analyzing the problem

```

The survey is divided into a structural and numerical report. The content should be self-explanatory.

\subsection*{14.2 Automatic Repair of Infeasible Problems}

MOSEK provides an automatic repair tool for infeasible linear problems which we cover in this section. Note that most infeasible models are so due to bugs which can (and should) be more reliably fixed manually, using the knowledge of the model structure. We discuss this approach in Sec. 8.3.

\subsection*{14.2.1 Automatic repair}

The main idea can be described as follows. Consider the linear optimization problem with \(m\) constraints and \(n\) variables
\[

\]
which is assumed to be infeasible.
One way of making the problem feasible is to reduce the lower bounds and increase the upper bounds. If the change is sufficiently large the problem becomes feasible. Now an obvious idea is to compute the optimal relaxation by solving an optimization problem. The problem
\[
\left.\begin{array}{lccc}
\operatorname{minimize} & & p\left(v_{l}^{c}, v_{u}^{c}, v_{l}^{x}, v_{u}^{x}\right)  \tag{14.1}\\
\text { subject to } & l^{c}-v_{l}^{c} \leq & \leq u^{c}+v_{u}^{c}, \\
& l^{x}-v_{l}^{x} & \leq & x \\
& & & v_{l}^{c}, v_{u}^{c}, v_{l}^{x}, v_{u}^{x} \geq 0
\end{array}\right)
\]
does exactly that. The additional variables \(\left(v_{l}^{c}\right)_{i},\left(v_{u}^{c}\right)_{i},\left(v_{l}^{x}\right)_{j}\) and \(\left(v_{u}^{c}\right)_{j}\) are elasticity variables because they allow a constraint to be violated and hence add some elasticity to the problem. For instance, the elasticity variable \(\left(v_{l}^{c}\right)_{i}\) controls how much the lower bound \(\left(l^{c}\right)_{i}\) should be relaxed to make the problem feasible. Finally, the so-called penalty function
\[
p\left(v_{l}^{c}, v_{u}^{c}, v_{l}^{x}, v_{u}^{x}\right)
\]
is chosen so it penalizes changes to bounds. Given the weights
- \(w_{l}^{c} \in \mathbb{R}^{m}\) (associated with \(l^{c}\) ),
- \(w_{u}^{c} \in \mathbb{R}^{m}\) (associated with \(u^{c}\) ),
- \(w_{l}^{x} \in \mathbb{R}^{n}\) (associated with \(l^{x}\) ),
- \(w_{u}^{x} \in \mathbb{R}^{n}\) (associated with \(u^{x}\) ),
a natural choice is
\[
p\left(v_{l}^{c}, v_{u}^{c}, v_{l}^{x}, v_{u}^{x}\right)=\left(w_{l}^{c}\right)^{T} v_{l}^{c}+\left(w_{u}^{c}\right)^{T} v_{u}^{c}+\left(w_{l}^{x}\right)^{T} v_{l}^{x}+\left(w_{u}^{x}\right)^{T} v_{u}^{x}
\]

Hence, the penalty function \(p()\) is a weighted sum of the elasticity variables and therefore the problem (14.1) keeps the amount of relaxation at a minimum. Please observe that
- the problem (14.1) is always feasible.
- a negative weight implies problem (14.1) is unbounded. For this reason if the value of a weight is negative MOSEK fixes the associated elasticity variable to zero. Clearly, if one or more of the weights are negative, it may imply that it is not possible to repair the problem.

A simple choice of weights is to set them all to 1 , but of course that does not take into account that constraints may have different importance.

\section*{Caveats}

Observe if the infeasible problem
\[
\begin{array}{lcll}
\operatorname{minimize} & x+z & & \\
\text { subject to } & x & = & -1, \\
& x & > & 0
\end{array}
\]
is repaired then it will become unbounded. Hence, a repaired problem may not have an optimal solution.
Another and more important caveat is that only a minimal repair is performed i.e. the repair that barely makes the problem feasible. Hence, the repaired problem is barely feasible and that sometimes makes the repaired problem hard to solve.

\section*{Using the automatic repair tool}

In this subsection we consider an infeasible linear optimization example:
\[
\begin{array}{lccc}
\operatorname{minimize} & -10 x_{1} & -9 x_{2}, & \\
\text { subject to } & 7 / 10 x_{1}+1 x_{2} & \leq 630, \\
& 1 / 2 x_{1}+5 / 6 x_{2} & \leq 600,  \tag{14.2}\\
& 1 x_{1}+2 / 3 x_{2} & \leq 708, \\
& 1 / 10 x_{1}+1 / 4 x_{2} & \leq 135, \\
& x_{1}, & & x_{2} \\
& & x_{2} & \geq 650
\end{array}
\]

The function Task.primal_repair can be used to repair an infeasible problem. This can be used for linear and conic optimization problems, possibly with integer variables.

Listing 14.1: An example of feasibility repair applied to problem (14.2).
```

fn main() -> Result<(),String> {
let mut args = env::args();
if args.len() < 2 {
println!("Syntax: feasrepairex1 FILENAME");
return Err("Invalid argument list".to_string());
}
let _ = args.next();
feasrepairex1(FileOrText::File(args.next().unwrap()))
}
fn feasrepairex1(filename : FileOrText) -> Result<(),String> {
let mut task = Task::new().unwrap().with_callbacks();
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
match filename {
FileOrText::File(fname) => task.read_data(fname.as_str())?,
FileOrText::Text(data) => task.read_lp_string(data.as_str())?
}
task.put_int_param(mosek::Iparam::LOG_FEAS_REPAIR, 3)?;
let wc = vec![1.0; task.get_num_con()? as usize];
let wx = vec![1.0; task.get_num_var()? as usize];
task.primal_repair(wc.as_slice(),wc.as_slice(),wx.as_slice(),wx.as_slice())?;
let sum_viol = task.get_dou_inf(mosek::Dinfitem::PRIMAL_REPAIR_PENALTY_OBJ)?;
println!("Minimized sum of violations = {}", sum_viol);
let _ = task.optimize()?;

```
```

 task.solution_summary(mosek::Streamtype::MSG)?;
 0k(())
 }

```

The above code will produce the following log report:
```

MOSEK Version 9.0.0.25(ALPHA) (Build date: 2017-11-7 16:11:50)
Copyright (c) MOSEK ApS, Denmark. WWW: mosek.com
Platform: Linux/64-X86
Open file 'feasrepair.lp'
Reading started.
Reading terminated. Time: 0.00
Read summary
Type : LO (linear optimization problem)
Objective sense : min
Scalar variables : 2
Matrix variables : 0
Constraints : 4
Cones : 0
Time : 0.0
Problem
Name
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 4
Cones : 0
Scalar variables : 2
Matrix variables : 0
Integer variables : 0
Primal feasibility repair started.
Optimizer started.
Presolve started.
Linear dependency checker started.
Linear dependency checker terminated.
Eliminator started.
Freed constraints in eliminator : 2
Eliminator terminated.
Eliminator - tries : 1 time : 0.00
Lin. dep. - tries : 1 time : 0.00
Lin. dep. - number : 0
Presolve terminated. Time: 0.00
Problem
Name
Objective sense : min
Type : LO (linear optimization problem)
Constraints : 8
Cones : 0
Scalar variables : 14
Matrix variables : 0
Integer variables : 0

```

```

Optimizer summary
Optimizer _ time: 0.00
Interior-point - iterations : 0 time: 0.00
Basis identification - time: 0.00
Primal - iterations : 0 time: 0.00
Dual - iterations : 0 time: 0.00
Clean primal - iterations : 0 time: 0.00
Clean dual - iterations : 0 time: 0.00
Simplex -
Primal simplex - iterations : 0
Dual simplex - iterations : 0
- relaxations: 0

```
```

time: 0.00

```
time: 0.00
time: 0.00
time: 0.00
time: 0.00
time: 0.00
time: 0.00
```

time: 0.00

```

It will also modify the task according to the optimal elasticity variables found. In this case the optimal repair it is to increase the upper bound on constraint c4 by 22.5 and decrease the lower bound on variable x 2 by 20 .

\subsection*{14.3 Sensitivity Analysis}

Given an optimization problem it is often useful to obtain information about how the optimal objective value changes when the problem parameters are perturbed. E.g, assume that a bound represents the capacity of a machine. Now, it may be possible to expand the capacity for a certain cost and hence it is worthwhile knowing what the value of additional capacity is. This is precisely the type of questions the sensitivity analysis deals with.

Analyzing how the optimal objective value changes when the problem data is changed is called sensitivity analysis.

\section*{References}

The book [Chvatal83] discusses the classical sensitivity analysis in Chapter 10 whereas the book [RTV97] presents a modern introduction to sensitivity analysis. Finally, it is recommended to read the short paper [Wal00] to avoid some of the pitfalls associated with sensitivity analysis.

> Warning: Currently, sensitivity analysis is only available for continuous linear optimization problems. Moreover, MOSEK can only deal with perturbations of bounds and objective function coefficients.

\subsection*{14.3.1 Sensitivity Analysis for Linear Problems}

\section*{The Optimal Objective Value Function}

Assume that we are given the problem
\[
\begin{align*}
z\left(l^{c}, u^{c}, l^{x}, u^{x}, c\right)= & \begin{array}{l}
c^{T} x \\
\\
\\
\text { subject to } \quad l^{c} \leq A x
\end{array} \leq u^{c},  \tag{14.3}\\
& l^{x} \leq x
\end{align*}
\]
and we want to know how the optimal objective value changes as \(l_{i}^{c}\) is perturbed. To answer this question we define the perturbed problem for \(l_{i}^{c}\) as follows
\[
\begin{aligned}
f_{l_{i}^{c}}(\beta)= & \text { minimize } \\
& \text { subject to } l^{c}+\beta e_{i} \leq A x \\
& \leq x \leq u^{c}, \\
l^{x} & \leq x \leq u^{x}
\end{aligned}
\]
where \(e_{i}\) is the \(i\)-th column of the identity matrix. The function
\[
\begin{equation*}
f_{l_{i}^{c}}(\beta) \tag{14.4}
\end{equation*}
\]
shows the optimal objective value as a function of \(\beta\). Please note that a change in \(\beta\) corresponds to a perturbation in \(l_{i}^{c}\) and hence (14.4) shows the optimal objective value as a function of varying \(l_{i}^{c}\) with the other bounds fixed.

It is possible to prove that the function (14.4) is a piecewise linear and convex function, i.e. its graph may look like in Fig. 14.1 and Fig. 14.2.


Fig. 14.1: \(\beta=0\) is in the interior of linearity interval.
Clearly, if the function \(f_{l_{i}^{c}}(\beta)\) does not change much when \(\beta\) is changed, then we can conclude that the optimal objective value is insensitive to changes in \(l_{i}^{c}\). Therefore, we are interested in the rate of change in \(f_{l_{i}^{c}}(\beta)\) for small changes in \(\beta\) - specifically the gradient
\[
f_{l_{i}^{c}}^{\prime}(0)
\]
which is called the shadow price related to \(l_{i}^{c}\). The shadow price specifies how the objective value changes for small changes of \(\beta\) around zero. Moreover, we are interested in the linearity interval
\[
\beta \in\left[\beta_{1}, \beta_{2}\right]
\]
for which
\[
f_{l_{i}^{c}}^{\prime}(\beta)=f_{l_{i}^{c}}^{\prime}(0) .
\]

Since \(f_{l_{i}^{c}}\) is not a smooth function \(f_{l_{i}^{c}}^{\prime}\) may not be defined at 0 , as illustrated in Fig. 14.2. In this case we can define a left and a right shadow price and a left and a right linearity interval.

The function \(f_{l_{i}^{c}}\) considered only changes in \(l_{i}^{c}\). We can define similar functions for the remaining parameters of the \(z\) defined in (14.3) as well:
\[
\begin{aligned}
f_{l_{i}^{c}}(\beta) & =z\left(l^{c}+\beta e_{i}, u^{c}, l^{x}, u^{x}, c\right), & & i=1, \ldots, m, \\
f_{u_{i}^{c}}(\beta) & =z\left(l^{c}, u^{c}+\beta e_{i}, l^{x}, u^{x}, c\right), & & i=1, \ldots, m, \\
f_{l_{j}^{x}}(\beta) & =z\left(l^{c}, u^{c}, l^{x}+\beta e_{j}, u^{x}, c\right), & & j=1, \ldots, n, \\
f_{u_{j}^{x}}(\beta) & =z\left(l^{c}, u^{c}, l^{x}, u^{x}+\beta e_{j}, c\right), & & j=1, \ldots, n, \\
f_{c_{j}}(\beta) & =z\left(l^{c}, u^{c}, l^{x}, u^{x}, c+\beta e_{j}\right), & & j=1, \ldots, n .
\end{aligned}
\]

Given these definitions it should be clear how linearity intervals and shadow prices are defined for the parameters \(u_{i}^{c}\) etc.


Fig. 14.2: \(\beta=0\) is a breakpoint.

\section*{Equality Constraints}

In MOSEK a constraint can be specified as either an equality constraint or a ranged constraint. If some constraint \(e_{i}^{c}\) is an equality constraint, we define the optimal value function for this constraint as
\[
f_{e_{i}^{c}}(\beta)=z\left(l^{c}+\beta e_{i}, u^{c}+\beta e_{i}, l^{x}, u^{x}, c\right)
\]

Thus for an equality constraint the upper and the lower bounds (which are equal) are perturbed simultaneously. Therefore, MOSEK will handle sensitivity analysis differently for a ranged constraint with \(l_{i}^{c}=u_{i}^{c}\) and for an equality constraint.

\section*{The Basis Type Sensitivity Analysis}

The classical sensitivity analysis discussed in most textbooks about linear optimization, e.g. [Chvatal83], is based on an optimal basis. This method may produce misleading results [RTV97] but is computationally cheap. This is the type of sensitivity analysis implemented in MOSEK.

We will now briefly discuss the basis type sensitivity analysis. Given an optimal basic solution which provides a partition of variables into basic and non-basic variables, the basis type sensitivity analysis computes the linearity interval \(\left[\beta_{1}, \beta_{2}\right]\) so that the basis remains optimal for the perturbed problem. A shadow price associated with the linearity interval is also computed. However, it is well-known that an optimal basic solution may not be unique and therefore the result depends on the optimal basic solution employed in the sensitivity analysis. If the optimal objective value function has a breakpoint for \(\beta=0\) then the basis type sensitivity method will only provide a subset of either the left or the right linearity interval.

In summary, the basis type sensitivity analysis is computationally cheap but does not provide complete information. Hence, the results of the basis type sensitivity analysis should be used with care.

\section*{Example: Sensitivity Analysis}

As an example we will use the following transportation problem. Consider the problem of minimizing the transportation cost between a number of production plants and stores. Each plant supplies a number of goods and each store has a given demand that must be met. Supply, demand and cost of transportation per unit are shown in Fig. 14.3.


Fig. 14.3: Supply, demand and cost of transportation.
If we denote the number of transported goods from location \(i\) to location \(j\) by \(x_{i j}\), problem can be formulated as the linear optimization problem of minimizing
\[
1 x_{11}+2 x_{12}+5 x_{23}+2 x_{24}+1 x_{31}+2 x_{33}+1 x_{34}
\]
subject to

The sensitivity parameters are shown in Table 14.1 and Table 14.2.

Table 14.1: Ranges and shadow prices related to bounds on constraints and variables.
\begin{tabular}{|l|l|l|l|l|}
\hline Con. & \(\beta_{1}\) & \(\beta_{2}\) & \(\sigma_{1}\) & \(\sigma_{2}\) \\
\hline 1 & -300.00 & 0.00 & 3.00 & 3.00 \\
\hline 2 & -700.00 & \(+\infty\) & 0.00 & 0.00 \\
\hline 3 & -500.00 & 0.00 & 3.00 & 3.00 \\
\hline 4 & -0.00 & 500.00 & 4.00 & 4.00 \\
\hline 5 & -0.00 & 300.00 & 5.00 & 5.00 \\
\hline 6 & -0.00 & 700.00 & 5.00 & 5.00 \\
\hline 7 & -500.00 & 700.00 & 2.00 & 2.00 \\
\hline Var. & \(\beta_{1}\) & \(\beta_{2}\) & \(\sigma_{1}\) & \(\sigma_{2}\) \\
\hline\(x_{11}\) & \(-\infty\) & 300.00 & 0.00 & 0.00 \\
\hline\(x_{12}\) & \(-\infty\) & 100.00 & 0.00 & 0.00 \\
\hline\(x_{23}\) & \(-\infty\) & 0.00 & 0.00 & 0.00 \\
\hline\(x_{24}\) & \(-\infty\) & 500.00 & 0.00 & 0.00 \\
\hline\(x_{31}\) & \(-\infty\) & 500.00 & 0.00 & 0.00 \\
\hline\(x_{33}\) & \(-\infty\) & 500.00 & 0.00 & 0.00 \\
\hline\(x_{34}\) & -0.000000 & 500.00 & 2.00 & 2.00 \\
\hline
\end{tabular}

Table 14.2: Ranges and shadow prices related to the objective coefficients.
\begin{tabular}{|l|l|l|l|l|}
\hline Var. & \(\beta_{1}\) & \(\beta_{2}\) & \(\sigma_{1}\) & \(\sigma_{2}\) \\
\hline\(c_{1}\) & \(-\infty\) & 3.00 & 300.00 & 300.00 \\
\hline\(c_{2}\) & \(-\infty\) & \(\infty\) & 100.00 & 100.00 \\
\hline\(c_{3}\) & -2.00 & \(\infty\) & 0.00 & 0.00 \\
\hline\(c_{4}\) & \(-\infty\) & 2.00 & 500.00 & 500.00 \\
\hline\(c_{5}\) & -3.00 & \(\infty\) & 500.00 & 500.00 \\
\hline\(c_{6}\) & \(-\infty\) & 2.00 & 500.00 & 500.00 \\
\hline\(c_{7}\) & -2.00 & \(\infty\) & 0.00 & 0.00 \\
\hline
\end{tabular}

Examining the results from the sensitivity analysis we see that for constraint number 1 we have \(\sigma_{1}=3\) and \(\beta_{1}=-300, \beta_{2}=0\).

If the upper bound on constraint 1 is decreased by
\[
\beta \in[0,300]
\]
then the optimal objective value will increase by the value
\[
\sigma_{1} \beta=3 \beta
\]

\subsection*{14.3.2 Sensitivity Analysis with MOSEK}

MOSEK provides the functions Task.primal_sensitivity and Task.dual_sensitivity for performing sensitivity analysis. The code in Listing 14.2 gives an example of its use.

Listing 14.2: Example of sensitivity analysis with the MOSEK Optimizer API for Rust.
```

extern crate mosek;
use mosek::{Task,Boundkey,Streamtype,Mark,Objsense};

```
```

const INFINITY : f64 = 0.0;
fn main() -> Result<(),String> {
let bkc = vec![
Boundkey::UP, Boundkey::UP,
Boundkey::UP, Boundkey::FX,
Boundkey::FX, Boundkey::FX,
Boundkey::FX];
let bkx = vec![
Boundkey::LO, Boundkey::LO,
Boundkey::LO, Boundkey::LO,
Boundkey::LO, Boundkey::LO,
Boundkey::L0];
let ptr = [0i64, 2, 4, 6, 8, 10, 12, 14];
let sub = [0i32, 3, 0, 4, 1, 5, 1, 6, 2, 3, 2, 5, 2, 6];
let blc = [-INFINITY, -INFINITY, -INFINITY, 800.0, 100.0, 500.0, 500.0];
let buc = [400.0, 1200.0, 1000.0, 800.0, 100.0, 500.0, 500.0];
let c = [1.0, 2.0, 5.0, 2.0, 1.0, 2.0, 1.0];
let blx = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
let bux = [INFINITY, INFINITY,
INFINITY, INFINITY,
INFINITY, INFINITY,
INFINITY];
let val = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];
let numcon = 7; /* Number of constraints. */
let numvar = 7; /* Number of variables. */
/* Create the optimization task. */
let mut task = match Task::new() {
Some(t) => t,
None => return Err("Failed to create task".to_string()),
}.with_callbacks();
/* Directs the log task stream to the 'printstr' function. */
task.put_stream_callback(Streamtype::LOG, |msg| print!("{}",msg))?;
task.input_data(numcon as i32, numvar as i32,
\&c,
0.0,
\&ptr[0..numvar as usize],
\&ptr[1..numvar as usize+1],
\&sub,
\&val,
\&bkc,
\&blc,
\&buc,
\&bkx,
\&blx,
\&bux)?;
/* A maximization problem */
task.put_obj_sense(Objsense::MINIMIZE)?;

```
```

task.optimize()?;
/* Analyze upper bound on c1 and the equality constraint on c4 */
let mut subi = vec![0i32, 3i32];
let mut marki = vec![Mark::UP, Mark::UP];
/* Analyze lower bound on the variables x12 and x31 */
let mut subj = vec![1i32, 4];
let mut markj = vec![Mark::LO, Mark::LO];
let mut leftpricei = vec![0.0; 2];
let mut rightpricei = vec![0.0; 2];
let mut leftrangei = vec![0.0; 2];
let mut rightrangei = vec![0.0; 2];
let mut leftpricej = vec![0.0; 2];
let mut rightpricej = vec![0.0; 2];
let mut leftrangej = vec![0.0; 2];
let mut rightrangej = vec![0.0; 2];
task.primal_sensitivity(subi.as_mut_slice(),
marki.as_mut_slice(),
subj.as_mut_slice(),
markj.as_mut_slice(),
leftpricei.as_mut_slice(),
rightpricei.as_mut_slice(),
leftrangei.as_mut_slice(),
rightrangei.as_mut_slice(),
leftpricej.as_mut_slice(),
rightpricej.as_mut_slice(),
leftrangej.as_mut_slice(),
rightrangej.as_mut_slice())?;
println!("Results from sensitivity analysis on bounds:");
println!("For constraints:");
for i in 0..2 {
println!("leftprice = {:.5e}, rightprice = {:.5e}, leftrange = {:.5e},\sqcup
๑rightrange = {:.5e}",
leftpricei[i], rightpricei[i], leftrangei[i], rightrangei[i]);
}
println!("For variables:\n");
for i in 0..2 {
println!("leftprice = {:.5e}, rightprice = {:.5e}, leftrange = {:.5e},\sqcup
->rightrange = {:.5e}",
leftpricej[i], rightpricej[i], leftrangej[i], rightrangej[i]);
}
let mut leftprice = vec![0.0; 2];
let mut rightprice = vec![0.0; 2];
let mut leftrange = vec![0.0; 2];
let mut rightrange = vec![0.0; 2];
let subc = [2i32, 5i32];
task.dual_sensitivity(\&subc,
leftprice.as_mut_slice(),
rightprice.as_mut_slice(),

```
```

 leftrange.as_mut_slice(),
 rightrange.as_mut_slice())?;
 println!("Results from sensitivity analysis on objective coefficients:");
 for i in 0..2 {
 println!("leftprice = {:.5e}, rightprice = {:.5e}, leftrange = {:.5e},\sqcup
 ->rightrange = {:.5e}",
leftprice[i], rightprice[i], leftrange[i], rightrange[i]);
}
return Result::Ok(());
}

```

\section*{Chapter 15}

\section*{API Reference}

This section contains the complete reference of the MOSEK Optimizer API for Rust. It is organized as follows:
- General API conventions.

\section*{- Methods:}
- Class Env (The MOSEK environment)
- Class Task (An optimization task)
- Browse by topic
- Optimizer parameters:
- Double, Integer, String
- Full list
- Browse by topic
- Optimizer information items:
- Double, Integer, Long
- Optimizer response codes
- Enumerations
- List of supported domains

\subsection*{15.1 API Conventions}

\subsection*{15.1.1 Function arguments}

\section*{Naming Convention}

In the definition of the MOSEK Optimizer API for Rust a consistent naming convention has been used. This implies that whenever for example numcon is an argument in a function definition it indicates the number of constraints. In Table 15.1 the variable names used to specify the problem parameters are listed.

Table 15.1: Naming conventions used in the MOSEK Optimizer API for Rust.
\begin{tabular}{|l|l|l|l|}
\hline API name & API type & Dimension & Related problem parameter \\
\hline numcon & int & & \(m\) \\
\hline numvar & int & & \(n\) \\
\hline numcone & int & & \(t\) \\
\hline aptrb & int [] & numvar & \(a_{i j}\) \\
\hline aptre & int [] & numvar & \(a_{i j}\) \\
\hline asub & int [] & aptre [numvar-1] & \(a_{i j}\) \\
\hline aval & f64[] & aptre [numvar-1] & \(a_{i j}\) \\
\hline c & f64[] & numvar & \(c_{j}\) \\
\hline cfix & f64 & & \(c^{f}\) \\
\hline blc & f64[] & numcon & \(l_{k}^{c}\) \\
\hline buc & f64[] & numcon & \(u_{k}^{c}\) \\
\hline blx & f64[] & numvar & \(l_{k}^{x}\) \\
\hline bux & f64[] & numvar & \(u_{k}^{x}\) \\
\hline numqonz & int & & \(q_{i j}^{o}\) \\
\hline qosubi & int [] & numqonz & \(q_{i j}^{o}\) \\
\hline qosubj & int [] & numqonz & \(q_{i j}^{o}\) \\
\hline qoval & \&f64 & numqonz & \(q_{i j}^{o}\) \\
\hline numqcnz & int & & \(q_{i j}^{k}\) \\
\hline qcsubk & int [] & numqcnz & \(q_{i j}^{k}\) \\
\hline qcsubi & int [] & numqcnz & \(q_{i j}^{k}\) \\
\hline qcsubj & int [] & numqcnz & \(q_{i j}^{k}\) \\
\hline qcval & \&f64 & numqcnz & \(q_{i j}^{k}\) \\
\hline bkc & i32[] & numcon & \(l_{k}^{c}\) and \(u_{k}^{c}\) \\
\hline bkx & i32[] & numvar & \(l_{k}^{x}\) and \(u_{k}^{x}\) \\
\hline
\end{tabular}

The relation between the variable names and the problem parameters is as follows:
- The quadratic terms in the objective: \(q_{\text {qosubi }[\mathrm{t}], \text { qosubj }[\mathrm{t}]}^{o}=\mathrm{qoval}[\mathrm{t}], \quad t=0, \ldots\), numqonz -1 .
- The linear terms in the objective : \(c_{j}=\mathrm{c}[j], \quad j=0, \ldots\), numvar -1
- The fixed term in the objective : \(c^{f}=\mathrm{cfix}\).
- The quadratic terms in the constraints: \(q_{q \operatorname{qcsubi}[t], q c s u b j[t]}^{q c s u k[~}=\operatorname{qcval}[t], \quad t=0, \ldots\), numqcnz -1
- The linear terms in the constraints: \(a_{\text {asub }[\mathrm{t}], \mathrm{j}}=\operatorname{aval}[\mathrm{t}], \quad t=\operatorname{ptrb}[\mathrm{j}], \ldots, \operatorname{ptre}[\mathrm{j}]-1, j=\) \(0, \ldots\), numvar - 1

\section*{Passing arguments by reference}

An argument described as \(\mathbf{T}\) by reference indicates that the function interprets its given argument as a reference to a variable of type \(\mathbf{T}\). This usually means that the argument is used to output or update a value of type \(\mathbf{T}\). For example, suppose we have a function documented as
```

pub fn foo (..., nzc : \&mut i32, ...)

```
- nzc (i32 by reference) - The number of nonzero elements in the matrix. (output)

Then it could be called as follows.
```

let mut nzc : i32 = 0;
foo (..., \& mut nzc, ...)?;
println!("The number of nonzero elements: {}", nzc);

```

\section*{Information about input/output arguments}

The following are purely informational tags which indicate how MOSEK treats a specific function argument.
- (input) An input argument. It is used to input data to MOSEK.
- (output) An output argument. It can be a user-preallocated data structure, a reference, a string buffer etc. where MOSEK will output some data.
- (input/output) An input/output argument. MOSEK will read the data and overwrite it with new/updated information.

\subsection*{15.1.2 Bounds}

The bounds on the constraints and variables are specified using the variables bkc, blc, and buc. The components of the integer array bkc specify the bound type according to Table 15.2

Table 15.2: Symbolic key for variable and constraint bounds.
\begin{tabular}{|l|l|l|}
\hline Symbolic constant & Lower bound & Upper bound \\
\hline Boundkey \(:: F X\) & finite & identical to the lower bound \\
\hline Boundkey \(:: F R\) & minus infinity & plus infinity \\
\hline Boundkey \(:: L O\) & finite & plus infinity \\
\hline Boundkey \(:: R A\) & finite & finite \\
\hline Boundkey \(:: U P\) & minus infinity & finite \\
\hline
\end{tabular}

For instance bkc[2]=Boundkey::LO means that \(-\infty<l_{2}^{c}\) and \(u_{2}^{c}=\infty\). Even if a variable or constraint is bounded only from below, e.g. \(x \geq 0\), both bounds are inputted or extracted; the irrelevant value is ignored.

Finally, the numerical values of the bounds are given by
\[
\begin{array}{ll}
l_{k}^{c}=\operatorname{blc}[\mathrm{k}], & k=0, \ldots, \text { numcon }-1 \\
u_{k}^{c}=\operatorname{buc}[\mathrm{k}], & k=0, \ldots, \text { numcon }-1
\end{array}
\]

The bounds on the variables are specified using the variables bkx, blx, and bux in the same way. The numerical values for the lower bounds on the variables are given by
\[
\begin{array}{ll}
l_{j}^{x}=\mathrm{blx}[\mathrm{j}], & j=0, \ldots, \text { numvar }-1 \\
u_{j}^{x}=\operatorname{bux}[\mathrm{j}], & j=0, \ldots, \text { numvar }-1
\end{array}
\]

\subsection*{15.1.3 Vector Formats}

Three different vector formats are used in the MOSEK API:

\section*{Full (dense) vector}

This is simply an array where the first element corresponds to the first item, the second element to the second item etc. For example to get the linear coefficients of the objective in task with numvar variables, one would write
```

let mut c = vec![0.0; numvar as usize];
task.get_c(c.as_mut_slice())?;

```

\section*{Vector slice}

A vector slice is a range of values from first up to and not including last entry in the vector, i.e. for the set of indices i such that first <= i < last. For example, to get the bounds associated with constrains 2 through 9 (both inclusive) one would write
```

let mut upper_bound = vec![0.0; 8];
let mut lower_bound = vec![0.0; 8];
let mut bound_key = vec![0i32; 8];
task.get_con_bound_slice(2, 10,
bound_key.as_mut_slice(),
lower_bound.as_mut_slice(),
upper_bound.as_mut_slice())?;

```

\section*{Sparse vector}

A sparse vector is given as an array of indexes and an array of values. The indexes need not be ordered. For example, to input a set of bounds associated with constraints number \(1,6,3\), and 9 , one might write
```

let bound_index = \&[1, 6, 3, 9];
let bound_key = \&[Boundkey::FR,Boundkey::LO,Boundkey::UP,Boundkey::FX];
let lower_bound = \&[0.0, -10.0, 0.0, 5.0];
let upper_bound = \&[0.0, 0.0, 6.0, 5.0];
task.put_con_bound_list(bound_index,
bound_key,
lower_bound,
upper_bound)?;

```

\subsection*{15.1.4 Matrix Formats}

The coefficient matrices in a problem are inputted and extracted in a sparse format. That means only the nonzero entries are listed.

\section*{Unordered Triplets}

In unordered triplet format each entry is defined as a row index, a column index and a coefficient. For example, to input the \(A\) matrix coefficients for \(a_{1,2}=1.1, a_{3,3}=4.3\), and \(a_{5,4}=0.2\), one would write as follows:
```

let subi : \&[i32] = \&[1, 3, 5];
let subj : \&[i32] = \&[2, 3, 4];
let cof : \&[f64] = \&[1.1, 4.3, 0.2];
task.put_aij_list(subi,subj,cof)?;

```

Please note that in some cases (like Task.put_aij_list) only the specified indexes are modified all other are unchanged. In other cases (such as Task.put_q-con_k) the triplet format is used to modify all entries - entries that are not specified are set to 0 .

\section*{Column or Row Ordered Sparse Matrix}

In a sparse matrix format only the non-zero entries of the matrix are stored. MOSEK uses a sparse packed matrix format ordered either by columns or rows. Here we describe the column-wise format. The row-wise format is based on the same principle.

\section*{Column ordered sparse format}

A sparse matrix in column ordered format is essentially a list of all non-zero entries read column by column from left to right and from top to bottom within each column. The exact representation uses four arrays:
- asub: Array of size equal to the number of nonzeros. List of row indexes.
- aval: Array of size equal to the number of nonzeros. List of non-zero entries of \(A\) ordered by columns.
- ptrb: Array of size numcol, where ptrb[j] is the position of the first value/index in aval/ asub for the \(j\)-th column.
- ptre: Array of size numcol, where ptre[j] is the position of the last value/index plus one in aval / asub for the \(j\)-th column.

With this representation the values of a matrix \(A\) with numcol columns are assigned using:
\[
a_{\operatorname{asub}[k], j}=\operatorname{aval}[k] \quad \text { for } \quad j=0, \ldots, \operatorname{numcol}-1-1, k=\operatorname{ptrb}[j], \ldots, \operatorname{ptre}[j]-1
\]

As an example consider the matrix
\[
A=\left[\begin{array}{lllll}
1.1 & & 1.3 & 1.4 &  \tag{15.1}\\
& 2.2 & & & 2.5 \\
3.1 & & & 3.4 &
\end{array}\right]
\]
which can be represented in the column ordered sparse matrix format as
\[
\begin{aligned}
& \text { ptrb }=[0,2,3,5,7] \\
& \text { ptre }=[2,3,5,7,8] \\
& \text { asub }=[0,2,1,0,3,0,2,1] \\
& \text { aval }=[1.1,3.1,2.2,1.3,4.4,1.4,3.4,2.5] .
\end{aligned}
\]

Fig. 15.1 illustrates how the matrix \(A\) in (15.1) is represented in column ordered sparse matrix format.


Fig. 15.1: The matrix \(A\) (15.1) represented in column ordered packed sparse matrix format.

\section*{Column ordered sparse format with nonzeros}

Note that \(\mathrm{nzc}[\mathrm{j}]:=\mathrm{ptre}[\mathrm{j}]-\mathrm{ptrb}[\mathrm{j}]\) is exactly the number of nonzero elements in the \(j\)-th column of \(A\). In some functions a sparse matrix will be represented using the equivalent dataset asub, aval, ptrb, nzc. The matrix \(A\) (15.1) would now be represented as:
\[
\begin{aligned}
\text { ptrb } & =[0,2,3,5,7] \\
\text { nzc } & =[2,1,2,2,1] \\
\text { asub } & =[0,2,1,0,3,0,2,1] \\
\text { aval } & =[1.1,3.1,2.2,1.3,4.4,1.4,3.4,2.5]
\end{aligned}
\]

\section*{Row ordered sparse matrix}

The matrix \(A\) (15.1) can also be represented in the row ordered sparse matrix format as:
\[
\begin{aligned}
\text { ptrb } & =[0,3,5,7] \\
\text { ptre } & =[3,5,7,8] \\
\text { asub } & =[0,2,3,1,4,0,3,2] \\
\text { aval } & =[1.1,1.3,1.4,2.2,2.5,3.1,3.4,4.4] .
\end{aligned}
\]

\subsection*{15.2 Functions grouped by topic}

\section*{Callback}
- Task.clear_callback - Clears callbacks.
- Task.clear_stream_callback - Clears a stream callback.
- Task.put_callback - Receive callbacks with solver status and information during optimization.
- Task.put_stream_callback - Directs all output from a task stream to a callback object.
- Task.with_callbacks - Converts a task into a task with callbacks.
- Task.without_callbacks - Converts a task with callbacks into a task without.
- Infrequent: Task.unlink_func_from_stream

\section*{Environment and task management}
- Env.Env - Constructor of a new environment.
- Task. Task - Constructor of a new optimization task.
- Task.clone - Clones a task.
- Task.put_task_name - Assigns a new name to the task.
- Env.task - Creates a new task.
- Task.with_callbacks - Converts a task into a task with callbacks.
- Task.without_callbacks - Converts a task with callbacks into a task without.
- Infrequent: Task.commit_changes, Task.delete_solution, Task.put_max_num_a_nz, Task.put_max_num_acc, Task.put_max_num_afe, Task.put_max_num_barvar, Task. put_max_num_con, Task.put_max_num_djc, Task.put_max_num_domain, Task. put_max_num_q_nz, Task.put_max_num_var, Task.resize_task
- Deprecated: Task.put_max_num_cone

\section*{Infeasibility diagnostic}
- Task.infeasibility_report - Prints the infeasibility report to an output stream.
- Task.primal_repair - Repairs a primal infeasible optimization problem by adjusting the bounds on the constraints and variables.

\section*{Information items and statistics}
- Task.get_dou_inf - Obtains a double information item.
- Task.get_int_inf - Obtains an integer information item.
- Task.get_lint_inf - Obtains a long integer information item.
- Task.update_solution_info - Update the information items related to the solution.
- Infrequent: Task.get_inf_index, Task.get_inf_max, Task.get_inf_name, Task. get_na_dou_inf, Task.get_na_int_inf

\section*{Input/Output}
- Task.write_data - Writes problem data to a file.
- Task.write_solution - Write a solution to a file.
- Infrequent: Task.read_b_solution, Task.read_data, Task.read_data_format, Task. read_json_sol, Task.read_json_string, Task.read_lp_string, Task.read_opf_string, Task.read_param_file, Task.read_ptf_string, Task.read_solution, Task. read_solution_file, Task.read_summary, Task.read_task, Task.write_b_solution, Task.write_data_stream, Task.write_json_sol, Task.write_param_file, Task. write_solution_file, Task.write_task

\section*{Inspecting the task}
- Task.analyze_problem - Analyze the data of a task.
- Task.get_num_con - Obtains the number of constraints.
- Task.get_num_var - Obtains the number of variables.
- Infrequent: Task.analyze_solution, Task.get_a_col, Task.get_a_col_num_nz, Task. get_a_col_slice, Task.get_a_col_slice_num_nz, Task.get_a_col_slice_trip, Task. get_a_piece_num_nz, Task.get_a_row, Task.get_a_row_num_nz, Task.get_a_row_slice, Task.get_a_row_slice_num_nz, Task.get_a_row_slice_trip, Task.get_a_trip, Task. get_acc_afe_idx_list, Task.get_acc_b, Task.get_acc_barf_num_block_triplets, Task. get_acc_domain, Task.get_acc_f_numnz, Task.get_acc_f_trip, Task.get_acc_g_vector, Task.get_acc_n, Task.get_acc_n_tot, Task.get_acc_name, Task.get_acc_name_len, Task. get_accs, Task.get_afe_barf_num_block_triplets, Task.get_afe_barf_num_row_entries, Task.get_afe_barf_row, Task.get_afe_barf_row_info, Task.get_afe_f_num_nz, Task.get_afe_f_row, Task.get_afe_f_row_num_nz, Task.get-afe \(f_{-} t r i p, \quad T a s k\). get_afe_g, Task.get_afe_g_slice, Task.get_aij, Task.get_bara_block_triplet, Task.get_bara_idx, Task.get_bara_idx_i_j, Task.get_bara_idx_info, Task. get_bara_sparsity, Task.get_barc_block_triplet, Task.get_barc_idx, Task. get_barc_idx_info, Task.get_barc_idx_j, Task.get_barc_sparsity, Task. get_barvar_name, Task.get_barvar_name_index, Task.get_barvar_name_len, Task.get_c, Task.get_c_j, Task.get_c_list, Task.get_c_slice, Task.get_cfix, Task.get_con_bound, Task.get_con_bound_slice, Task.get_con_name, Task.get_con_name_index, Task.get_con_name_len, Task.get_dim_barvar_j, Task.get_djc_afe_idx_list,
```

Task.get_djc_b, Task.get_djc_domain_idx_list, Task.get_djc_name, Task.
get_djc_name_len, Task.get_djc_num_afe, Task.get_djc_num_afe_tot, Task.
get_djc_num_domain, Task.get_djc_num_domain_tot, Task.get_djc_num_term, Task.
get_djc_num_term_tot, Task.get_djc_term_size_list, Task.get_djcs, Task.
get_domain_n, Task.get_domain_name, Task.get_domain_name_len, Task.get_domain_type,
Task.get_len_barvar_j, Task.get_max_name_len, Task.get_max_num_a_nz, Task.
get_max_num_barvar, Task.get_max_num_con, Task.get_max_num_q_nz, Task.
get_max_num_var, Task.get_num_a_nz, Task.get_num_ a_nz_64, Task.get_num_acc,
Task.get_num_afe, Task.get_num_bara_block_triplets, Task.get_num_bara_nz, Task.
get_num_barc_block_triplets, Task.get_num_barc_nz, Task.get_num_barvar, Task.
get_num_djc, Task.get_num_domain, Task.get_num_int_var, Task.get_num_param,
Task.get_num_q_con_k_nz, Task.get_num_q_obj_nz, Task.get_num_sym_mat, Task.
get_obj_name, Task.get_obj_name_len, Task.get_power_domain_alpha, Task.
get_power_domain_info, Task.get_prob_type, Task.get_q_con_k, Task.get_q_obj, Task.
get_q_obj_i_j, Task.get_sparse_sym_mat, Task.get_sym_mat_info, Task.get_task_name,
Task.get_task_name_len, Task.get_var_bound, Task.get_var_bound_slice, Task.
get_var_name, Task.get_var_name_index, Task.get_var_name_len, Task.get_var_type,
Task.get_var_type_list, Task.print_param, Task.read_summary

- Deprecated: Task.get_cone, Task.get_cone_info, Task.get_cone_name,
Task.get_cone_name_index, Task.get_cone_name_len, Task.get_max_num_cone,
Task.get_num_cone, Task.get_num_cone_mem

```

\section*{License system}
- Env.check_out_license - Check out a license feature from the license server ahead of time.
- Env.put_license_debug - Enables debug information for the license system.
- Env.put_license_path - Set the path to the license file.
- Env.put_license_wait - Control whether mosek should wait for an available license if no license is available.
- Infrequent: Env.check_in_all, Env.check_in_license, Env.expirylicenses, Env. license_cleanup, Env.put_license_code, Env.reset_expiry_licenses

\section*{Linear algebra}
- Infrequent: Env.axpy, Env.compute_sparse_cholesky, Env.dot, Env.gemm, Env.gemv, Env. potrf, Env.sparse_triangular_solve_dense, Env.syeig, Env.syevd, Env.syrk

\section*{Logging}
- Task.clear_stream_callback - Clears a stream callback.
- Task. link_file_to_stream - Directs all output from a task stream to a file.
- Task.one_solution_summary - Prints a short summary of a specified solution.
- Task.optimizer_summary - Prints a short summary with optimizer statistics from last optimization.
- Task.put_stream_callback - Directs all output from a task stream to a callback object.
- Task.solution_summary - Prints a short summary of the current solutions.
- Infrequent: Env.echo_intro, Env.link_file_to_stream, Task.print_param, Task. unlink_func_from_stream

\section*{Names}
- Env.get_code_desc - Obtains a short description of a response code.
- Task.put_acc_name - Sets the name of an affine conic constraint.
- Task.put_barvar_name - Sets the name of a semidefinite variable.
- Task.put_con_name - Sets the name of a constraint.
- Task.put_djc_name - Sets the name of a disjunctive constraint.
- Task.put_domain_name - Sets the name of a domain.
- Task.put_obj_name - Assigns a new name to the objective.
- Task.put_task_name - Assigns a new name to the task.
- Task.put_var_name - Sets the name of a variable.
- Infrequent: Task.analyze_names, Task.generate_acc_names, Task.generate_barvar_names, Task.generate_con_names, Task.generate_djc_names, Task.generate_var_names, Task.get_acc_name, Task.get_acc_name_len, Task.get_barvar_name, Task. get_barvar_name_index, Task.get_barvar_name_len, Task.get_con_name, Task. get_con_name_index, Task.get_con_name_len, Task.get_djc_name, Task. get_djc_name_len, Task.get_domain_name, Task.get_domain_name_len, Task. get_inf_name, Task.get_max_name_len, Task.get_na_str_param, Task.get_obj_name, Task. get_obj_name_len, Task.get_param_name, Task.get_str_param, Task.get_str_param_len, Task.get_symb_con, Task.get_task_name, Task.get_task_name_len, Task.get_var_name, Task.get_var_name_index, Task.get_var_name_len, Task.is_dou_par_name, Task. is_int_par_name, Task.is_str_par_name, Task.str_to_sk, Task.which_param
- Deprecated: Task.generate_cone_names, Task.get_cone_name, Task.get_cone_name_index, Task.get_cone_name_len, Task.put_cone_name, Task.str_to_cone_type

\section*{Optimization}
- Task.optimize - Optimizes the problem.
- Env.optimize_batch - Optimize a number of tasks in parallel using a specified number of threads.

\section*{Parameters}
- Task.put_dou_param - Sets a double parameter.
- Task.put_int_param - Sets an integer parameter.
- Task.put_param - Modifies the value of parameter.
- Task.put_str_param - Sets a string parameter.
- Task.set_defaults - Resets all parameter values.
- Infrequent: Task.get_a_truncate_tol, Task.get_dou_param, Task.get_int_param, Task.get_na_dou_param, Task.get_na_int_param, Task.get_na_str_param, Task. get_num_param, Task.get_param_max, Task.get_param_name, Task.get_str_param, Task.get_str_param_len, Task.is_dou_par_name, Task.is_int_par_name, Task. is_str_par_name, Task.put_na_dou_param, Task.put_na_int_param, Task. put_na_str_param, Task.read_param_file, Env.sym_nam_to_value, Task.which_param, Task.write_param_file

\section*{Problem data - affine conic constraints}
- Task. append_acc - Appends an affine conic constraint to the task.
- Task.get_acc_dot_y - Obtains the doty vector for an affine conic constraint.
- Task.put_acc_name - Sets the name of an affine conic constraint.
- Infrequent: Task.append_acc_seq, Task.append_accs, Task.append_accs_seq, Task. evaluate_acc, Task.evaluate_accs, Task.get_acc_afe_idx_list, Task.get_acc_b, Task. get_acc_barf_num_block_triplets, Task.get_acc_domain, Task.get_acc_dot_y_s, Task. get_acc_f_numnz, Task.get_acc_f_trip, Task.get_acc_g_vector, Task.get_acc_n, Task. get_acc_n_tot, Task.get_acc_name, Task.get_acc_name_len, Task.get_accs, Task. get_num_acc, Task.put_acc, Task.put_acc_b, Task.put_acc_b_j, Task.put_acc_dot_y, Task.put_acc_list, Task.put_max_num_acc

\section*{Problem data - affine expressions}
- Task. append_afes - Appends a number of empty affine expressions to the optimization task.
- Task.put_afe_barf_entry - Inputs one entry in barF.
- Task.put_afe_barf_entry_list - Inputs a list of entries in barF.
- Task.put_afe_barf_row - Inputs a row of barF.
- Task.put_afe_f_col - Replaces all elements in one column of the F matrix in the affine expressions.
- Task.put_afe_f_entry - Replaces one entry in F.
- Task.put_afe_f_entry_list - Replaces a list of entries in F.
- Task.put_afe_f_row - Replaces all elements in one row of the F matrix in the affine expressions.
- Task.put_afe_f_row_list - Replaces all elements in a number of rows of the F matrix in the affine expressions.
- Task.put_afe_g - Replaces one element in the g vector in the affine expressions.
- Task.put_afe_g_slice - Modifies a slice of the vector g.
- Infrequent: Task.empty_afe_barf_row, Task.empty_afe_barf_row_list, Task. empty_afe_f_col, Task.empty_afe_f_col_list, Task.empty_afe_f_row, Task.empty_afe_f_row_list, Task.get_acc_barf_block_triplet, Task. get_afe_barf_block_triplet, Task.get_afe_barf_num_row_entries, Task. get_afe_barf_row, Task.get_afe_barf_row_info, Task.get_afe_f_num_nz, Task. get_afe_f_row, Task.get_afe_f_row_num_nz, Task.get_afe_f_trip, Task.get_afe_g, Task.get_afe_g_slice, Task.get_num_afe, Task.put_afe_barf_block_triplet, Task. put_afe_g_list, Task.put_max_num_afe

\section*{Problem data - bounds}
- Task.put_con_bound - Changes the bound for one constraint.
- Task.put_con_bound_slice - Changes the bounds for a slice of the constraints.
- Task.put_var_bound - Changes the bounds for one variable.
- Task.put_var_bound_slice - Changes the bounds for a slice of the variables.
- Infrequent: Task.chg_con_bound, Task.chg_var_bound, Task.get_con_bound, Task. get_con_bound_slice, Task.get_var_bound, Task.get_var_bound_slice, Task. input_data, Task.put_con_bound_list, Task.put_con_bound_list_const, Task. put_con_bound_slice_const, Task.put_var_bound_list, Task.put_var_bound_list_const, Task.put_var_bound_slice_const

\section*{Problem data - cones (deprecated)}
```

- Deprecated: Task.append_cone, Task.append_cone_seq, Task.append_cones_seq,
Task.generate_cone_names, Task.get_cone, Task.get_cone_info, Task.get_cone_name,
Task.get_cone_name_index, Task.get_cone_name_len, Task.get_max_num_cone,
Task.get_num_cone, Task.get_num_cone_mem, Task.put_cone, Task.put_cone_name,
Task.put_max_num_cone, Task.remove_cones

```

\section*{Problem data - constraints}
- Task.append_cons - Appends a number of constraints to the optimization task.
- Task.get_num_con - Obtains the number of constraints.
- Task.put_con_bound - Changes the bound for one constraint.
- Task.put_con_bound_slice - Changes the bounds for a slice of the constraints.
- Task.put_con_name - Sets the name of a constraint.
- Task.remove_cons - Removes a number of constraints.
- Infrequent: Task.chg_con_bound, Task.generate_con_names, Task.get_con_bound, Task.get_con_bound_slice, Task.get_con_name, Task.get_con_name_index, Task. get_con_name_len, Task.get_max_num_con, Task.get_num_q_con_k_nz, Task.get-q-con_k, Task.input_data, Task.put_con_bound_list, Task.put_con_bound_list_const, Task. put_con_bound_slice_const, Task.put_max_num_con

\section*{Problem data - disjunctive constraints}
- Task.append_djcs - Appends a number of empty disjunctive constraints to the task.
- Task.put_djc - Inputs a disjunctive constraint.
- Task.put_djc_name - Sets the name of a disjunctive constraint.
- Task.put_djc_slice - Inputs a slice of disjunctive constraints.
- Infrequent: Task.get_djc_afe_idx_list, Task.get_djc_b, Task.get_djc_domain_idx_list, Task.get_djc_name, Task.get_djc_name_len, Task.get_djc_num_afe, Task. get_djc_num_afe_tot, Task.get_djc_num_domain, Task.get_djc_num_domain_tot, Task. get_djc_num_term, Task.get_djc_num_term_tot, Task.get_djc_term_size_list, Task. get_djcs, Task.get_num_djc, Task.put_max_num_djc

\section*{Problem data - domain}
- Task.append_dual_exp_cone_domain - Appends the dual exponential cone domain.
- Task.append_dual_geo_mean_cone_domain - Appends the dual geometric mean cone domain.
- Task.append_dual_power_cone_domain - Appends the dual power cone domain.
- Task.append_primal_exp_cone_domain - Appends the primal exponential cone domain.
- Task.append_primal_geo_mean_cone_domain - Appends the primal geometric mean cone domain.
- Task.append_primal_power_cone_domain - Appends the primal power cone domain.
- Task.append_quadratic_cone_domain - Appends the n dimensional quadratic cone domain.
- Task.append_r_domain - Appends the n dimensional real number domain.
- Task.append_r_quadratic_cone_domain - Appends the n dimensional rotated quadratic cone domain.
- Task.append_rminus_domain - Appends the n dimensional negative orthant to the list of domains.
- Task.append_rplus_domain - Appends the n dimensional positive orthant to the list of domains.
- Task.append_rzero_domain - Appends the n dimensional 0 domain.
- Task.append_svec_psd_cone_domain - Appends the vectorized SVEC PSD cone domain.
- Task.put_domain_name - Sets the name of a domain.
- Infrequent: Task.get_domain_n, Task.get_domain_name, Task.get_domain_name_len, Task.get_domain_type, Task.get_num_domain, Task.get_power_domain_alpha, Task. get_power_domain_info, Task.put_max_num_domain

\section*{Problem data - linear part}
- Task.append_cons - Appends a number of constraints to the optimization task.
- Task. append_vars - Appends a number of variables to the optimization task.
- Task.get_num_con - Obtains the number of constraints.
- Task.put_a_col - Replaces all elements in one column of the linear constraint matrix.
- Task.put_a_col_slice - Replaces all elements in a sequence of columns the linear constraint matrix.
- Task.put_a_row - Replaces all elements in one row of the linear constraint matrix.
- Task.put_a_row_slice - Replaces all elements in several rows the linear constraint matrix.
- Task.put_aij - Changes a single value in the linear coefficient matrix.
- Task.put_aij_list - Changes one or more coefficients in the linear constraint matrix.
- Task.put_c_j-Modifies one linear coefficient in the objective.
- Task.put_c_slice - Modifies a slice of the linear objective coefficients.
- Task.put_cfix - Replaces the fixed term in the objective.
- Task.put_con_bound - Changes the bound for one constraint.
- Task.put_con_bound_slice - Changes the bounds for a slice of the constraints.
- Task.put_con_name - Sets the name of a constraint.
- Task.put_obj_name - Assigns a new name to the objective.
- Task.put_obj_sense - Sets the objective sense.
- Task.put_var_bound - Changes the bounds for one variable.
- Task.put_var_bound_slice - Changes the bounds for a slice of the variables.
- Task.put_var_name - Sets the name of a variable.
- Task.remove_cons - Removes a number of constraints.
- Task.remove_vars - Removes a number of variables.
```

- Infrequent: Task.chg_con_bound, Task.chg_var_bound, Task.generate_barvar_names,
Task.generate_con_names, Task.generate_var_names, Task.get_a_col, Task.
get_a_col_num_nz, Task.get_a_col_slice, Task.get_a_col_slice_num_nz, Task.
get_a_col_slice_trip, Task.get_a_piece_num_nz, Task.get_a_row, Task.
get_a_row_num_nz, Task.get_a_row_slice, Task.get_a_row_slice_num_nz, Task.
get_a_row_slice_trip, Task.get_a_trip, Task.get_a_truncate_tol, Task.get_aij,
Task.get_c, Task.get_c_j, Task.get_c_list, Task.get_c_slice, Task.get_cfix,
Task.get_con_bound, Task.get_con_bound_slice, Task.get_con_name, Task.
get_con_name_index, Task.get_con_name_len, Task.get_max_num_a_nz, Task.
get_max_num_con, Task.get_max_num_var, Task.get_num_a_nz, Task.get_num_a_nz_64,
Task.get_obj_sense, Task.get_var_bound, Task.get_var_bound_slice, Task.
get_var_name, Task.get_var_name_index, Task.get_var_name_len, Task.input_data, Task.
put_a_col_list,Task.put_a_row_list, Task.put_a_truncate_tol, Task.put_c_list, Task.
put_con_bound_list, Task.put_con_bound_list_const, Task.put_con_bound_slice_const,
Task.put_max_num_a_nz, Task.put_var_bound_list, Task.put_var_bound_list_const,
Task.put_var_bound_slice_const

```

\section*{Problem data - objective}
- Task.put_barc_j - Changes one element in barc.
- Task.put_c_j-Modifies one linear coefficient in the objective.
- Task.put_c_slice - Modifies a slice of the linear objective coefficients.
- Task.put_cfix - Replaces the fixed term in the objective.
- Task.put_obj_name - Assigns a new name to the objective.
- Task.put_obj_sense - Sets the objective sense.
- Task.put_q_obj - Replaces all quadratic terms in the objective.
- Task.put_q_obj_i_j - Replaces one coefficient in the quadratic term in the objective.
- Infrequent: Task.put_c_list

\section*{Problem data - quadratic part}
- Task.put_q_con - Replaces all quadratic terms in constraints.
- Task.put_q_con_k - Replaces all quadratic terms in a single constraint.
- Task.put_q_obj - Replaces all quadratic terms in the objective.
- Task.put_q_obj_i_j - Replaces one coefficient in the quadratic term in the objective.
- Infrequent: Task.get_max_num_q_nz, Task.get_num_q_con_k_nz, Task.get_num_q_obj_nz, Task.get_q_con_k, Task.get_q_obj, Task.get_q_obj_i_j, Task.put_max_num_q_nz
- Deprecated: Task.toconic

\section*{Problem data - semidefinite}
- Task.append_barvars - Appends semidefinite variables to the problem.
- Task.append_sparse_sym_mat - Appends a general sparse symmetric matrix to the storage of symmetric matrices.
- Task.append_sparse_sym_mat_list - Appends a general sparse symmetric matrix to the storage of symmetric matrices.
- Task.put_afe_barf_entry - Inputs one entry in barF.
- Task.put_afe_barf_entry_list - Inputs a list of entries in barF.
- Task.put_afe_barf_row - Inputs a row of barF.
- Task.put_bara_ij - Inputs an element of barA.
- Task.put_bara_ij_list - Inputs list of elements of barA.
- Task.put_bara_row_list - Replace a set of rows of barA
- Task.put_barc_j-Changes one element in barc.
- Task.put_barvar_name - Sets the name of a semidefinite variable.
- Infrequent: Task.empty_afe_barf_row, Task.empty_afe_barf_row_list, Task. get_acc_barf_block_triplet, Task.get_acc_barf_num_block_triplets, Task. get_afe_barf_block_triplet, Task.get_afe_barf_num_block_triplets, Task. get_afe_barf_num_row_entries, Task.get_afe_barf_row, Task.get_afe_barf_row_info, Task.get_bara_block_triplet, Task.get_bara_idx, Task.get_bara_idx_i_j, Task. get_bara_idx_info, Task.get_bara_sparsity, Task.get_barc_block_triplet, Task.get_barc_idx, Task.get_barc_idx_info, Task.get_barc_idx_j, Task. get_barc_sparsity, Task.get_dim_barvar_j, Task.get_len_barvar_j, Task. get_max_num_barvar, Task.get_num_bara_block_triplets, Task.get_num_bara_nz, Task.get_num_barc_block_triplets, Task.get_num_barc_nz, Task.get_num_barvar, Task.get_num_sym_mat, Task.get_sparse_sym_mat, Task.get_sym_mat_info, Task.put_afe_barf_block_triplet, Task.put_bara_block_triplet, Task. put_barc_block_triplet, Task.put_max_num_barvar, Task.remove_barvars

\section*{Problem data - variables}
- Task.append_vars - Appends a number of variables to the optimization task.
- Task.get_num_var - Obtains the number of variables.
- Task.put_var_bound - Changes the bounds for one variable.
- Task.put_var_bound_slice - Changes the bounds for a slice of the variables.
- Task.put_var_name - Sets the name of a variable.
- Task.put_var_type - Sets the variable type of one variable.
- Task. remove_vars - Removes a number of variables.
- Infrequent: Task.chg_var_bound, Task.generate_barvar_names, Task.generate_var_names, Task.get_c, Task.get_c_j, Task.get_max_num_var, Task.get_num_int_var, Task.get_var_bound, Task.get_var_bound_slice, Task.get_var_name, Task. get_var_name_index, Task.get_var_name_len, Task.get_var_type, Task. get_var_type_list, Task.put_c_list, Task.put_max_num_var, Task.put_var_bound_list, Task.put_var_bound_list_const, Task.put_var_bound_slice_const, Task. put_var_type_list

\section*{Remote optimization}
- Task.async_get_result - Request a solution from a remote job.
- Task.async_optimize - Offload the optimization task to a solver server in asynchronous mode.
- Task.async_poll - Requests information about the status of the remote job.
- Task.async_stop - Request that the job identified by the token is terminated.
- Task.optimize_rmt - Offload the optimization task to a solver server and wait for the solution.
- Task.put_optserver_host - Specify an OptServer for remote calls.

\section*{Responses, errors and warnings}
- Env.get_code_desc - Obtains a short description of a response code.
- Infrequent: Env.get_response_class

\section*{Sensitivity analysis}
- Task.dual_sensitivity - Performs sensitivity analysis on objective coefficients.
- Task.primal_sensitivity - Perform sensitivity analysis on bounds.
- Task.sensitivity_report - Creates a sensitivity report.

\section*{Solution - dual}
- Task.get_acc_dot_y - Obtains the doty vector for an affine conic constraint.
- Task.get_dual_obj - Computes the dual objective value associated with the solution.
- Task.get_y - Obtains the y vector for a solution.
- Task.get_y_slice - Obtains a slice of the y vector for a solution.
- Infrequent: Task.get_acc_dot_y_s, Task.get_reduced_costs, Task.get_slc, Task. get_slc_slice, Task.get_slx, Task.get_slx_slice, Task.get_snx, Task.get_snx_slice, Task.get_solution, Task.get_solution_new, Task.get_solution_slice, Task.get_suc, Task.get_suc_slice, Task.get_sux, Task.get_sux_slice, Task.put_acc_dot_y, Task. put_con_solution_i, Task.put_slc, Task.put_slc_slice, Task.put_slx, Task. put_slx_slice, Task.put_snx, Task.put_snx_slice, Task.put_solution, Task. put_solution_new, Task.put_solution_y_i, Task.put_suc, Task.put_suc_slice, Task. put_sux, Task.put_sux_slice, Task.put_var_solution_j, Task.put_y_slice

\section*{Solution - primal}
- Task.get_primal_obj - Computes the primal objective value for the desired solution.
- Task.get_ \(x x\) - Obtains the xx vector for a solution.
- Task.get_xx_slice - Obtains a slice of the xx vector for a solution.
- Task.put_ \(x x\) - Sets the xx vector for a solution.
- Task.put_xx_slice - Sets a slice of the xx vector for a solution.
- Infrequent: Task.evaluate_acc, Task.evaluate_accs, Task.get_solution, Task. get_solution_new, Task.get_solution_slice, Task.get_xc, Task.get_xc_slice, Task.put_con_solution_i, Task.put_solution, Task.put_solution_new, Task. put_var_solution_j, Task.put_xc, Task.put_xc_slice, Task.put_y

\section*{Solution - semidefinite}
- Task.get_bars_j - Obtains the dual solution for a semidefinite variable.
- Task.get_bars_slice - Obtains the dual solution for a sequence of semidefinite variables.
- Task.get_barx_j - Obtains the primal solution for a semidefinite variable.
- Task.get_barx_slice - Obtains the primal solution for a sequence of semidefinite variables.
- Infrequent: Task.put_bars_j, Task.put_barx_j

\section*{Solution information}
- Task.get_dual_obj - Computes the dual objective value associated with the solution.
- Task.get_primal_obj - Computes the primal objective value for the desired solution.
- Task.get_pro_sta - Obtains the problem status.
- Task.get_pviol_con - Computes the violation of a primal solution associated to a constraint.
- Task.get_pviol_var - Computes the violation of a primal solution for a list of scalar variables.
- Task.get_sol_sta - Obtains the solution status.
- Task.get_solution_info - Obtains information about of a solution.
- Task.get_solution_info_new - Obtains information about of a solution.
- Task.one_solution_summary - Prints a short summary of a specified solution.
- Task.solution_def - Checks whether a solution is defined.
- Task.solution_summary - Prints a short summary of the current solutions.
- Infrequent: Task.analyze_solution, Task.delete_solution, Task. get_dual_solution_norms, Task.get_dviol_acc, Task.get_dviol_barvar, Task. get_dviol_con, Task.get_dviol_var, Task.get_primal_solution_norms, Task. get_pviol_acc, Task.get_pviol_barvar, Task.get_pviol_djc, Task.get_skc, Task. get_skc_slice, Task.get_skn, Task.get_skx, Task.get_skx_slice, Task.get_solution, Task.get_solution_new, Task.get_solution_slice, Task.put_con_solution_i, Task. put_skc, Task.put_skc_slice, Task.put_skx, Task.put_skx_slice, Task.put_solution, Task.put_solution_new, Task.put_solution_y_i, Task.put_var_solution_j
- Deprecated: Task.get_dviol_cones, Task.get_puiol_cones

\section*{Solving systems with basis matrix}
- Infrequent: Task.basis_cond, Task.init_basis_solve, Task.solve_with_basis

\section*{System, memory and debugging}
- Infrequent: Task.check_mem, Task.get_mem_usage

\section*{Versions}
- Env.get_version - Obtains MOSEK version information.
- Infrequent: Env.check_version, Env.get_build_info

\section*{Other}
- Infrequent: Env.is_infinity

\subsection*{15.3 Class Env}
mosek.Env
The MOSEK global environment.
Env.Env
```

pub fn Env::new() -> Option<Env>

```
```

pub fn Env::new_mem_debug
(dbgfile : \&str) -> Option<Env>

```

Constructor of a new environment.

\section*{Parameters}
dbgfile (\&str) - Name of the memory debugging file. (input)

\section*{Env.axpy}
```

pub fn axpy
(n : i32,
alpha : f64,
x : \&[f64],
y : \&mut[f64]) -> Result<(),String>
pub fn Env::axpy
(\&self,
n : i32,
alpha : f64,
x : \&[f64],
y : \&mut[f64]) -> Result<(),String>

```

Adds \(\alpha x\) to \(y\), i.e. performs the update
\[
y:=\alpha x+y .
\]

Note that the result is stored overwriting \(y\). It must not overlap with the other input arrays.

\section*{Parameters}
- n (i32) - Length of the vectors. (input)
- alpha (f64) - The scalar that multiplies \(x\). (input)
- x (f64[]) - The \(x\) vector. (input)
- y (f64[]) - The \(y\) vector. (input/output)

\section*{Groups} Linear algebra

Env.check_in_all
```

pub fn check_in_all() -> Result<(),String>
pub fn Env::check_in_all(\&mut self) -> Result<(),String>

```

Check in all unused license features to the license token server.

\section*{Groups}

License system
Env.check_in_license
```

pub fn check_in_license(feature : i32) -> Result<(),String>
pub fn Env::check_in_license
(\&mut self,
feature : i32) -> Result<(),String>

```

Check in a license feature to the license server. By default all licenses consumed by functions using a single environment are kept checked out for the lifetime of the MOSEK environment. This function checks in a given license feature back to the license server immediately.
If the given license feature is not checked out at all, or it is in use by a call to Task.optimize, calling this function has no effect.
Please note that returning a license to the license server incurs a small overhead, so frequent calls to this function should be avoided.

\section*{Parameters}
feature (Feature) - Feature to check in to the license system. (input)

\section*{Groups}

License system
Env.check_out_license
```

pub fn check_out_license(feature : i32) -> Result<(),String>
pub fn Env::check_out_license
(\&mut self,
feature : i32) -> Result<(),String>

```

Checks out a license feature from the license server. Normally the required license features will be automatically checked out the first time they are needed by the function Task.optimize. This function can be used to check out one or more features ahead of time.
The feature will remain checked out until the environment is deleted or the function Env. check_in_license is called.
If a given feature is already checked out when this function is called, the call has no effect.
```

Parameters
feature (Feature) - Feature to check out from the license system. (input)
Groups
License system

```

Env.check_version
```

pub fn check_version
(major : i32,
minor : i32,
revision : i32) -> Result<(),String>
pub fn Env::check_version
(\&self,
major : i32,
minor : i32,
revision : i32) -> Result<(),String>

```

Compares the version of the MOSEK DLL with a specified version. Returns Rescode::OK if the versions match and one of Rescode::ERR_NEWER_DLL, Rescode::ERR_OLDER_DLL otherwise.

\section*{Parameters}
- major (i32) - Major version number. (input)
- minor (i32) - Minor version number. (input)
- revision (i32) - Revision number. (input)

\section*{Groups}

Versions
Env.compute_sparse_cholesky
```

pub fn compute_sparse_cholesky
(numthreads : i32,
ordermethod : i32,
tolsingular : f64,
anzc : \&[i32],
aptrc : \&[i64],
asubc : \&[i32],
avalc : \&[f64],
perm : \&mut Vec<i32>,
diag : \&mut Vec<f64>,
lnzc : \&mut Vec<i32>,
lptrc : \&mut Vec<i64>,
lensubnval : \&mut i64,
lsubc : \&mut Vec<i32>,
lvalc : \&mut Vec<f64>) -> Result<(),String>
pub fn Env::compute_sparse_cholesky
(\&self,
numthreads : i32,
ordermethod : i32,
tolsingular : f64,
anzc : \&[i32],
aptrc : \&[i64],
asubc : \&[i32],
avalc : \&[f64],
perm : \&mut Vec<i32>,
diag : \&mut Vec<f64>,
lnzc : \&mut Vec<i32>,
lptrc : \&mut Vec<i64>,
lensubnval : \&mut i64,
lsubc : \&mut Vec<i32>,
lvalc : \&mut Vec<f64>) -> Result<(),String>

```

The function computes a Cholesky factorization of a sparse positive semidefinite matrix. Sparsity is exploited during the computations to reduce the amount of space and work required. Both the input and output matrices are represented using the sparse format.
To be precise, given a symmetric matrix \(A \in \mathbb{R}^{n \times n}\) the function computes a nonsingular lower triangular matrix \(L\), a diagonal matrix \(D\) and a permutation matrix \(P\) such that
\[
L L^{T}-D=P A P^{T}
\]

If ordermethod is zero then reordering heuristics are not employed and \(P\) is the identity.
If a pivot during the computation of the Cholesky factorization is less than
\[
-\rho \cdot \max \left(\left(P A P^{T}\right)_{j j}, 1.0\right)
\]
then the matrix is declared negative semidefinite. On the hand if a pivot is smaller than
\[
\rho \cdot \max \left(\left(P A P^{T}\right)_{j j}, 1.0\right)
\]
then \(D_{j j}\) is increased from zero to
\[
\rho \cdot \max \left(\left(P A P^{T}\right)_{j j}, 1.0\right)
\]

Therefore, if \(A\) is sufficiently positive definite then \(D\) will be the zero matrix. Here \(\rho\) is set equal to value of tolsingular.

\section*{Parameters}
- numthreads (i32) - The number threads that can be used to do the computation. 0 means the code makes the choice. NOTE: API change in version 10: in versions up to 9 the argument in this position indicated whether to use multithreading or not. (input)
- ordermethod (i32) - If nonzero, then a sparsity preserving ordering will be employed. (input)
- tolsingular (f64) - A positive parameter controlling when a pivot is declared zero. (input)
- \(\operatorname{anzc}(\mathrm{i} 32[])-\operatorname{anzc}[j]\) is the number of nonzeros in the \(j\)-th column of \(A\). (input)
- \(\operatorname{aptrc}(i 64[])-\operatorname{aptrc}[j]\) is a pointer to the first element in column \(j\) of \(A\). (input)
- asubc (i32[]) - Row indexes for each column stored in increasing order. (input)
- avalc (f64[]) - The value corresponding to row indexed stored in asubc. (input)
- perm (i32[] by reference) - Permutation array used to specify the permutation matrix \(P\) computed by the function. (output)
- diag (f64[] by reference) - The diagonal elements of matrix \(D\). (output)
- \(\operatorname{lnzc}(\mathrm{i} 32[]\) by reference) \(-\operatorname{lnzc}[j]\) is the number of non zero elements in column \(j\) of \(L\). (output)
- lptrc (i64[] by reference) - lptrc[j] is a pointer to the first row index and value in column \(j\) of \(L\). (output)
- lensubnval (i64 by reference) - Number of elements in lsubc and lvalc. (output)
- lsubc (i32[] by reference) - Row indexes for each column stored in increasing order. (output)
- lvalc (f64[] by reference) - The values corresponding to row indexed stored in lsubc. (output)

\section*{Groups}

Linear algebra
Env.dot
```

pub fn dot
(n : i32,
x : \&[f64],
y : \&[f64],
xty : \&mut f64) -> Result<(),String>
pub fn Env::dot
(\&self,
n : i32,
x : \&[f64],
y : \&[f64],
xty : \&mut f64) -> Result<(),String>

```

Computes the inner product of two vectors \(x, y\) of length \(n \geq 0\), i.e
\[
x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}
\]

Note that if \(n=0\), then the result of the operation is 0 .

\section*{Parameters}
- n (i32) - Length of the vectors. (input)
- \(\mathrm{x}(\mathrm{f} 64[])-\) The \(x\) vector. (input)
- y (f64[]) - The \(y\) vector. (input)
- xty (f64 by reference) - The result of the inner product between \(x\) and \(y\). (output)

\section*{Groups}

Linear algebra
Env.echo_intro
```

pub fn echo_intro(longver : i32) -> Result<(),String>
pub fn Env::echo_intro
(\&self,
longver : i32) -> Result<(),String>

```

Prints an intro to message stream.

\section*{Parameters}
longver (i32) - If non-zero, then the intro is slightly longer. (input)
Groups

\section*{Logging}

Env.expirylicenses
```

pub fn expirylicenses(expiry : \&mut i64) -> Result<(),String>
pub fn Env::expirylicenses
(\&mut self,
expiry : \&mut i64) -> Result<(),String>

```

Reports when the first license feature expires. It reports the number of days to the expiry of the first feature of all the features that were ever checked out from the start of the process, or from the last call to Env. reset_expiry_licenses, until now.

\section*{Parameters}
expiry (i64 by reference) - If nonnegative, then it is the minimum number days to expiry of any feature that has been checked out. (output)

\section*{Groups}
License system

Env.gemm
```

pub fn gemm
(transa : i32,
transb : i32,
m : i32,
n : i32,
k : i32,
alpha : f64,
a : \&[f64],
b : \&[f64],
beta : f64,
c : \&mut[f64]) -> Result<(),String>
pub fn Env::gemm
(\&self,
transa : i32,
transb : i32,
m : i32,
n : i32,
k : i32,
alpha : f64,

```
```

a : \&[f64],
b : \&[f64],
beta : f64,
c : \&mut[f64]) -> Result<(),String>

```

Performs a matrix multiplication plus addition of dense matrices. Given \(A, B\) and \(C\) of compatible dimensions, this function computes
\[
C:=\alpha o p(A) o p(B)+\beta C
\]
where \(\alpha, \beta\) are two scalar values. The function \(o p(X)\) denotes \(X\) if transX is Transpose::NO, or \(X^{T}\) if set to Transpose::YES. The matrix \(C\) has \(m\) rows and \(n\) columns, and the other matrices must have compatible dimensions.
The result of this operation is stored in \(C\). It must not overlap with the other input arrays.

\section*{Parameters}
- transa (Transpose) - Indicates whether the matrix \(A\) must be transposed. (input)
- transb (Transpose) - Indicates whether the matrix \(B\) must be transposed. (input)
- m (i32) - Indicates the number of rows of matrix \(C\). (input)
- n (i32) - Indicates the number of columns of matrix \(C\). (input)
- k (i32) - Specifies the common dimension along which \(o p(A)\) and \(o p(B)\) are multiplied. For example, if neither \(A\) nor \(B\) are transposed, then this is the number of columns in \(A\) and also the number of rows in \(B\). (input)
- alpha (f64) - A scalar value multiplying the result of the matrix multiplication. (input)
- a (f64[]) - The pointer to the array storing matrix \(A\) in a column-major format. (input)
- \(\mathrm{b}(\mathrm{f} 64[])\) - The pointer to the array storing matrix \(B\) in a column-major format. (input)
- beta (f64) - A scalar value that multiplies \(C\). (input)
- c (f64[]) - The pointer to the array storing matrix \(C\) in a column-major format. (input/output)
Groups
Linear algebra
Env.gemv
```

pub fn gemv
(transa : i32,
m : i32,
n : i32,
alpha : f64,
a : \&[f64],
x : \&[f64],
beta : f64,
y : \&mut[f64]) -> Result<(),String>
pub fn Env::gemv
(\&self,
transa : i32,
m : i32,
n : i32,
alpha : f64,
a : \&[f64],

```
```

x : \&[f64],
beta : f64,
y : \&mut[f64]) -> Result<(),String>

```

Computes the multiplication of a scaled dense matrix times a dense vector, plus a scaled dense vector. Precisely, if trans is Transpose: : NO then the update is
\[
y:=\alpha A x+\beta y
\]
and if trans is Transpose:: YES then
\[
y:=\alpha A^{T} x+\beta y,
\]
where \(\alpha, \beta\) are scalar values and \(A\) is a matrix with \(m\) rows and \(n\) columns.
Note that the result is stored overwriting \(y\). It must not overlap with the other input arrays.

\section*{Parameters}
- transa (Transpose) - Indicates whether the matrix \(A\) must be transposed. (input)
- m (i32) - Specifies the number of rows of the matrix \(A\). (input)
- n (i32) - Specifies the number of columns of the matrix \(A\). (input)
- alpha (f64) - A scalar value multiplying the matrix \(A\). (input)
- a (f64[]) - A pointer to the array storing matrix \(A\) in a column-major format. (input)
- \(\mathrm{x}(\mathrm{f} 64[])-\mathrm{A}\) pointer to the array storing the vector \(x\). (input)
- beta (f64) - A scalar value multiplying the vector \(y\). (input)
- \(y(f 64[])-A\) pointer to the array storing the vector \(y\). (input/output)

\section*{Groups}

Linear algebra
Env.get_build_info
```

pub fn get_build_info() -> Result<(String,String),String>

```

Obtains build information.

\section*{Return}
- buildstate (String) - State of binaries, i.e. a debug, release candidate or final release.
- builddate (String) - Date when the binaries were built.

Groups
Versions
Env.get_code_desc
```

pub fn get_code_desc(code : i32) -> Result<(String,String),String>

```

Obtains a short description of the meaning of the response code given by code.

\section*{Parameters}
code (Rescode) - A valid MOSEK response code. (input)

\section*{Return}
- symname (String) - Symbolic name corresponding to code.
- str (String) - Obtains a short description of a response code.

\section*{Groups}

Names, Responses, errors and warnings
Env.get_response_class
```

pub fn get_response_class
(r : i32,
rc : \& mut i32) -> Result<(),String>

```

Obtain the class of a response code.

\section*{Parameters}
- r (Rescode) - A response code indicating the result of function call. (input)
- rc (Rescodetype by reference) - The response class. (output)

\section*{Groups}

Responses, errors and warnings
Env.get_version
```

pub fn get_version
(major : \&mut i32,
minor : \&mut i32,
revision : \&mut i32) -> Result<(),String>

```

Obtains MOSEK version information.

\section*{Parameters}
- major (i32 by reference) - Major version number. (output)
- minor (i32 by reference) - Minor version number. (output)
- revision (i32 by reference) - Revision number. (output)

Groups
Versions
Env.is_infinity
```

pub fn is_infinity(value : f64) -> Result<(),String>

```

Return true if value is considered infinity by MOSEK.

\section*{Parameters}
value (f64) - The value to be checked (input)
Env.license_cleanup
```

pub fn license_cleanup() -> Result<(),String>

```

Stops all threads and deletes all handles used by the license system. If this function is called, it must be called as the last MOSEK API call. No other MOSEK API calls are valid after this.

\section*{Groups}

\section*{License system}

Env.link_file_to_stream
```

pub fn link_file_to_stream
(whichstream : i32,
filename : \&str,
append : i32) -> Result<(),String>
pub fn Env::link_file_to_stream
(\&mut self,
whichstream : i32,
filename : \&str,
append : i32) -> Result<(),String>

```

Sends all output from the stream defined by whichstream to the file given by filename.

\section*{Parameters}
- whichstream (Streamtype) - Index of the stream. (input)
- filename (\&str) - A valid file name. (input)
- append (i32) - If this argument is 0 the file will be overwritten, otherwise it will be appended to. (input)

\section*{Groups}

Logging
Env.optimize_batch
```

pub fn optimize_batch
(israce : bool,
maxtime : f64,
numthreads : i32,
task : \&[\& mut Task],
trmcode : \&mut[i32],
rcode : \&mut[i32]) -> Result<(),String>
pub fn Env::optimize_batch
(\&self,
israce : bool,
maxtime : f64,
numthreads : i32,
task : \& [\& mut Task],
trmcode : \&mut[i32],
rcode : \&mut[i32]) -> Result<(),String>

```

Optimize a number of tasks in parallel using a specified number of threads. All callbacks and log output streams are disabled.

Assuming that each task takes about same time and there many more tasks than number of threads then a linear speedup can be achieved, also known as strong scaling. A typical application of this method is to solve many small tasks of similar type; in this case it is recommended that each of them is allocated a single thread by setting Iparam: : NUM_THREADS to 1.
If the parameters israce or maxtime are used, then the result may not be deterministic, in the sense that the tasks which complete first may vary between runs.

The remaining behavior, including termination and response codes returned for each task, are the same as if each task was optimized separately.

\section*{Parameters}
- israce (bool) - If nonzero, then the function is terminated after the first task has been completed. (input)
- maxtime (f64) - Time limit for the function: if nonnegative, then the function is terminated after maxtime (seconds) has expired. (input)
- numthreads (i32) - Number of threads to be employed. (input)
- trmcode (Rescode []) - The termination code for each task. (output)
- rcode (Rescode []) - The response code for each task. (output)

\section*{Groups}

Optimization
Env.potrf
```

pub fn potrf
(uplo : i32,
n : i32,
a : \&mut[f64]) -> Result<(),String>
pub fn Env::potrf
(\&self,

```
```

uplo : i32,

```
n : i32,
a : \&mut[f64]) -> Result<(), String>

Computes a Cholesky factorization of a real symmetric positive definite dense matrix.

\section*{Parameters}
- uplo (Uplo) - Indicates whether the upper or lower triangular part of the matrix is stored. (input)
- n (i32) - Dimension of the symmetric matrix. (input)
- a (f64[] ) - A symmetric matrix stored in column-major order. Only the lower or the upper triangular part is used, accordingly with the uplo parameter. It will contain the result on exit. (input/output)

\section*{Groups}

Linear algebra
Env.put_license_code
```

pub fn put_license_code(code : \&[i32]) -> Result<(),String>
pub fn Env::put_license_code
(\&mut self,
code : \&[i32]) -> Result<(),String>

```

Input a runtime license code. This function has an effect only before the first optimization.

\section*{Parameters}
code (i32[]) - A runtime license code. (input)
Groups
License system
Env.put_license_debug
```

pub fn put_license_debug(licdebug : i32) -> Result<(),String>
pub fn Env::put_license_debug
(\&mut self,
licdebug : i32) -> Result<(),String>

```

Enables debug information for the license system. If licdebug is non-zero, then MOSEK will print debug info regarding the license checkout.

\section*{Parameters}
licdebug (i32) - Whether license checkout debug info should be printed. (input)
Groups
License system
Env.put_license_path
```

pub fn put_license_path(licensepath : \&str) -> Result<(),String>
pub fn Env::put_license_path
(\&mut self,
licensepath : \&str) -> Result<(),String>

```

Set the path to the license file. This function has an effect only before the first optimization.

\section*{Parameters}
licensepath (\&str) - A path specifying where to search for the license. (input)

\section*{Groups}

License system

Env.put_license_wait
```

pub fn put_license_wait(licwait : i32) -> Result<(),String>
pub fn Env::put_license_wait
(\&mut self,
licwait : i32) -> Result<(),String>

```

Control whether MOSEK should wait for an available license if no license is available. If licwait is non-zero, then MOSEK will wait for licwait-1 milliseconds between each check for an available license.

\section*{Parameters}
licwait (i32) - Whether MOSEK should wait for a license if no license is available. (input)

\section*{Groups}

License system
Env.reset_expiry_licenses
```

pub fn reset_expiry_licenses() -> Result<(),String>
pub fn Env::reset_expiry_licenses(\&mut self) -> Result<(),String>

```

Reset the license expiry reporting startpoint.

\section*{Groups}

License system
Env.sparse_triangular_solve_dense
```

pub fn sparse_triangular_solve_dense
(transposed : i32,
lnzc : \&[i32],
lptrc : \&[i64],
lsubc : \&[i32],
lvalc : \&[f64],
b : \&mut[f64]) -> Result<(),String>
pub fn Env::sparse_triangular_solve_dense
(\&self,
transposed : i32,
lnzc : \&[i32],
lptrc : \&[i64],
lsubc : \&[i32],
lvalc : \&[f64],
b : \&mut[f64]) -> Result<(),String>

```

The function solves a triangular system of the form
\[
L x=b
\]
or
\[
L^{T} x=b
\]
where \(L\) is a sparse lower triangular nonsingular matrix. This implies in particular that diagonals in \(L\) are nonzero.

\section*{Parameters}
- transposed (Transpose) - Controls whether to use with \(L\) or \(L^{T}\). (input)
- \(\operatorname{lnzc}(\mathrm{i} 32[])-\operatorname{lnzc}[\mathrm{j}]\) is the number of nonzeros in column j . (input)
- lptrc \((\mathrm{i} 64[])-\operatorname{lptrc}[j]\) is a pointer to the first row index and value in column j. (input)
- lsubc (i32[]) - Row indexes for each column stored sequentially. Must be stored in increasing order for each column. (input)
- lvalc (f64[]) - The value corresponding to the row index stored in lsubc. (input)
- \(b\) (f64[]) - The right-hand side of linear equation system to be solved as a dense vector. (input/output)

\section*{Groups}

Linear algebra

\section*{Env.syeig}
```

pub fn syeig
(uplo : i32,
n : i32,
a : \&[f64],
w : \&mut[f64]) -> Result<(),String>
pub fn Env::syeig
(\&self,
uplo : i32,
n : i32,
a : \&[f64],
w : \&mut[f64]) -> Result<(),String>

```

Computes all eigenvalues of a real symmetric matrix \(A\). Given a matrix \(A \in \mathbb{R}^{n \times n}\) it returns a vector \(w \in \mathbb{R}^{n}\) containing the eigenvalues of \(A\).

\section*{Parameters}
- uplo (Uplo) - Indicates whether the upper or lower triangular part is used. (input)
- n (i32) - Dimension of the symmetric input matrix. (input)
- a (f64[]) - A symmetric matrix \(A\) stored in column-major order. Only the part indicated by uplo is used. (input)
- w (f64[]) - Array of length at least n containing the eigenvalues of \(A\). (output)

\section*{Groups}

Linear algebra
Env.syevd
```

pub fn syevd
(uplo : i32,
n : i32,
a : \&mut[f64],
w : \&mut[f64]) -> Result<(),String>
pub fn Env::syevd
(\&self,
uplo : i32,
n : i32,
a : \&mut[f64],
w : \&mut[f64]) -> Result<(),String>

```

Computes all the eigenvalues and eigenvectors a real symmetric matrix. Given the input matrix \(A \in \mathbb{R}^{n \times n}\), this function returns a vector \(w \in \mathbb{R}^{n}\) containing the eigenvalues of \(A\) and it also computes the eigenvectors of \(A\). Therefore, this function computes the eigenvalue decomposition of \(A\) as
\[
A=U V U^{T}
\]
where \(V=\operatorname{diag}(w)\) and \(U\) contains the eigenvectors of \(A\).
Note that the matrix \(U\) overwrites the input data \(A\).

\section*{Parameters}
- uplo (Uplo) - Indicates whether the upper or lower triangular part is used. (input)
- n (i32) - Dimension of the symmetric input matrix. (input)
- a (f64[]) - A symmetric matrix \(A\) stored in column-major order. Only the part indicated by uplo is used. On exit it will be overwritten by the matrix \(U\). (input/output)
- w (f64[]) - Array of length at least n containing the eigenvalues of \(A\). (output)

\section*{Groups}

Linear algebra
Env.sym_nam_to_value
```

pub fn sym_nam_to_value(name : \&str) -> Result<String,String>

```

Obtains the value corresponding to a symbolic name defined by MOSEK.
Parameters
name (\&str) - Symbolic name. (input)
Return
value (String) - The corresponding value.
Groups
Parameters
Env.syrk
```

pub fn syrk
(uplo : i32,
trans : i32,
n : i32,
k : i32,
alpha : f64,
a : \&[f64],
beta : f64,
c : \&mut[f64]) -> Result<(),String>
pub fn Env::syrk
(\&self,
uplo : i32,
trans : i32,
n : i32,
k : i32,
alpha : f64,
a : \&[f64],
beta : f64,
c : \&mut[f64]) -> Result<(),String>

```

Performs a symmetric rank- \(k\) update for a symmetric matrix.
Given a symmetric matrix \(C \in \mathbb{R}^{n \times n}\), two scalars \(\alpha, \beta\) and a matrix \(A\) of rank \(k \leq n\), it computes either
\[
C:=\alpha A A^{T}+\beta C,
\]
when trans is set to Transpose: :NO and \(A \in \mathbb{R}^{n \times k}\), or
\[
C:=\alpha A^{T} A+\beta C,
\]
when trans is set to Transpose::YES and \(A \in \mathbb{R}^{k \times n}\).
Only the part of \(C\) indicated by uplo is used and only that part is updated with the result. It must not overlap with the other input arrays.

\section*{Parameters}
- uplo (Uplo) - Indicates whether the upper or lower triangular part of \(C\) is used. (input)
- trans (Transpose) - Indicates whether the matrix \(A\) must be transposed. (input)
- n (i32) - Specifies the order of \(C\). (input)
- k (i32) - Indicates the number of rows or columns of \(A\), depending on whether or not it is transposed, and its rank. (input)
- alpha (f64) - A scalar value multiplying the result of the matrix multiplication. (input)
- a (f64[]) - The pointer to the array storing matrix \(A\) in a column-major format. (input)
- beta (f64) - A scalar value that multiplies \(C\). (input)
- c (f64[]) - The pointer to the array storing matrix \(C\) in a column-major format. (input/output)

\section*{Groups}

Linear algebra

\section*{Env.task}
```

pub fn Env::task
(\&self) -> Option<Task>

```
```

pub fn Env::task_with_capacity
(\&self,
numcon : i32,
numvar : i32) -> Option<Task>

```

Creates a new task in this environment.

\section*{Parameters}
- numcon (i32) - An optional hint about the maximal number of constraints in the task. (input)
- numvar (i32) - An optional hint about the maximal number of variables in the task. (input)

\section*{Return} newtask (Task) - A new task.

\subsection*{15.4 Class Task}
mosek.Task
Represents an optimization task (struct Task) or a task with callbacks (struct TaskCB). Task.Task
```

pub fn Task::new() -> Option<Task>

```
```

pub fn Task::from_env
(env : Option<\&Env>) -> Option<Task>

```
```

pub fn Task::with_capacity
(env : Option<\&Env>,
numcon : i32,
numvar : i32) -> Option<Task>

```

Constructor of a new optimization task.

\section*{Parameters}
- env (Env) - Parent environment. (input)
- numcon (i32) - An optional hint about the maximal number of constraints in the task. (input)
- numvar (i32) - An optional hint about the maximal number of variables in the task. (input)

Task.analyze_names
```

pub fn Task::analyze_names
(\&self,
whichstream : i32,
nametype : i32) -> Result<(),String>

```

The function analyzes the names and issues an error if a name is invalid.

\section*{Parameters}
- whichstream (Streamtype) - Index of the stream. (input)
- nametype (Nametype) - The type of names e.g. valid in MPS or LP files. (input) Groups

Names
Task.analyze_problem
```

pub fn Task::analyze_problem
(\&self,
whichstream : i32) -> Result<(),String>

```

The function analyzes the data of a task and writes out a report.

\section*{Parameters}
whichstream (Streamtype) - Index of the stream. (input)
Groups
Inspecting the task
Task.analyze_solution
```

pub fn Task::analyze_solution
(\&self,
whichstream : i32,
whichsol : i32) -> Result<(),String>

```

Print information related to the quality of the solution and other solution statistics.
By default this function prints information about the largest infeasibilites in the solution, the primal (and possibly dual) objective value and the solution status.

Following parameters can be used to configure the printed statistics:
- Iparam: :ANA_SOL_BASIS enables or disables printing of statistics specific to the basis solution (condition number, number of basic variables etc.). Default is on.
- Iparam: :ANA_SOL_PRINT_VIOLATED enables or disables listing names of all constraints (both primal and dual) which are violated by the solution. Default is off.
- Dparam: :ANA_SOL_INFEAS_TOL is the tolerance defining when a constraint is considered violated. If a constraint is violated more than this, it will be listed in the summary.

\section*{Parameters}
- whichstream (Streamtype) - Index of the stream. (input)
- whichsol (Soltype) - Selects a solution. (input)

\section*{Groups}

\footnotetext{
Solution information, Inspecting the task
}
```

pub fn Task::append_acc
(\&mut self,
domidx : i64,
afeidxlist : \&[i64],
b : \&[f64]) -> Result<(),String>

```

Appends an affine conic constraint to the task. The affine constraint has the form a sequence of affine expressions belongs to a domain.

The domain index is specified with domidx and should refer to a domain previously appended with one of the append...domain functions.
The length of the affine expression list afeidxlist must be equal to the dimension \(n\) of the domain. The elements of afeidxlist are indexes to the store of affine expressions, i.e. the affine expressions appearing in the affine conic constraint are:
\[
F_{\text {afeidxlist }[k],:} x+g_{\text {afeidxlist }[k]} \text { for } k=0, \ldots, n-1 .
\]

If an optional vector \(b\) of the same length as afeidxlist is specified then the expressions appearing in the affine constraint will instead be taken as:
\[
F_{\text {afeidxlist }[k],:} x+g_{\text {afeidxlist }[k]}-b_{k} \text { for } k=0, \ldots, n-1
\]

\section*{Parameters}
- domidx (i64) - Domain index. (input)
- afeidxlist (i64[]) - List of affine expression indexes. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. Optional, pass an empty slice if not required. (input)

\section*{Groups}

Problem data - affine conic constraints
Task.append_acc_seq
```

pub fn Task::append_acc_seq
(\&mut self,
domidx : i64,
afeidxfirst : i64,
b : \&[f64]) -> Result<(),String>

```

Appends an affine conic constraint to the task, as in Task.append_acc. The function assumes the affine expressions forming the constraint are sequential. The affine constraint has the form \(a\) sequence of affine expressions belongs to a domain.
The domain index is specified with domidx and should refer to a domain previously appended with one of the append...domain functions.
The number of affine expressions should be equal to the dimension \(n\) of the domain. The affine expressions forming the affine constraint are arranged sequentially in a contiguous block of the affine expression store starting from position afeidxfirst. That is, the affine expressions appearing in the affine conic constraint are:
\[
F_{\text {afeidxfirst }+k,:} x+g_{\text {afeidxfirst }+k} \text { for } k=0, \ldots, n-1 .
\]

If an optional vector \(b\) of length numafeidx is specified then the expressions appearing in the affine constraint will instead be taken as
\[
F_{\text {afeidxfirst }+k,:} x+g_{\text {afeidxfirst }+k}-b_{k} \quad \text { for } k=0, \ldots, n-1
\]

\section*{Parameters}
- domidx (i64) - Domain index. (input)
- afeidxfirst (i64) - Index of the first affine expression. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. Optional, pass an empty slice if not required. (input)

\section*{Groups}

Problem data - affine conic constraints

\section*{Task.append_accs}
```

pub fn Task::append_accs
(\&mut self,
domidxs : \&[i64],
afeidxlist : \&[i64],
b : \&[f64]) -> Result<(),String>

```

Appends numaccs affine conic constraint to the task. Each single affine conic constraint should be specified as in Task. append_acc and the input of this function should contain the concatenation of all these descriptions.
In particular, the length of afeidxlist must equal the sum of dimensions of domains indexed in domainsidxs.

\section*{Parameters}
- domidxs (i64[]) - Domain indices. (input)
- afeidxlist (i64[]) - List of affine expression indexes. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. Optional, pass an empty slice if not required. (input)

\section*{Groups}

Problem data - affine conic constraints
Task.append_accs_seq
```

pub fn Task::append_accs_seq
(\&mut self,
domidxs : \&[i64],
numafeidx : i64,
afeidxfirst : i64,
b : \&[f64]) -> Result<(),String>

```

Appends numaccs affine conic constraint to the task. It is the block variant of Task.append_accs, that is it assumes that the affine expressions appearing in the affine conic constraints are sequential in the affine expression store, starting from position afeidxfirst.

\section*{Parameters}
- domidxs (i64[]) - Domain indices. (input)
- numafeidx (i64) - Number of affine expressions in the affine expression list (must equal the sum of dimensions of the domains). (input)
- afeidxfirst (i64) - Index of the first affine expression. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. Optional, pass an empty slice if not required. (input)

\section*{Groups}

Problem data - affine conic constraints
Task.append_afes
```

pub fn Task::append_afes
(\&mut self,
num : i64) -> Result<(),String>

```

Appends a number of empty affine expressions to the task.

\section*{Parameters}
num (i64) - Number of empty affine expressions which should be appended. (input)
Groups
Problem data - affine expressions

\section*{Task.append_barvars}
```

pub fn Task::append_barvars
(\&mut self,
dim : \&[i32]) -> Result<(),String>

```

Appends positive semidefinite matrix variables of dimensions given by dim to the problem.

\section*{Parameters}
\(\operatorname{dim}(i 32[])\) - Dimensions of symmetric matrix variables to be added. (input)
Groups
Problem data - semidefinite

\section*{Task.append_cone Deprecated}
```

pub fn Task::append_cone
(\&mut self,
ct : i32,
conepar : f64,
submem : \&[i32]) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

Appends a new conic constraint to the problem. Hence, add a constraint
\[
\hat{x} \in \mathcal{K}
\]
to the problem, where \(\mathcal{K}\) is a convex cone. \(\hat{x}\) is a subset of the variables which will be specified by the argument submem. Cone type is specified by ct.
Define
\[
\hat{x}=x_{\text {submem }[1]}, \ldots, x_{\text {submem }[\text { nummem }]} .
\]

Depending on the value of ct this function appends one of the constraints:
- Quadratic cone (Conetype: :QUAD, requires nummem \(\geq 1\) ):
\[
\hat{x}_{0} \geq \sqrt{\sum_{i=1}^{i<\text { nummem }} \hat{x}_{i}^{2}}
\]
- Rotated quadratic cone (Conetype: : RQUAD, requires nummem \(\geq 2\) ):
\[
2 \hat{x}_{0} \hat{x}_{1} \geq \sum_{i=2}^{i<\text { nummem }} \hat{x}_{i}^{2}, \quad \hat{x}_{0}, \hat{x}_{1} \geq 0
\]
- Primal exponential cone (Conetype: :PEXP, requires nummem \(=3\) ):
\[
\hat{x}_{0} \geq \hat{x}_{1} \exp \left(\hat{x}_{2} / \hat{x}_{1}\right), \quad \hat{x}_{0}, \hat{x}_{1} \geq 0
\]
- Primal power cone (Conetype: :PPOW, requires nummem \(\geq 2\) ):
\[
\hat{x}_{0}^{\alpha} \hat{x}_{1}^{1-\alpha} \geq \sqrt{\sum_{i=2}^{i<\text { nummem }} \hat{x}_{i}^{2}}, \quad \hat{x}_{0}, \hat{x}_{1} \geq 0
\]
where \(\alpha\) is the cone parameter specified by conepar.
- Dual exponential cone (Conetype: :DEXP, requires nummem \(=3\) ):
\[
\hat{x}_{0} \geq-\hat{x}_{2} e^{-1} \exp \left(\hat{x}_{1} / \hat{x}_{2}\right), \quad \hat{x}_{2} \leq 0, \hat{x}_{0} \geq 0
\]
- Dual power cone (Conetype: :DPOW, requires nummem \(\geq 2\) ):
\[
\left(\frac{\hat{x}_{0}}{\alpha}\right)^{\alpha}\left(\frac{\hat{x}_{1}}{1-\alpha}\right)^{1-\alpha} \geq \sqrt{\sum_{i=2}^{i<\text { nummem }} \hat{x}_{i}^{2}}, \quad \hat{x}_{0}, \hat{x}_{1} \geq 0
\]
where \(\alpha\) is the cone parameter specified by conepar.
- Zero cone (Conetype: :ZERO):
\[
\hat{x}_{i}=0 \text { for all } i
\]

Please note that the sets of variables appearing in different conic constraints must be disjoint.
For an explained code example see Sec. 6.3, Sec. 6.5 or Sec. 6.4.

\section*{Parameters}
- ct (Conetype) - Specifies the type of the cone. (input)
- conepar (f64) - For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0 . (input)
- submem (i32[]) - Variable subscripts of the members in the cone. (input)

Groups
Problem data - cones (deprecated)

\section*{Fask.append_cone_seq Deprecated}
```

pub fn Task::append_cone_seq
(\&mut self,
ct : i32,
conepar : f64,
nummem : i32,
j : i32) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.
Appends a new conic constraint to the problem, as in Task.append_cone. The function assumes the members of cone are sequential where the first member has index \(j\) and the last \(j+n u m m e m-1\).

\section*{Parameters}
- ct (Conetype) - Specifies the type of the cone. (input)
- conepar (f64) - For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0 . (input)
- nummem (i32) - Number of member variables in the cone. (input)
- \(j\) (i32) - Index of the first variable in the conic constraint. (input)

\section*{Groups}

Problem data - cones (deprecated)

\section*{Task.append_cones_seq Deprecated}
```

pub fn Task::append_cones_seq
(\&mut self,
ct : \&[i32],
conepar : \&[f64],
nummem : \&[i32],
j : i32) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

Appends a number of conic constraints to the problem, as in Task.append_cone. The \(k\) th cone is assumed to be of dimension nummem [k]. Moreover, it is assumed that the first variable of the first cone has index \(j\) and starting from there the sequentially following variables belong to the first cone, then to the second cone and so on.

\section*{Parameters}
- ct (Conetype []) - Specifies the type of the cone. (input)
- conepar (f64[]) - For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0 . (input)
- nummem (i32[]) - Numbers of member variables in the cones. (input)
- \(\mathbf{j}\) (i32) - Index of the first variable in the first cone to be appended. (input)

\section*{Groups}

Problem data - cones (deprecated)

\section*{Task.append_cons}
```

pub fn Task::append_cons
(\&mut self,
num : i32) -> Result<(),String>

```

Appends a number of constraints to the model. Appended constraints will be declared free. Please note that MOSEK will automatically expand the problem dimension to accommodate the additional constraints.

\section*{Parameters}
num (i32) - Number of constraints which should be appended. (input)

\section*{Groups}

Problem data - linear part, Problem data - constraints

\section*{Task.append_djcs}
```

pub fn Task::append_djcs
(\&mut self,
num : i64) -> Result<(),String>

```

Appends a number of empty disjunctive constraints to the task.

\section*{Parameters}
num (i64) - Number of empty disjunctive constraints which should be appended. (input)

\section*{Groups}

Problem data - disjunctive constraints
Task.append_dual_exp_cone_domain
```

pub fn Task::append_dual_exp_cone_domain(\&mut self) -> Result<i64,String>

```

Appends the dual exponential cone \(\left\{x \in \mathbb{R}^{3}: x_{0} \geq-x_{2} e^{-1} e^{x_{1} / x_{2}}, x_{0}>0, x_{2}<0\right\}\) to the list of domains.

\section*{Return}
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_dual_geo_mean_cone_domain
```

pub fn Task::append_dual_geo_mean_cone_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the dual geometric mean cone \(\left\{x \in \mathbb{R}^{n}:(n-1)\left(\prod_{i=0}^{n-2} x_{i}\right)^{1 /(n-1)} \geq\left|x_{n-1}\right|, x_{0}, \ldots, x_{n-2} \geq 0\right\}\) to the list of domains.

\section*{Parameters}

> n (i64) - Dimmension of the domain. (input)

Return
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_dual_power_cone_domain
```

pub fn Task::append_dual_power_cone_domain
(\&mut self,
n : i64,
alpha : \&[f64]) -> Result<i64,String>

```

Appends the dual power cone domain of dimension \(n\), with \(n_{\ell}\) variables appearing on the left-hand side, where \(n_{\ell}\) is the length of \(\alpha\), and with a homogenous sequence of exponents \(\alpha_{0}, \ldots, \alpha_{n_{\ell}-1}\).
Formally, let \(s=\sum_{i} \alpha_{i}\) and \(\beta_{i}=\alpha_{i} / s\), so that \(\sum_{i} \beta_{i}=1\). Then the dual power cone is defined as follows:
\[
\left\{x \in \mathbb{R}^{n}: \prod_{i=0}^{n_{\ell}-1}\left(\frac{x_{i}}{\beta_{i}}\right)^{\beta_{i}} \geq \sqrt{\sum_{j=n_{\ell}}^{n-1} x_{j}^{2}}, x_{0} \ldots, x_{n_{\ell}-1} \geq 0\right\}
\]

\section*{Parameters}
- \(n\) (i64) - Dimension of the domain. (input)
- alpha (f64[]) - The sequence proportional to exponents. Must be positive. (input)
Return
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_primal_exp_cone_domain
```

pub fn Task::append_primal_exp_cone_domain(\&mut self) -> Result<i64,String>

```

Appends the primal exponential cone \(\left\{x \in \mathbb{R}^{3}: x_{0} \geq x_{1} e^{x_{2} / x_{1}}, x_{0}, x_{1}>0\right\}\) to the list of domains.

\section*{Return}
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_primal_geo_mean_cone_domain
```

pub fn Task::append_primal_geo_mean_cone_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the primal geometric mean cone \(\left\{x \in \mathbb{R}^{n}:\left(\prod_{i=0}^{n-2} x_{i}\right)^{1 /(n-1)} \geq\left|x_{n-1}\right|, x_{0} \ldots, x_{n-2} \geq 0\right\}\) to the list of domains.

\section*{Parameters}
n (i64) - Dimmension of the domain. (input)
Return
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_primal_power_cone_domain
```

pub fn Task::append_primal_power_cone_domain
(\&mut self,
n : i64,
alpha : \&[f64]) -> Result<i64,String>

```

Appends the primal power cone domain of dimension \(n\), with \(n_{\ell}\) variables appearing on the left-hand side, where \(n_{\ell}\) is the length of \(\alpha\), and with a homogenous sequence of exponents \(\alpha_{0}, \ldots, \alpha_{n_{\ell}-1}\). Formally, let \(s=\sum_{i} \alpha_{i}\) and \(\beta_{i}=\alpha_{i} / s\), so that \(\sum_{i} \beta_{i}=1\). Then the primal power cone is defined as follows:
\[
\left\{x \in \mathbb{R}^{n}: \prod_{i=0}^{n_{\ell}-1} x_{i}^{\beta_{i}} \geq \sqrt{\sum_{j=n_{\ell}}^{n-1} x_{j}^{2}}, x_{0} \ldots, x_{n_{\ell}-1} \geq 0\right\}
\]

\section*{Parameters}
- \(n(i 64)\) - Dimension of the domain. (input)
- alpha (f64[]) - The sequence proportional to exponents. Must be positive. (input)

\section*{Return}
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_quadratic_cone_domain
```

pub fn Task::append_quadratic_cone_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the \(n\)-dimensional quadratic cone \(\left\{x \in \mathbb{R}^{n}: x_{0} \geq \sqrt{\sum_{i=1}^{n-1} x_{i}^{2}}\right\}\) to the list of domains.

\section*{Parameters}
n (i64) - Dimmension of the domain. (input)

\section*{Return}
domidx (i64) - Index of the domain.

\section*{Groups}

Problem data - domain
Task.append_r_domain
```

pub fn Task::append_r_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the \(n\)-dimensional real space \(\left\{x \in \mathbb{R}^{n}\right\}\) to the list of domains.

\section*{Parameters}
n (i64) - Dimmension of the domain. (input)
Return
domidx (i64) - Index of the domain.

\section*{Groups}

Problem data - domain
Task.append_r_quadratic_cone_domain
```

pub fn Task::append_r_quadratic_cone_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the \(n\)-dimensional rotated quadratic cone \(\left\{x \in \mathbb{R}^{n}: 2 x_{0} x_{1} \geq \sum_{i=2}^{n-1} x_{i}^{2}, x_{0}, x_{1} \geq 0\right\}\) to the list of domains.

\section*{Parameters}
n (i64) - Dimmension of the domain. (input)

\section*{Return}
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_rminus_domain
```

pub fn Task::append_rminus_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the \(n\)-dimensional negative orthant \(\left\{x \in \mathbb{R}^{n}: x \leq 0\right\}\) to the list of domains.

\section*{Parameters}
n (i64) - Dimmension of the domain. (input)

\section*{Return}
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_rplus_domain
```

pub fn Task::append_rplus_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the \(n\)-dimensional positive orthant \(\left\{x \in \mathbb{R}^{n}: x \geq 0\right\}\) to the list of domains.

\section*{Parameters}
n (i64) - Dimmension of the domain. (input)

\section*{Return}
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_rzero_domain
```

pub fn Task::append_rzero_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the zero in \(n\)-dimensional real space \(\left\{x \in \mathbb{R}^{n}: x=0\right\}\) to the list of domains.

\section*{Parameters}
n (i64) - Dimmension of the domain. (input)
Return
domidx (i64) - Index of the domain.

\section*{Groups}

Problem data - domain
Task.append_sparse_sym_mat
```

pub fn Task::append_sparse_sym_mat
(\&mut self,
dim : i32,
subi : \&[i32],
subj : \&[i32],
valij : \&[f64]) -> Result<i64,String>

```

MOSEK maintains a storage of symmetric data matrices that is used to build \(\bar{C}\) and \(\bar{A}\). The storage can be thought of as a vector of symmetric matrices denoted \(E\). Hence, \(E_{i}\) is a symmetric matrix of certain dimension.

This function appends a general sparse symmetric matrix on triplet form to the vector \(E\) of symmetric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts and values of each element in the symmetric matrix to be appended. Since the matrix that is appended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are not allowed.

Observe the function reports the index (position) of the appended matrix in \(E\). This index should be used for later references to the appended matrix.

\section*{Parameters}
- dim (i32) - Dimension of the symmetric matrix that is appended. (input)
- subi (i32[]) - Row subscript in the triplets. (input)
- subj (i32[]) - Column subscripts in the triplets. (input)
- valij (f64[]) - Values of each triplet. (input)

\section*{Return}
idx (i64) - Unique index assigned to the inputted matrix that can be used for later reference

\section*{Groups}

Problem data - semidefinite
Task.append_sparse_sym_mat_list
```

pub fn Task::append_sparse_sym_mat_list
(\&mut self,
dims : \&[i32],
nz : \&[i64],
subi : \&[i32],
subj : \&[i32],
valij : \&[f64],
idx : \&mut[i64]) -> Result<(),String>

```

MOSEK maintains a storage of symmetric data matrices that is used to build \(\bar{C}\) and \(\bar{A}\). The storage can be thought of as a vector of symmetric matrices denoted \(E\). Hence, \(E_{i}\) is a symmetric matrix of certain dimension.

This function appends general sparse symmetric matrixes on triplet form to the vector \(E\) of symmetric matrices. The vectors subi, subj, and valij contains the row subscripts, column subscripts and values of each element in the symmetric matrix to be appended. Since the matrix that is appended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are not allowed.

Observe the function reports the index (position) of the appended matrix in \(E\). This index should be used for later references to the appended matrix.

\section*{Parameters}
- dims (i32[]) - Dimensions of the symmetric matrixes. (input)
- nz (i64[]) - Number of nonzeros for each matrix. (input)
- subi (i32[]) - Row subscript in the triplets. (input)
- subj (i32[]) - Column subscripts in the triplets. (input)
- valij (f64[]) - Values of each triplet. (input)
- idx (i64[]) - Unique index assigned to the inputted matrix that can be used for later reference. (output)

\section*{Groups}

Problem data - semidefinite
Task.append_svec_psd_cone_domain
```

pub fn Task::append_svec_psd_cone_domain
(\&mut self,
n : i64) -> Result<i64,String>

```

Appends the domain consisting of vectors of length \(n=d(d+1) / 2\) defined as follows
\[
\left\{\left(x_{1}, \ldots, x_{d(d+1) / 2}\right) \in \mathbb{R}^{n}: \operatorname{sMat}(x) \in \mathcal{S}_{+}^{d}\right\}=\left\{\operatorname{sVec}(X): X \in \mathcal{S}_{+}^{d}\right\}
\]
where
\[
\operatorname{sVec}(X)=\left(X_{11}, \sqrt{2} X_{21}, \ldots, \sqrt{2} X_{d 1}, X_{22}, \sqrt{2} X_{32}, \ldots, X_{d d}\right)
\]
and
\[
\operatorname{sMat}(x)=\left[\begin{array}{cccc}
x_{1} & x_{2} / \sqrt{2} & \cdots & x_{d} / \sqrt{2} \\
x_{2} / \sqrt{2} & x_{d+1} & \cdots & x_{2 d-1} / \sqrt{2} \\
\cdots & \cdots & \cdots & \cdots \\
x_{d} / \sqrt{2} & x_{2 d-1} / \sqrt{2} & \cdots & x_{d(d+1) / 2}
\end{array}\right] .
\]

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidefinite matrix, with the non-diagonal elements additionally rescaled.
This domain is a self-dual cone.

\section*{Parameters}
n (i64) - Dimension of the domain, must be of the form \(d(d+1) / 2\). (input)

\section*{Return}
domidx (i64) - Index of the domain.
Groups
Problem data - domain
Task.append_vars
```

pub fn Task::append_vars
(\&mut self,
num : i32) -> Result<(),String>

```

Appends a number of variables to the model. Appended variables will be fixed at zero. Please note that MOSEK will automatically expand the problem dimension to accommodate the additional variables.

\section*{Parameters}
num (i32) - Number of variables which should be appended. (input)

\section*{Groups}

Problem data - linear part, Problem data - variables
Task.async_get_result
```

pub fn Task::async_get_result
(\&mut self,
address : \&str,
accesstoken : \&str,
token : \&str,
resp : \& mut i32,
trm : \& mut i32) -> Result<bool,String>

```

Request a solution from a remote job identified by the argument token. For other arguments see Task.async_optimize. If the solution is available it will be retrieved and loaded into the local task.

\section*{Parameters}
- address (\&str) - Address of the OptServer. (input)
- accesstoken (\&str) - Access token. (input)
- token (\&str) - The task token. (input)
- resp (Rescode by reference) - Is the response code from the remote solver. (output)
- trm (Rescode by reference) - Is either Rescode::OK or a termination response code. (output)

\section*{Return}
respavailable (bool) - Indicates if a remote response is available. If this is not true, resp and trm should be ignored.

\section*{Groups}

Remote optimization
Task.async_optimize
```

pub fn Task::async_optimize
(\&mut self,
address : \&str,
accesstoken : \&str) -> Result<String,String>

```

Offload the optimization task to an instance of OptServer specified by addr, which should be a valid URL, for example http://server:port or https://server:port. The call will exit immediately.
If the server requires authentication, the authentication token can be passed in the accesstoken argument.
If the server requires encryption, the keys can be passed using one of the solver parameters Sparam: :REMOTE_TLS_CERT or Sparam::REMOTE_TLS_CERT_PATH.
The function returns a token which should be used in future calls to identify the task.

\section*{Parameters}
- address (\&str) - Address of the OptServer. (input)
- accesstoken (\&str) - Access token. (input)

\section*{Return}
token (String) - Returns the task token.
Groups
Remote optimization
Task.async_poll
```

pub fn Task::async_poll
(\&mut self,
address : \&str,
accesstoken : \&str,
token : \&str,
resp : \& mut i32,
trm : \& mut i32) -> Result<bool,String>

```

Requests information about the status of the remote job identified by the argument token. For other arguments see Task.async_optimize.

\section*{Parameters}
- address (\&str) - Address of the OptServer. (input)
- accesstoken (\&str) - Access token. (input)
- token (\&str) - The task token. (input)
- resp (Rescode by reference) - Is the response code from the remote solver. (output)
- trm (Rescode by reference) - Is either Rescode::OK or a termination response code. (output)

\section*{Return}
respavailable (bool) - Indicates if a remote response is available. If this is not true, resp and trm should be ignored.

\section*{Groups}

Remote optimization
Task.async_stop
```

pub fn Task::async_stop
(\&mut self,
address : \&str,
accesstoken : \&str,
token : \&str) -> Result<(),String>

```

Request that the remote job identified by token is terminated. For other arguments see Task. async_optimize.

\section*{Parameters}
- address (\&str) - Address of the OptServer. (input)
- accesstoken (\&str) - Access token. (input)
- token (\&str) - The task token. (input)

\section*{Groups}

Remote optimization
Task.basis_cond
```

pub fn Task::basis_cond
(\&mut self,
nrmbasis : \&mut f64,
nrminvbasis : \&mut f64) -> Result<(),String>

```

If a basic solution is available and it defines a nonsingular basis, then this function computes the 1-norm estimate of the basis matrix and a 1-norm estimate for the inverse of the basis matrix. The 1-norm estimates are computed using the method outlined in [Ste98], pp. 388-391.
By definition the 1-norm condition number of a matrix \(B\) is defined as
\[
\kappa_{1}(B):=\|B\|_{1}\left\|B^{-1}\right\|_{1}
\]

Moreover, the larger the condition number is the harder it is to solve linear equation systems involving \(B\). Given estimates for \(\|B\|_{1}\) and \(\left\|B^{-1}\right\|_{1}\) it is also possible to estimate \(\kappa_{1}(B)\).

\section*{Parameters}
- nrmbasis (f64 by reference) - An estimate for the 1-norm of the basis. (output)
- nrminvbasis (f64 by reference) - An estimate for the 1-norm of the inverse of the basis. (output)
Groups Solving systems with basis matrix
```

pub fn Task::check_mem
(\&mut self,
file : \&str,
line : i32) -> Result<(),String>

```

Checks the memory allocated by the task.

\section*{Parameters}
- file (\&str) - File from which the function is called. (input)
- line (i32) - Line in the file from which the function is called. (input)

\section*{Groups}

System, memory and debugging
Task.chg_con_bound
```

pub fn Task::chg_con_bound
(\&mut self,
i : i32,
lower : i32,
finite : i32,
value : f64) -> Result<(),String>

```

Changes a bound for one constraint.
If lower is non-zero, then the lower bound is changed as follows:
\[
\text { new lower bound }= \begin{cases}-\infty, & \text { finite }=0, \\ \text { value } & \text { otherwise } .\end{cases}
\]

Otherwise if lower is zero, then
\[
\text { new upper bound }= \begin{cases}\infty, & \text { finite }=0 \\ \text { value } & \text { otherwise }\end{cases}
\]

Please note that this function automatically updates the bound key for the bound, in particular, if the lower and upper bounds are identical, the bound key is changed to fixed.

\section*{Parameters}
- i (i32) - Index of the constraint for which the bounds should be changed. (input)
- lower (i32) - If non-zero, then the lower bound is changed, otherwise the upper bound is changed. (input)
- finite (i32) - If non-zero, then value is assumed to be finite. (input)
- value (f64) - New value for the bound. (input)

\section*{Groups}

Problem data - bounds, Problem data - constraints, Problem data - linear part
Task.chg_var_bound
```

pub fn Task::chg_var_bound
(\&mut self,
j : i32,
lower : i32,
finite : i32,
value : f64) -> Result<(),String>

```

Changes a bound for one variable.
If lower is non-zero, then the lower bound is changed as follows:
\[
\text { new lower bound }= \begin{cases}-\infty, & \text { finite }=0, \\ \text { value } & \text { otherwise }\end{cases}
\]

Otherwise if lower is zero, then
\[
\text { new upper bound }= \begin{cases}\infty, & \text { finite }=0 \\ \text { value } & \text { otherwise }\end{cases}
\]

Please note that this function automatically updates the bound key for the bound, in particular, if the lower and upper bounds are identical, the bound key is changed to fixed.

\section*{Parameters}
- \(\mathbf{j}\) (i32) - Index of the variable for which the bounds should be changed. (input)
- lower (i32) - If non-zero, then the lower bound is changed, otherwise the upper bound is changed. (input)
- finite (i32) - If non-zero, then value is assumed to be finite. (input)
- value (f64) - New value for the bound. (input)

\section*{Groups}

Problem data - bounds, Problem data - variables, Problem data - linear part
Task.clear_callback
```

pub fn TaskCB::clear_callback
(\&mut self) -> Result<(),String>

```

Detaches the callback function.
Task.clear_stream_callback
```

pub fn TaskCB::clear_stream_callback
(\&mut self,
whichstream : i32) -> Result<(),String>

```

Detaches a stream callback function.

\section*{Parameters}
whichstream (Streamtype) - Index of the stream. (input)

\section*{Task.clone}
```

pub fn Task::clone
(\&self) -> Option<Task>

```

Creates a clone of an existing task copying all problem data and parameter settings to a new task.

\section*{Return}
newtask (Task) - The cloned task.
Task.commit_changes
```

pub fn Task::commit_changes(\&mut self) -> Result<(),String>

```

Commits all cached problem changes to the task. It is usually not necessary to call this function explicitly since changes will be committed automatically when required.

\section*{Groups}

Environment and task management
Task.delete_solution
```

pub fn Task::delete_solution
(\&mut self,
whichsol : i32) -> Result<(),String>

```

Undefine a solution and free the memory it uses.

\section*{Parameters}
whichsol (Soltype) - Selects a solution. (input)
Groups
Environment and task management, Solution information
Task.dual_sensitivity
```

pub fn Task::dual_sensitivity
(\&self,
subj : \&[i32],
leftpricej : \&mut[f64],
rightpricej : \&mut[f64],
leftrangej : \&mut[f64],
rightrangej : \&mut[f64]) -> Result<(),String>

```

Calculates sensitivity information for objective coefficients. The indexes of the coefficients to analyze are
\[
\{\operatorname{subj}[i] \mid i=0, \ldots, \operatorname{numj}-1\}
\]

The type of sensitivity analysis to perform (basis or optimal partition) is controlled by the parameter Iparam: : SENSITIVITY_TYPE.
For an example, please see Section Example: Sensitivity Analysis.

\section*{Parameters}
- subj (i32[]) - Indexes of objective coefficients to analyze. (input)
- leftpricej (f64[]) - leftpricej \([j]\) is the left shadow price for the coefficient with index subj[j]. (output)
- rightpricej (f64[]) - rightpricej[j] is the right shadow price for the coefficient with index subj[j]. (output)
- leftrangej \(\left(\mathrm{f} 64[\mathrm{C})\right.\) - leftrange \(j[j]\) is the left range \(\beta_{1}\) for the coefficient with index subj[j]. (output)
- rightrangej (f64[]) - rightrangej \([j]\) is the right range \(\beta_{2}\) for the coefficient with index subj[j]. (output)

\section*{Groups}

Sensitivity analysis
Task.empty_afe_barf_row
```

pub fn Task::empty_afe_barf_row
(\&mut self,
afeidx : i64) -> Result<(),String>

```

Clears a row in \(\bar{F}\) i.e. sets \(\bar{F}_{\text {afeidx,* }}=0\).

\section*{Parameters}
afeidx (i64) - Row index of \(\bar{F}\). (input)

\section*{Groups}

Problem data - affine expressions, Problem data - semidefinite
Task.empty_afe_barf_row_list
```

pub fn Task::empty_afe_barf_row_list
(\&mut self,
afeidxlist : \&[i64]) -> Result<(),String>

```

Clears a number of rows in \(\bar{F}\) i.e. sets \(\bar{F}_{i, *}=0\) for all indices \(i\) in afeidxlist.

\section*{Parameters}
afeidxlist (i64[]) - Indices of rows in \(\bar{F}\) to clear. (input)

\section*{Groups}

\section*{Problem data - affine expressions, Problem data - semidefinite}

Task.empty_afe_f_col
```

pub fn Task::empty_afe_f_col
(\&mut self,
varidx : i32) -> Result<(),String>

```

Clears one column in the affine constraint matrix \(F\), that is sets \(F_{*, \text { varidx }}=0\).
Parameters
varidx (i32) - Index of a variable (column in \(F\) ). (input)
Groups
Problem data - affine expressions
Task.empty_afe_f_col_list
```

pub fn Task::empty_afe_f_col_list
(\&mut self,
varidx : \&[i32]) -> Result<(),String>

```

Clears a number of columns in \(F\) i.e. sets \(F_{*, j}=0\) for all indices \(j\) in varidx.

\section*{Parameters}
varidx (i32[]) - Indices of variables (columns) in \(F\) to clear. (input)
Groups
Problem data - affine expressions
Task.empty_afe_f_row
```

pub fn Task::empty_afe_f_row
(\&mut self,
afeidx : i64) -> Result<(),String>

```

Clears one row in the affine constraint matrix \(F\), that is sets \(F_{\text {afeidx,* }}=0\).
Parameters
afeidx (i64) - Index of a row in \(F\). (input)
Groups
Problem data - affine expressions
Task.empty_afe_f_row_list
```

pub fn Task::empty_afe_f_row_list
(\&mut self,
afeidx : \&[i64]) -> Result<(),String>

```

Clears a number of rows in \(F\) i.e. sets \(F_{i, *}=0\) for all indices \(i\) in afeidx.

\section*{Parameters}
afeidx (i64[]) - Indices of rows in \(F\) to clear. (input)
Groups
Problem data - affine expressions
Task.evaluate_acc
```

pub fn Task::evaluate_acc
(\&self,
whichsol : i32,
accidx : i64,
activity : \&mut[f64]) -> Result<(),String>

```

Evaluates the activity of an affine conic constraint.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- accidx (i64) - The index of the affine conic constraint. (input)
- activity (f64[]) - The activity of the affine conic constraint. The array should have length equal to the dimension of the constraint. (output)

\section*{Groups}

Solution - primal, Problem data - affine conic constraints
Task.evaluate_accs
```

pub fn Task::evaluate_accs
(\&self,
whichsol : i32,
activity : \&mut[f64]) -> Result<(),String>

```

Evaluates the activities of all affine conic constraints.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- activity (f64[]) - The activity of affine conic constraints. The array should have length equal to the sum of dimensions of all affine conic constraints. (output)

\section*{Groups}

Solution - primal, Problem data - affine conic constraints
Task.generate_acc_names
```

pub fn Task::generate_acc_names
(\&mut self,
sub : \& [i64],
fmt : \&str,
dims : \&[i32],
sp : \&[i64],
namedaxisidxs : \&[i32],
names : \&[String]) -> Result<(),String>

```

Internal.
Parameters
- sub (i64[]) - Indexes of the affine conic constraints. (input)
- fmt (\&str) - The variable name formatting string. (input)
- dims (i32[]) - Dimensions in the shape. (input)
- sp (i64[]) - Items that should be named. (input)
- namedaxisidxs (i32[]) - List if named index axes (input)
- names (String []) - All axis names. (input)

Groups
Names
Task.generate_barvar_names
```

pub fn Task::generate_barvar_names
(\&mut self,
subj : \&[i32],
fmt : \&str,
dims : \&[i32],
sp : \&[i64],
namedaxisidxs : \&[i32],
names : \&[String]) -> Result<(),String>

```

Generates systematic names for variables.

\section*{Parameters}
- subj (i32[]) - Indexes of the variables. (input)
- fmt (\&str) - The variable name formatting string. (input)
- dims (i32[]) - Dimensions in the shape. (input)
- \(s p(i 64[])\) - Items that should be named. (input)
- namedaxisidxs (i32[]) - List if named index axes (input)
- names (String []) - All axis names. (input)

\section*{Groups}

Names, Problem data - variables, Problem data - linear part
Task.generate_con_names
```

pub fn Task::generate_con_names
(\&mut self,
subi : \&[i32],
fmt : \&str,
dims : \&[i32],
sp : \&[i64],
namedaxisidxs : \&[i32],
names : \&[String]) -> Result<(),String>

```

Generates systematic names for constraints.

\section*{Parameters}
- subi (i32[]) - Indexes of the constraints. (input)
- fmt (\&str) - The constraint name formatting string. (input)
- dims (i32[]) - Dimensions in the shape. (input)
- sp (i64[]) - Items that should be named. (input)
- namedaxisidxs (i32[]) - List if named index axes (input)
- names (String []) - All axis names. (input)

\section*{Groups}

Names, Problem data - constraints, Problem data - linear part
Task.generate_cone_names Deprecated
```

pub fn Task::generate_cone_names
(\&mut self,
subk : \&[i32],
fmt : \&str,
dims : \&[i32],
sp : \&[i64],
namedaxisidxs : \&[i32],
names : \&[String]) -> Result<(),String>

```

Internal, deprecated.

\section*{Parameters}
- subk (i32[]) - Indexes of the cone. (input)
- fmt (\&str) - The cone name formatting string. (input)
- dims (i32[]) - Dimensions in the shape. (input)
- sp (i64[]) - Items that should be named. (input)
- namedaxisidxs (i32[]) - List if named index axes (input)
- names (String []) - All axis names. (input)

\section*{Groups} Names, Problem data - cones (deprecated)
```

pub fn Task::generate_djc_names
(\&mut self,
sub : \&[i64],
fmt : \&str,
dims : \&[i32],
sp : \&[i64],
namedaxisidxs : \&[i32],
names : \&[String]) -> Result<(),String>

```

Internal.

\section*{Parameters}
- sub (i64[]) - Indexes of the disjunctive constraints. (input)
- fmt (\&str) - The variable name formatting string. (input)
- dims (i32[]) - Dimensions in the shape. (input)
- sp (i64[]) - Items that should be named. (input)
- namedaxisidxs (i32[]) - List if named index axes (input)
- names (String []) - All axis names. (input)

Groups
Names
Task.generate_var_names
```

pub fn Task::generate_var_names
(\&mut self,
subj : \&[i32],
fmt : \&str,
dims : \&[i32],
sp : \&[i64],
namedaxisidxs : \&[i32]
names : \&[String]) -> Result<(),String>

```

Generates systematic names for variables.

\section*{Parameters}
- subj (i32[]) - Indexes of the variables. (input)
- fmt (\&str) - The variable name formatting string. (input)
- dims (i32[]) - Dimensions in the shape. (input)
- sp (i64[]) - Items that should be named. (input)
- namedaxisidxs (i32[]) - List if named index axes (input)
- names (String []) - All axis names. (input)

\section*{Groups}

Names, Problem data - variables, Problem data - linear part
Task.get_a_col
```

pub fn Task::get_a_col
(\&self,
j : i32,
nzj : \&mut i32,
subj : \&mut[i32],
valj : \&mut[f64]) -> Result<(),String>

```

Obtains one column of \(A\) in a sparse format.

\section*{Parameters}
- \(\mathbf{j}\) (i32) - Index of the column. (input)
- nzj (i32 by reference) - Number of non-zeros in the column obtained. (output)
- subj (i32[]) - Row indices of the non-zeros in the column obtained. (output)
- \(\operatorname{valj}(\mathrm{f} 64[])\) - Numerical values in the column obtained. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task

Task.get_a_col_num_nz
```

pub fn Task::get_a_col_num_nz
(\&self,
i : i32) -> Result<i32,String>

```

Obtains the number of non-zero elements in one column of \(A\).
Parameters
i (i32) - Index of the column. (input)
Return
nzj (i32) - Number of non-zeros in the \(j\)-th column of \(A\).
Groups
Problem data - linear part, Inspecting the task
Task.get_a_col_slice
```

pub fn Task::get_a_col_slice
(\&self,
first : i32,
last : i32,
ptrb : \&mut[i64],
ptre : \&mut[i64],
sub : \&mut[i32],
val : \&mut[f64]) -> Result<(),String>

```

Obtains a sequence of columns from \(A\) in sparse format.

\section*{Parameters}
- first (i32) - Index of the first column in the sequence. (input)
- last (i32) - Index of the last column in the sequence plus one. (input)
- ptrb (i64[]) - ptrb[t] is an index pointing to the first element in the \(t\)-th column obtained. (output)
- ptre (i64[]) - ptre[t] is an index pointing to the last element plus one in the \(t\)-th column obtained. (output)
- sub (i32[]) - Contains the row subscripts. (output)
- val (f64[]) - Contains the coefficient values. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task
Task.get_a_col_slice_num_nz
```

pub fn Task::get_a_col_slice_num_nz
(\&self,
first : i32,
last : i32) -> Result<i64,String>

```

Obtains the number of non-zeros in a slice of columns of \(A\).

\section*{Parameters}
- first (i32) - Index of the first column in the sequence. (input)
- last (i32) - Index of the last column plus one in the sequence. (input)

Return
numnz (i64) - Number of non-zeros in the slice.
Groups
Problem data - linear part, Inspecting the task
Task.get_a_col_slice_trip
```

pub fn Task::get_a_col_slice_trip
(\&self,
first : i32,
last : i32,
subi : \&mut[i32],
subj : \&mut[i32],
val : \&mut[f64]) -> Result<(),String>

```

Obtains a sequence of columns from \(A\) in sparse triplet format. The function returns the content of all columns whose index \(j\) satisfies first <= \(j<\) last. The triplets corresponding to nonzero entries are stored in the arrays subi, subj and val.

\section*{Parameters}
- first (i32) - Index of the first column in the sequence. (input)
- last (i32) - Index of the last column in the sequence plus one. (input)
- subi (i32[]) - Constraint subscripts. (output)
- subj (i32[]) - Column subscripts. (output)
- val (f64[]) - Values. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task
Task.get_a_piece_num_nz
```

pub fn Task::get_a_piece_num_nz
(\&self,
firsti : i32,
lasti : i32,
firstj : i32,
lastj : i32) -> Result<i32,String>

```

Obtains the number non-zeros in a rectangular piece of \(A\), i.e. the number of elements in the set
\[
\left\{(i, j): a_{i, j} \neq 0, \text { firsti } \leq i \leq \text { lasti }-1, \text { firstj } \leq j \leq \text { lastj }-1\right\}
\]

This function is not an efficient way to obtain the number of non-zeros in one row or column. In that case use the function Task.get_a_row_num_nz or Task.get_a_col_num_nz.

\section*{Parameters}
- firsti (i32) - Index of the first row in the rectangular piece. (input)
- lasti (i32) - Index of the last row plus one in the rectangular piece. (input)
- firstj (i32) - Index of the first column in the rectangular piece. (input)
- lastj (i32) - Index of the last column plus one in the rectangular piece. (input)

\section*{Return}
numnz (i32) - Number of non-zero \(A\) elements in the rectangular piece.
Groups
Problem data - linear part, Inspecting the task
Task.get_a_row
```

pub fn Task::get_a_row
(\&self,
i : i32,
nzi : \&mut i32,
subi : \&mut[i32],
vali : \&mut[f64]) -> Result<(),String>

```

Obtains one row of \(A\) in a sparse format.

\section*{Parameters}
- i (i32) - Index of the row. (input)
- nzi (i32 by reference) - Number of non-zeros in the row obtained. (output)
- subi (i32[]) - Column indices of the non-zeros in the row obtained. (output)
- vali (f64[]) - Numerical values of the row obtained. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task
Task.get_a_row_num_nz
```

pub fn Task::get_a_row_num_nz
(\&self,
i : i32) -> Result<i32,String>

```

Obtains the number of non-zero elements in one row of \(A\).

\section*{Parameters}
i (i32) - Index of the row. (input)

\section*{Return}
nzi (i32) - Number of non-zeros in the \(i\)-th row of \(A\).

\section*{Groups}

Problem data - linear part, Inspecting the task
Task.get_a_row_slice
```

pub fn Task::get_a_row_slice
(\&self,
first : i32,
last : i32,
ptrb : \&mut[i64],
ptre : \&mut[i64],
sub : \&mut[i32],
val : \&mut[f64]) -> Result<(),String>

```

Obtains a sequence of rows from \(A\) in sparse format.

\section*{Parameters}
- first (i32) - Index of the first row in the sequence. (input)
- last (i32) - Index of the last row in the sequence plus one. (input)
- \(\operatorname{ptrb}(\mathrm{i} 64[])-\operatorname{ptrb}[\mathrm{t}]\) is an index pointing to the first element in the \(t\)-th row obtained. (output)
- ptre (i64[]) - ptre[t] is an index pointing to the last element plus one in the \(t\)-th row obtained. (output)
- sub (i32[]) - Contains the column subscripts. (output)
- val (f64[]) - Contains the coefficient values. (output)

Groups
Problem data - linear part, Inspecting the task

Task.get_a_row_slice_num_nz
```

pub fn Task::get_a_row_slice_num_nz
(\&self,
first : i32,
last : i32) -> Result<i64,String>

```

Obtains the number of non-zeros in a slice of rows of \(A\).

\section*{Parameters}
- first (i32) - Index of the first row in the sequence. (input)
- last (i32) - Index of the last row plus one in the sequence. (input)

\section*{Return}
numnz (i64) - Number of non-zeros in the slice.

\section*{Groups}

Problem data - linear part, Inspecting the task
Task.get_a_row_slice_trip
```

pub fn Task::get_a_row_slice_trip
(\&self,
first : i32,
last : i32,
subi : \&mut[i32],
subj : \&mut[i32],
val : \&mut[f64]) -> Result<(),String>

```

Obtains a sequence of rows from \(A\) in sparse triplet format. The function returns the content of all rows whose index i satisfies first <= i < last. The triplets corresponding to nonzero entries are stored in the arrays subi, subj and val.

\section*{Parameters}
- first (i32) - Index of the first row in the sequence. (input)
- last (i32) - Index of the last row in the sequence plus one. (input)
- subi (i32[]) - Constraint subscripts. (output)
- subj (i32[]) - Column subscripts. (output)
- val (f64[]) - Values. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task
Task.get_a_trip
```

pub fn Task::get_a_trip
(\&self,
subi : \&mut[i32],
subj : \&mut[i32],
val : \&mut[f64]) -> Result<(),String>

```

Obtains \(A\) in sparse triplet format. The triplets corresponding to nonzero entries are stored in the arrays subi, subj and val.

\section*{Parameters}
- subi (i32[]) - Constraint subscripts. (output)
- subj (i32[]) - Column subscripts. (output)
- val (f64[]) - Values. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task

Task.get_a_truncate_tol
```

pub fn Task::get_a_truncate_tol
(\&self,
tolzero : \&mut[f64]) -> Result<(),String>

```

Obtains the tolerance value set with Task.put_a_truncate_tol.

\section*{Parameters}
tolzero \((\mathrm{f} 64[])\) - All elements \(\left|a_{i, j}\right|\) less than this tolerance is truncated to zero. (output)

\section*{Groups}

Parameters, Problem data - linear part
Task.get_acc_afe_idx_list
```

pub fn Task::get_acc_afe_idx_list
(\&self,
accidx : i64,
afeidxlist : \&mut[i64]) -> Result<(),String>

```

Obtains the list of affine expressions appearing in the affine conic constraint.

\section*{Parameters}
- accidx (i64) - Index of the affine conic constraint. (input)
- afeidxlist (i64[]) - List of indexes of affine expressions appearing in the constraint. (output)

\section*{Groups}

Problem data - affine conic constraints, Inspecting the task
Task.get_acc_b
```

pub fn Task::get_acc_b
(\&self,
accidx : i64,
b : \&mut[f64]) -> Result<(),String>

```

Obtains the additional constant term vector appearing in the affine conic constraint.

\section*{Parameters}
- accidx (i64) - Index of the affine conic constraint. (input)
- b (f64[]) - The vector b appearing in the constraint. (output)

\section*{Groups}

Problem data - affine conic constraints, Inspecting the task
Task.get_acc_barf_block_triplet
```

pub fn Task::get_acc_barf_block_triplet
(\&self,
acc_afe : \&mut[i64],
bar_var : \&mut[i32],
blk_row : \&mut[i32],
blk_col : \&mut[i32],
blk_val : \&mut[f64]) -> Result<i64,String>

```

Obtains \(\bar{F}\), implied by the ACCs, in block triplet form. If the AFEs passed to the ACCs were out of order, then this function can be used to obtain the barF as seen by the ACCs.

\section*{Parameters}
- acc_afe (i64[]) - Index of the AFE within the concatenated list of AFEs in ACCs. (output)
- bar_var (i32[]) - Symmetric matrix variable index. (output)
- blk_row (i32[]) - Block row index. (output)
- blk_col (i32[]) - Block column index. (output)
- blk_val (f64[]) - The numerical value associated with each block triplet. (output)

\section*{Return}
numtrip (i64) - Number of elements in the block triplet form.

\section*{Groups}

Problem data - affine expressions, Problem data - semidefinite
Task.get_acc_barf_num_block_triplets
```

pub fn Task::get_acc_barf_num_block_triplets(\&self) -> Result<i64,String>

```

Obtains an upper bound on the number of elements in the block triplet form of \(\bar{F}\), as used within the ACCs.

\section*{Return}
numtrip (i64) - An upper bound on the number of elements in the block triplet form of \(\bar{F}\)., as used within the ACCs.

\section*{Groups}

Problem data - semidefinite, Problem data - affine conic constraints, Inspecting the task

Task.get_acc_domain
```

pub fn Task::get_acc_domain
(\&mut self,
accidx : i64) -> Result<i64,String>

```

Obtains the domain appearing in the affine conic constraint.

\section*{Parameters}
accidx (i64) - The index of the affine conic constraint. (input)
Return
domidx (i64) - The index of domain in the affine conic constraint.
Groups
Problem data - affine conic constraints, Inspecting the task
Task.get_acc_dot_y
```

pub fn Task::get_acc_dot_y
(\&self,
whichsol : i32,
accidx : i64,
doty : \&mut[f64]) -> Result<(),String>

```

Obtains the \(\dot{y}\) vector for a solution (the dual values of an affine conic constraint).

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- accidx (i64) - The index of the affine conic constraint. (input)
- doty (f64[]) - The dual values for this affine conic constraint. The array should have length equal to the dimension of the constraint. (output)

\section*{Groups}

Solution - dual, Problem data - affine conic constraints

Task.get_acc_dot_y_s
```

pub fn Task::get_acc_dot_y_s
(\&self,
whichsol : i32,
doty : \&mut[f64]) -> Result<(),String>

```

Obtains the \(\dot{y}\) vector for a solution (the dual values of all affine conic constraint).

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- doty (f64[]) - The dual values of affine conic constraints. The array should have length equal to the sum of dimensions of all affine conic constraints. (output)

\section*{Groups}

Solution - dual, Problem data - affine conic constraints
Task.get_acc_f_numnz
```

pub fn Task::get_acc_f_numnz(\&mut self) -> Result<i64,String>

```

If the AFEs are not added sequentially to the ACCs, then the present function gives the number of nonzero elements in the F matrix that would be implied by the ordering of AFEs within ACCs.

\section*{Return}
accfnnz (i64) - Number of non-zeros in \(F\) implied by ACCs.
Groups
Problem data - affine conic constraints, Inspecting the task
Task.get_acc_f_trip
```

pub fn Task::get_acc_f_trip
(\&mut self,
frow : \&mut[i64],
fcol : \&mut[i32],
fval : \&mut[f64]) -> Result<(),String>

```

Obtains the \(F\) (that would be implied by the ordering of the AFEs within the ACCs) in triplet format.

\section*{Parameters}
- frow (i64[]) - Row indices of nonzeros in the implied F matrix. (output)
- fcol (i32[]) - Column indices of nonzeros in the implied F matrix. (output)
- fval (f64[]) - Values of nonzero entries in the implied F matrix. (output)

\section*{Groups}

Problem data - affine conic constraints, Inspecting the task
Task.get_acc_g_vector
```

pub fn Task::get_acc_g_vector
(\&self,
g : \&mut[f64]) -> Result<(),String>

```

If the AFEs are passed out of sequence to the ACCs, then this function can be used to obtain the vector \(g\) of constant terms used within the ACCs.

\section*{Parameters}
\(\mathrm{g}(\mathrm{f} 64[])\) - The \(g\) used within the ACCs as a dense vector. The length is sum of the dimensions of the ACCs. (output)

\section*{Groups}

Inspecting the task, Problem data - affine conic constraints

Task.get_acc_n
```

pub fn Task::get_acc_n
(\&mut self,
accidx : i64) -> Result<i64,String>

```

Obtains the dimension of the affine conic constraint.

\section*{Parameters}
accidx (i64) - The index of the affine conic constraint. (input)
Return
n (i64) - The dimension of the affine conic constraint (equal to the dimension of its domain).

\section*{Groups}

Problem data - affine conic constraints, Inspecting the task
Task.get_acc_n_tot
```

pub fn Task::get_acc_n_tot(\&mut self) -> Result<i64,String>

```

Obtains the total dimension of all affine conic constraints (the sum of all their dimensions).

\section*{Return}
n (i64) - The total dimension of all affine conic constraints.

\section*{Groups}

Problem data - affine conic constraints, Inspecting the task
Task.get_acc_name
```

pub fn Task::get_acc_name
(\&self,
accidx : i64) -> Result<String,String>

```

Obtains the name of an affine conic constraint.

\section*{Parameters}
accidx (i64) - Index of an affine conic constraint. (input)
Return
name (String) - Returns the required name.
Groups
Names, Problem data - affine conic constraints, Inspecting the task
Task.get_acc_name_len
```

pub fn Task::get_acc_name_len
(\&self,
accidx : i64) -> Result<i32,String>

```

Obtains the length of the name of an affine conic constraint.

\section*{Parameters}
accidx (i64) - Index of an affine conic constraint. (input)
Return
len (i32) - Returns the length of the indicated name.
Groups
Names, Problem data - affine conic constraints, Inspecting the task
Task.get_accs
```

pub fn Task::get_accs
(\&self,
domidxlist : \&mut[i64],
afeidxlist : \&mut[i64],
b : \&mut[f64]) -> Result<(),String>

```

Obtains full data of all affine conic constraints. The output array domainidxlist must have at least length determined by Task.get_num_acc. The output arrays afeidxlist and b must have at least length determined by Task.get_acc_n_tot.

\section*{Parameters}
- domidxlist (i64[]) - The list of domains appearing in all affine conic constraints. (output)
- afeidxlist (i64[]) - The concatenation of index lists of affine expressions appearing in all affine conic constraints. (output)
- b (f64[]) - The concatenation of vectors b appearing in all affine conic constraints. (output)

\section*{Groups}

Problem data - affine conic constraints, Inspecting the task
Task.get_afe_barf_block_triplet
```

pub fn Task::get_afe_barf_block_triplet
(\&self,
afeidx : \&mut[i64],
barvaridx : \&mut[i32],
subk : \&mut[i32],
subl : \&mut[i32],
valkl : \&mut[f64]) -> Result<i64,String>

```

Obtains \(\bar{F}\) in block triplet form.

\section*{Parameters}
- afeidx (i64[]) - Constraint index. (output)
- barvaridx (i32[]) - Symmetric matrix variable index. (output)
- subk (i32[]) - Block row index. (output)
- subl (i32[]) - Block column index. (output)
- valkl (f64[]) - The numerical value associated with each block triplet. (output)

\section*{Return}
numtrip (i64) - Number of elements in the block triplet form.
Groups
Problem data - affine expressions, Problem data - semidefinite
Task.get_afe_barf_num_block_triplets
```

pub fn Task::get_afe_barf_num_block_triplets(\&self) -> Result<i64,String>

```

Obtains an upper bound on the number of elements in the block triplet form of \(\bar{F}\).

\section*{Return}
numtrip (i64) - An upper bound on the number of elements in the block triplet form of \(\bar{F}\).

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_afe_barf_num_row_entries
```

pub fn Task::get_afe_barf_num_row_entries
(\&mut self,
afeidx : i64) -> Result<i32,String>

```

Obtains the number of nonzero entries in one row of \(\bar{F}\), that is the number of \(j\) such that \(\bar{F}_{\text {afeidx, }}\) is not the zero matrix.

\section*{Parameters}
afeidx (i64) - Row index of \(\bar{F}\). (input)

\section*{Return}
numentr (i32) - Number of nonzero entries in a row of \(\bar{F}\).

\section*{Groups}

Problem data - affine expressions, Problem data - semidefinite, Inspecting the task
Task.get_afe_barf_row
```

pub fn Task::get_afe_barf_row
(\&mut self,
afeidx : i64,
barvaridx : \&mut[i32],
ptrterm : \&mut[i64],
numterm : \&mut[i64],
termidx : \&mut[i64],
termweight : \&mut[f64]) -> Result<(),String>

```

Obtains all nonzero entries in one row \(\bar{F}_{\text {afeidx,* }}\) of \(\bar{F}\). For every \(k\) there is a nonzero entry \(\bar{F}_{\text {afeidx,barvaridx }[k]}\), which is represented as a weighted sum of numterm \([k]\) terms. The indices in the matrix store \(E\) and their weights for the \(k\)-th entry appear in the arrays termidx and termweight in positions
\[
\operatorname{ptrterm}[k], \ldots, \operatorname{ptrterm}[k]+(\text { numterm }[k]-1)
\]

The arrays should be long enough to accommodate the data; their required lengths can be obtained with Task.get_afe_barf_row_info.

\section*{Parameters}
- afeidx (i64) - Row index of \(\bar{F}\). (input)
- barvaridx (i32[]) - Semidefinite variable indices of nonzero entries in the row of \(\bar{F}\). (output)
- ptrterm (i64[]) - Pointers to the start of each entry's description. (output)
- numterm (i64[]) - Number of terms in the weighted sum representation of each entry. (output)
- termidx (i64[]) - Indices of semidefinite matrices from the matrix store \(E\). (output)
- termweight (f64[]) - Weights appearing in the weighted sum representations of all entries. (output)

\section*{Groups}

Problem data - affine expressions, Problem data - semidefinite, Inspecting the task
Task.get_afe_barf_row_info
```

pub fn Task::get_afe_barf_row_info
(\&mut self,
afeidx : i64,
numentr : \&mut i32,
numterm : \&mut i64) -> Result<(),String>

```

Obtains information about one row of \(\bar{F}\) : the number of nonzero entries, that is the number of \(j\) such that \(\bar{F}_{\text {afeidx, } j}\) is not the zero matrix, as well as the total number of terms in the representations of all these entries as weighted sums of matrices from \(E\). This information provides the data sizes required for a call to Task.get_afe_barf_row.

\section*{Parameters}
- afeidx (i64) - Row index of \(\bar{F}\). (input)
- numentr (i32 by reference) - Number of nonzero entries in a row of \(\bar{F}\). (output)
- numterm (i64 by reference) - Number of terms in the weighted sums representation of the row of \(\bar{F}\). (output)

\section*{Groups}

Problem data - affine expressions, Problem data - semidefinite, Inspecting the task
Task.get_afe_f_num_nz
```

pub fn Task::get_afe_f_num_nz(\&mut self) -> Result<i64,String>

```

Obtains the total number of nonzeros in \(F\).

\section*{Return}
numnz (i64) - Number of non-zeros in \(F\).

\section*{Groups}

Problem data - affine expressions, Inspecting the task
Task.get_afe_f_row
```

pub fn Task::get_afe_f_row
(\&mut self,
afeidx : i64,
numnz : \&mut i32,
varidx : \&mut[i32],
val : \&mut[f64]) -> Result<(),String>

```

Obtains one row of \(F\) in sparse format.

\section*{Parameters}
- afeidx (i64) - Index of a row in \(F\). (input)
- numnz (i32 by reference) - Number of non-zeros in the row obtained. (output)
- varidx (i32[]) - Column indices of the non-zeros in the row obtained. (output)
- val (f64[]) - Values of the non-zeros in the row obtained. (output)

Groups
Problem data - affine expressions, Inspecting the task
Task.get_afe_f_row_num_nz
```

pub fn Task::get_afe_f_row_num_nz
(\&mut self,
afeidx : i64) -> Result<i32,String>

```

Obtains the number of nonzeros in one row of \(F\).

\section*{Parameters} afeidx (i64) - Index of a row in \(F\). (input)
Return numnz (i32) - Number of non-zeros in row afeidx of \(F\).

\section*{Groups} Problem data - affine expressions, Inspecting the task

Task.get_afe_f_trip
```

pub fn Task::get_afe_f_trip
(\&mut self,
afeidx : \&mut[i64],
varidx : \&mut[i32],
val : \&mut[f64]) -> Result<(),String>

```

Obtains the \(F\) in triplet format.

\section*{Parameters}
- afeidx (i64[]) - Row indices of nonzeros. (output)
- varidx (i32[]) - Column indices of nonzeros. (output)
- val (f64[]) - Values of nonzero entries. (output)

\section*{Groups}

Problem data - affine expressions, Inspecting the task
Task.get_afe_g
```

pub fn Task::get_afe_g
(\&mut self,
afeidx : i64) -> Result<f64,String>

```

Obtains a single coefficient in \(g\).

\section*{Parameters} afeidx (i64) - Index of an element in \(g\). (input)

\section*{Return} \(g(f 64)\) - The value of \(g_{\text {afeidx }}\).
Groups Problem data - affine expressions, Inspecting the task

Task.get_afe_g_slice
```

pub fn Task::get_afe_g_slice
(\&self,
first : i64,
last : i64,
g : \&mut[f64]) -> Result<(),String>

```

Obtains a sequence of elements from the vector \(g\) of constant terms in the affine expressions list.

\section*{Parameters}
- first (i64) - First index in the sequence. (input)
- last (i64) - Last index plus 1 in the sequence. (input)
- \(g(f 64[])\) - The slice \(g\) as a dense vector. The length is last-first. (output)

Groups
Inspecting the task, Problem data - affine expressions
Task.get_aij
```

pub fn Task::get_aij
(\&self,
i : i32,
j : i32) -> Result<f64,String>

```

Obtains a single coefficient in \(A\).

\section*{Parameters}
- i (i32) - Row index of the coefficient to be returned. (input)
- \(\mathbf{j}\) (i32) - Column index of the coefficient to be returned. (input)

\section*{Return}
aij (f64) - The required coefficient \(a_{i, j}\).
Groups
Problem data - linear part, Inspecting the task
Task.get_bara_block_triplet
```

pub fn Task::get_bara_block_triplet
(\&self,
subi : \&mut[i32],
subj : \&mut[i32],
subk : \&mut[i32],
subl : \&mut[i32],
valijkl : \&mut[f64]) -> Result<i64,String>

```

Obtains \(\bar{A}\) in block triplet form.

\section*{Parameters}
- subi (i32[]) - Constraint index. (output)
- subj (i32[]) - Symmetric matrix variable index. (output)
- subk (i32[]) - Block row index. (output)
- subl (i32[]) - Block column index. (output)
- valijkl (f64[]) - The numerical value associated with each block triplet. (output)

\section*{Return}
num (i64) - Number of elements in the block triplet form.
Groups
Problem data - semidefinite, Inspecting the task
Task.get_bara_idx
```

pub fn Task::get_bara_idx
(\&self,
idx : i64,
i : \&mut i32,
j : \&mut i32,
sub : \&mut[i64],
weights : \&mut[f64]) -> Result<i64,String>

```

Obtains information about an element in \(\bar{A}\). Since \(\bar{A}\) is a sparse matrix of symmetric matrices, only the nonzero elements in \(\bar{A}\) are stored in order to save space. Now \(\bar{A}\) is stored vectorized i.e. as one long vector. This function makes it possible to obtain information such as the row index and the column index of a particular element of the vectorized form of \(\bar{A}\).
Please observe if one element of \(\bar{A}\) is inputted multiple times then it may be stored several times in vectorized form. In that case the element with the highest index is the one that is used.

\section*{Parameters}
- idx (i64) - Position of the element in the vectorized form. (input)
- i (i32 by reference) - Row index of the element at position idx. (output)
- \(\mathbf{j}\) (i32 by reference) - Column index of the element at position idx. (output)
- sub (i64[]) - A list indexes of the elements from symmetric matrix storage that appear in the weighted sum. (output)
- weights (f64[]) - The weights associated with each term in the weighted sum. (output)

\section*{Return}
num (i64) - Number of terms in weighted sum that forms the element.

\section*{Groups}

Problem data - semidefinite, Inspecting the task

Task.get_bara_idx_i_j
```

pub fn Task::get_bara_idx_i_j
(\&self,
idx : i64,
i : \&mut i32,
j : \&mut i32) -> Result<(),String>

```

Obtains information about an element in \(\bar{A}\). Since \(\bar{A}\) is a sparse matrix of symmetric matrices, only the nonzero elements in \(\bar{A}\) are stored in order to save space. Now \(\bar{A}\) is stored vectorized i.e. as one long vector. This function makes it possible to obtain information such as the row index and the column index of a particular element of the vectorized form of \(\bar{A}\).
Please note that if one element of \(\bar{A}\) is inputted multiple times then it may be stored several times in vectorized form. In that case the element with the highest index is the one that is used.

\section*{Parameters}
- idx (i64) - Position of the element in the vectorized form. (input)
- i (i32 by reference) - Row index of the element at position idx. (output)
- \(\mathbf{j}\) (i32 by reference) - Column index of the element at position idx. (output)

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_bara_idx_info
```

pub fn Task::get_bara_idx_info
(\&self,
idx : i64) -> Result<i64,String>

```

Each nonzero element in \(\bar{A}_{i j}\) is formed as a weighted sum of symmetric matrices. Using this function the number of terms in the weighted sum can be obtained. See description of Task. append_sparse_sym_mat for details about the weighted sum.

\section*{Parameters}
idx (i64) - The internal position of the element for which information should be obtained. (input)

\section*{Return}
num (i64) - Number of terms in the weighted sum that form the specified element in \(\bar{A}\).

\section*{Groups}

Problem data - semidefinite, Inspecting the task

\section*{Task.get_bara_sparsity}
```

pub fn Task::get_bara_sparsity
(\&self,
numnz : \&mut i64,
idxij : \&mut[i64]) -> Result<(),String>

```

The matrix \(\bar{A}\) is assumed to be a sparse matrix of symmetric matrices. This implies that many of the elements in \(\bar{A}\) are likely to be zero matrices. Therefore, in order to save space, only nonzero elements in \(\bar{A}\) are stored on vectorized form. This function is used to obtain the sparsity pattern of \(\bar{A}\) and the position of each nonzero element in the vectorized form of \(\bar{A}\). From the index detailed information about each nonzero \(\bar{A}_{i, j}\) can be obtained using Task.get_bara_idx_info and Task. get_bara_ \(i d x\).

\section*{Parameters}
- numnz (i64 by reference) - Number of nonzero elements in \(\bar{A}\). (output)
- idxij (i64[]) - Position of each nonzero element in the vectorized form of \(\bar{A}\). (output)

\section*{Groups}

\section*{Problem data - semidefinite, Inspecting the task}

Task.get_barc_block_triplet
```

pub fn Task::get_barc_block_triplet
(\&self,
subj : \&mut[i32],
subk : \&mut[i32],
subl : \&mut[i32],
valjkl : \&mut[f64]) -> Result<i64,String>

```

Obtains \(\bar{C}\) in block triplet form.

\section*{Parameters}
- subj (i32[]) - Symmetric matrix variable index. (output)
- subk (i32[]) - Block row index. (output)
- subl (i32[]) - Block column index. (output)
- valjkl (f64[]) - The numerical value associated with each block triplet. (output)

\section*{Return}
num (i64) - Number of elements in the block triplet form.
Groups
Problem data - semidefinite, Inspecting the task
Task.get_barc_idx
```

pub fn Task::get_barc_idx
(\&self,
idx : i64,
j : \&mut i32,
num : \&mut i64,
sub : \&mut[i64],
weights : \&mut[f64]) -> Result<(),String>

```

Obtains information about an element in \(\bar{C}\).

\section*{Parameters}
- idx (i64) - Index of the element for which information should be obtained. (input)
- j (i32 by reference) - Row index in \(\bar{C}\). (output)
- num (i64 by reference) - Number of terms in the weighted sum. (output)
- sub (i64[]) - Elements appearing the weighted sum. (output)
- weights (f64[]) - Weights of terms in the weighted sum. (output)

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_barc_idx_info
```

pub fn Task::get_barc_idx_info
(\&self,
idx : i64) -> Result<i64,String>

```

Obtains the number of terms in the weighted sum that forms a particular element in \(\bar{C}\).

\section*{Parameters}
idx (i64) - Index of the element for which information should be obtained. The value is an index of a symmetric sparse variable. (input)

\section*{Return}
num (i64) - Number of terms that appear in the weighted sum that forms the requested element.

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_barc_idx_j
```

pub fn Task::get_barc_idx_j
(\&self,
idx : i64,
j : \&mut i32) -> Result<(),String>

```

Obtains the row index of an element in \(\bar{C}\).

\section*{Parameters}
- idx (i64) - Index of the element for which information should be obtained. (input)
- \(\mathbf{j}\) (i32 by reference) - Row index in \(\bar{C}\). (output)

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_barc_sparsity
```

pub fn Task::get_barc_sparsity
(\&self,
numnz : \&mut i64,
idxj : \&mut[i64]) -> Result<(),String>

```

Internally only the nonzero elements of \(\bar{C}\) are stored in a vector. This function is used to obtain the nonzero elements of \(\bar{C}\) and their indexes in the internal vector representation (in idx). From the index detailed information about each nonzero \(\bar{C}_{j}\) can be obtained using Task.get_barc_idx_info and Task.get_barc_idx.

\section*{Parameters}
- numnz (i64 by reference) - Number of nonzero elements in \(\bar{C}\). (output)
- idxj (i64[]) - Internal positions of the nonzeros elements in \(\bar{C}\). (output)

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_bars_j
```

pub fn Task::get_bars_j
(\&self,
whichsol : i32,
j : i32,
barsj : \&mut[f64]) -> Result<(),String>

```

Obtains the dual solution for a semidefinite variable. Only the lower triangular part of \(\bar{S}_{j}\) is returned because the matrix by construction is symmetric. The format is that the columns are stored sequentially in the natural order.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- j (i32) - Index of the semidefinite variable. (input)
- barsj (f64[]) - Value of \(\bar{S}_{j}\). (output)

\section*{Groups}

Solution - semidefinite

Task.get_bars_slice
```

pub fn Task::get_bars_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
slicesize : i64,
barsslice : \&mut[f64]) -> Result<(),String>

```

Obtains the dual solution for a sequence of semidefinite variables. The format is that matrices are stored sequentially, and in each matrix the columns are stored as in Task.get_bars_j.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - Index of the first semidefinite variable in the slice. (input)
- last (i32) - Index of the last semidefinite variable in the slice plus one. (input)
- slicesize (i64) - Denotes the length of the array barsslice. (input)
- barsslice (f64[]) - Dual solution values of symmetric matrix variables in the slice, stored sequentially. (output)

\section*{Groups}

Solution - semidefinite
Task.get_barvar_name
```

pub fn Task::get_barvar_name
(\&self,
i : i32) -> Result<String,String>

```

Obtains the name of a semidefinite variable.

\section*{Parameters}
i (i32) - Index of the variable. (input)
Return
name (String) - The requested name is copied to this buffer.
Groups
Names, Inspecting the task
Task.get_barvar_name_index
```

pub fn Task::get_barvar_name_index
(\&self,
somename : \&str,
asgn : \&mut i32) -> Result<i32,String>

```

Obtains the index of semidefinite variable from its name.

\section*{Parameters}
- somename (\&str) - The name of the variable. (input)
- asgn (i32 by reference) - Non-zero if the name somename is assigned to some semidefinite variable. (output)

\section*{Return}
index (i32) - The index of a semidefinite variable with the name somename (if one exists).
Groups
Names, Inspecting the task
Task.get_barvar_name_len
```

pub fn Task::get_barvar_name_len
(\&self,
i : i32) -> Result<i32,String>

```

Obtains the length of the name of a semidefinite variable.

\section*{Parameters}
i (i32) - Index of the variable. (input)
Return
len (i32) - Returns the length of the indicated name.
Groups
Names, Inspecting the task
Task.get_barx_j
```

pub fn Task::get_barx_j
(\&self,
whichsol : i32,
j : i32,
barxj : \&mut[f64]) -> Result<(),String>

```

Obtains the primal solution for a semidefinite variable. Only the lower triangular part of \(\bar{X}_{j}\) is returned because the matrix by construction is symmetric. The format is that the columns are stored sequentially in the natural order.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- j (i32) - Index of the semidefinite variable. (input)
- barxj (f64[]) - Value of \(\bar{X}_{j}\). (output)

\section*{Groups}

Solution - semidefinite
Task.get_barx_slice
```

pub fn Task::get_barx_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
slicesize : i64,
barxslice : \&mut[f64]) -> Result<(),String>

```

Obtains the primal solution for a sequence of semidefinite variables. The format is that matrices are stored sequentially, and in each matrix the columns are stored as in Task.get_barx_j.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - Index of the first semidefinite variable in the slice. (input)
- last (i32) - Index of the last semidefinite variable in the slice plus one. (input)
- slicesize (i64) - Denotes the length of the array barxslice. (input)
- barxslice (f64[]) - Solution values of symmetric matrix variables in the slice, stored sequentially. (output)

\section*{Groups}

Solution - semidefinite
Task.get_c
```

pub fn Task::get_c
(\&self,
c : \&mut[f64]) -> Result<(),String>

```

Obtains all objective coefficients \(c\).

\section*{Parameters}
c (f64[]) - Linear terms of the objective as a dense vector. The length is the number of variables. (output)
Groups
Problem data - linear part, Inspecting the task, Problem data - variables
Task.get_c_j
```

pub fn Task::get_c_j
(\&self,
j : i32,
cj : \&mut f64) -> Result<(),String>

```

Obtains one coefficient of \(c\).

\section*{Parameters}
- \(j\) (i32) - Index of the variable for which the \(c\) coefficient should be obtained. (input)
- cj (f64 by reference) - The value of \(c_{j}\). (output)

\section*{Groups}

Problem data - linear part, Inspecting the task, Problem data - variables
Task.get_c_list
```

pub fn Task::get_c_list
(\&self,
subj : \&[i32],
c : \&mut[f64]) -> Result<(),String>

```

Obtains a sequence of elements in \(c\).

\section*{Parameters}
- \(\operatorname{subj}(i 32[])-A\) list of variable indexes. (input)
- c (f64[] ) - Linear terms of the requested list of the objective as a dense vector. (output)
Groups
Inspecting the task, Problem data - linear part
Task.get_c_slice
```

pub fn Task::get_c_slice
(\&self,
first : i32,
last : i32,
c : \&mut[f64]) -> Result<(),String>

```

Obtains a sequence of elements in \(c\).

\section*{Parameters}
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- c (f64[]) - Linear terms of the requested slice of the objective as a dense vector. The length is last-first. (output)

\section*{Groups}

Inspecting the task, Problem data - linear part
Task.get_cfix
```

pub fn Task::get_cfix(\&self) -> Result<f64,String>

```

Obtains the fixed term in the objective.

\section*{Return} cfix (f64) - Fixed term in the objective.
Groups
Problem data - linear part, Inspecting the task
Task.get_con_bound
```

pub fn Task::get_con_bound
(\&self,
i : i32,
bk : \& mut i32,
bl : \&mut f64,
bu : \&mut f64) -> Result<(),String>

```

Obtains bound information for one constraint.

\section*{Parameters}
- i (i32) - Index of the constraint for which the bound information should be obtained. (input)
- bk (Boundkey by reference) - Bound keys. (output)
- bl (f64 by reference) - Values for lower bounds. (output)
- bu (f64 by reference) - Values for upper bounds. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data - constraints

Task.get_con_bound_slice
```

pub fn Task::get_con_bound_slice
(\&self,
first : i32,
last : i32,
bk : \&mut[i32],
bl : \&mut[f64],
bu : \&mut[f64]) -> Result<(),String>

```

Obtains bounds information for a slice of the constraints.

\section*{Parameters}
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- bk (Boundkey []) - Bound keys. (output)
- bl (f64[]) - Values for lower bounds. (output)
- bu (f64[]) - Values for upper bounds. (output)

Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data - constraints

Task.get_con_name
```

pub fn Task::get_con_name
(\&self,
i : i32) -> Result<String,String>

```

Obtains the name of a constraint.

\section*{Parameters}
i (i32) - Index of the constraint. (input)
Return
name (String) - The required name.
Groups
Names, Problem data - linear part, Problem data - constraints, Inspecting the task
Task.get_con_name_index
```

pub fn Task::get_con_name_index
(\&self,
somename : \&str,
asgn : \&mut i32) -> Result<i32,String>

```

Checks whether the name somename has been assigned to any constraint. If so, the index of the constraint is reported.

\section*{Parameters}
- somename (\&str) - The name which should be checked. (input)
- asgn (i32 by reference) - Is non-zero if the name somename is assigned to some constraint. (output)

\section*{Return}
index (i32) - If the name somename is assigned to a constraint, then index is the index of the constraint.

\section*{Groups}

Names, Problem data - linear part, Problem data - constraints, Inspecting the task
Task.get_con_name_len
```

pub fn Task::get_con_name_len
(\&self,
i : i32) -> Result<i32,String>

```

Obtains the length of the name of a constraint.

\section*{Parameters}
i (i32) - Index of the constraint. (input)

\section*{Return}
len (i32) - Returns the length of the indicated name.

\section*{Groups}

Names, Problem data - linear part, Problem data - constraints, Inspecting the task

\section*{Task.get_cone Deprecated}
```

pub fn Task::get_cone
(\&mut self,
k : i32,
ct : \& mut i32,
conepar : \&mut f64,
nummem : \&mut i32,
submem : \&mut[i32]) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

\section*{Parameters}
- \(k\) (i32) - Index of the cone. (input)
- ct (Conetype by reference) - Specifies the type of the cone. (output)
- conepar (f64 by reference) - For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0 . (output)
- nummem (i32 by reference) - Number of member variables in the cone. (output)
- submem (i32[]) - Variable subscripts of the members in the cone. (output)

Groups
Inspecting the task, Problem data - cones (deprecated)

\section*{Task.get_cone_info Deprecated}
```

pub fn Task::get_cone_info
(\&self,
k : i32,
ct : \& mut i32,
conepar : \&mut f64,
nummem : \&mut i32) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

\section*{Parameters}
- k (i32) - Index of the cone. (input)
- ct (Conetype by reference) - Specifies the type of the cone. (output)
- conepar (f64 by reference) - For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0 . (output)
- nummem (i32 by reference) - Number of member variables in the cone. (output)

\section*{Groups}

Inspecting the task, Problem data - cones (deprecated)
Task.get_cone_name Deprecated
```

pub fn Task::get_cone_name
(\&self,
i : i32) -> Result<String,String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

\section*{Parameters}
i (i32) - Index of the cone. (input)
Return
name (String) - The required name.
Groups
Names, Problem data - cones (deprecated), Inspecting the task
Task.get_cone_name_index Deprecated
```

pub fn Task::get_cone_name_index
(\&self,
somename : \&str,
asgn : \&mut i32) -> Result<i32,String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

Checks whether the name somename has been assigned to any cone. If it has been assigned to a cone, then the index of the cone is reported.

\section*{Parameters}
- somename (\&str) - The name which should be checked. (input)
- asgn (i32 by reference) - Is non-zero if the name somename is assigned to some cone. (output)

\section*{Return}
index (i32) - If the name somename is assigned to some cone, then index is the index of the cone.
Groups
Names, Problem data - cones (deprecated), Inspecting the task
Task.get_cone_name_len Deprecated
```

pub fn Task::get_cone_name_len
(\&self,
i : i32) -> Result<i32,String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

\section*{Parameters}
i (i32) - Index of the cone. (input)
Return
len (i32) - Returns the length of the indicated name.
Groups
Names, Problem data - cones (deprecated), Inspecting the task
Task.get_dim_barvar_j
```

pub fn Task::get_dim_barvar_j
(\&self,
j : i32) -> Result<i32,String>

```

Obtains the dimension of a symmetric matrix variable.

\section*{Parameters}
\(j\) (i32) - Index of the semidefinite variable whose dimension is requested. (input)
Return
dimbarvarj (i32) - The dimension of the \(j\)-th semidefinite variable.

\section*{Groups}

Inspecting the task, Problem data - semidefinite
Task.get_djc_afe_idx_list
```

pub fn Task::get_djc_afe_idx_list
(\&self,
djcidx : i64,
afeidxlist : \&mut[i64]) -> Result<(),String>

```

Obtains the list of affine expression indexes in a disjunctive constraint.

\section*{Parameters}
- djcidx (i64) - Index of the disjunctive constraint. (input)
- afeidxlist (i64[]) - List of affine expression indexes. (output)

Groups
Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_b
```

pub fn Task::get_djc_b
(\&self,
djcidx : i64,
b : \&mut[f64]) -> Result<(),String>

```

Obtains the optional constant term vector of a disjunctive constraint.

\section*{Parameters}
- djcidx (i64) - Index of the disjunctive constraint. (input)
- b (f64[]) - The vector b. (output)

Groups
Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_domain_idx_list
```

pub fn Task::get_djc_domain_idx_list
(\&self,
djcidx : i64,
domidxlist : \&mut[i64]) -> Result<(),String>

```

Obtains the list of domain indexes in a disjunctive constraint.

\section*{Parameters}
- djcidx (i64) - Index of the disjunctive constraint. (input)
- domidxlist (i64[]) - List of term sizes. (output)

Groups
Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_name
```

pub fn Task::get_djc_name
(\&self,
djcidx : i64) -> Result<String,String>

```

Obtains the name of a disjunctive constraint.

\section*{Parameters}

> djcidx (i64) - Index of a disjunctive constraint. (input)

Return
name (String) - Returns the required name.

\section*{Groups}

Names, Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_name_len
```

pub fn Task::get_djc_name_len
(\&self,
djcidx : i64) -> Result<i32,String>

```

Obtains the length of the name of a disjunctive constraint.

\section*{Parameters}
djcidx (i64) - Index of a disjunctive constraint. (input)

\section*{Return}
len (i32) - Returns the length of the indicated name.
Groups
Names, Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_num_afe
```

pub fn Task::get_djc_num_afe
(\&mut self,
djcidx : i64) -> Result<i64,String>

```

Obtains the number of affine expressions in the disjunctive constraint.

\section*{Parameters}
djcidx (i64) - Index of the disjunctive constraint. (input)

\section*{Return}
numafe (i64) - Number of affine expressions in the disjunctive constraint.

\section*{Groups}

Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_num_afe_tot
```

pub fn Task::get_djc_num_afe_tot(\&mut self) -> Result<i64,String>

```

Obtains the total number of affine expressions in all disjunctive constraints.

\section*{Return}
numafetot (i64) - Number of affine expressions in all disjunctive constraints.

\section*{Groups}

Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_num_domain
```

pub fn Task::get_djc_num_domain
(\&mut self,
djcidx : i64) -> Result<i64,String>

```

Obtains the number of domains in the disjunctive constraint.

\section*{Parameters}
djcidx (i64) - Index of the disjunctive constraint. (input)
Return
numdomain (i64) - Number of domains in the disjunctive constraint.
Groups
Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_num_domain_tot
```

pub fn Task::get_djc_num_domain_tot(\&mut self) -> Result<i64,String>

```

Obtains the total number of domains in all disjunctive constraints.

\section*{Return}
numdomaintot (i64) - Number of domains in all disjunctive constraints.
Groups
Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_num_term
```

pub fn Task::get_djc_num_term
(\&mut self,
djcidx : i64) -> Result<i64,String>

```

Obtains the number terms in the disjunctive constraint.

\section*{Parameters}
djcidx (i64) - Index of the disjunctive constraint. (input)
Return
numterm (i64) - Number of terms in the disjunctive constraint.
Groups
Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_num_term_tot
```

pub fn Task::get_djc_num_term_tot(\&mut self) -> Result<i64,String>

```

Obtains the total number of terms in all disjunctive constraints.

\section*{Return}
numtermtot (i64) - Total number of terms in all disjunctive constraints.
Groups
Problem data - disjunctive constraints, Inspecting the task
Task.get_djc_term_size_list
```

pub fn Task::get_djc_term_size_list
(\&self,
djcidx : i64,
termsizelist : \&mut[i64]) -> Result<(),String>

```

Obtains the list of term sizes in a disjunctive constraint.

\section*{Parameters}
- djcidx (i64) - Index of the disjunctive constraint. (input)
- termsizelist (i64[]) - List of term sizes. (output)

\section*{Groups}

Problem data - disjunctive constraints, Inspecting the task
Task.get_djcs
```

pub fn Task::get_djcs
(\&self,
domidxlist : \&mut[i64],
afeidxlist : \&mut[i64],
b : \&mut[f64],
termsizelist : \&mut[i64],
numterms : \&mut[i64]) -> Result<(),String>

```

Obtains full data of all disjunctive constraints. The output arrays must have minimal lengths determined by the following methods: domainidxlist by Task.get_djc_num_domain_tot, afeidxlist and b by Task.get_djc_num_afe_tot, termsizelist by Task.get_djc_num_term_tot and numterms by Task.get_num_domain.

\section*{Parameters}
- domidxlist (i64[]) - The concatenation of index lists of domains appearing in all disjunctive constraints. (output)
- afeidxlist (i64[]) - The concatenation of index lists of affine expressions appearing in all disjunctive constraints. (output)
- b (f64[]) - The concatenation of vectors b appearing in all disjunctive constraints. (output)
- termsizelist (i64[]) - The concatenation of lists of term sizes appearing in all disjunctive constraints. (output)
- numterms (i64[]) - The number of terms in each of the disjunctive constraints. (output)

\section*{Groups}

Problem data - disjunctive constraints, Inspecting the task
Task.get_domain_n
```

pub fn Task::get_domain_n
(\&self,
domidx : i64) -> Result<i64,String>

```

Obtains the dimension of the domain.

\section*{Parameters}
domidx (i64) - Index of the domain. (input)
Return
n (i64) - Dimension of the domain.
Groups Problem data - domain, Inspecting the task

Task.get_domain_name
```

pub fn Task::get_domain_name
(\&self,
domidx : i64) -> Result<String,String>

```

Obtains the name of a domain.

\section*{Parameters}
domidx (i64) - Index of a domain. (input)
Return
name (String) - Returns the required name.
Groups
Names, Problem data - domain, Inspecting the task
Task.get_domain_name_len
```

pub fn Task::get_domain_name_len
(\&self,
domidx : i64) -> Result<i32,String>

```

Obtains the length of the name of a domain.

\section*{Parameters}
domidx (i64) - Index of a domain. (input)
Return
len (i32) - Returns the length of the indicated name.
Groups
Names, Problem data - domain, Inspecting the task
Task.get_domain_type
```

pub fn Task::get_domain_type
(\&self,
domidx : i64) -> Result<i32,String>

```

Returns the type of the domain.

\section*{Parameters}
domidx (i64) - Index of the domain. (input)
Return
domtype (Domaintype) - The type of the domain.
Groups
Problem data - domain, Inspecting the task
Task.get_dou_inf
```

pub fn Task::get_dou_inf
(\&self,
whichdinf : i32) -> Result<f64,String>

```

Obtains a double information item from the task information database.

\section*{Parameters} whichdinf (Dinfitem) - Specifies a double information item. (input)
Return
dvalue (f64) - The value of the required double information item.
Groups
Information items and statistics
Task.get_dou_param
```

pub fn Task::get_dou_param
(\&self,
param : i32) -> Result<f64,String>

```

Obtains the value of a double parameter.

\section*{Parameters}
param (Dparam) - Which parameter. (input)

\section*{Return}
parvalue (f64) - Parameter value.

\section*{Groups}

Parameters
Task.get_dual_obj
```

pub fn Task::get_dual_obj
(\&self,
whichsol : i32,
dualobj : \&mut f64) -> Result<(),String>

```

Computes the dual objective value associated with the solution. Note that if the solution is a primal infeasibility certificate, then the fixed term in the objective value is not included.
Moreover, since there is no dual solution associated with an integer solution, an error will be reported if the dual objective value is requested for the integer solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- dualobj (f64 by reference) - Objective value corresponding to the dual solution. (output)

\section*{Groups}

Solution information, Solution - dual
Task.get_dual_solution_norms
```

pub fn Task::get_dual_solution_norms
(\&self,
whichsol : i32,
nrmy : \&mut f64,
nrmslc : \&mut f64,
nrmsuc : \&mut f64,
nrmslx : \&mut f64,
nrmsux : \&mut f64,
nrmsnx : \&mut f64,
nrmbars : \&mut f64) -> Result<(),String>

```

Compute norms of the dual solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- nrmy (f64 by reference) - The norm of the \(y\) vector. (output)
- nrmslc (f64 by reference) - The norm of the \(s_{l}^{c}\) vector. (output)
- nrmsuc (f64 by reference) - The norm of the \(s_{u}^{c}\) vector. (output)
- nrmslx (f64 by reference) - The norm of the \(s_{l}^{x}\) vector. (output)
- nrmsux (f64 by reference) - The norm of the \(s_{u}^{x}\) vector. (output)
- nrmsnx (f64 by reference) - The norm of the \(s_{n}^{x}\) vector. (output)
- nrmbars (f64 by reference) - The norm of the \(\bar{S}\) vector. (output)

\section*{Groups}

Solution information
Task.get_dviol_acc
```

pub fn Task::get_dviol_acc
(\&self,
whichsol : i32,
accidxlist : \&[i64],
viol : \&mut[f64]) -> Result<(),String>

```

Let \(\left(s_{n}^{x}\right)^{*}\) be the value of variable \(\left(s_{n}^{x}\right)\) for the specified solution. For simplicity let us assume that \(s_{n}^{x}\) is a member of a quadratic cone, then the violation is computed as follows
\[
\begin{cases}\max \left(0,\left(\left\|s_{n}^{x}\right\|_{2: n}^{*}-\left(s_{n}^{x}\right)_{1}^{*}\right) / \sqrt{2},\right. & \left(s_{n}^{x}\right)^{*} \geq-\left\|\left(s_{n}^{x}\right)_{2: n}^{*}\right\| \\ \left\|\left(s_{n}^{x}\right)^{*}\right\|, & \text { otherwise }\end{cases}
\]

Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- accidxlist (i64[]) - An array of indexes of conic constraints. (input)
- viol (f64[]) - viol[k] is the violation of the dual solution associated with the conic constraint sub \([\mathrm{k}]\). (output)

\section*{Groups}

Solution information
Task.get_dviol_barvar
```

pub fn Task::get_dviol_barvar
(\&self,
whichsol : i32,
sub : \&[i32],
viol : \&mut[f64]) -> Result<(),String>

```

Let \(\left(\bar{S}_{j}\right)^{*}\) be the value of variable \(\bar{S}_{j}\) for the specified solution. Then the dual violation of the solution associated with variable \(\bar{S}_{j}\) is given by
\[
\max \left(-\lambda_{\min }\left(\bar{S}_{j}\right), 0.0\right)
\]

Both when the solution is a certificate of primal infeasibility and when it is dual feasible solution the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sub (i32[]) - An array of indexes of \(\bar{X}\) variables. (input)
- \(\operatorname{viol}(\mathrm{f} 64[])-\operatorname{viol}[\mathrm{k}]\) is the violation of the solution for the constraint \(\bar{S}_{\mathrm{sub}[k]} \in\) \(\mathcal{S}_{+}\). (output)

\section*{Groups}

Solution information
Task.get_dviol_con
```

pub fn Task::get_dviol_con
(\&self,
whichsol : i32,
sub : \&[i32],
viol : \&mut[f64]) -> Result<(),String>

```

The violation of the dual solution associated with the \(i\)-th constraint is computed as follows
\[
\max \left(\rho\left(\left(s_{l}^{c}\right)_{i}^{*},\left(b_{l}^{c}\right)_{i}\right), \rho\left(\left(s_{u}^{c}\right)_{i}^{*},-\left(b_{u}^{c}\right)_{i}\right),\left|-y_{i}+\left(s_{l}^{c}\right)_{i}^{*}-\left(s_{u}^{c}\right)_{i}^{*}\right|\right)
\]
where
\[
\rho(x, l)= \begin{cases}-x, & l>-\infty \\ |x|, & \text { otherwise }\end{cases}
\]

Both when the solution is a certificate of primal infeasibility or it is a dual feasible solution the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sub (i32[]) - An array of indexes of constraints. (input)
- viol (f64[]) - viol[k] is the violation of dual solution associated with the constraint sub [k]. (output)

\section*{Groups}

Solution information
Task.get_dviol_cones Deprecated
```

pub fn Task::get_dviol_cones
(\&self,
whichsol : i32,
sub : \&[i32],
viol : \&mut[f64]) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.
Let \(\left(s_{n}^{x}\right)^{*}\) be the value of variable \(\left(s_{n}^{x}\right)\) for the specified solution. For simplicity let us assume that \(s_{n}^{x}\) is a member of a quadratic cone, then the violation is computed as follows
\[
\begin{cases}\max \left(0,\left(\left\|s_{n}^{x}\right\|_{2: n}^{*}-\left(s_{n}^{x}\right)_{1}^{*}\right) / \sqrt{2},\right. & \left(s_{n}^{x}\right)^{*} \geq-\left\|\left(s_{n}^{x}\right)_{2: n}^{*}\right\|, \\ \left\|\left(s_{n}^{x}\right)^{*}\right\|, & \text { otherwise. }\end{cases}
\]

Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sub (i32[]) - An array of indexes of conic constraints. (input)
- viol (f64[]) - viol[k] is the violation of the dual solution associated with the conic constraint sub \([\mathrm{k}]\). (output)

\section*{Groups}

Solution information
Task.get_dviol_var
```

pub fn Task::get_dviol_var
(\&self,
whichsol : i32,
sub : \&[i32],
viol : \&mut[f64]) -> Result<(),String>

```

The violation of the dual solution associated with the \(j\)-th variable is computed as follows
\[
\max \left(\rho\left(\left(s_{l}^{x}\right)_{j}^{*},\left(b_{l}^{x}\right)_{j}\right), \rho\left(\left(s_{u}^{x}\right)_{j}^{*},-\left(b_{u}^{x}\right)_{j}\right),\left|\sum_{i=0}^{\text {numcon-1 }} a_{i j} y_{i}+\left(s_{l}^{x}\right)_{j}^{*}-\left(s_{u}^{x}\right)_{j}^{*}-\tau c_{j}\right|\right)
\]
where
\[
\rho(x, l)=\left\{\begin{array}{cl}
-x, & l>-\infty \\
|x|, & \text { otherwise }
\end{array}\right.
\]
and \(\tau=0\) if the solution is a certificate of primal infeasibility and \(\tau=1\) otherwise. The formula for computing the violation is only shown for the linear case but is generalized appropriately for the more general problems. Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sub (i32[]) - An array of indexes of \(x\) variables. (input)
- viol (f64[]) - viol[k] is the violation of dual solution associated with the variable sub [k]. (output)
Groups
Solution information
Task.get_inf_index
```

pub fn Task::get_inf_index
(\&self,
inftype : i32,
infname : \&str,
infindex : \&mut i32) -> Result<(),String>

```

Obtains the index of a named information item.

\section*{Parameters}
- inftype (Inftype) - Type of the information item. (input)
- infname (\&str) - Name of the information item. (input)
- infindex (i32 by reference) - The item index. (output)

\section*{Groups}

Information items and statistics
Task.get_inf_max
```

pub fn Task::get_inf_max
(\&self,
inftype : i32,
infmax : \&mut[i32]) -> Result<(),String>

```

Obtains the maximum index of an information item of a given type inftype plus 1.

\section*{Parameters}
- inftype (Inftype) - Type of the information item. (input)
- infmax (i32[]) - The maximum index (plus 1) requested. (output)

Groups
Information items and statistics
Task.get_inf_name
```

pub fn Task::get_inf_name
(\&self,
inftype : i32,
whichinf : i32) -> Result<String,String>

```

Obtains the name of an information item.

\section*{Parameters}
- inftype (Inftype) - Type of the information item. (input)
- whichinf (i32) - An information item. (input)

Return infname (String) - Name of the information item.
Groups Information items and statistics, Names

Task.get_int_inf
```

pub fn Task::get_int_inf
(\&self,
whichiinf : i32) -> Result<i32,String>

```

Obtains an integer information item from the task information database.

\section*{Parameters}
whichiinf (Iinfitem) - Specifies an integer information item. (input)
Return
ivalue (i32) - The value of the required integer information item.

\section*{Groups}

Information items and statistics
Task.get_int_param
```

pub fn Task::get_int_param
(\&self,
param : i32) -> Result<i32,String>

```

Obtains the value of an integer parameter.

\section*{Parameters}
param (Iparam) - Which parameter. (input)
Return
parvalue (i32) - Parameter value.
Groups
Parameters

Task.get_len_barvar_j
```

pub fn Task::get_len_barvar_j
(\&self,
j : i32) -> Result<i64,String>

```

Obtains the length of the \(j\)-th semidefinite variable i.e. the number of elements in the lower triangular part.

\section*{Parameters}
j (i32) - Index of the semidefinite variable whose length if requested. (input)

\section*{Return}
lenbarvarj (i64) - Number of scalar elements in the lower triangular part of the semidefinite variable.

\section*{Groups}

Inspecting the task, Problem data - semidefinite
Task.get_lint_inf
```

pub fn Task::get_lint_inf
(\&self,
whichliinf : i32) -> Result<i64,String>

```

Obtains a long integer information item from the task information database.

\section*{Parameters}
whichliinf (Liinfitem) - Specifies a long information item. (input)
Return
ivalue (i64) - The value of the required long integer information item.
Groups
Information items and statistics
Task.get_max_name_len
```

pub fn Task::get_max_name_len
(\&self,
maxlen : \&mut i32) -> Result<(),String>

```

Obtains the maximum length (not including terminating zero character) of any objective, constraint, variable, domain or cone name.

\section*{Parameters}
maxlen (i32 by reference) - The maximum length of any name. (output)

\section*{Groups}

Inspecting the task, Names
Task.get_max_num_a_nz
```

pub fn Task::get_max_num_a_nz(\&self) -> Result<i64,String>

```

Obtains number of preallocated non-zeros in \(A\). When this number of non-zeros is reached MOSEK will automatically allocate more space for \(A\).

\section*{Return}
maxnumanz (i64) - Number of preallocated non-zero linear matrix elements.
Groups
Inspecting the task, Problem data - linear part
Task.get_max_num_barvar
```

pub fn Task::get_max_num_barvar(\&self) -> Result<i32,String>

```

Obtains maximum number of symmetric matrix variables for which space is currently preallocated.

\section*{Return}
maxnumbarvar (i32) - Maximum number of symmetric matrix variables for which space is currently preallocated.

\section*{Groups}

Inspecting the task, Problem data - semidefinite
Task.get_max_num_con
```

pub fn Task::get_max_num_con
(\&self,
maxnumcon : \&mut i32) -> Result<(),String>

```

Obtains the number of preallocated constraints in the optimization task. When this number of constraints is reached MOSEK will automatically allocate more space for constraints.

\section*{Parameters}
maxnumcon (i32 by reference) - Number of preallocated constraints in the optimization task. (output)
Groups
Inspecting the task, Problem data - linear part, Problem data - constraints
Task.get_max_num_cone Deprecated
```

pub fn Task::get_max_num_cone
(\&self,
maxnumcone : \&mut i32) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.
Obtains the number of preallocated cones in the optimization task. When this number of cones is reached MOSEK will automatically allocate space for more cones.

\section*{Parameters}
maxnumcone (i32 by reference) - Number of preallocated conic constraints in the optimization task. (output)

\section*{Groups}

Inspecting the task, Problem data - cones (deprecated)
Task.get_max_num_q_nz
```

pub fn Task::get_max_num_q_nz
(\&self,
maxnumqnz : \&mut i64) -> Result<(),String>

```

Obtains the number of preallocated non-zeros for \(Q\) (both objective and constraints). When this number of non-zeros is reached MOSEK will automatically allocate more space for \(Q\).

\section*{Parameters}
maxnumqnz (i64 by reference) - Number of non-zero elements preallocated in quadratic coefficient matrices. (output)

\section*{Groups}

Inspecting the task, Problem data - quadratic part
Task.get_max_num_var
```

pub fn Task::get_max_num_var
(\&self,
maxnumvar : \&mut i32) -> Result<(),String>

```

Obtains the number of preallocated variables in the optimization task. When this number of variables is reached MOSEK will automatically allocate more space for variables.

\section*{Parameters}
maxnumvar (i32 by reference) - Number of preallocated variables in the optimization task. (output)

\section*{Groups}

Inspecting the task, Problem data - linear part, Problem data - variables
Task.get_mem_usage
```

pub fn Task::get_mem_usage
(\&self,
meminuse : \&mut i64,
maxmemuse : \&mut i64) -> Result<(),String>

```

Obtains information about the amount of memory used by a task.

\section*{Parameters}
- meminuse (i64 by reference) - Amount of memory currently used by the task. (output)
- maxmemuse (i64 by reference) - Maximum amount of memory used by the task until now. (output)
Groups
System, memory and debugging
Task.get_na_dou_inf
```

pub fn Task::get_na_dou_inf
(\&self,
infitemname : \&str,
dvalue : \&mut f64) -> Result<(),String>

```

Obtains a named double information item from task information database.

\section*{Parameters}
- infitemname (\&str) - The name of a double information item. (input)
- dvalue (f64 by reference) - The value of the required double information item. (output)
Groups
Information items and statistics
Task.get_na_dou_param
```

pub fn Task::get_na_dou_param
(\&self,
paramname : \&str,
parvalue : \&mut f64) -> Result<(),String>

```

Obtains the value of a named double parameter.

\section*{Parameters}
- paramname (\&str) - Name of a parameter. (input)
- parvalue (f64 by reference) - Parameter value. (output)

Groups
Parameters

Task.get_na_int_inf
```

pub fn Task::get_na_int_inf
(\&self,
infitemname : \&str,
ivalue : \&mut i32) -> Result<(),String>

```

Obtains a named integer information item from the task information database.

\section*{Parameters}
- infitemname (\&str) - The name of an integer information item. (input)
- ivalue (i32 by reference) - The value of the required integer information item. (output)

\section*{Groups}

Information items and statistics
Task.get_na_int_param
```

pub fn Task::get_na_int_param
(\&self,
paramname : \&str,
parvalue : \&mut i32) -> Result<(),String>

```

Obtains the value of a named integer parameter.

\section*{Parameters}
- paramname (\&str) - Name of a parameter. (input)
- parvalue (i32 by reference) - Parameter value. (output)

\section*{Groups}

Parameters
Task.get_na_str_param
```

pub fn Task::get_na_str_param
(\&self,
paramname : \&str,
sizeparamname : i32,
len : \&mut i32) -> Result<String,String>

```

Obtains the value of a named string parameter.

\section*{Parameters}
- paramname (\&str) - Name of a parameter. (input)
- sizeparamname (i32) - Size of the name buffer parvalue. (input)
- len (i32 by reference) - Length of the string in parvalue. (output)

Return
parvalue (String) - Parameter value.
Groups
Parameters, Names
Task.get_num_a_nz
```

pub fn Task::get_num_a_nz(\&self) -> Result<i32,String>

```

Obtains the number of non-zeros in \(A\).

\section*{Return}
numanz (i32) - Number of non-zero elements in the linear constraint matrix.
Groups Inspecting the task, Problem data - linear part

Task.get_num_a_nz_64
```

pub fn Task::get_num_a_nz_64(\&self) -> Result<i64,String>

```

Obtains the number of non-zeros in \(A\).

\section*{Return}
numanz (i64) - Number of non-zero elements in the linear constraint matrix.
Groups
Inspecting the task, Problem data - linear part
Task.get_num_acc
```

pub fn Task::get_num_acc(\&mut self) -> Result<i64,String>

```

Obtains the number of affine conic constraints.

\section*{Return}
num (i64) - The number of affine conic constraints.
Groups
Problem data - affine conic constraints, Inspecting the task
Task.get_num_afe
```

pub fn Task::get_num_afe(\&mut self) -> Result<i64,String>

```

Obtains the number of affine expressions.

\section*{Return}
numafe (i64) - Number of affine expressions.
Groups
Problem data - affine expressions, Inspecting the task
Task.get_num_bara_block_triplets
```

pub fn Task::get_num_bara_block_triplets(\&self) -> Result<i64,String>

```

Obtains an upper bound on the number of elements in the block triplet form of \(\bar{A}\).

\section*{Return}
\(\underline{\text { num (i64) - An upper bound on the number of elements in the block triplet form of }}\) \(\bar{A}\).

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_num_bara_nz
```

pub fn Task::get_num_bara_nz(\&self) -> Result<i64,String>

```

Get the number of nonzero elements in \(\bar{A}\).

\section*{Return}
nz (i64) - The number of nonzero block elements in \(\bar{A}\) i.e. the number of \(\bar{A}_{i j}\) elements that are nonzero.

\section*{Groups}

Problem data - semidefinite, Inspecting the task

Task.get_num_barc_block_triplets
```

pub fn Task::get_num_barc_block_triplets(\&self) -> Result<i64,String>

```

Obtains an upper bound on the number of elements in the block triplet form of \(\bar{C}\).

\section*{Return}
num (i64) - An upper bound on the number of elements in the block triplet form of \(C\).

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_num_barc_nz
```

pub fn Task::get_num_barc_nz(\&self) -> Result<i64,String>

```

Obtains the number of nonzero elements in \(\bar{C}\).

\section*{Return}
nz (i64) - The number of nonzeros in \(\bar{C}\) i.e. the number of elements \(\bar{C}_{j}\) that are nonzero.
Groups
Problem data - semidefinite, Inspecting the task
Task.get_num_barvar
```

pub fn Task::get_num_barvar(\&self) -> Result<i32,String>

```

Obtains the number of semidefinite variables.

\section*{Return}
numbarvar (i32) - Number of semidefinite variables in the problem.
Groups
Inspecting the task, Problem data - semidefinite
Task.get_num_con
```

pub fn Task::get_num_con(\&self) -> Result<i32,String>

```

Obtains the number of constraints.

\section*{Return}
numcon (i32) - Number of constraints.

\section*{Groups}

Problem data - linear part, Problem data - constraints, Inspecting the task
Task.get_num_cone Deprecated
```

pub fn Task::get_num_cone(\&self) -> Result<i32,String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

\section*{Return}
numcone (i32) - Number of conic constraints.

\section*{Groups}

Problem data - cones (deprecated), Inspecting the task
Task.get_num_cone_mem Deprecated
```

pub fn Task::get_num_cone_mem
(\&self,
k : i32,
nummem : \&mut i32) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

\section*{Parameters}
- k (i32) - Index of the cone. (input)
- nummem (i32 by reference) - Number of member variables in the cone. (output)

\section*{Groups}

Problem data - cones (deprecated), Inspecting the task
Task.get_num_djc
```

pub fn Task::get_num_djc(\&mut self) -> Result<i64,String>

```

Obtains the number of disjunctive constraints.

\section*{Return}
num (i64) - The number of disjunctive constraints.
Groups
Problem data - disjunctive constraints, Inspecting the task
Task.get_num_domain
```

pub fn Task::get_num_domain(\&mut self) -> Result<i64,String>

```

Obtain the number of domains defined.

\section*{Return}
numdomain (i64) - Number of domains in the task.
Groups
Inspecting the task, Problem data - domain
Task.get_num_int_var
```

pub fn Task::get_num_int_var(\&self) -> Result<i32,String>

```

Obtains the number of integer-constrained variables.

\section*{Return}
numintvar (i32) - Number of integer variables.
Groups
Inspecting the task, Problem data - variables
Task.get_num_param
```

pub fn Task::get_num_param
(\&self,
partype : i32,
numparam : \&mut i32) -> Result<(),String>

```

Obtains the number of parameters of a given type.

\section*{Parameters}
- partype (Parametertype) - Parameter type. (input)
- numparam (i32 by reference) - The number of parameters of type partype. (output)

\section*{Groups}

\section*{Inspecting the task, Parameters}

Task.get_num_q_con_k_nz
```

pub fn Task::get_num_q_con_k_nz
(\&self,
k : i32) -> Result<i64,String>

```

Obtains the number of non-zero quadratic terms in a constraint.

\section*{Parameters}
k (i32) - Index of the constraint for which the number quadratic terms should be obtained. (input)

\section*{Return}
numqcnz (i64) - Number of quadratic terms.

\section*{Groups}

Inspecting the task, Problem data - constraints, Problem data - quadratic part
Task.get_num_q_obj_nz
```

pub fn Task::get_num_q_obj_nz(\&self) -> Result<i64,String>

```

Obtains the number of non-zero quadratic terms in the objective.

\section*{Return}
numqonz (i64) - Number of non-zero elements in the quadratic objective terms.
Groups
Inspecting the task, Problem data - quadratic part
Task.get_num_sym_mat
```

pub fn Task::get_num_sym_mat
(\&self,
num : \&mut i64) -> Result<(),String>

```

Obtains the number of symmetric matrices stored in the vector \(E\).

\section*{Parameters}
num (i64 by reference) - The number of symmetric sparse matrices. (output)
Groups
Problem data - semidefinite, Inspecting the task
Task.get_num_var
```

pub fn Task::get_num_var(\&self) -> Result<i32,String>

```

Obtains the number of variables.

\section*{Return}
numvar (i32) - Number of variables.
Groups
Inspecting the task, Problem data - variables
Task.get_obj_name
```

pub fn Task::get_obj_name(\&self) -> Result<String,String>

```

Obtains the name assigned to the objective function.

\section*{Return}
objname (String) - Assigned the objective name.

\section*{Groups}

Inspecting the task, Names
Task.get_obj_name_len
```

pub fn Task::get_obj_name_len(\&self) -> Result<i32,String>

```

Obtains the length of the name assigned to the objective function.

\section*{Return}
len (i32) - Assigned the length of the objective name.
Groups
Inspecting the task, Names
Task.get_obj_sense
```

pub fn Task::get_obj_sense(\&self) -> Result<i32,String>

```

Gets the objective sense of the task.

\section*{Return}
sense (Objsense) - The returned objective sense.
Groups
Problem data - linear part
Task.get_param_max
```

pub fn Task::get_param_max
(\&self,
partype : i32,
parammax : \&mut i32) -> Result<(),String>

```

Obtains the maximum index of a parameter of type partype plus 1.

\section*{Parameters}
- partype (Parametertype) - Parameter type. (input)
- parammax (i32 by reference) - The maximum index (plus 1 ) of the given parameter type. (output)

\section*{Groups}

Parameters
Task.get_param_name
```

pub fn Task::get_param_name
(\&self,
partype : i32,
param : i32) -> Result<String,String>

```

Obtains the name for a parameter param of type partype.

\section*{Parameters}
- partype (Parametertype) - Parameter type. (input)
- param (i32) - Which parameter. (input)

\section*{Return}
parname (String) - Parameter name.
Groups
Names, Parameters
Task.get_power_domain_alpha
```

pub fn Task::get_power_domain_alpha
(\&mut self,
domidx : i64,
alpha : \&mut[f64]) -> Result<(),String>

```

Obtains the exponent vector \(\alpha\) of a primal or dual power cone domain.

\section*{Parameters}
- domidx (i64) - Index of the domain. (input)
- alpha (f64[]) - The vector \(\alpha\). (output)

\section*{Groups} Problem data - domain, Inspecting the task

Task.get_power_domain_info
```

pub fn Task::get_power_domain_info
(\&mut self,
domidx : i64,
n : \&mut i64,
nleft : \&mut i64) -> Result<(),String>

```

Obtains structural information about a primal or dual power cone domain.

\section*{Parameters}
- domidx (i64) - Index of the domain. (input)
- n (i64 by reference) - Dimension of the domain. (output)
- nleft (i64 by reference) - Number of variables on the left hand side. (output)

\section*{Groups}

Problem data - domain, Inspecting the task
Task.get_primal_obj
```

pub fn Task::get_primal_obj
(\&self,
whichsol : i32) -> Result<f64,String>

```

Computes the primal objective value for the desired solution. Note that if the solution is an infeasibility certificate, then the fixed term in the objective is not included.

\section*{Parameters}
whichsol (Soltype) - Selects a solution. (input)
Return
primalobj (f64) - Objective value corresponding to the primal solution.
Groups
Solution information, Solution - primal
Task.get_primal_solution_norms
```

pub fn Task::get_primal_solution_norms
(\&self,
whichsol : i32,
nrmxc : \&mut f64,
nrmxx : \&mut f64,
nrmbarx : \&mut f64) -> Result<(),String>

```

Compute norms of the primal solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- nrmxc (f64 by reference) - The norm of the \(x^{c}\) vector. (output)
- nrmxx (f64 by reference) - The norm of the \(x\) vector. (output)
- nrmbarx (f64 by reference) - The norm of the \(\bar{X}\) vector. (output)

\section*{Groups}

Solution information
Task.get_pro_sta
```

pub fn Task::get_pro_sta
(\&self,
whichsol : i32) -> Result<i32,String>

```

Obtains the problem status.

\section*{Parameters}
whichsol (Soltype) - Selects a solution. (input)
Return
problemsta (Prosta) - Problem status.
Groups
Solution information
Task.get_prob_type
```

pub fn Task::get_prob_type(\&self) -> Result<i32,String>

```

Obtains the problem type.

\section*{Return}
probtype (Problemtype) - The problem type.
Groups
Inspecting the task
Task.get_pviol_acc
```

pub fn Task::get_pviol_acc
(\&self,
whichsol : i32,
accidxlist : \&[i64],
viol : \&mut[f64]) -> Result<(),String>

```

Computes the primal solution violation for a set of affine conic constraints. Let \(x^{*}\) be the value of the variable \(x\) for the specified solution. For simplicity let us assume that \(x\) is a member of a quadratic cone, then the violation is computed as follows
\[
\begin{cases}\max \left(0,\left\|x_{2: n}\right\|-x_{1}\right) / \sqrt{2}, & x_{1} \geq-\left\|x_{2: n}\right\|, \\ \|x\|, & \text { otherwise } .\end{cases}
\]

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- accidxlist (i64[]) - An array of indexes of conic constraints. (input)
- \(\operatorname{viol}(f 64[])-\operatorname{viol}[k]\) is the violation of the solution associated with the affine conic constraint number accidxlist [k]. (output)

\section*{Groups}

Solution information
Task.get_pviol_barvar
```

pub fn Task::get_pviol_barvar
(\&self,
whichsol : i32,
sub : \&[i32],
viol : \&mut[f64]) -> Result<(),String>

```

Computes the primal solution violation for a set of semidefinite variables. Let \(\left(\bar{X}_{j}\right)^{*}\) be the value of the variable \(\bar{X}_{j}\) for the specified solution. Then the primal violation of the solution associated with variable \(\bar{X}_{j}\) is given by
\[
\max \left(-\lambda_{\min }\left(\bar{X}_{j}\right), 0.0\right)
\]

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sub (i32[]) - An array of indexes of \(\bar{X}\) variables. (input)
- viol (f64[]) - viol[k] is how much the solution violates the constraint \(\bar{X}_{\text {sub }[k]} \in \mathcal{S}_{+}\). (output)

\section*{Groups}

Solution information
Task.get_pviol_con
```

pub fn Task::get_pviol_con
(\&self,
whichsol : i32,
sub : \&[i32],
viol : \&mut[f64]) -> Result<(),String>

```

Computes the primal solution violation for a set of constraints. The primal violation of the solution associated with the \(i\)-th constraint is given by
\[
\left.\max \left(\tau l_{i}^{c}-\left(x_{i}^{c}\right)^{*},\left(x_{i}^{c}\right)^{*}-\tau u_{i}^{c}\right),\left|\sum_{j=0}^{\text {numvar-1 }} a_{i j} x_{j}^{*}-x_{i}^{c}\right|\right)
\]
where \(\tau=0\) if the solution is a certificate of dual infeasibility and \(\tau=1\) otherwise. Both when the solution is a certificate of dual infeasibility and when it is primal feasible the violation should be small. The above formula applies for the linear case but is appropriately generalized in other cases.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sub (i32[]) - An array of indexes of constraints. (input)
- viol (f64[]) - viol[k] is the violation associated with the solution for the constraint sub[k]. (output)

\section*{Groups}

Solution information
Task.get_pviol_cones Deprecated
```

pub fn Task::get_pviol_cones
(\&self,
whichsol : i32,
sub : \&[i32],
viol : \&mut[f64]) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.
Computes the primal solution violation for a set of conic constraints. Let \(x^{*}\) be the value of the variable \(x\) for the specified solution. For simplicity let us assume that \(x\) is a member of a quadratic cone, then the violation is computed as follows
\[
\begin{cases}\max \left(0,\left\|x_{2: n}\right\|-x_{1}\right) / \sqrt{2}, & x_{1} \geq-\left\|x_{2: n}\right\| \\ \|x\|, & \text { otherwise }\end{cases}
\]

Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sub (i32[]) - An array of indexes of conic constraints. (input)
- viol (f64[]) - viol[k] is the violation of the solution associated with the conic constraint number sub \([k]\). (output)

\section*{Groups}

Solution information
Task.get_pviol_djc
```

pub fn Task::get_pviol_djc
(\&self,
whichsol : i32,
djcidxlist : \&[i64],
viol : \&mut[f64]) -> Result<(),String>

```

Computes the primal solution violation for a set of disjunctive constraints. For a single DJC the violation is defined as
\[
\operatorname{viol}\left(\bigvee_{i=1}^{t} \bigwedge_{j=1}^{s_{i}} T_{i, j}\right)=\min _{i=1, \ldots, t}\left(\max _{j=1, \ldots, s_{j}}\left(\operatorname{viol}\left(T_{i, j}\right)\right)\right)
\]
where the violation of each simple term \(T_{i, j}\) is defined as for an ordinary linear constraint.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- djcidxlist (i64[]) - An array of indexes of disjunctive constraints. (input)
- viol (f64[]) - viol[k] is the violation of the solution associated with the disjunctive constraint number djcidxlist \([\mathrm{k}]\). (output)

\section*{Groups}

Solution information
Task.get_pviol_var
```

pub fn Task::get_pviol_var
(\&self,
whichsol : i32,
sub : \&[i32],
viol : \&mut[f64]) -> Result<(),String>

```

Computes the primal solution violation associated to a set of variables. Let \(x_{j}^{*}\) be the value of \(x_{j}\) for the specified solution. Then the primal violation of the solution associated with variable \(x_{j}\) is given by
\[
\max \left(\tau l_{j}^{x}-x_{j}^{*}, x_{j}^{*}-\tau u_{j}^{x}, 0\right)
\]
where \(\tau=0\) if the solution is a certificate of dual infeasibility and \(\tau=1\) otherwise. Both when the solution is a certificate of dual infeasibility and when it is primal feasible the violation should be small.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sub (i32[]) - An array of indexes of \(x\) variables. (input)
- viol (f64[]) - viol[k] is the violation associated with the solution for the variable \(x_{\text {sub }[\mathrm{k}]}\). (output)
Groups
Solution information
Task.get_q_con_k
```

pub fn Task::get_q_con_k
(\&self,
k : i32,
qcsubi : \&mut[i32],
qcsubj : \&mut[i32],
qcval : \&mut[f64]) -> Result<i64,String>

```

Obtains all the quadratic terms in a constraint. The quadratic terms are stored sequentially in qcsubi, qcsubj, and qcval.

\section*{Parameters}
- k (i32) - Which constraint. (input)
- qcsubi (i32[]) - Row subscripts for quadratic constraint matrix. (output)
- qcsubj (i32[]) - Column subscripts for quadratic constraint matrix. (output)
- qcval (f64[]) - Quadratic constraint coefficient values. (output)

\section*{Return}
numqcnz (i64) - Number of quadratic terms.
Groups
Inspecting the task, Problem data - quadratic part, Problem data - constraints
Task.get_q_obj
```

pub fn Task::get_q_obj
(\&self,
numqonz : \&mut i64,
qosubi : \&mut[i32],
qosubj : \&mut[i32],
qoval : \&mut[f64]) -> Result<(),String>

```

Obtains the quadratic terms in the objective. The required quadratic terms are stored sequentially in qosubi, qosubj, and qoval.

\section*{Parameters}
- numqonz (i64 by reference) - Number of non-zero elements in the quadratic objective terms. (output)
- qosubi (i32[]) - Row subscripts for quadratic objective coefficients. (output)
- qosubj (i32[]) - Column subscripts for quadratic objective coefficients. (output)
- qoval (f64[]) - Quadratic objective coefficient values. (output)

\section*{Groups}

Inspecting the task, Problem data - quadratic part
Task.get_q_obj_i_j
```

pub fn Task::get_q_obj_i_j
(\&self,
i : i32,
j : i32,
qoij : \&mut f64) -> Result<(),String>

```

Obtains one coefficient \(q_{i j}^{o}\) in the quadratic term of the objective.

\section*{Parameters}
- i (i32) - Row index of the coefficient. (input)
- j (i32) - Column index of coefficient. (input)
- qoij (f64 by reference) - The required coefficient. (output)

\section*{Groups}

Inspecting the task, Problem data - quadratic part
Task.get_reduced_costs
```

pub fn Task::get_reduced_costs
(\&self,
whichsol : i32,
first : i32,
last : i32,
redcosts : \&mut[f64]) -> Result<(),String>

```

Computes the reduced costs for a slice of variables and returns them in the array redcosts i.e.
\[
\begin{equation*}
\text { redcosts }=\left[\left(s_{l}^{x}\right)_{j}-\left(s_{u}^{x}\right)_{j}, j=\text { first }, \ldots, \text { last }-1\right] \tag{15.2}
\end{equation*}
\]

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - The index of the first variable in the sequence. (input)
- last (i32) - The index of the last variable in the sequence plus 1. (input)
- redcosts (f64[]) - The reduced costs for the required slice of variables. (output)

\section*{Groups}

Solution - dual
Task.get_skc
```

pub fn Task::get_skc
(\&self,
whichsol : i32,
skc : \&mut[i32]) -> Result<(),String>

```

Obtains the status keys for the constraints.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- skc (Stakey []) - Status keys for the constraints. (output)

\section*{Groups}

Solution information
Task.get_skc_slice
```

pub fn Task::get_skc_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
skc : \&mut[i32]) -> Result<(),String>

```

Obtains the status keys for a slice of the constraints.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- skc (Stakey []) - Status keys for the constraints. (output)

\section*{Groups}

Solution information
Task.get_skn
```

pub fn Task::get_skn
(\&self,
whichsol : i32,
skn : \&mut[i32]) -> Result<(),String>

```

Obtains the status keys for the conic constraints.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- skn (Stakey []) - Status keys for the conic constraints. (output)

\section*{Groups}

Solution information
Task.get_skx
```

pub fn Task::get_skx
(\&self,
whichsol : i32,
skx : \&mut[i32]) -> Result<(),String>

```

Obtains the status keys for the scalar variables.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- skx (Stakey []) - Status keys for the variables. (output)

\section*{Groups}

Solution information
Task.get_skx_slice
```

pub fn Task::get_skx_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
skx : \&mut[i32]) -> Result<(),String>

```

Obtains the status keys for a slice of the scalar variables.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- skx (Stakey []) - Status keys for the variables. (output)

\section*{Groups}

Solution information
Task.get_slc
```

pub fn Task::get_slc
(\&self,
whichsol : i32,
slc : \&mut[f64]) -> Result<(),String>

```

Obtains the \(s_{l}^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- slc (f64[]) - Dual variables corresponding to the lower bounds on the constraints. (output)

\section*{Groups}

Solution - dual
Task.get_slc_slice
```

pub fn Task::get_slc_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
slc : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of the \(s_{l}^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- slc (f64[]) - Dual variables corresponding to the lower bounds on the constraints. (output)
Groups
Solution - dual
Task.get_slx
```

pub fn Task::get_slx
(\&self,
whichsol : i32,
slx : \&mut[f64]) -> Result<(),String>

```

Obtains the \(s_{l}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- \(\operatorname{slx}(\mathrm{f} 64[])\) - Dual variables corresponding to the lower bounds on the variables. (output)

\section*{Groups}

Solution - dual
Task.get_slx_slice
```

pub fn Task::get_slx_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
slx : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of the \(s_{l}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- slx (f64[]) - Dual variables corresponding to the lower bounds on the variables. (output)

\section*{Groups}

Solution - dual
Task.get_snx
```

pub fn Task::get_snx
(\&self,
whichsol : i32,
snx : \&mut[f64]) -> Result<(),String>

```

Obtains the \(s_{n}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- \(\operatorname{snx}(\mathrm{f} 64[])\) - Dual variables corresponding to the conic constraints on the variables. (output)
Groups
Solution - dual
Task.get_snx_slice
```

pub fn Task::get_snx_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
snx : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of the \(s_{n}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- \(\operatorname{snx}(\mathrm{f} 64[])\) - Dual variables corresponding to the conic constraints on the variables. (output)

\section*{Groups}

Solution - dual
Task.get_sol_sta
```

pub fn Task::get_sol_sta
(\&self,
whichsol : i32) -> Result<i32,String>

```

Obtains the solution status.

\section*{Parameters}
whichsol (Soltype) - Selects a solution. (input)

\section*{Return}
solutionsta (Solsta) - Solution status.

\section*{Groups}

Solution information
Task.get_solution
```

pub fn Task::get_solution
(\&self,
whichsol : i32,
problemsta : \& mut i32,
solutionsta : \& mut i32,
skc : \&mut[i32],
skx : \&mut[i32],
skn : \&mut[i32],
xc : \&mut[f64],
xx : \&mut[f64],
y : \&mut[f64],
slc : \&mut[f64],
suc : \&mut[f64],
slx : \&mut[f64],
sux : \&mut[f64],
snx : \&mut[f64]) -> Result<(),String>

```

Obtains the complete solution.
Consider the case of linear programming. The primal problem is given by
\[
\begin{array}{llll}
\operatorname{minimize} & & c^{T} x+c^{f} \\
\text { subject to } & l^{c} & \leq & A x \\
& l^{x} \leq u^{c}, \\
& x & \leq u^{x} .
\end{array}
\]
and the corresponding dual problem is
\[
\begin{array}{lcll}
\text { maximize } & \left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c} & \\
& +\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}+c^{f} & \\
\text { subject to } & A^{T} y+s_{l}^{x}-s_{u}^{x} & =c, \\
& -y+s_{l}^{c}-s_{u}^{c} & =0, \\
& s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} \geq 0 . & &
\end{array}
\]

A conic optimization problem has the same primal variables as in the linear case. Recall that the dual of a conic optimization problem is given by:
\[
\begin{array}{ccll}
\text { maximize } & \left(l^{c}\right)^{T} s_{l}^{c}-\left(u^{c}\right)^{T} s_{u}^{c} & \\
& +\left(l^{x}\right)^{T} s_{l}^{x}-\left(u^{x}\right)^{T} s_{u}^{x}+c^{f} & \\
\text { subject to } A^{T} y+s_{l}^{x}-s_{u}^{x}+s_{n}^{x} & =c, \\
& -y+s_{l}^{c}-s_{u}^{c} & =0, \\
& s_{l}^{c}, s_{u}^{c}, s_{l}^{x}, s_{u}^{x} & \geq 0,
\end{array}
\]

The mapping between variables and arguments to the function is as follows:
- xx : Corresponds to variable \(x\) (also denoted \(x^{x}\) ).
- xc : Corresponds to \(x^{c}:=A x\).
- y : Corresponds to variable \(y\).
- slc: Corresponds to variable \(s_{l}^{c}\).
- suc: Corresponds to variable \(s_{u}^{c}\).
- slx: Corresponds to variable \(s_{l}^{x}\).
- sux: Corresponds to variable \(s_{u}^{x}\).
- snx: Corresponds to variable \(s_{n}^{x}\).

The meaning of the values returned by this function depend on the solution status returned in the argument solsta. The most important possible values of solsta are:
- Solsta: :OPTIMAL : An optimal solution satisfying the optimality criteria for continuous problems is returned.
- Solsta: : INTEGER_OPTIMAL : An optimal solution satisfying the optimality criteria for integer problems is returned.
- Solsta: :PRIM_FEAS : A solution satisfying the feasibility criteria.
- Solsta::PRIM_INFEAS_CER : A primal certificate of infeasibility is returned.
- Solsta: :DUAL_INFEAS_CER:A dual certificate of infeasibility is returned.

In order to retrieve the primal and dual values of semidefinite variables see Task.get_barx_j and Task.get_bars_j.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- problemsta (Prosta by reference) - Problem status. (output)
- solutionsta (Solsta by reference) - Solution status. (output)
- skc (Stakey []) - Status keys for the constraints. (output)
- skx (Stakey []) - Status keys for the variables. (output)
- skn (Stakey []) - Status keys for the conic constraints. (output)
- xc (f64[]) - Primal constraint solution. (output)
- xx (f64[]) - Primal variable solution. (output)
- y (f64[]) - Vector of dual variables corresponding to the constraints. (output)
- slc (f64[]) - Dual variables corresponding to the lower bounds on the constraints. (output)
- suc (f64[]) - Dual variables corresponding to the upper bounds on the constraints. (output)
- \(\operatorname{slx}(\mathrm{f} 64[])\) - Dual variables corresponding to the lower bounds on the variables. (output)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (output)
- \(\operatorname{snx}(\mathrm{f} 64[])\) - Dual variables corresponding to the conic constraints on the variables. (output)

\section*{Groups}

Solution information, Solution - primal, Solution - dual
Task.get_solution_info
```

pub fn Task::get_solution_info
(\&self,
whichsol : i32,
pobj : \&mut f64,
pviolcon : \&mut f64,
pviolvar : \&mut f64,
pviolbarvar : \&mut f64,
pviolcone : \&mut f64,
pviolitg : \&mut f64,
dobj : \&mut f64,
dviolcon : \&mut f64,
dviolvar : \&mut f64,
dviolbarvar : \&mut f64,
dviolcone : \&mut f64) -> Result<(),String>

```

Obtains information about a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- pobj (f64 by reference) - The primal objective value as computed by Task. get_primal_obj. (output)
- pviolcon (f64 by reference) - Maximal primal violation of the solution associated with the \(x^{c}\) variables where the violations are computed by Task. get_pviol_con. (output)
- pviolvar (f64 by reference) - Maximal primal violation of the solution for the \(x\) variables where the violations are computed by Task.get_pviol_var. (output)
- pviolbarvar (f64 by reference) - Maximal primal violation of solution for the \(\bar{X}\) variables where the violations are computed by Task.get_pviol_barvar. (output)
- pviolcone (f64 by reference) - Maximal primal violation of solution for the conic constraints where the violations are computed by Task.get_puiol_cones. (output)
- pviolitg (f64 by reference) - Maximal violation in the integer constraints. The violation for an integer variable \(x_{j}\) is given by \(\min \left(x_{j}-\left\lfloor x_{j}\right\rfloor,\left\lceil x_{j}\right\rceil-x_{j}\right)\). This number is always zero for the interior-point and basic solutions. (output)
- dobj (f64 by reference) - Dual objective value as computed by Task. get_dual_obj. (output)
- dviolcon (f64 by reference) - Maximal violation of the dual solution associated with the \(x^{c}\) variable as computed by Task.get_dviol_con. (output)
- dviolvar (f64 by reference) - Maximal violation of the dual solution associated with the \(x\) variable as computed by Task.get_dviol_var. (output)
- dviolbarvar (f64 by reference) - Maximal violation of the dual solution associated with the \(\bar{S}\) variable as computed by Task.get_dviol_barvar. (output)
- dviolcone (f64 by reference) - Maximal violation of the dual solution associated with the dual conic constraints as computed by Task.get_dviol_cones. (output)

\section*{Groups}

\section*{Solution information}

Task.get_solution_info_new
```

pub fn Task::get_solution_info_new
(\&self,
whichsol : i32,
pobj : \&mut f64,
pviolcon : \&mut f64,
pviolvar : \&mut f64,
pviolbarvar : \&mut f64,
pviolcone : \&mut f64,
pviolacc : \&mut f64,
pvioldjc : \&mut f64,
pviolitg : \&mut f64,
dobj : \&mut f64,
dviolcon : \&mut f64,
dviolvar : \&mut f64,
dviolbarvar : \&mut f64,
dviolcone : \&mut f64,
dviolacc : \&mut f64) -> Result<(),String>

```

Obtains information about a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- pobj (f64 by reference) - The primal objective value as computed by Task. get_primal_obj. (output)
- pviolcon (f64 by reference) - Maximal primal violation of the solution associated with the \(x^{c}\) variables where the violations are computed by Task. get_pviol_con. (output)
- pviolvar (f64 by reference) - Maximal primal violation of the solution for the \(x\) variables where the violations are computed by Task.get_pviol_var. (output)
- pviolbarvar (f64 by reference) - Maximal primal violation of solution for the \(\bar{X}\) variables where the violations are computed by Task.get_pviol_barvar. (output)
- pviolcone (f64 by reference) - Maximal primal violation of solution for the conic constraints where the violations are computed by Task.get_puiol_cones. (output)
- pviolacc (f64 by reference) - Maximal primal violation of solution for the affine conic constraints where the violations are computed by Task.get_pviol_acc. (output)
- pvioldjc (f64 by reference) - Maximal primal violation of solution for the disjunctive constraints where the violations are computed by Task.get_pviol_djc. (output)
- pviolitg (f64 by reference) - Maximal violation in the integer constraints. The violation for an integer variable \(x_{j}\) is given by \(\min \left(x_{j}-\left\lfloor x_{j}\right\rfloor,\left\lceil x_{j}\right\rceil-x_{j}\right)\). This number is always zero for the interior-point and basic solutions. (output)
- dobj (f64 by reference) - Dual objective value as computed by Task. get_dual_obj. (output)
- dviolcon (f64 by reference) - Maximal violation of the dual solution associated with the \(x^{c}\) variable as computed by Task.get_dviol_con. (output)
- dviolvar (f64 by reference) - Maximal violation of the dual solution associated with the \(x\) variable as computed by Task.get_dviol_var. (output)
- dviolbarvar (f64 by reference) - Maximal violation of the dual solution associated with the \(\bar{S}\) variable as computed by Task.get_dviol_barvar. (output)
- dviolcone (f64 by reference) - Maximal violation of the dual solution associated with the dual conic constraints as computed by Task.get_duiot_cones. (output)
- dviolacc (f64 by reference) - Maximal violation of the dual solution associated with the affine conic constraints as computed by Task.get_dviol_acc. (output)

\section*{Groups}

Solution information
Task.get_solution_new
```

pub fn Task::get_solution_new
(\&self,
whichsol : i32,
problemsta : \& mut i32,
solutionsta : \& mut i32,
skc : \&mut[i32],
skx : \&mut[i32],
skn : \&mut[i32],
xc : \&mut[f64],
xx : \&mut[f64],
y : \&mut[f64],
slc : \&mut[f64],
suc : \&mut[f64],
slx : \&mut[f64],
sux : \&mut[f64],
snx : \&mut[f64],
doty : \&mut[f64]) -> Result<(),String>

```

Obtains the complete solution. See Task.get_solution for further information.
In order to retrieve the primal and dual values of semidefinite variables see Task.get_barx_j and Task.get_bars_j.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- problemsta (Prosta by reference) - Problem status. (output)
- solutionsta (Solsta by reference) - Solution status. (output)
- skc (Stakey []) - Status keys for the constraints. (output)
- skx (Stakey []) - Status keys for the variables. (output)
- skn (Stakey []) - Status keys for the conic constraints. (output)
- xc (f64[]) - Primal constraint solution. (output)
- xx (f64[]) - Primal variable solution. (output)
- y (f64[]) - Vector of dual variables corresponding to the constraints. (output)
- slc (f64[]) - Dual variables corresponding to the lower bounds on the constraints. (output)
- suc (f64[]) - Dual variables corresponding to the upper bounds on the constraints. (output)
- \(\operatorname{slx}(\mathrm{f} 64[\mathrm{]})\) - Dual variables corresponding to the lower bounds on the variables. (output)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (output)
- \(\operatorname{snx}(\mathrm{f} 64[])\) - Dual variables corresponding to the conic constraints on the variables. (output)
- doty (f64[]) - Dual variables corresponding to affine conic constraints. (output)

\section*{Groups}

Solution information, Solution - primal, Solution - dual
Task.get_solution_slice
```

pub fn Task::get_solution_slice
(\&self,
whichsol : i32,
solitem : i32,
first : i32,
last : i32,
values : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of one item from the solution. The format of the solution is exactly as in Task. get_solution. The parameter solitem determines which of the solution vectors should be returned.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- solitem (Solitem) - Which part of the solution is required. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- values (f64[]) - The values in the required sequence are stored sequentially in values. (output)

\section*{Groups}

Solution - primal, Solution - dual, Solution information
Task.get_sparse_sym_mat
```

pub fn Task::get_sparse_sym_mat
(\&self,
idx : i64,
subi : \&mut[i32],
subj : \&mut[i32],
valij : \&mut[f64]) -> Result<(),String>

```

Get a single symmetric matrix from the matrix store.

\section*{Parameters}
- idx (i64) - Index of the matrix to retrieve. (input)
- subi (i32[]) - Row subscripts of the matrix non-zero elements. (output)
- subj (i32[]) - Column subscripts of the matrix non-zero elements. (output)
- valij (f64[]) - Coefficients of the matrix non-zero elements. (output)

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_str_param
```

pub fn Task::get_str_param
(\&self,
param : i32,
len : \&mut i32) -> Result<String,String>

```

Obtains the value of a string parameter.

\section*{Parameters}
- param (Sparam) - Which parameter. (input)
- len (i32 by reference) - The length of the parameter value. (output)

\section*{Return}
parvalue (String) - Parameter value.
Groups
Names, Parameters
Task.get_str_param_len
```

pub fn Task::get_str_param_len
(\&self,
param : i32) -> Result<i32,String>

```

Obtains the length of a string parameter.

\section*{Parameters}
param (Sparam) - Which parameter. (input)
Return
len (i32) - The length of the parameter value.
Groups
Names, Parameters
Task.get_suc
```

pub fn Task::get_suc
(\&self,
whichsol : i32,
suc : \&mut[f64]) -> Result<(),String>

```

Obtains the \(s_{u}^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- suc (f64[]) - Dual variables corresponding to the upper bounds on the constraints. (output)

\section*{Groups}

Solution - dual
Task.get_suc_slice
```

pub fn Task::get_suc_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
suc : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of the \(s_{u}^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- suc (f64[]) - Dual variables corresponding to the upper bounds on the constraints. (output)

\section*{Groups}

Solution - dual
Task.get_sux
```

pub fn Task::get_sux
(\&self,
whichsol : i32,
sux : \&mut[f64]) -> Result<(),String>

```

Obtains the \(s_{u}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (output)

\section*{Groups}

Solution - dual
Task.get_sux_slice
```

pub fn Task::get_sux_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
sux : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of the \(s_{u}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (output)
Groups
Solution - dual
Task.get_sym_mat_info
```

pub fn Task::get_sym_mat_info
(\&self,
idx : i64,
dim : \&mut i32,
nz : \&mut i64,
mattype : \& mut i32) -> Result<(),String>

```

MOSEK maintains a vector denoted by \(E\) of symmetric data matrices. This function makes it possible to obtain important information about a single matrix in \(E\).

\section*{Parameters}
- idx (i64) - Index of the matrix for which information is requested. (input)
- dim (i32 by reference) - Returns the dimension of the requested matrix. (output)
- nz (i64 by reference) - Returns the number of non-zeros in the requested matrix. (output)
- mattype (Symmattype by reference) - Returns the type of the requested matrix. (output)

\section*{Groups}

Problem data - semidefinite, Inspecting the task
Task.get_symb_con
```

pub fn Task::get_symb_con
(\&self,
i : i32,
value : \&mut i32) -> Result<String,String>

```

Obtains the name and corresponding value for the \(i\) th symbolic constant.

\section*{Parameters}
- i (i32) - Index. (input)
- value (i32 by reference) - The corresponding value. (output)

\section*{Return}
name (String) - Name of the \(i\) th symbolic constant.
Groups Names

Task.get_task_name
```

pub fn Task::get_task_name(\&self) -> Result<String,String>

```

Obtains the name assigned to the task.

\section*{Return}
taskname (String) - Returns the task name.
Groups
Names, Inspecting the task
Task.get_task_name_len
```

pub fn Task::get_task_name_len(\&self) -> Result<i32,String>

```

Obtains the length the task name.

\section*{Return}
len (i32) - Returns the length of the task name.
Groups Names, Inspecting the task

Task.get_var_bound
```

pub fn Task::get_var_bound
(\&self,
i : i32,
bk : \& mut i32,
bl : \&mut f64,
bu : \&mut f64) -> Result<(),String>

```

Obtains bound information for one variable.

\section*{Parameters}
- i (i32) - Index of the variable for which the bound information should be obtained. (input)
- bk (Boundkey by reference) - Bound keys. (output)
- bl (f64 by reference) - Values for lower bounds. (output)
- bu (f64 by reference) - Values for upper bounds. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data - variables

Task.get_var_bound_slice
```

pub fn Task::get_var_bound_slice
(\&self,
first : i32,
last : i32,
bk : \&mut[i32],
bl : \&mut[f64],
bu : \&mut[f64]) -> Result<(),String>

```

Obtains bounds information for a slice of the variables.

\section*{Parameters}
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- bk (Boundkey []) - Bound keys. (output)
- bl (f64[]) - Values for lower bounds. (output)
- bu (f64[]) - Values for upper bounds. (output)

\section*{Groups}

Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data - variables

Task.get_var_name
```

pub fn Task::get_var_name
(\&self,
j : i32) -> Result<String,String>

```

Obtains the name of a variable.

\section*{Parameters}
j (i32) - Index of a variable. (input)

\section*{Return}
name (String) - Returns the required name.
Groups Names, Problem data - linear part, Problem data - variables, Inspecting the task

Task.get_var_name_index
```

pub fn Task::get_var_name_index
(\&self,
somename : \&str,
asgn : \&mut i32) -> Result<i32,String>

```

Checks whether the name somename has been assigned to any variable. If so, the index of the variable is reported.

\section*{Parameters}
- somename (\&str) - The name which should be checked. (input)
- asgn (i32 by reference) - Is non-zero if the name somename is assigned to a variable. (output)

\section*{Return}
index (i32) - If the name somename is assigned to a variable, then index is the index of the variable.

\section*{Groups} Names, Problem data - linear part, Problem data - variables, Inspecting the task

Task.get_var_name_len
```

pub fn Task::get_var_name_len
(\&self,
i : i32) -> Result<i32,String>

```

Obtains the length of the name of a variable.

\section*{Parameters}
i (i32) - Index of a variable. (input)

\section*{Return}
len (i32) - Returns the length of the indicated name.
Groups
Names, Problem data - linear part, Problem data - variables, Inspecting the task
Task.get_var_type
```

pub fn Task::get_var_type
(\&self,
j : i32) -> Result<i32,String>

```

Gets the variable type of one variable.

\section*{Parameters}
\(j\) (i32) - Index of the variable. (input)
Return
vartype (Variabletype) - Variable type of the \(j\)-th variable.
Groups Inspecting the task, Problem data - variables

Task.get_var_type_list
```

pub fn Task::get_var_type_list
(\&self,
subj : \&[i32],
vartype : \&mut[i32]) -> Result<(),String>

```

Obtains the variable type of one or more variables. Upon return vartype [k] is the variable type of variable subj [k].

\section*{Parameters}
- \(\operatorname{subj}(i 32[])-A\) list of variable indexes. (input)
- vartype (Variabletype []) - The variables types corresponding to the variables specified by subj. (output)

\section*{Groups}

Inspecting the task, Problem data - variables
Task.get_xc
```

pub fn Task::get_xc
(\&self,
whichsol : i32,
xc : \&mut[f64]) -> Result<(),String>

```

Obtains the \(x^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- xc (f64[]) - Primal constraint solution. (output)

Groups
Solution - primal
Task.get_xc_slice
```

pub fn Task::get_xc_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
xc : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of the \(x^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- xc (f64[]) - Primal constraint solution. (output)

\section*{Groups}

Solution - primal
Task.get_xx
```

pub fn Task::get_xx
(\&self,
whichsol : i32,
xx : \&mut[f64]) -> Result<(),String>

```

Obtains the \(x^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- xx (f64[]) - Primal variable solution. (output)

\section*{Groups}

Solution - primal
Task.get_xx_slice
```

pub fn Task::get_xx_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
xx : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of the \(x^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- xx (f64[]) - Primal variable solution. (output)

\section*{Groups}

Solution - primal
Task.get_y
```

pub fn Task::get_y
(\&self,
whichsol : i32,
y : \&mut[f64]) -> Result<(),String>

```

Obtains the \(y\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- y (f64[]) - Vector of dual variables corresponding to the constraints. (output)

Groups
Solution - dual
Task.get_y_slice
```

pub fn Task::get_y_slice
(\&self,
whichsol : i32,
first : i32,
last : i32,
y : \&mut[f64]) -> Result<(),String>

```

Obtains a slice of the \(y\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- y (f64[]) - Vector of dual variables corresponding to the constraints. (output)

\section*{Groups}

Solution - dual
Task.infeasibility_report
```

pub fn Task::infeasibility_report
(\&mut self,
whichstream : i32,
whichsol : i32) -> Result<(),String>

```

Prints the infeasibility report to an output stream.

\section*{Parameters}
- whichstream (Streamtype) - Index of the stream. (input)
- whichsol (Soltype) - Selects a solution. (input)

\section*{Groups} Infeasibility diagnostic

Task.init_basis_solve
```

pub fn Task::init_basis_solve
(\&mut self,
basis : \&mut[i32]) -> Result<(),String>

```

Prepare a task for use with the Task.solve_with_basis function.
This function should be called
- immediately before the first call to Task.solve_with_basis, and
- immediately before any subsequent call to Task.solve_with_basis if the task has been modified.

If the basis is singular i.e. not invertible, then the error Rescode::ERR_BASIS_SINGULAR is reported.

\section*{Parameters}
basis (i32[]) - The array of basis indexes to use. The array is interpreted as follows: If basis \([i] \leq\) numcon -1 , then \(x_{\text {basis }[i]}^{c}\) is in the basis at position \(i\), otherwise
\(x_{\text {basis }[i]-\text { numcon }}\) is in the basis at position \(i\). (output)

\section*{Groups}

Solving systems with basis matrix
Task.input_data
```

pub fn Task::input_data
(\&mut self,
maxnumcon : i32,
maxnumvar : i32,
c : \&[f64],
cfix : f64,
aptrb : \&[i64],
aptre : \&[i64],
asub : \&[i32],
aval : \&[f64],
bkc : \&[i32],
blc : \&[f64],
buc : \&[f64],
bkx : \&[i32],
blx : \&[f64],
bux : \&[f64]) -> Result<(),String>

```

Input the linear part of an optimization problem.
The non-zeros of \(A\) are inputted column-wise in the format described in Section Column or Row Ordered Sparse Matrix.
For an explained code example see Section Linear Optimization and Section Matrix Formats.

\section*{Parameters}
- maxnumcon (i32) - Number of preallocated constraints in the optimization task. (input)
- maxnumvar (i32) - Number of preallocated variables in the optimization task. (input)
- c \((\mathrm{f} 64[])\) - Linear terms of the objective as a dense vector. The length is the number of variables. (input)
- \(\operatorname{cfix}\) (f64) - Fixed term in the objective. (input)
- aptrb (i64[]) - Row or column start pointers. (input)
- aptre (i64[]) - Row or column end pointers. (input)
- asub (i32[]) - Coefficient subscripts. (input)
- aval (f64[]) - Coefficient values. (input)
- bkc (Boundkey []) - Bound keys for the constraints. (input)
- blc (f64[]) - Lower bounds for the constraints. (input)
- buc (f64[]) - Upper bounds for the constraints. (input)
- bkx (Boundkey []) - Bound keys for the variables. (input)
- blx (f64[]) - Lower bounds for the variables. (input)
- bux (f64[]) - Upper bounds for the variables. (input)

\section*{Groups}

Problem data - linear part, Problem data - bounds, Problem data - constraints
Task.is_dou_par_name
```

pub fn Task::is_dou_par_name
(\&self,
parname : \&str,
param : \& mut i32) -> Result<(),String>

```

Checks whether parname is a valid double parameter name.

\section*{Parameters}
- parname (\&str) - Parameter name. (input)
- param (Dparam by reference) - Returns the parameter corresponding to the name, if one exists. (output)

\section*{Groups}

Parameters, Names
Task.is_int_par_name
```

pub fn Task::is_int_par_name
(\&self,
parname : \&str,
param : \& mut i32) -> Result<(),String>

```

Checks whether parname is a valid integer parameter name.

\section*{Parameters}
- parname (\&str) - Parameter name. (input)
- param (Iparam by reference) - Returns the parameter corresponding to the name, if one exists. (output)

\section*{Groups}

Parameters, Names
Task.is_str_par_name
```

pub fn Task::is_str_par_name
(\&self,
parname : \&str,
param : \& mut i32) -> Result<(),String>

```

Checks whether parname is a valid string parameter name.

\section*{Parameters}
- parname (\&str) - Parameter name. (input)
- param (Sparam by reference) - Returns the parameter corresponding to the name, if one exists. (output)

\section*{Groups}

Parameters, Names
Task.link_file_to_stream
```

pub fn Task::link_file_to_stream
(\&mut self,
whichstream : i32,
filename : \&str,
append : i32) -> Result<(),String>

```

Directs all output from a task stream whichstream to a file filename.

\section*{Parameters}
- whichstream (Streamtype) - Index of the stream. (input)
- filename (\&str) - A valid file name. (input)
- append (i32) - If this argument is 0 the output file will be overwritten, otherwise it will be appended to. (input)

\section*{Groups}

Logging
Task.one_solution_summary
```

pub fn Task::one_solution_summary
(\&self,
whichstream : i32,
whichsol : i32) -> Result<(),String>

```

Prints a short summary of a specified solution.

\section*{Parameters}
- whichstream (Streamtype) - Index of the stream. (input)
- whichsol (Soltype) - Selects a solution. (input)

\section*{Groups}

Logging, Solution information
Task.optimize
pub fn Task::optimize(\&mut self) -> Result<i32,String>
Calls the optimizer. Depending on the problem type and the selected optimizer this will call one of the optimizers in MOSEK. By default the interior point optimizer will be selected for continuous problems. The optimizer may be selected manually by setting the parameter Iparam: :OPTIMIZER.

\section*{Return}
trmcode (Rescode) - Is either Rescode::OK or a termination response code.

\section*{Groups}

Optimization
Task.optimize_rmt
```

pub fn Task::optimize_rmt
(\&mut self,
address : \&str,
accesstoken : \&str,
trmcode : \& mut i32) -> Result<(),String>

```

Offload the optimization task to an instance of OptServer specified by addr, which should be a valid URL, for example http://server:port or https://server:port. The call will block until a result is available or the connection closes.

If the server requires authentication, the authentication token can be passed in the accesstoken argument.
If the server requires encryption, the keys can be passed using one of the solver parameters Sparam: :REMOTE_TLS_CERT or Sparam::REMOTE_TLS_CERT_PATH.

\section*{Parameters}
- address (\&str) - Address of the OptServer. (input)
- accesstoken (\&str) - Access token. (input)
- trmcode (Rescode by reference) - Is either Rescode::OK or a termination response code. (output)

\section*{Groups}

Remote optimization
Task.optimizer_summary
```

pub fn Task::optimizer_summary
(\&self,
whichstream : i32) -> Result<(),String>

```

Prints a short summary with optimizer statistics from last optimization.

\section*{Parameters}
whichstream (Streamtype) - Index of the stream. (input)
Groups
Logging
Task.primal_repair
```

pub fn Task::primal_repair
(\&mut self,
wlc : \&[f64],
wuc : \&[f64],
wlx : \&[f64],
wux : \&[f64]) -> Result<(),String>

```

The function repairs a primal infeasible optimization problem by adjusting the bounds on the constraints and variables where the adjustment is computed as the minimal weighted sum of relaxations to the bounds on the constraints and variables. Observe the function only repairs the problem but does not solve it. If an optimal solution is required the problem should be optimized after the repair.
The function is applicable to linear and conic problems possibly with integer variables.
Observe that when computing the minimal weighted relaxation the termination tolerance specified by the parameters of the task is employed. For instance the parameter Iparam: :MIO_MODE can be used to make MOSEK ignore the integer constraints during the repair which usually leads to a much faster repair. However, the drawback is of course that the repaired problem may not have an integer feasible solution.
Note the function modifies the task in place. If this is not desired, then apply the function to a cloned task.

\section*{Parameters}
- wlc \((\mathrm{f} 64[])-\left(w_{l}^{c}\right)_{i}\) is the weight associated with relaxing the lower bound on constraint \(i\). If the weight is negative, then the lower bound is not relaxed. Moreover, if the argument is None, then all the weights are assumed to be 1. (input)
- wuc \((\mathrm{f} 64[])-\left(w_{u}^{c}\right)_{i}\) is the weight associated with relaxing the upper bound on constraint \(i\). If the weight is negative, then the upper bound is not relaxed. Moreover, if the argument is None, then all the weights are assumed to be 1. (input)
- \(\mathrm{wlx}(\mathrm{f} 64[])-\left(w_{l}^{x}\right)_{j}\) is the weight associated with relaxing the lower bound on variable \(j\). If the weight is negative, then the lower bound is not relaxed. Moreover, if the argument is None, then all the weights are assumed to be 1. (input)
- wux \((\mathrm{f} 64[])-\left(w_{l}^{x}\right)_{i}\) is the weight associated with relaxing the upper bound on variable \(j\). If the weight is negative, then the upper bound is not relaxed. Moreover, if the argument is None, then all the weights are assumed to be 1. (input)

\section*{Groups}

Infeasibility diagnostic
Task.primal_sensitivity
```

pub fn Task::primal_sensitivity
(\&mut self,
subi : \&[i32],
marki : \&[i32],
subj : \&[i32],
markj : \&[i32],
leftpricei : \&mut[f64],
rightpricei : \&mut[f64],
leftrangei : \&mut[f64],
rightrangei : \&mut[f64],
leftpricej : \&mut[f64],
rightpricej : \&mut[f64],
leftrangej : \&mut[f64],
rightrangej : \&mut[f64]) -> Result<(),String>

```

Calculates sensitivity information for bounds on variables and constraints. For details on sensitivity analysis, the definitions of shadow price and linearity interval and an example see Section Sensitivity Analysis.
The type of sensitivity analysis to be performed (basis or optimal partition) is controlled by the parameter Iparam: :SENSITIVITY_TYPE.

\section*{Parameters}
- subi (i32[]) - Indexes of constraints to analyze. (input)
- marki (Mark []) - The value of marki[i] indicates for which bound of constraint subi[i] sensitivity analysis is performed. If marki[i] = Mark: :UP the upper bound of constraint subi[i] is analyzed, and if marki[i] = Mark::LO the lower bound is analyzed. If subi [i] is an equality constraint, either Mark: :LO or Mark: :UP can be used to select the constraint for sensitivity analysis. (input)
- subj (i32[]) - Indexes of variables to analyze. (input)
- markj (Mark []) - The value of markj[j] indicates for which bound of variable \(\operatorname{subj}[j]\) sensitivity analysis is performed. If markj[j] = Mark: : UP the upper bound of variable subj \([j]\) is analyzed, and if markj[j] = Mark: :LO the lower bound is analyzed. If subj \([\mathrm{j}]\) is a fixed variable, either Mark: :LO or Mark: : UP can be used to select the bound for sensitivity analysis. (input)
- leftpricei (f64[]) - leftpricei[i] is the left shadow price for the bound marki[i] of constraint subi[i]. (output)
- rightpricei (f64[]) - rightpricei[i] is the right shadow price for the bound marki[i] of constraint subi[i]. (output)
- leftrangei (f64[]) - leftrangei[i] is the left range \(\beta_{1}\) for the bound marki[i] of constraint subi[i]. (output)
- rightrangei (f64[]) - rightrangei[i] is the right range \(\beta_{2}\) for the bound marki[i] of constraint subi[i]. (output)
- leftpricej (f64[]) - leftpricej[j] is the left shadow price for the bound markj[j] of variable subj[j]. (output)
- rightpricej (f64[]) - rightpricej[j] is the right shadow price for the bound \(\operatorname{markj}[j]\) of variable subj[j]. (output)
- leftrangej (f64[]) - leftrangej[j] is the left range \(\beta_{1}\) for the bound markj[j] of variable subj[j]. (output)
- rightrangej (f64[]) - rightrangej[j] is the right range \(\beta_{2}\) for the bound markj[j] of variable subj[j]. (output)

\section*{Groups}

Sensitivity analysis
Task.print_param
```

pub fn Task::print_param(\&self) -> Result<(),String>

```

Prints the current parameter settings to the message stream.

\section*{Groups}

Inspecting the task, Logging
Task.put_a_col
```

pub fn Task::put_a_col
(\&mut self,
j : i32,
subj : \&[i32],
valj : \&[f64]) -> Result<(),String>

```

Change one column of the linear constraint matrix \(A\). Resets all the elements in column \(j\) to zero and then sets
\[
a_{\mathrm{subj}[k], \mathrm{j}}=\operatorname{valj}[k], \quad k=0, \ldots, \mathrm{nzj}-1
\]

\section*{Parameters}
- j (i32) - Index of a column in \(A\). (input)
- subj (i32[]) - Row indexes of non-zero values in column \(j\) of \(A\). (input)
- \(\operatorname{valj}(\mathrm{f} 64[\mathrm{f})\) - New non-zero values of column \(j\) in \(A\). (input)

\section*{Groups}

Problem data - linear part
Task.put_a_col_list
```

pub fn Task::put_a_col_list
(\&mut self,
sub : \&[i32],
ptrb : \&[i64],
ptre : \&[i64],
asub : \&[i32],
aval : \&[f64]) -> Result<(),String>

```

Change a set of columns in the linear constraint matrix \(A\) with data in sparse triplet format. The requested columns are set to zero and then updated with:
\[
\begin{array}{ll}
\text { for } & i=0, \ldots, \text { num }-1 \\
& a_{\text {asub }[k], \text { sub }[i]}=\operatorname{aval}[k], \quad k=\operatorname{ptrb}[i], \ldots, \operatorname{ptre}[i]-1 .
\end{array}
\]

\section*{Parameters}
- sub (i32[]) - Indexes of columns that should be replaced, no duplicates. (input)
- ptrb (i64[]) - Array of pointers to the first element in each column. (input)
- ptre (i64[]) - Array of pointers to the last element plus one in each column. (input)
- asub (i32[]) - Row indexes of new elements. (input)
- aval (f64[]) - Coefficient values. (input)

\section*{Groups}

Problem data - linear part
Task.put_a_col_slice
```

pub fn Task::put_a_col_slice
(\&mut self,
first : i32,
last : i32,
ptrb : \&[i64],
ptre : \&[i64],
asub : \&[i32],
aval : \&[f64]) -> Result<(),String>

```

Change a slice of columns in the linear constraint matrix \(A\) with data in sparse triplet format. The requested columns are set to zero and then updated with:
\[
\text { for } \begin{aligned}
& i=\mathrm{first}, \ldots, \mathrm{l} \text { ast }-1 \\
& a_{\text {asub }[k], i}=\operatorname{aval}[k], \quad k=\operatorname{ptrb}[i-\mathrm{first}], \ldots, \operatorname{ptre}[i-\mathrm{first}]-1 .
\end{aligned}
\]

\section*{Parameters}
- first (i32) - First column in the slice. (input)
- last (i32) - Last column plus one in the slice. (input)
- ptrb (i64[]) - Array of pointers to the first element in each column. (input)
- ptre (i64[]) - Array of pointers to the last element plus one in each column. (input)
- asub (i32[]) - Row indexes of new elements. (input)
- aval (f64[]) - Coefficient values. (input)

\section*{Groups}

Problem data - linear part
Task.put_a_row
```

pub fn Task::put_a_row
(\&mut self,
i : i32,
subi : \&[i32],
vali : \&[f64]) -> Result<(),String>

```

Change one row of the linear constraint matrix \(A\). Resets all the elements in row \(i\) to zero and then sets
\[
a_{\mathrm{i}, \operatorname{subi}[k]}=\operatorname{vali}[k], \quad k=0, \ldots, \mathrm{nzi}-1 .
\]

\section*{Parameters}
- i (i32) - Index of a row in \(A\). (input)
- subi (i32[]) - Column indexes of non-zero values in row \(i\) of \(A\). (input)
- vali (f64[]) - New non-zero values of row \(i\) in \(A\). (input)

\section*{Groups}

Problem data - linear part

Task.put_a_row_list
```

pub fn Task::put_a_row_list
(\&mut self,
sub : \&[i32],
ptrb : \&[i64],
ptre : \&[i64],
asub : \&[i32],
aval : \&[f64]) -> Result<(),String>

```

Change a set of rows in the linear constraint matrix \(A\) with data in sparse triplet format. The requested rows are set to zero and then updated with:
\[
\begin{array}{ll}
\text { for } & i=0, \ldots, \text { num }-1 \\
& a_{\operatorname{sub}[i], \operatorname{asub}[k]}=\operatorname{aval}[k], \quad k=\operatorname{ptrb}[i], \ldots, \operatorname{ptre}[i]-1 .
\end{array}
\]

\section*{Parameters}
- sub (i32[]) - Indexes of rows that should be replaced, no duplicates. (input)
- ptrb (i64[]) - Array of pointers to the first element in each row. (input)
- ptre (i64[]) - Array of pointers to the last element plus one in each row. (input)
- asub (i32[]) - Column indexes of new elements. (input)
- aval (f64[]) - Coefficient values. (input)

\section*{Groups}

Problem data - linear part
Task.put_a_row_slice
```

pub fn Task::put_a_row_slice
(\&mut self,
first : i32,
last : i32,
ptrb : \&[i64],
ptre : \&[i64],
asub : \&[i32],
aval : \&[f64]) -> Result<(),String>

```

Change a slice of rows in the linear constraint matrix \(A\) with data in sparse triplet format. The requested rows are set to zero and then updated with:
\[
\begin{array}{ll}
\text { for } & i=\mathrm{first}, \ldots, \text { last }-1 \\
& a_{i, \operatorname{asub}[k]}=\operatorname{aval}[k], \quad k=\operatorname{ptrb}[i-\mathrm{first}], \ldots, \operatorname{ptre}[i-\mathrm{first}]-1 .
\end{array}
\]

\section*{Parameters}
- first (i32) - First row in the slice. (input)
- last (i32) - Last row plus one in the slice. (input)
- ptrb (i64[]) - Array of pointers to the first element in each row. (input)
- ptre (i64[]) - Array of pointers to the last element plus one in each row. (input)
- asub (i32[]) - Column indexes of new elements. (input)
- aval (f64[]) - Coefficient values. (input)

\section*{Groups}

Problem data - linear part
Task.put_a_truncate_tol
```

pub fn Task::put_a_truncate_tol
(\&mut self,
tolzero : f64) -> Result<(),String>

```

Truncates (sets to zero) all elements in \(A\) that satisfy
\[
\left|a_{i, j}\right| \leq \text { tolzero }
\]

Parameters
tolzero (f64) - Truncation tolerance. (input)
Groups
Problem data - linear part
Task.put_acc
```

pub fn Task::put_acc
(\&mut self,
accidx : i64,
domidx : i64,
afeidxlist : \&[i64],
b : \&[f64]) -> Result<(),String>

```

Puts an affine conic constraint. This method overwrites an existing affine conic constraint number accidx with new data specified in the same format as in Task. append_acc.

\section*{Parameters}
- accidx (i64) - Affine conic constraint index. (input)
- domidx (i64) - Domain index. (input)
- afeidxlist (i64[]) - List of affine expression indexes. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. Optional, pass an empty slice if not required. (input)

\section*{Groups}

Problem data - affine conic constraints
Task.put_acc_b
```

pub fn Task::put_acc_b
(\&mut self,
accidx : i64,
b : \&[f64]) -> Result<(),String>

```

Updates an existing affine conic constraint number accidx by putting a new vector \(b\).

\section*{Parameters}
- accidx (i64) - Affine conic constraint index. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. Optional, pass an empty slice if not required. (input)
Groups
Problem data - affine conic constraints
Task.put_acc_b_j
```

pub fn Task::put_acc_b_j
(\&mut self,
accidx : i64,
j : i64,
bj : f64) -> Result<(),String>

```

Sets one value \(b[j]\) in the \(b\) vector for the affine conic constraint number accidx.

\section*{Parameters}
- accidx (i64) - Affine conic constraint index. (input)
- \(j\) (i64) - The index of an element in b to change. (input)
- bj (f64) - The new value of \(b[j]\). (input)

\section*{Groups}

Problem data - affine conic constraints
Task.put_acc_dot_y
```

pub fn Task::put_acc_dot_y
(\&self,
whichsol : i32,
accidx : i64,
doty : \&mut[f64]) -> Result<(),String>

```

Puts the \(\dot{y}\) vector for a solution (the dual values of an affine conic constraint).

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- accidx (i64) - The index of the affine conic constraint. (input)
- doty \((\mathrm{f} 64[])\) - The dual values for this affine conic constraint. The array should have length equal to the dimension of the constraint. (output)

\section*{Groups}

Solution - dual, Problem data - affine conic constraints
Task.put_acc_list
```

pub fn Task::put_acc_list
(\&mut self,
accidxs : \&[i64],
domidxs : \&[i64],
afeidxlist : \&[i64],
b : \&[f64]) -> Result<(),String>

```

Puts affine conic constraints. This method overwrites existing affine conic constraints whose numbers are provided in the list accidxs with new data which is a concatenation of individual constraint descriptions in the same format as in Task. append_acc (see also Task.append_accs).

\section*{Parameters}
- accidxs (i64[]) - Affine conic constraint indices. (input)
- domidxs (i64[]) - Domain indices. (input)
- afeidxlist (i64[]) - List of affine expression indexes. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. Optional, pass an empty slice if not required. (input)

\section*{Groups}

Problem data - affine conic constraints
Task.put_acc_name
```

pub fn Task::put_acc_name
(\&mut self,
accidx : i64,
name : \&str) -> Result<(),String>

```

Sets the name of an affine conic constraint.

\section*{Parameters}
- accidx (i64) - Index of the affine conic constraint. (input)
- name (\&str) - The name of the affine conic constraint. (input)

\section*{Groups}

Names, Problem data - affine conic constraints

Task.put_afe_barf_block_triplet
```

pub fn Task::put_afe_barf_block_triplet
(\&mut self,
afeidx : \&[i64],
barvaridx : \&[i32],
subk : \&[i32],
subl : \&[i32],
valkl : \&[f64]) -> Result<(),String>

```

Inputs the \(\bar{F}\) matrix data in block triplet form.

\section*{Parameters}
- afeidx (i64[]) - Constraint index. (input)
- barvaridx (i32[]) - Symmetric matrix variable index. (input)
- subk (i32[]) - Block row index. (input)
- subl (i32[]) - Block column index. (input)
- valkl (f64[]) - The numerical value associated with each block triplet. (input)

Groups
Problem data - affine expressions, Problem data - semidefinite
Task.put_afe_barf_entry
```

pub fn Task::put_afe_barf_entry
(\&mut self,
afeidx : i64,
barvaridx : i32,
termidx : \&[i64],
termweight : \&[f64]) -> Result<(),String>

```

This function sets one entry \(\bar{F}_{i j}\) where \(i=\) afeidx is the row index in the store of affine expressions and \(j=\) barvaridx is the index of a symmetric variable. That is, the expression
\[
\left\langle\bar{F}_{i j}, \bar{X}_{j}\right\rangle
\]
will be added to the \(i\)-th affine expression.
The matrix \(\bar{F}_{i j}\) is specified as a weighted sum of symmetric matrices from the symmetric matrix storage \(E\), so \(\bar{F}_{i j}\) is a symmetric matrix, precisely:
\[
\bar{F}_{\text {afeidx,barvaridx }}=\sum_{k} \text { termweight }[k] \cdot E_{\text {termidx }[k]} .
\]

By default all elements in \(\bar{F}\) are 0 , so only non-zero elements need be added. Setting the same entry again will overwrite the earlier entry.
The symmetric matrices from \(E\) are defined separately using the function Task. append_sparse_sym_mat.

\section*{Parameters}
- afeidx (i64) - Row index of \(\bar{F}\). (input)
- barvaridx (i32) - Semidefinite variable index. (input)
- termidx (i64[]) - Indices in \(E\) of the matrices appearing in the weighted sum for the \(\bar{F}\) entry being specified. (input)
- termweight (f64[]) - termweight[k] is the coefficient of the termidx[k]-th element of \(E\) in the weighted sum the \(\bar{F}\) entry being specified. (input)

\section*{Groups}

Problem data - affine expressions, Problem data - semidefinite
Task.put_afe_barf_entry_list
```

pub fn Task::put_afe_barf_entry_list
(\&mut self,
afeidx : \&[i64],
barvaridx : \&[i32],
numterm : \& [i64],
ptrterm : \&[i64],
termidx : \&[i64],
termweight : \&[f64]) -> Result<(),String>

```

This function sets a list of entries in \(\bar{F}\). Each entry should be described as in Task. put_afe_barf_entry and all those descriptions should be combined (for example concatenated) in the input to this method. That means the \(k\)-th entry set will have row index afeidx \([k]\), symmetric variable index barvaridx [k] and the description of this term consists of indices in \(E\) and weights appearing in positions
\[
\operatorname{ptrterm}[k], \ldots, \operatorname{ptrterm}[k]+(\text { lenterm }[k]-1)
\]
in the corresponding arrays termidx and termweight. See Task.put_afe_barf_entry for details.

\section*{Parameters}
- afeidx (i64[]) - Row indexes of \(\bar{F}\). (input)
- barvaridx (i32[]) - Semidefinite variable indexes. (input)
- numterm (i64[]) - The number of terms in the weighted sums that form each entry. (input)
- ptrterm (i64[]) - The pointer to the beginning of the description of each entry. (input)
- termidx (i64[]) - Concatenated lists of indices in \(E\) of the matrices appearing in the weighted sums for the \(\bar{F}\) being specified. (input)
- termweight (f64[]) - Concatenated lists of weights appearing in the weighted sums forming the \(\bar{F}\) elements being specified. (input)

\section*{Groups}

Problem data - affine expressions, Problem data - semidefinite
Task.put_afe_barf_row
```

pub fn Task::put_afe_barf_row
(\&mut self,
afeidx : i64,
barvaridx : \&[i32],
numterm : \&[i64],
ptrterm : \&[i64],
termidx : \&[i64],
termweight : \&[f64]) -> Result<(),String>

```

This function inputs one row in \(\bar{F}\). It first clears the row, i.e. sets \(\bar{F}_{\text {afeidx,* }}=0\) and then sets the new entries. Each entry should be described as in Task.put_afe_barf_entry and all those descriptions should be combined (for example concatenated) in the input to this method. That means the \(k\)-th entry set will have row index afeidx, symmetric variable index barvaridx [k] and the description of this term consists of indices in \(E\) and weights appearing in positions
\[
\operatorname{ptrterm}[k], \ldots, \operatorname{ptrterm}[k]+(\text { numterm }[k]-1)
\]
in the corresponding arrays termidx and termweight. See Task.put_afe_barf_entry for details.

\section*{Parameters}
- afeidx (i64) - Row index of \(\bar{F}\). (input)
- barvaridx (i32[]) - Semidefinite variable indexes. (input)
- numterm (i64[]) - The number of terms in the weighted sums that form each entry. (input)
- ptrterm (i64[]) - The pointer to the beginning of the description of each entry. (input)
- termidx (i64[]) - Concatenated lists of indices in \(E\) of the matrices appearing in the weighted sums for the \(\bar{F}\) entries in the row. (input)
- termweight (f64[]) - Concatenated lists of weights appearing in the weighted sums forming the \(\bar{F}\) entries in the row. (input)

\section*{Groups}

Problem data - affine expressions, Problem data - semidefinite
Task.put_afe_f_col
```

pub fn Task::put_afe_f_col
(\&mut self,
varidx : i32,
afeidx : \&[i64],
val : \&[f64]) -> Result<(),String>

```

Change one column of the matrix \(F\) of affine expressions. Resets all the elements in column varidx to zero and then sets
\[
F_{\text {afeidx }[k], \operatorname{varidx}}=\operatorname{val}[k], \quad k=0, \ldots, \text { numnz }-1 .
\]

\section*{Parameters}
- varidx (i32) - Index of a column in \(F\). (input)
- afeidx (i64[]) - Row indexes of non-zero values in the column of \(F\). (input)
- val (f64[]) - New non-zero values in the column of \(F\). (input)

\section*{Groups}

Problem data - affine expressions
Task.put_afe_f_entry
```

pub fn Task::put_afe_f_entry
(\&mut self,
afeidx : i64,
varidx : i32,
value : f64) -> Result<(),String>

```

Replaces one entry in the affine expression store \(F\), that is it sets:
\[
F_{\text {afeidx, varidx }}=\text { value } .
\]

\section*{Parameters}
- afeidx (i64) - Row index in \(F\). (input)
- varidx (i32) - Column index in \(F\). (input)
- value (f64) - Value of \(F_{\text {afeidx, varidx }}\). (input)

\section*{Groups}

Problem data - affine expressions
Task.put_afe_f_entry_list
```

pub fn Task::put_afe_f_entry_list
(\&mut self,
afeidx : \&[i64],
varidx : \&[i32],
val : \&[f64]) -> Result<(),String>

```

Replaces a number of entries in the affine expression store \(F\), that is it sets:
\[
F_{\mathrm{afeidxs}[k], \operatorname{varidx}[k]}=\operatorname{val}[k]
\]
for all \(k\).

\section*{Parameters}
- afeidx (i64[]) - Row indices in \(F\). (input)
- varidx (i32[]) - Column indices in \(F\). (input)
- val (f64[]) - Values of the entries in \(F\). (input)

\section*{Groups}

Problem data - affine expressions
Task.put_afe_f_row
```

pub fn Task::put_afe_f_row
(\&mut self,
afeidx : i64,
varidx : \&[i32],
val : \&[f64]) -> Result<(),String>

```

Change one row of the matrix \(F\) of affine expressions. Resets all the elements in row afeidx to zero and then sets
\[
F_{\text {afeidx }, \operatorname{varidx}[k]}=\operatorname{val}[k], \quad k=0, \ldots, \text { numnz }-1 .
\]

\section*{Parameters}
- afeidx (i64) - Index of a row in \(F\). (input)
- varidx (i32[]) - Column indexes of non-zero values in the row of \(F\). (input)
- \(\operatorname{val}(\mathrm{f} 64[])\) - New non-zero values in the row of \(F\). (input)

\section*{Groups}

Problem data - affine expressions
Task.put_afe_f_row_list
```

pub fn Task::put_afe_f_row_list
(\&mut self,
afeidx : \&[i64],
numnzrow : \&[i32],
ptrrow : \&[i64],
varidx : \&[i32],
val : \&[f64]) -> Result<(),String>

```

Clears and then changes a number of rows of the matrix \(F\) of affine expressions. The \(k\)-th of the rows to be changed has index \(i=\operatorname{afeidx}[k]\), contains numnzrow \([k]\) nonzeros and its description as in Task.put_afe_f_row starts in position ptrrow \([k]\) of the arrays varidx and val. Formally, the row with index \(i\) is cleared and then set as:
\[
F_{i, \operatorname{varidx}[\operatorname{ptrrow}[k]+j]}=\operatorname{val}[\text { ptrrow }[k]+j], \quad j=0, \ldots, \text { numnzrow }[k]-1 .
\]

\section*{Parameters}
- afeidx (i64[]) - Indices of rows in \(F\). (input)
- numnzrow (i32[]) - Number of non-zeros in each of the modified rows of \(F\). (input)
- ptrrow (i64[]) - Pointer to the first nonzero in each row of \(F\). (input)
- varidx (i32[]) - Column indexes of non-zero values. (input)
- val (f64[]) - New non-zero values in the rows of \(F\). (input)

\section*{Groups}

Problem data - affine expressions

Task.put_afe_g
```

pub fn Task::put_afe_g
(\&mut self,
afeidx : i64,
g : f64) -> Result<(),String>

```

Change one element of the vector \(g\) in affine expressions i.e.
\[
g_{\text {afeidx }}=\mathrm{gi} .
\]

\section*{Parameters}
- afeidx (i64) - Index of an entry in \(g\). (input)
- \(g\) (f64) - New value for \(g_{\text {afeidx }}\). (input)

\section*{Groups}

Problem data - affine expressions
Task.put_afe_g_list
```

pub fn Task::put_afe_g_list
(\&mut self,
afeidx : \&[i64],
g : \&[f64]) -> Result<(),String>

```

Changes a list of elements of the vector \(g\) in affine expressions i.e. for all \(k\) it sets
\[
g_{\text {afeidx }[k]}=\operatorname{glist}[k] .
\]

\section*{Parameters}
- afeidx (i64[]) - Indices of entries in \(g\). (input)
- \(\mathrm{g}(\mathrm{f} 64[])\) - New values for \(g\). (input)

\section*{Groups}

Problem data - affine expressions
Task.put_afe_g_slice
```

pub fn Task::put_afe_g_slice
(\&mut self,
first : i64,
last : i64,
slice : \&[f64]) -> Result<(),String>

```

Modifies a slice in the vector \(g\) of constant terms in affine expressions using the principle
\[
g_{\mathrm{j}}=\operatorname{slice}[\mathrm{j}-\mathrm{first}], \quad j=\text { first, } . ., \text { last }-1
\]

\section*{Parameters}
- first (i64) - First index in the sequence. (input)
- last (i64) - Last index plus 1 in the sequence. (input)
- slice \((\mathrm{f} 64[])\) - The slice of \(g\) as a dense vector. The length is last-first. (input)
Groups Problem data - affine expressions

Task.put_aij
```

pub fn Task::put_aij
(\&mut self,
i : i32,
j : i32,
aij : f64) -> Result<(),String>

```

Changes a coefficient in the linear coefficient matrix \(A\) using the method
\[
a_{i, j}=\mathrm{aij}
\]

\section*{Parameters}
- i (i32) - Constraint (row) index. (input)
- j (i32) - Variable (column) index. (input)
- aij (f64) - New coefficient for \(a_{i, j}\). (input)

\section*{Groups}

Problem data - linear part
Task.put_aij_list
```

pub fn Task::put_aij_list
(\&mut self,
subi : \&[i32],
subj : \&[i32],
valij : \&[f64]) -> Result<(),String>

```

Changes one or more coefficients in \(A\) using the method
\[
a_{\text {subi }[\mathrm{k}], \operatorname{subj}[\mathrm{k}]}=\operatorname{valij}[\mathrm{k}], \quad k=0, \ldots, \text { num }-1 .
\]

Duplicates are not allowed.

\section*{Parameters}
- subi (i32[]) - Constraint (row) indices. (input)
- subj (i32[]) - Variable (column) indices. (input)
- valij (f64[]) - New coefficient values for \(a_{i, j}\). (input)

\section*{Groups}

Problem data - linear part
Task.put_bara_block_triplet
```

pub fn Task::put_bara_block_triplet
(\&mut self,
subi : \&[i32],
subj : \&[i32],
subk : \&[i32],
subl : \&[i32],
valijkl : \&[f64]) -> Result<(),String>

```

Inputs the \(\bar{A}\) matrix in block triplet form.

\section*{Parameters}
- subi (i32[]) - Constraint index. (input)
- subj (i32[]) - Symmetric matrix variable index. (input)
- subk (i32[]) - Block row index. (input)
- subl (i32[]) - Block column index. (input)
- valijkl (f64[]) - The numerical value associated with each block triplet. (input)
Groups
Problem data - semidefinite
Task.put_bara_ij
```

pub fn Task::put_bara_ij
(\&mut self,
i : i32,
j : i32,
sub : \&[i64],
weights : \&[f64]) -> Result<(),String>

```

This function sets one element in the \(\bar{A}\) matrix.
Each element in the \(\bar{A}\) matrix is a weighted sum of symmetric matrices from the symmetric matrix storage \(E\), so \(\bar{A}_{i j}\) is a symmetric matrix. By default all elements in \(\bar{A}\) are 0 , so only non-zero elements need be added. Setting the same element again will overwrite the earlier entry.
The symmetric matrices from \(E\) are defined separately using the function Task. append_sparse_sym_mat.

\section*{Parameters}
- i (i32) - Row index of \(\bar{A}\). (input)
- j (i32) - Column index of \(\bar{A}\). (input)
- sub (i64[]) - Indices in \(E\) of the matrices appearing in the weighted sum for \(\bar{A}_{i j}\). (input)
- weights (f64[]) - weights[k] is the coefficient of the sub[k]-th element of \(E\) in the weighted sum forming \(\bar{A}_{i j}\). (input)

\section*{Groups}

Problem data - semidefinite
Task.put_bara_ij_list
```

pub fn Task::put_bara_ij_list
(\&mut self,
subi : \&[i32],
subj : \&[i32],
alphaptrb : \&[i64],
alphaptre : \&[i64],
matidx : \&[i64],
weights : \&[f64]) -> Result<(),String>

```

This function sets a list of elements in the \(\bar{A}\) matrix.
Each element in the \(\bar{A}\) matrix is a weighted sum of symmetric matrices from the symmetric matrix storage \(E\), so \(\bar{A}_{i j}\) is a symmetric matrix. By default all elements in \(\bar{A}\) are 0 , so only non-zero elements need be added. Setting the same element again will overwrite the earlier entry.
The symmetric matrices from \(E\) are defined separately using the function Task. append_sparse_sym_mat.

\section*{Parameters}
- subi (i32[]) - Row index of \(\bar{A}\). (input)
- \(\operatorname{subj}(\) i32[] \() ~-~ C o l u m n ~ i n d e x ~ o f ~ \bar{A}\). (input)
- alphaptrb (i64[]) - Start entries for terms in the weighted sum that forms \(\bar{A}_{i j}\). (input)
- alphaptre (i64[]) - End entries for terms in the weighted sum that forms \(\bar{A}_{i j}\). (input)
- matidx (i64[]) - Indices in \(E\) of the matrices appearing in the weighted sum for \(\bar{A}_{i j}\). (input)
- weights (f64[]) - weights [k] is the coefficient of the sub[k]-th element of \(E\) in the weighted sum forming \(\bar{A}_{i j}\). (input)

\section*{Groups}

Problem data - semidefinite

Task.put_bara_row_list
```

pub fn Task::put_bara_row_list
(\&mut self,
subi : \&[i32],
ptrb : \&[i64],
ptre : \&[i64],
subj : \&[i32],
nummat : \&[i64],
matidx : \&[i64],
weights : \&[f64]) -> Result<(),String>

```

This function replaces a list of rows in the \(\bar{A}\) matrix.

\section*{Parameters}
- subi (i32[]) - Row indexes of \(\bar{A}\). (input)
- ptrb (i64[]) - Start of rows in \(\bar{A}\). (input)
- ptre (i64[]) - End of rows in \(\bar{A}\). (input)
- subj (i32[]) - Column index of \(\bar{A}\). (input)
- nummat (i64[]) - Number of entries in weighted sum of matrixes. (input)
- matidx (i64[]) - Matrix indexes for weighted sum of matrixes. (input)
- weights (f64[]) - Weights for weighted sum of matrixes. (input)

\section*{Groups}

Problem data - semidefinite
Task.put_barc_block_triplet
```

pub fn Task::put_barc_block_triplet
(\&mut self,
subj : \&[i32],
subk : \&[i32],
subl : \&[i32],
valjkl : \&[f64]) -> Result<(),String>

```

Inputs the \(\bar{C}\) matrix in block triplet form.

\section*{Parameters}
- subj (i32[]) - Symmetric matrix variable index. (input)
- subk (i32[]) - Block row index. (input)
- subl (i32[]) - Block column index. (input)
- valjkl (f64[]) - The numerical value associated with each block triplet. (input)

\section*{Groups}
Problem data-semidefinite

Task.put_barc_j
```

pub fn Task::put_barc_j
(\&mut self,
j : i32,
sub : \&[i64],
weights : \&[f64]) -> Result<(),String>

```

This function sets one entry in the \(\bar{C}\) vector.
Each element in the \(\bar{C}\) vector is a weighted sum of symmetric matrices from the symmetric matrix storage \(E\), so \(\bar{C}_{j}\) is a symmetric matrix. By default all elements in \(\bar{C}\) are 0 , so only non-zero elements need be added. Setting the same element again will overwrite the earlier entry.

The symmetric matrices from \(E\) are defined separately using the function Task. append_sparse_sym_mat.

\section*{Parameters}
- j (i32) - Index of the element in \(\bar{C}\) that should be changed. (input)
- sub (i64[]) - Indices in \(E\) of matrices appearing in the weighted sum for \(\bar{C}_{j}\) (input)
- weights (f64[]) - weights[k] is the coefficient of the sub[k]-th element of \(E\) in the weighted sum forming \(\bar{C}_{j}\). (input)

\section*{Groups}

Problem data - semidefinite, Problem data - objective
Task.put_bars_j
```

pub fn Task::put_bars_j
(\&mut self,
whichsol : i32,
j : i32,
barsj : \&[f64]) -> Result<(),String>

```

Sets the dual solution for a semidefinite variable.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- \(j\) (i32) - Index of the semidefinite variable. (input)
- barsj (f64[]) - Value of \(\bar{S}_{j}\). Format as in Task.get_bars_j. (input)

\section*{Groups}

Solution - semidefinite
Task.put_barvar_name
```

pub fn Task::put_barvar_name
(\&mut self,
j : i32,
name : \&str) -> Result<(),String>

```

Sets the name of a semidefinite variable.

\section*{Parameters}
- \(j\) (i32) - Index of the variable. (input)
- name (\&str) - The variable name. (input)

Groups
Names, Problem data - semidefinite
Task.put_barx_j
```

pub fn Task::put_barx_j
(\&mut self,
whichsol : i32,
j : i32,
barxj : \&[f64]) -> Result<(),String>

```

Sets the primal solution for a semidefinite variable.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- j (i32) - Index of the semidefinite variable. (input)
- barxj (f64[]) - Value of \(\bar{X}_{j}\). Format as in Task.get_barx_j. (input)

\section*{Groups}

Solution - semidefinite

Task.put_c_j
```

pub fn Task::put_c_j
(\&mut self,
j : i32,
cj : f64) -> Result<(),String>

```

Modifies one coefficient in the linear objective vector \(c\), i.e.
\[
c_{j}=c j .
\]

If the absolute value exceeds Dparam: :DATA_TOL_C_HUGE an error is generated. If the absolute value exceeds Dparam::DATA_TOL_CJ_LARGE, a warning is generated, but the coefficient is inputted as specified.

\section*{Parameters}
- j (i32) - Index of the variable for which \(c\) should be changed. (input)
- cj (f64) - New value of \(c_{j}\). (input)

\section*{Groups}

Problem data - linear part, Problem data - objective
Task.put_c_list
```

pub fn Task::put_c_list
(\&mut self,
subj : \&[i32],
val : \&[f64]) -> Result<(),String>

```

Modifies the coefficients in the linear term \(c\) in the objective using the principle
\[
c_{\mathrm{subj}[\mathrm{t}]}=\operatorname{val}[\mathrm{t}], \quad t=0, \ldots, \text { num }-1 .
\]

If a variable index is specified multiple times in subj only the last entry is used. Data checks are performed as in Task.put_c_ \(j\).

\section*{Parameters}
- \(\operatorname{subj}(i 32[])\) - Indices of variables for which the coefficient in \(c\) should be changed. (input)
- val (f64[]) - New numerical values for coefficients in \(c\) that should be modified. (input)

\section*{Groups}

Problem data - linear part, Problem data - variables, Problem data - objective
Task.put_c_slice
```

pub fn Task::put_c_slice
(\&mut self,
first : i32,
last : i32,
slice : \&[f64]) -> Result<(),String>

```

Modifies a slice in the linear term \(c\) in the objective using the principle
\[
c_{\mathrm{j}}=\operatorname{slice}[\mathrm{j}-\mathrm{first}], \quad j=\mathrm{first}, . ., \text { last }-1
\]

Data checks are performed as in Task.put_c_j.

\section*{Parameters}
- first (i32) - First element in the slice of \(c\). (input)
- last (i32) - Last element plus 1 of the slice in \(c\) to be changed. (input)
- slice (f64[]) - New numerical values for coefficients in \(c\) that should be modified. (input)
Groups
Problem data - linear part, Problem data - objective
Task.put_callback
```

pub fn TaskCB::put_callback<F>
(\& mut self,
func : F) -> Result<(),String>
where F : 'static +FnMut(i32, \&[f64], \&[i32], \&[i64]) -> bool

```

Receive callbacks with solver status and information during optimization.

\section*{Parameters}
func (function) - The callback function. (input)
Task.put_cfix
```

pub fn Task::put_cfix
(\&mut self,
cfix : f64) -> Result<(),String>

```

Replaces the fixed term in the objective by a new one.
Parameters
cfix (f64) - Fixed term in the objective. (input)
Groups
Problem data - linear part, Problem data - objective
Task.put_con_bound
```

pub fn Task::put_con_bound
(\&mut self,
i : i32,
bkc : i32,
blc : f64,
buc : f64) -> Result<(),String>

```

Changes the bounds for one constraint.
If the bound value specified is numerically larger than Dparam: :DATA_TOL_BOUND_INF it is considered infinite and the bound key is changed accordingly. If a bound value is numerically larger than Dparam: :DATA_TOL_BOUND_WRN, a warning will be displayed, but the bound is inputted as specified.

\section*{Parameters}
- i (i32) - Index of the constraint. (input)
- bkc (Boundkey) - New bound key. (input)
- blc (f64) - New lower bound. (input)
- buc (f64) - New upper bound. (input)

\section*{Groups}

Problem data - linear part, Problem data - constraints, Problem data - bounds
Task.put_con_bound_list
```

pub fn Task::put_con_bound_list
(\&mut self,
sub : \&[i32],
bkc : \&[i32],
blc : \&[f64],
buc : \&[f64]) -> Result<(),String>

```

Changes the bounds for a list of constraints. If multiple bound changes are specified for a constraint, then only the last change takes effect. Data checks are performed as in Task.put_con_bound.

\section*{Parameters}
- sub (i32[]) - List of constraint indexes. (input)
- bkc (Boundkey []) - Bound keys for the constraints. (input)
- blc (f64[]) - Lower bounds for the constraints. (input)
- buc (f64[]) - Upper bounds for the constraints. (input)

\section*{Groups}

Problem data - linear part, Problem data - constraints, Problem data - bounds
Task.put_con_bound_list_const
```

pub fn Task::put_con_bound_list_const
(\&mut self,
sub : \&[i32],
bkc : i32,
blc : f64,
buc : f64) -> Result<(),String>

```

Changes the bounds for one or more constraints. Data checks are performed as in Task. put_con_bound.

\section*{Parameters}
- sub (i32[]) - List of constraint indexes. (input)
- bkc (Boundkey) - New bound key for all constraints in the list. (input)
- blc (f64) - New lower bound for all constraints in the list. (input)
- buc (f64) - New upper bound for all constraints in the list. (input)

\section*{Groups}

Problem data - linear part, Problem data - constraints, Problem data - bounds
Task.put_con_bound_slice
```

pub fn Task::put_con_bound_slice
(\&mut self,
first : i32,
last : i32,
bkc : \&[i32],
blc : \&[f64],
buc : \&[f64]) -> Result<(),String>

```

Changes the bounds for a slice of the constraints. Data checks are performed as in Task. put_con_bound.

\section*{Parameters}
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- bkc (Boundkey []) - Bound keys for the constraints. (input)
- blc (f64[]) - Lower bounds for the constraints. (input)
- buc (f64[]) - Upper bounds for the constraints. (input)

\section*{Groups}

Problem data - linear part, Problem data - constraints, Problem data - bounds
Task.put_con_bound_slice_const
```

pub fn Task::put_con_bound_slice_const
(\&mut self,
first : i32,
last : i32,
bkc : i32,
blc : f64,
buc : f64) -> Result<(),String>

```

Changes the bounds for a slice of the constraints. Data checks are performed as in Task. put_con_bound.

\section*{Parameters}
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- bkc (Boundkey) - New bound key for all constraints in the slice. (input)
- blc (f64) - New lower bound for all constraints in the slice. (input)
- buc (f64) - New upper bound for all constraints in the slice. (input)

\section*{Groups}

Problem data - linear part, Problem data - constraints, Problem data - bounds
Task.put_con_name
```

pub fn Task::put_con_name
(\&mut self,
i : i32,
name : \&str) -> Result<(),String>

```

Sets the name of a constraint.

\section*{Parameters}
- i (i32) - Index of the constraint. (input)
- name (\&str) - The name of the constraint. (input)

\section*{Groups}

Names, Problem data - constraints, Problem data - linear part
Task.put_con_solution_i
```

pub fn Task::put_con_solution_i
(\&mut self,
i : i32,
whichsol : i32,
sk : i32,
x : f64,
sl : f64,
su : f64) -> Result<(),String>

```

Sets the primal and dual solution information for a single constraint.

\section*{Parameters}
- i (i32) - Index of the constraint. (input)
- whichsol (Soltype) - Selects a solution. (input)
- sk (Stakey) - Status key of the constraint. (input)
- \(x(f 64)\) - Primal solution value of the constraint. (input)
- sl (f64) - Solution value of the dual variable associated with the lower bound. (input)
- su (f64) - Solution value of the dual variable associated with the upper bound. (input)

\section*{Groups}

Solution information, Solution - primal, Solution - dual

\section*{Task.put_cone Deprecated}
```

pub fn Task::put_cone
(\&mut self,
k : i32,
ct : i32,
conepar : f64,
submem : \&[i32]) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

\section*{Parameters}
- \(k\) (i32) - Index of the cone. (input)
- ct (Conetype) - Specifies the type of the cone. (input)
- conepar (f64) - For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0 . (input)
- submem (i32[]) - Variable subscripts of the members in the cone. (input)

\section*{Groups}

> Problem data - cones (deprecated)

\section*{Task.put_cone_name Deprecated}
```

pub fn Task::put_cone_name
(\&mut self,
j : i32,
name : \&str) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

\section*{Parameters}
- \(j\) (i32) - Index of the cone. (input)
- name (\&str) - The name of the cone. (input)

\section*{Groups}

Names, Problem data - cones (deprecated)
Task.put_djc
```

pub fn Task::put_djc
(\&mut self,
djcidx : i64,
domidxlist : \&[i64],
afeidxlist : \&[i64],
b : \&[f64],
termsizelist : \&[i64]) -> Result<(),String>

```

Inputs a disjunctive constraint. The constraint has the form
\[
T_{1} \text { or } T_{2} \text { or } \cdots \text { or } T_{\text {numterms }}
\]

For each \(i=1, \ldots\) numterms the \(i\)-th clause (term) \(T_{i}\) has the form a sequence of affine expressions belongs to a product of domains, where the number of domains is termsizelist \([i]\) and the number of affine expressions is equal to the sum of dimensions of all domains appearing in \(T_{i}\).

All the domains and all the affine expressions appearing in the above description are arranged sequentially in the lists domidxlist and afeidxlist, respectively. In particular, the length of domidxlist must be equal to the sum of elements of termsizelist, and the length of afeidxlist must be equal to the sum of dimensions of all the domains appearing in domidxlist.
The elements of domidxlist are indexes of domains previously defined with one of the append.. .domain functions.
The elements of afeidxlist are indexes to the store of affine expressions, i.e. the \(k\)-th affine expression appearing in the disjunctive constraint is going to be
\[
F_{\text {afeidxlist }[k],:} x+g_{\text {afeidxlist }[k]}
\]

If an optional vector b of the same length as afeidxlist is specified then the \(k\)-th affine expression appearing in the disjunctive constraint will be taken as
\[
F_{\text {afeidxlist }[k],:} x+g_{\text {afeidxlist }[k]}-b_{k}
\]

\section*{Parameters}
- djcidx (i64) - Index of the disjunctive constraint. (input)
- domidxlist (i64[]) - List of domain indexes. (input)
- afeidxlist (i64[]) - List of affine expression indexes. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. (input)
- termsizelist (i64[]) - List of term sizes. (input)

\section*{Groups}

Problem data - disjunctive constraints
Task.put_djc_name
```

pub fn Task::put_djc_name
(\&mut self,
djcidx : i64,
name : \&str) -> Result<(),String>

```

Sets the name of a disjunctive constraint.

\section*{Parameters}
- djcidx (i64) - Index of the disjunctive constraint. (input)
- name (\&str) - The name of the disjunctive constraint. (input)

\section*{Groups}

Names, Problem data - disjunctive constraints
Task.put_djc_slice
```

pub fn Task::put_djc_slice
(\&mut self,
idxfirst : i64,
idxlast : i64,
domidxlist : \&[i64],
afeidxlist : \&[i64],
b : \&[f64],
termsizelist : \&[i64],
termsindjc : \&[i64]) -> Result<(),String>

```

Inputs a slice of disjunctive constraints.
The array termsindjc should have length idxlast - idxfirst and contain the number of terms in consecutive constraints forming the slice.

The rest of the input consists of concatenated descriptions of individual constraints, where each constraint is described as in Task.put_djc.

\section*{Parameters}
- idxfirst (i64) - Index of the first disjunctive constraint in the slice. (input)
- idxlast (i64) - Index of the last disjunctive constraint in the slice plus 1. (input)
- domidxlist (i64[]) - List of domain indexes. (input)
- afeidxlist (i64[]) - List of affine expression indexes. (input)
- b (f64[]) - The vector of constant terms modifying affine expressions. Optional, pass an empty slice if not required. (input)
- termsizelist (i64[]) - List of term sizes. (input)
- termsindjc (i64[]) - Number of terms in each of the disjunctive constraints in the slice. (input)

\section*{Groups}

Problem data - disjunctive constraints
Task.put_domain_name
```

pub fn Task::put_domain_name
(\&mut self,
domidx : i64,
name : \&str) -> Result<(),String>

```

Sets the name of a domain.

\section*{Parameters}
- domidx (i64) - Index of the domain. (input)
- name (\&str) - The name of the domain. (input)

Groups
Names, Problem data - domain
Task.put_dou_param
```

pub fn Task::put_dou_param
(\&mut self,
param : i32,
parvalue : f64) -> Result<(),String>

```

Sets the value of a double parameter.

\section*{Parameters}
- param (Dparam) - Which parameter. (input)
- parvalue (f64) - Parameter value. (input)

\section*{Groups}

Parameters
Task.put_int_param
```

pub fn Task::put_int_param
(\&mut self,
param : i32,
parvalue : i32) -> Result<(),String>

```

Sets the value of an integer parameter.

\section*{Parameters}
- param (Iparam) - Which parameter. (input)
- parvalue (i32) - Parameter value. (input)

Groups
Parameters

Task.put_max_num_a_nz
```

pub fn Task::put_max_num_a_nz
(\&mut self,
maxnumanz : i64) -> Result<(),String>

```

Sets the number of preallocated non-zero entries in \(A\).
MOSEK stores only the non-zero elements in the linear coefficient matrix \(A\) and it cannot predict how much storage is required to store \(A\). Using this function it is possible to specify the number of non-zeros to preallocate for storing \(A\).
If the number of non-zeros in the problem is known, it is a good idea to set maxnumanz slightly larger than this number, otherwise a rough estimate can be used. In general, if \(A\) is inputted in many small chunks, setting this value may speed up the data input phase.
It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever it is necessary.

The function call has no effect if both maxnumcon and maxnumvar are zero.

\section*{Parameters}
maxnumanz (i64) - Number of preallocated non-zeros in \(A\). (input)

\section*{Groups}

Environment and task management, Problem data - linear part

Task.put_max_num_acc
```

pub fn Task::put_max_num_acc
(\&mut self,
maxnumacc : i64) -> Result<(),String>

```

Sets the number of preallocated affine conic constraints in the optimization task. When this number is reached MOSEK will automatically allocate more space. It is never mandatory to call this function, since MOSEK will reallocate any internal structures whenever it is required.

\section*{Parameters}
maxnumacc (i64) - Number of preallocated affine conic constraints. (input)

\section*{Groups}

Environment and task management, Problem data - affine conic constraints
Task.put_max_num_afe
```

pub fn Task::put_max_num_afe
(\&mut self,
maxnumafe : i64) -> Result<(),String>

```

Sets the number of preallocated affine expressions in the optimization task. When this number is reached MOSEK will automatically allocate more space for affine expressions. It is never mandatory to call this function, since MOSEK will reallocate any internal structures whenever it is required.

\section*{Parameters}
maxnumafe (i64) - Number of preallocated affine expressions. (input)

\section*{Groups}

Environment and task management, Problem data - affine expressions
Task.put_max_num_barvar
```

pub fn Task::put_max_num_barvar
(\&mut self,
maxnumbarvar : i32) -> Result<(),String>

```

Sets the number of preallocated symmetric matrix variables in the optimization task. When this number of variables is reached MOSEK will automatically allocate more space for variables.
It is not mandatory to call this function. It only gives a hint about the amount of data to preallocate for efficiency reasons.

Please note that maxnumbarvar must be larger than the current number of symmetric matrix variables in the task.

\section*{Parameters}
maxnumbarvar (i32) - Number of preallocated symmetric matrix variables. (input)

\section*{Groups}

Environment and task management, Problem data - semidefinite
Task.put_max_num_con
```

pub fn Task::put_max_num_con
(\&mut self,
maxnumcon : i32) -> Result<(),String>

```

Sets the number of preallocated constraints in the optimization task. When this number of constraints is reached MOSEK will automatically allocate more space for constraints.
It is never mandatory to call this function, since MOSEK will reallocate any internal structures whenever it is required.
Please note that maxnumcon must be larger than the current number of constraints in the task.

\section*{Parameters}
maxnumcon (i32) - Number of preallocated constraints in the optimization task. (input)

\section*{Groups}

Environment and task management, Problem data - constraints

\section*{Task.put_max_num_cone Deprecated}
```

pub fn Task::put_max_num_cone
(\&mut self,
maxnumcone : i32) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.
Sets the number of preallocated conic constraints in the optimization task. When this number of conic constraints is reached MOSEK will automatically allocate more space for conic constraints.
It is not mandatory to call this function, since MOSEK will reallocate any internal structures whenever it is required.
Please note that maxnumcon must be larger than the current number of conic constraints in the task.

\section*{Parameters}
maxnumcone (i32) - Number of preallocated conic constraints in the optimization task. (input)

\section*{Groups}

Environment and task management, Problem data - cones (deprecated)
Task.put_max_num_djc
```

pub fn Task::put_max_num_djc
(\&mut self,
maxnumdjc : i64) -> Result<(),String>

```

Sets the number of preallocated disjunctive constraints in the optimization task. When this number is reached MOSEK will automatically allocate more space. It is never mandatory to call this function, since MOSEK will reallocate any internal structures whenever it is required.

\section*{Parameters}
maxnumdjc (i64) - Number of preallocated disjunctive constraints in the task. (input)

\section*{Groups}

Environment and task management, Problem data - disjunctive constraints
Task.put_max_num_domain
```

pub fn Task::put_max_num_domain
(\&mut self,
maxnumdomain : i64) -> Result<(),String>

```

Sets the number of preallocated domains in the optimization task. When this number is reached MOSEK will automatically allocate more space. It is never mandatory to call this function, since MOSEK will reallocate any internal structures whenever it is required.

\section*{Parameters}
maxnumdomain (i64) - Number of preallocated domains. (input)
Groups
Environment and task management, Problem data - domain
Task.put_max_num_q_nz
```

pub fn Task::put_max_num_q_nz
(\&mut self,
maxnumqnz : i64) -> Result<(),String>

```

Sets the number of preallocated non-zero entries in quadratic terms.
MOSEK stores only the non-zero elements in \(Q\). Therefore, MOSEK cannot predict how much storage is required to store \(Q\). Using this function it is possible to specify the number non-zeros to preallocate for storing \(Q\) (both objective and constraints).

It may be advantageous to reserve more non-zeros for \(Q\) than actually needed since it may improve the internal efficiency of MOSEK, however, it is never worthwhile to specify more than the double of the anticipated number of non-zeros in \(Q\).
It is not mandatory to call this function, since MOSEK will reallocate internal structures whenever it is necessary.

\section*{Parameters}
maxnumqnz (i64) - Number of non-zero elements preallocated in quadratic coefficient matrices. (input)

\section*{Groups}

Environment and task management, Problem data - quadratic part
Task.put_max_num_var
```

pub fn Task::put_max_num_var
(\&mut self,
maxnumvar : i32) -> Result<(),String>

```

Sets the number of preallocated variables in the optimization task. When this number of variables is reached MOSEK will automatically allocate more space for variables.
It is not mandatory to call this function. It only gives a hint about the amount of data to preallocate for efficiency reasons.
Please note that maxnumvar must be larger than the current number of variables in the task.

\section*{Parameters}
maxnumvar (i32) - Number of preallocated variables in the optimization task. (input)
Groups
Environment and task management, Problem data - variables
Task.put_na_dou_param
```

pub fn Task::put_na_dou_param
(\&mut self,
paramname : \&str,
parvalue : f64) -> Result<(),String>

```

Sets the value of a named double parameter.

\section*{Parameters}
- paramname (\&str) - Name of a parameter. (input)
- parvalue (f64) - Parameter value. (input)

\section*{Groups}

Parameters
Task.put_na_int_param
```

pub fn Task::put_na_int_param
(\&mut self,
paramname : \&str,
parvalue : i32) -> Result<(),String>

```

Sets the value of a named integer parameter.

\section*{Parameters}
- paramname (\&str) - Name of a parameter. (input)
- parvalue (i32) - Parameter value. (input)

\section*{Groups}

Parameters
Task.put_na_str_param
```

pub fn Task::put_na_str_param
(\&mut self,
paramname : \&str,
parvalue : \&str) -> Result<(),String>

```

Sets the value of a named string parameter.

\section*{Parameters}
- paramname (\&str) - Name of a parameter. (input)
- parvalue (\&str) - Parameter value. (input)

\section*{Groups}

Parameters
Task.put_obj_name
```

pub fn Task::put_obj_name
(\&mut self,
objname : \&str) -> Result<(),String>

```

Assigns a new name to the objective.

\section*{Parameters}
objname (\&str) - Name of the objective. (input)

\section*{Groups}

Task.put_obj_sense
```

pub fn Task::put_obj_sense
(\&mut self,
sense : i32) -> Result<(),String>

```

Sets the objective sense of the task.

\section*{Parameters}
sense (Objsense) - The objective sense of the task. The values Objsense:: MAXIMIZE and Objsense::MINIMIZE mean that the problem is maximized or minimized respectively. (input)

\section*{Groups}

Problem data - linear part, Problem data - objective
Task.put_optserver_host
```

pub fn Task::put_optserver_host
(\&mut self,
host : \&str) -> Result<(),String>

```

Specify an OptServer URL for remote calls. The URL should contain protocol, host and port in the form http://server:port or https://server:port. If the URL is set using this function, all subsequent calls to any MOSEK function that involves synchronous optimization will be sent to the specified OptServer instead of being executed locally. Passing None or empty string deactivates this redirection.
Has the same effect as setting the parameter Sparam: : REMOTE_OPTSERVER_HOST.

\section*{Parameters}
host (\&str) - A URL specifying the optimization server to be used. (input)
Groups
Remote optimization
Task.put_param
```

pub fn Task::put_param
(\&mut self,
parname : \&str,
parvalue : \&str) -> Result<(),String>

```

Checks if parname is valid parameter name. If it is, the parameter is assigned the value specified by parvalue.

\section*{Parameters}
- parname (\&str) - Parameter name. (input)
- parvalue (\&str) - Parameter value. (input)

\section*{Groups}

Parameters
Task.put_q_con
```

pub fn Task::put_q_con
(\&mut self,
qcsubk : \&[i32],
qcsubi : \&[i32],
qcsubj : \&[i32],
qcval : \&[f64]) -> Result<(),String>

```

Replace all quadratic entries in the constraints. The list of constraints has the form
\[
l_{k}^{c} \leq \frac{1}{2} \sum_{i=0}^{\text {numvar-1 }} \sum_{j=0}^{\text {numvar- }} q_{i j}^{k} x_{i} x_{j}+\sum_{j=0}^{\text {numvar }-1} a_{k j} x_{j} \leq u_{k}^{c}, \quad k=0, \ldots, m-1
\]

This function sets all the quadratic terms to zero and then performs the update:
\[
q_{\mathrm{qcsubi}[\mathrm{t}], \mathrm{qcsubj}[\mathrm{t}]}^{\mathrm{qcsubk}[[]}=q_{\mathrm{qcsubj}[\mathrm{t}], \mathrm{qcsubi}[\mathrm{t}]}^{\mathrm{qcsubk}[\mathrm{c}]}=q_{\mathrm{qcsubj}[\mathrm{t}], \mathrm{qcsubi}[\mathrm{t}]}^{\mathrm{qcsubk}[\mathrm{t}]}+\mathrm{qcval}[\mathrm{t}],
\]
for \(t=0, \ldots\), numqcnz -1 .
Please note that:
- For large problems it is essential for the efficiency that the function Task.put_max_num_q_nz is employed to pre-allocate space.
- Only the lower triangular parts should be specified because the \(Q\) matrices are symmetric. Specifying entries where \(i<j\) will result in an error.
- Only non-zero elements should be specified.
- The order in which the non-zero elements are specified is insignificant.
- Duplicate elements are added together as shown above. Hence, it is usually not recommended to specify the same entry multiple times.

For a code example see Section Quadratic Optimization

\section*{Parameters}
- qcsubk (i32[]) - Constraint subscripts for quadratic coefficients. (input)
- qcsubi (i32[]) - Row subscripts for quadratic constraint matrix. (input)
- qcsubj (i32[]) - Column subscripts for quadratic constraint matrix. (input)
- qcval (f64[]) - Quadratic constraint coefficient values. (input)

\section*{Groups}

Problem data - quadratic part
Task.put_q_con_k
```

pub fn Task::put_q_con_k
(\&mut self,
k : i32,
qcsubi : \&[i32],
qcsubj : \&[i32],
qcval : \&[f64]) -> Result<(),String>

```

Replaces all the quadratic entries in one constraint. This function performs the same operations as Task.put_q_ con but only with respect to constraint number k and it does not modify the other constraints. See the description of Task.put_q_ con for definitions and important remarks.

\section*{Parameters}
- k (i32) - The constraint in which the new \(Q\) elements are inserted. (input)
- qcsubi (i32[]) - Row subscripts for quadratic constraint matrix. (input)
- qcsubj (i32[]) - Column subscripts for quadratic constraint matrix. (input)
- qcval (f64[]) - Quadratic constraint coefficient values. (input)

\section*{Groups}

Problem data - quadratic part
Task.put_q_obj
```

pub fn Task::put_q_obj
(\&mut self,
qosubi : \&[i32],
qosubj : \&[i32],
qoval : \&[f64]) -> Result<(),String>

```

Replace all quadratic terms in the objective. If the objective has the form
\[
\frac{1}{2} \sum_{i=0}^{\text {numvar }-1} \sum_{j=0}^{\text {numvar }-1} q_{i j}^{o} x_{i} x_{j}+\sum_{j=0}^{\text {numvar }-1} c_{j} x_{j}+c^{f}
\]
then this function sets all the quadratic terms to zero and then performs the update:
\[
q_{\text {qosubi }[\mathrm{t}], \text { qosubj }[\mathrm{t}]}^{o}=q_{\mathrm{qosubj}[\mathrm{t}], \text { qosubi }[\mathrm{t}]}^{o}=q_{\text {qosubj }[\mathrm{t}], \text { qosubi }[\mathrm{t}]}^{o}+\text { qoval }[\mathrm{t}],
\]
for \(t=0, \ldots\), numqonz -1 .
See the description of Task.put_q_con for important remarks and example.

\section*{Parameters}
- qosubi (i32[]) - Row subscripts for quadratic objective coefficients. (input)
- qosubj (i32[]) - Column subscripts for quadratic objective coefficients. (input)
- qoval (f64[]) - Quadratic objective coefficient values. (input)

\section*{Groups}

Problem data - quadratic part, Problem data - objective
Task.put_q_obj_i_j
```

pub fn Task::put_q_obj_i_j
(\&mut self,
i : i32,
j : i32,
qoij : f64) -> Result<(),String>

```

Replaces one coefficient in the quadratic term in the objective. The function performs the assignment
\[
q_{i j}^{o}=q_{j i}^{o}=\text { qoij. }
\]

Only the elements in the lower triangular part are accepted. Setting \(q_{i j}\) with \(j>i\) will cause an error.

Please note that replacing all quadratic elements one by one is more computationally expensive than replacing them all at once. Use Task.put_q_obj instead whenever possible.

\section*{Parameters}
- i (i32) - Row index for the coefficient to be replaced. (input)
- \(\mathbf{j}\) (i32) - Column index for the coefficient to be replaced. (input)
- qoij (f64) - The new value for \(q_{i j}^{o}\). (input)

Groups
Problem data - quadratic part, Problem data - objective
Task.put_skc
```

pub fn Task::put_skc
(\&mut self,
whichsol : i32,
skc : \&[i32]) -> Result<(),String>

```

Sets the status keys for the constraints.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- skc (Stakey []) - Status keys for the constraints. (input)

\section*{Groups} Solution information

Task.put_skc_slice
```

pub fn Task::put_skc_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
skc : \&[i32]) -> Result<(),String>

```

Sets the status keys for a slice of the constraints.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- skc (Stakey []) - Status keys for the constraints. (input)

Groups Solution information

Task.put_skx
```

pub fn Task::put_skx
(\&mut self,
whichsol : i32,
skx : \&[i32]) -> Result<(),String>

```

Sets the status keys for the scalar variables.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- skx (Stakey []) - Status keys for the variables. (input)

\section*{Groups}

Solution information
Task.put_skx_slice
```

pub fn Task::put_skx_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
skx : \&[i32]) -> Result<(),String>

```

Sets the status keys for a slice of the variables.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- skx (Stakey []) - Status keys for the variables. (input)

\section*{Groups}

Solution information
Task.put_slc
```

pub fn Task::put_slc
(\&mut self,
whichsol : i32,
slc : \&[f64]) -> Result<(),String>

```

Sets the \(s_{l}^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- slc (f64[]) - Dual variables corresponding to the lower bounds on the constraints. (input)

\section*{Groups}

Solution - dual
Task.put_slc_slice
```

pub fn Task::put_slc_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
slc : \&[f64]) -> Result<(),String>

```

Sets a slice of the \(s_{l}^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- slc (f64[]) - Dual variables corresponding to the lower bounds on the constraints. (input)
Groups
Solution - dual
Task.put_slx
```

pub fn Task::put_slx
(\&mut self,
whichsol : i32,
slx : \&[f64]) -> Result<(),String>

```

Sets the \(s_{l}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- \(\operatorname{slx}(\mathrm{f} 64[\mathrm{]})\) - Dual variables corresponding to the lower bounds on the variables. (input)

\section*{Groups}

Solution - dual
Task.put_slx_slice
```

pub fn Task::put_slx_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
slx : \&[f64]) -> Result<(),String>

```

Sets a slice of the \(s_{l}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- \(\operatorname{slx}(\mathrm{f} 64[])\) - Dual variables corresponding to the lower bounds on the variables. (input)

\section*{Groups}

Solution - dual
Task.put_snx
```

pub fn Task::put_snx
(\&mut self,
whichsol : i32,
sux : \&[f64]) -> Result<(),String>

```

Sets the \(s_{n}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (input)
Groups
Solution - dual
Task.put_snx_slice
```

pub fn Task::put_snx_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
snx : \&[f64]) -> Result<(),String>

```

Sets a slice of the \(s_{n}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- \(\operatorname{snx}(\mathrm{f} 64[])\) - Dual variables corresponding to the conic constraints on the variables. (input)

\section*{Groups}

Solution - dual
Task.put_solution
```

pub fn Task::put_solution
(\&mut self,
whichsol : i32,
skc : \&[i32],
skx : \&[i32],
skn : \&[i32],
xc : \&[f64],
xx : \&[f64],
y : \&[f64],
slc : \&[f64],
suc : \&[f64],
slx : \&[f64],
sux : \&[f64],
snx : \&[f64]) -> Result<(),String>

```

Inserts a solution into the task.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- skc (Stakey []) - Status keys for the constraints. (input)
- skx (Stakey []) - Status keys for the variables. (input)
- skn (Stakey []) - Status keys for the conic constraints. (input)
- xc (f64[]) - Primal constraint solution. (input)
- \(x x(f 64[])\) - Primal variable solution. (input)
- y (f64[]) - Vector of dual variables corresponding to the constraints. (input)
- slc (f64[]) - Dual variables corresponding to the lower bounds on the constraints. (input)
- suc (f64[]) - Dual variables corresponding to the upper bounds on the constraints. (input)
- \(\operatorname{slx}(\mathrm{f} 64[])\) - Dual variables corresponding to the lower bounds on the variables. (input)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (input)
- \(\operatorname{snx}(\mathrm{f} 64[])\) - Dual variables corresponding to the conic constraints on the variables. (input)

\section*{Groups}

Solution information, Solution - primal, Solution - dual
Task.put_solution_new
```

pub fn Task::put_solution_new
(\&mut self,
whichsol : i32,
skc : \&[i32],
skx : \&[i32],
skn : \&[i32],
xc : \&[f64],
xx : \&[f64],
y : \& [f64],
slc : \&[f64],
suc : \&[f64],
slx : \&[f64],
sux : \&[f64],
snx : \&[f64],
doty : \&[f64]) -> Result<(),String>

```

Inserts a solution into the task.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- skc (Stakey []) - Status keys for the constraints. (input)
- skx (Stakey []) - Status keys for the variables. (input)
- skn (Stakey []) - Status keys for the conic constraints. (input)
- \(x c(f 64[])\) - Primal constraint solution. (input)
- \(x x(f 64[])\) - Primal variable solution. (input)
- y (f64[]) - Vector of dual variables corresponding to the constraints. (input)
- slc (f64[]) - Dual variables corresponding to the lower bounds on the constraints. (input)
- suc (f64[]) - Dual variables corresponding to the upper bounds on the constraints. (input)
- \(\operatorname{slx}(\mathrm{f} 64[])\) - Dual variables corresponding to the lower bounds on the variables. (input)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (input)
- \(\operatorname{snx}(\mathrm{f} 64[])\) - Dual variables corresponding to the conic constraints on the variables. (input)
- doty (f64[]) - Dual variables corresponding to affine conic constraints. (input)

\section*{Groups}

Solution information, Solution - primal, Solution - dual
Task.put_solution_y_i
```

pub fn Task::put_solution_y_i
(\&mut self,
i : i32,
whichsol : i32,
y : f64) -> Result<(),String>

```

Inputs the dual variable of a solution.

\section*{Parameters}
- i (i32) - Index of the dual variable. (input)
- whichsol (Soltype) - Selects a solution. (input)
- y (f64) - Solution value of the dual variable. (input)

\section*{Groups}

Solution information, Solution - dual
Task.put_str_param
```

pub fn Task::put_str_param
(\&mut self,
param : i32,
parvalue : \&str) -> Result<(),String>

```

Sets the value of a string parameter.

\section*{Parameters}
- param (Sparam) - Which parameter. (input)
- parvalue (\&str) - Parameter value. (input)

\section*{Groups}

Parameters
Task.put_stream_callback
```

pub fn TaskCB::put_stream_callback<F>
(\&mut self,
whichstream : i32,
func : F) -> Result<(),String>
where F : 'static+Fn(\&str)

```

Directs all output from a task stream to a stream callback function. The function should accept a string.
Can for example be called as:
```

task.put_stream_callback(Streamtype::LOG, my_stream)?;

```

\section*{Parameters}
- whichstream (Streamtype) - Index of the stream. (input)
- func (function) - The stream handler function. (input)

Task.put_suc
```

pub fn Task::put_suc
(\&mut self,
whichsol : i32,
suc : \&[f64]) -> Result<(),String>

```

Sets the \(s_{u}^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- suc (f64[]) - Dual variables corresponding to the upper bounds on the constraints. (input)

\section*{Groups}

Solution - dual
Task.put_suc_slice
```

pub fn Task::put_suc_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
suc : \&[f64]) -> Result<(),String>

```

Sets a slice of the \(s_{u}^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- suc (f64[]) - Dual variables corresponding to the upper bounds on the constraints. (input)

\section*{Groups}

Solution - dual
Task.put_sux
```

pub fn Task::put_sux
(\&mut self,
whichsol : i32,
sux : \&[f64]) -> Result<(),String>

```

Sets the \(s_{u}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (input)

\section*{Groups}

Solution - dual
Task.put_sux_slice
```

pub fn Task::put_sux_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
sux : \&[f64]) -> Result<(),String>

```

Sets a slice of the \(s_{u}^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- sux (f64[]) - Dual variables corresponding to the upper bounds on the variables. (input)

\section*{Groups}

Solution - dual
Task.put_task_name
```

pub fn Task::put_task_name
(\&mut self,
taskname : \&str) -> Result<(),String>

```

Assigns a new name to the task.

\section*{Parameters}
taskname (\&str) - Name assigned to the task. (input)

\section*{Groups}

Names, Environment and task management
Task.put_var_bound
```

pub fn Task::put_var_bound
(\&mut self,
j : i32,
bkx : i32,
blx : f64,
bux : f64) -> Result<(),String>

```

Changes the bounds for one variable.
If the bound value specified is numerically larger than Dparam::DATA_TOL_BOUND_INF it is considered infinite and the bound key is changed accordingly. If a bound value is numerically larger than Dparam: :DATA_TOL_BOUND_WRN, a warning will be displayed, but the bound is inputted as specified.

\section*{Parameters}
- \(j\) (i32) - Index of the variable. (input)
- bkx (Boundkey) - New bound key. (input)
- blx (f64) - New lower bound. (input)
- bux (f64) - New upper bound. (input)

\section*{Groups}

Problem data - linear part, Problem data - variables, Problem data - bounds
Task.put_var_bound_list
```

pub fn Task::put_var_bound_list
(\&mut self,
sub : \&[i32],
bkx : \&[i32],
blx : \&[f64],
bux : \&[f64]) -> Result<(),String>

```

Changes the bounds for one or more variables. If multiple bound changes are specified for a variable, then only the last change takes effect. Data checks are performed as in Task.put_var_bound.

\section*{Parameters}
- sub (i32[]) - List of variable indexes. (input)
- bkx (Boundkey []) - Bound keys for the variables. (input)
- blx (f64[]) - Lower bounds for the variables. (input)
- bux (f64[]) - Upper bounds for the variables. (input)

\section*{Groups}

Problem data - linear part, Problem data - variables, Problem data - bounds
Task.put_var_bound_list_const
```

pub fn Task::put_var_bound_list_const
(\&mut self,
sub : \&[i32],
bkx : i32,
blx : f64,
bux : f64) -> Result<(),String>

```

Changes the bounds for one or more variables. Data checks are performed as in Task. put_var_bound.

\section*{Parameters}
- sub (i32[]) - List of variable indexes. (input)
- bkx (Boundkey) - New bound key for all variables in the list. (input)
- \(\mathrm{blx}(\mathrm{f} 64)\) - New lower bound for all variables in the list. (input)
- bux (f64) - New upper bound for all variables in the list. (input)

\section*{Groups}

Problem data - linear part, Problem data - variables, Problem data - bounds
Task.put_var_bound_slice
```

pub fn Task::put_var_bound_slice
(\&mut self,
first : i32,
last : i32,
bkx : \&[i32],
blx : \&[f64],
bux : \&[f64]) -> Result<(),String>

```

Changes the bounds for a slice of the variables. Data checks are performed as in Task. put_var_bound.

\section*{Parameters}
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- bkx (Boundkey []) - Bound keys for the variables. (input)
- blx (f64[]) - Lower bounds for the variables. (input)
- bux (f64[]) - Upper bounds for the variables. (input)

\section*{Groups}

Problem data - linear part, Problem data - variables, Problem data - bounds
Task.put_var_bound_slice_const
```

pub fn Task::put_var_bound_slice_const
(\&mut self,
first : i32,
last : i32,
bkx : i32,
blx : f64,
bux : f64) -> Result<(),String>

```

Changes the bounds for a slice of the variables. Data checks are performed as in Task. put_var_bound.

\section*{Parameters}
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- bkx (Boundkey) - New bound key for all variables in the slice. (input)
- blx (f64) - New lower bound for all variables in the slice. (input)
- bux (f64) - New upper bound for all variables in the slice. (input)

\section*{Groups}

Problem data - linear part, Problem data - variables, Problem data - bounds
Task.put_var_name
```

pub fn Task::put_var_name
(\&mut self,
j : i32,
name : \&str) -> Result<(),String>

```

Sets the name of a variable.

\section*{Parameters}
- \(j\) (i32) - Index of the variable. (input)
- name (\&str) - The variable name. (input)

\section*{Groups}

Names, Problem data - variables, Problem data - linear part
Task.put_var_solution_j
```

pub fn Task::put_var_solution_j
(\&mut self,
j : i32,
whichsol : i32,
sk : i32,
x : f64,
sl : f64,
su : f64,
sn : f64) -> Result<(),String>

```

Sets the primal and dual solution information for a single variable.

\section*{Parameters}
- \(j\) (i32) - Index of the variable. (input)
- whichsol (Soltype) - Selects a solution. (input)
- sk (Stakey) - Status key of the variable. (input)
- \(x\) (f64) - Primal solution value of the variable. (input)
- sl (f64) - Solution value of the dual variable associated with the lower bound. (input)
- su (f64) - Solution value of the dual variable associated with the upper bound. (input)
- \(\operatorname{sn}(\mathrm{f} 64)\) - Solution value of the dual variable associated with the conic constraint. (input)

\section*{Groups}

Solution information, Solution - primal, Solution - dual
Task.put_var_type
```

pub fn Task::put_var_type
(\&mut self,
j : i32,
vartype : i32) -> Result<(),String>

```

Sets the variable type of one variable.

\section*{Parameters}
- \(j\) (i32) - Index of the variable. (input)
- vartype (Variabletype) - The new variable type. (input)

\section*{Groups}

Problem data - variables
Task.put_var_type_list
```

pub fn Task::put_var_type_list
(\&mut self,
subj : \&[i32],
vartype : \&[i32]) -> Result<(),String>

```

Sets the variable type for one or more variables. If the same index is specified multiple times in subj only the last entry takes effect.

\section*{Parameters}
- \(\operatorname{subj}(i 32[])\) - A list of variable indexes for which the variable type should be changed. (input)
- vartype (Variabletype []) - A list of variable types that should be assigned to the variables specified by subj. (input)

\section*{Groups}

Problem data - variables
Task.put_xc
```

pub fn Task::put_xc
(\&mut self,
whichsol : i32,
xc : \&mut[f64]) -> Result<(),String>

```

Sets the \(x^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- xc (f64[]) - Primal constraint solution. (output)

\section*{Groups}

Solution - primal
Task.put_xc_slice
```

pub fn Task::put_xc_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
xc : \&[f64]) -> Result<(),String>

```

Sets a slice of the \(x^{c}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- xc (f64[]) - Primal constraint solution. (input)

\section*{Groups}

Solution - primal
Task.put_xx
```

pub fn Task::put_xx
(\&mut self,
whichsol : i32,
xx : \&[f64]) -> Result<(),String>

```

Sets the \(x^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- \(x x\) (f64[]) - Primal variable solution. (input)

\section*{Groups}

Solution - primal
Task.put_xx_slice
```

pub fn Task::put_xx_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
xx : \&[f64]) -> Result<(),String>

```

Sets a slice of the \(x^{x}\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- \(x x\) (f64[]) - Primal variable solution. (input)

\section*{Groups}

Solution - primal
Task.put_y
```

pub fn Task::put_y
(\&mut self,
whichsol : i32,
y : \&[f64]) -> Result<(),String>

```

Sets the \(y\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- y (f64[]) - Vector of dual variables corresponding to the constraints. (input)

\section*{Groups}

Solution - primal
Task.put_y_slice
```

pub fn Task::put_y_slice
(\&mut self,
whichsol : i32,
first : i32,
last : i32,
y : \&[f64]) -> Result<(),String>

```

Sets a slice of the \(y\) vector for a solution.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- first (i32) - First index in the sequence. (input)
- last (i32) - Last index plus 1 in the sequence. (input)
- y (f64[]) - Vector of dual variables corresponding to the constraints. (input)

Groups
Solution - dual
Task.read_b_solution
```

pub fn Task::read_b_solution
(\&self,
filename : \&str,
compress : i32) -> Result<(),String>

```

Read a binary dump of the task solution.

\section*{Parameters}
- filename (\&str) - A valid file name. (input)
- compress (Compresstype) - Data compression type. (input)

\section*{Groups}
Input/Output

Task.read_data
```

pub fn Task::read_data
(\&mut self,
filename : \&str) -> Result<(),String>

```

Reads an optimization problem and associated data from a file.

\section*{Parameters}
filename (\&str) - A valid file name. (input)
Groups
Input/Output
Task.read_data_format
```

pub fn Task::read_data_format
(\&mut self,
filename : \&str,
format : i32,
compress : i32) -> Result<(),String>

```

Reads an optimization problem and associated data from a file.

\section*{Parameters}
- filename (\&str) - A valid file name. (input)
- format (Dataformat) - File data format. (input)
- compress (Compresstype) - File compression type. (input)

\section*{Groups}

\section*{Input/Output}

Task.read_json_sol
```

pub fn Task::read_json_sol
(\&mut self,
filename : \&str) -> Result<(),String>

```

Reads a solution file in JSON format (JSOL file) and inserts it in the task. Only the section Task/solutions is taken into consideration.

\section*{Parameters}
filename (\&str) - A valid file name. (input)
Groups
Input/Output

Task.read_json_string
```

pub fn Task::read_json_string
(\&mut self,
data : \&str) -> Result<(),String>

```

Load task data from a JSON string, replacing any data that already exists in the task object. All problem data, parameters and other settings are resorted, but if the string contains solutions, the solution status after loading a file is set to unknown, even if it is optimal or otherwise well-defined.

\section*{Parameters}
data (\&str) - Problem data in text format. (input)

\section*{Groups}
Input/Output

Task.read_lp_string
```

pub fn Task::read_lp_string
(\&mut self,
data : \&str) -> Result<(),String>

```

Load task data from a string in LP format, replacing any data that already exists in the task object.

\section*{Parameters}
data (\&str) - Problem data in text format. (input)
Groups
Input/Output
Task.read_opf_string
```

pub fn Task::read_opf_string
(\&mut self,
data : \&str) -> Result<(),String>

```

Load task data from a string in OPF format, replacing any data that already exists in the task object.

\section*{Parameters}
data (\&str) - Problem data in text format. (input)
Groups
Input/Output
```

pub fn Task::read_param_file
(\&mut self,
filename : \&str) -> Result<(),String>

```

Reads MOSEK parameters from a file. Data is read from the file filename if it is a nonempty string. Otherwise data is read from the file specified by Sparam: :PARAM_READ-FILE_NAME.

\section*{Parameters}
filename (\&str) - A valid file name. (input)

\section*{Groups}

Input/Output, Parameters
Task.read_ptf_string
```

pub fn Task::read_ptf_string
(\&mut self,
data : \&str) -> Result<(),String>

```

Load task data from a PTF string, replacing any data that already exists in the task object. All problem data, parameters and other settings are resorted, but if the string contains solutions, the solution status after loading a file is set to unknown, even if it is optimal or otherwise well-defined.
```

Parameters
data (\&str) - Problem data in text format. (input)
Groups
Input/Output

```

Task.read_solution
```

pub fn Task::read_solution
(\&mut self,
whichsol : i32,
filename : \&str) -> Result<(),String>

```

Reads a solution file and inserts it as a specified solution in the task. Data is read from the file filename if it is a nonempty string. Otherwise data is read from one of the files specified by Sparam: :BAS_SOL_FILE_NAME, Sparam: :ITR_SOL_FILE_NAME or Sparam: :INT_SOL_FILE_NAME depending on which solution is chosen.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- filename (\&str) - A valid file name. (input)

\section*{Groups}

Input/Output
Task.read_solution_file
```

pub fn Task::read_solution_file
(\&self,
filename : \&str) -> Result<(),String>

```

Read solution file in format determined by the filename

\section*{Parameters}
filename (\&str) - A valid file name. (input)
Groups Input/Output
```

pub fn Task::read_summary
(\&mut self,
whichstream : i32) -> Result<(),String>

```

Prints a short summary of last file that was read.

\section*{Parameters}
whichstream (Streamtype) - Index of the stream. (input)
Groups
Input/Output, Inspecting the task
Task.read_task
```

pub fn Task::read_task
(\&mut self,
filename : \&str) -> Result<(),String>

```

Load task data from a file, replacing any data that already exists in the task object. All problem data, parameters and other settings are resorted, but if the file contains solutions, the solution status after loading a file is set to unknown, even if it was optimal or otherwise well-defined when the file was dumped.
See section The Task Format for a description of the Task format.

\section*{Parameters}
filename (\&str) - A valid file name. (input)

\section*{Groups}

> Input/Output

Task.remove_barvars
```

pub fn Task::remove_barvars
(\&mut self,
subset : \&[i32]) -> Result<(),String>

```

The function removes a subset of the symmetric matrices from the optimization task. This implies that the remaining symmetric matrices are renumbered.

\section*{Parameters}
subset (i32[]) - Indexes of symmetric matrices which should be removed. (input)

\section*{Groups}

Problem data - semidefinite
Task.remove_cones Deprecated
```

pub fn Task::remove_cones
(\&mut self,
subset : \&[i32]) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.
Removes a number of conic constraints from the problem. This implies that the remaining conic constraints are renumbered. In general, it is much more efficient to remove a cone with a high index than a low index.

\section*{Parameters}
subset (i32[]) - Indexes of cones which should be removed. (input)

\section*{Groups}

Problem data - cones (deprecated)
```

pub fn Task::remove_cons
(\&mut self,
subset : \&[i32]) -> Result<(),String>

```

The function removes a subset of the constraints from the optimization task. This implies that the remaining constraints are renumbered

\section*{Parameters}
subset (i32[]) - Indexes of constraints which should be removed. (input)

\section*{Groups}

Problem data - constraints, Problem data - linear part

Task.remove_vars
```

pub fn Task::remove_vars
(\&mut self,
subset : \&[i32]) -> Result<(),String>

```

The function removes a subset of the variables from the optimization task. This implies that the remaining variables are renumbered.

\section*{Parameters}
subset (i32[]) - Indexes of variables which should be removed. (input)
Groups
Problem data - variables, Problem data - linear part
Task.resize_task
```

pub fn Task::resize_task
(\&mut self,
maxnumcon : i32,
maxnumvar : i32,
maxnumcone : i32,
maxnumanz : i64,
maxnumqnz : i64) -> Result<(),String>

```

Sets the amount of preallocated space assigned for each type of data in an optimization task.
It is never mandatory to call this function, since it only gives a hint about the amount of data to preallocate for efficiency reasons.
Please note that the procedure is destructive in the sense that all existing data stored in the task is destroyed.

\section*{Parameters}
- maxnumcon (i32) - New maximum number of constraints. (input)
- maxnumvar (i32) - New maximum number of variables. (input)
- maxnumcone (i32) - New maximum number of cones. (input)
- maxnumanz (i64) - New maximum number of non-zeros in \(A\). (input)
- maxnumqnz (i64) - New maximum number of non-zeros in all \(Q\) matrices. (input)

\section*{Groups}

Environment and task management
Task.sensitivity_report
```

pub fn Task::sensitivity_report
(\&self,
whichstream : i32) -> Result<(),String>

```

Reads a sensitivity format file from a location given by Sparam: :SENSITIVITY_FILE_NAME and writes the result to the stream whichstream. If Sparam: :SENSITIVITY_RES_FILE_NAME is set to a non-empty string, then the sensitivity report is also written to a file of this name.

\section*{Parameters}
whichstream (Streamtype) - Index of the stream. (input)

\section*{Groups}

Sensitivity analysis
Task.set_defaults
```

pub fn Task::set_defaults(\&mut self) -> Result<(),String>

```

Resets all the parameters to their default values.

\section*{Groups}

\section*{Parameters}

Task.solution_def
```

pub fn Task::solution_def
(\&self,
whichsol : i32) -> Result<bool,String>

```

Checks whether a solution is defined.

\section*{Parameters}
whichsol (Soltype) - Selects a solution. (input)
Return
isdef (bool) - Is non-zero if the requested solution is defined.
Groups
Solution information
Task.solution_summary
```

pub fn Task::solution_summary
(\&self,
whichstream : i32) -> Result<(),String>

```

Prints a short summary of the current solutions.

\section*{Parameters}
whichstream (Streamtype) - Index of the stream. (input)

\section*{Groups}

Logging, Solution information
Task.solve_with_basis
```

pub fn Task::solve_with_basis
(\&mut self,
transp : bool,
numnz : i32,
sub : \&mut[i32],
val : \&mut[f64]) -> Result<i32,String>

```

If a basic solution is available, then exactly numcon basis variables are defined. These numcon basis variables are denoted the basis. Associated with the basis is a basis matrix denoted \(B\). This function solves either the linear equation system
\[
\begin{equation*}
B \bar{X}=b \tag{15.3}
\end{equation*}
\]
or the system
\[
\begin{equation*}
B^{T} \bar{X}=b \tag{15.4}
\end{equation*}
\]
for the unknowns \(\bar{X}\), with \(b\) being a user-defined vector. In order to make sense of the solution \(\bar{X}\) it is important to know the ordering of the variables in the basis because the ordering specifies how \(B\) is constructed. When calling Task.init_basis_solve an ordering of the basis variables is obtained, which can be used to deduce how MOSEK has constructed \(B\). Indeed if the \(k\)-th basis variable is variable \(x_{j}\) it implies that
\[
B_{i, k}=A_{i, j}, i=0, \ldots, \text { numcon }-1 .
\]

Otherwise if the \(k\)-th basis variable is variable \(x_{j}^{c}\) it implies that
\[
B_{i, k}= \begin{cases}-1, & i=j \\ 0, & i \neq j\end{cases}
\]

The function Task.init_basis_solve must be called before a call to this function. Please note that this function exploits the sparsity in the vector \(b\) to speed up the computations.

\section*{Parameters}
- transp (bool) - If this argument is zero, then (15.3) is solved, if non-zero then (15.4) is solved. (input)
- numnz (i32) - The number of non-zeros in \(b\). (input)
- sub (i32[]) - As input it contains the positions of non-zeros in \(b\). As output it contains the positions of the non-zeros in \(\bar{X}\). It must have room for numcon elements. (input/output)
- \(\operatorname{val}(\mathrm{f} 64[])\) - As input it is the vector \(b\) as a dense vector (although the positions of non-zeros are specified in sub it is required that val \([i]=0\) when \(b[i]=0\) ). As output val is the vector \(\bar{X}\) as a dense vector. It must have length numcon. (input/output)

\section*{Return}
numnzout (i32) - The number of non-zeros in \(\bar{X}\).

\section*{Groups}

Solving systems with basis matrix

\section*{Fask.str_to_cone_type Deprecated}
```

pub fn Task::str_to_cone_type
(\&self,
str : \&str,
conetype : \& mut i32) -> Result<(),String>

```

NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 for details.

Obtains cone type code corresponding to a cone type string.

\section*{Parameters}
- str (\&str) - String corresponding to the cone type code conetype. (input)
- conetype (Conetype by reference) - The cone type corresponding to the string str. (output)

\section*{Groups}

Names
Task.str_to_sk
```

pub fn Task::str_to_sk
(\&self,
str : \&str,
sk : \& mut i32) -> Result<(),String>

```

Obtains the status key corresponding to an abbreviation string.

\section*{Parameters}
- str (\&str) - A status key abbreviation string. (input)
- sk (Stakey by reference) - Status key corresponding to the string. (output)

Groups
Names

\section*{Fask.toconic Deprecated}
```

pub fn Task::toconic(\&mut self) -> Result<(),String>

```

This function tries to reformulate a given Quadratically Constrained Quadratic Optimization problem (QCQO) as a Conic Quadratic Optimization problem (CQO). The first step of the reformulation is to convert the quadratic term of the objective function, if any, into a constraint. Then the following steps are repeated for each quadratic constraint:
- a conic constraint is added along with a suitable number of auxiliary variables and constraints;
- the original quadratic constraint is not removed, but all its coefficients are zeroed out.

Note that the reformulation preserves all the original variables.
The conversion is performed in-place, i.e. the task passed as argument is modified on exit. That also means that if the reformulation fails, i.e. the given QCQP is not representable as a CQO, then the task has an undefined state. In some cases, users may want to clone the task to ensure a clean copy is preserved.

\section*{Groups}

Problem data - quadratic part
Task.unlink_func_from_stream
```

pub fn Task::unlink_func_from_stream
(\&mut self,
whichstream : i32) -> Result<(),String>

```

Disconnects a user-defined function from a task stream.

\section*{Parameters}
whichstream (Streamtype) - Index of the stream. (input)

\section*{Groups}

Logging, Callback
Task.update_solution_info
```

pub fn Task::update_solution_info
(\&mut self,
whichsol : i32) -> Result<(),String>

```

Update the information items related to the solution.

\section*{Parameters}
whichsol (Soltype) - Selects a solution. (input)

\section*{Groups}

Information items and statistics
```

pub fn Task::which_param
(\&self,
parname : \&str,
partype : \& mut i32,
param : \&mut i32) -> Result<(),String>

```

Checks if parname is a valid parameter name. If yes then partype and param denote the type and the index of the parameter, respectively.

\section*{Parameters}
- parname (\&str) - Parameter name. (input)
- partype (Parametertype by reference) - Parameter type. (output)
- param (i32 by reference) - Which parameter. (output)

Groups
Parameters, Names
Task.with_callbacks
```

pub fn Task::with_callbacks
(self) -> TaskCB;

```

Converts a task into a task with callbacks. This function must be called to enable attachinf callback functions (log stream and information callbacks) due to the fact, that callbacks cannot be shared between multiple threads.

A task (struct Task) and task with callbacks (struct TaskCB) share the same API, except for the callback, therefore we do not distinguish between them in the API reference.

\section*{Return} newtaskcb (TaskCB) - A task with callbacks.

Task.without_callbacks
```

pub fn TaskCB::without_callbacks
(self) -> Task;

```

Converts a task with callbacks into a task without.

\section*{Return}
newtask (Task) - A task without callbacks.
Task.write_b_solution
```

pub fn Task::write_b_solution
(\&self,
filename : \&str,
compress : i32) -> Result<(),String>

```

Write a binary dump of the task solution.

\section*{Parameters}
- filename (\&str) - A valid file name. (input)
- compress (Compresstype) - Data compression type. (input)

\section*{Groups}

Input/Output
Task.write_data
```

pub fn Task::write_data
(\&self,
filename : \&str) -> Result<(),String>

```

Writes problem data associated with the optimization task to a file in one of the supported formats. See Section Supported File Formats for the complete list.
The data file format is determined by the file name extension. To write in compressed format append the extension .gz. E.g to write a gzip compressed MPS file use the extension mps.gz.
Please note that MPS, LP and OPF files require all variables to have unique names. If a task contains no names, it is possible to write the file with automatically generated anonymous names by setting the Iparam::WRITE_GENERIC_NAMES parameter to Onoffkey::ON.

Data is written to the file filename if it is a nonempty string. Otherwise data is written to the file specified by Sparam: :DATA_FILE_NAME.

\section*{Parameters}
filename (\&str) - A valid file name. (input)

\section*{Groups}
Input/Output

Task.write_data_stream
```

pub fn Task::write_data_stream
(\&mut self,
stream : OutputStream,
format : i32,
compress : i32) -> Result<(),String>

```

Writes problem data associated with the optimization task to a stream in one of the supported formats.

Example:
```

task.write_data_stream(|s| if let Err(_) = io::stdout().write(s) { 0 } else { s.
Glen() },
let mut outf = fs::File::create("outfile.task").unwrap();
task.write_data_stream(|s| if let Err(_) = outf.write(s) { 0 } else { s.len() },
Dataformat::TASK, Compresstype::NONE);

```

\section*{Parameters}
- stream (OutputStream) - The output stream. (input)
- format (mosek. dataformat) - Data format. (input)
- compress (mosek. compresstype) - Selects compression type. (input)

Task.write_json_sol
```

pub fn Task::write_json_sol
(\&self,
filename : \&str) -> Result<(),String>

```

Saves the current solutions and solver information items in a JSON file. If the file name has the extensions .gz or .zst, then the file is gzip or Zstd compressed respectively.

\section*{Parameters}
filename (\&str) - A valid file name. (input)
Groups
Input/Output

Task.write_param_file
```

pub fn Task::write_param_file
(\&self,
filename : \&str) -> Result<(),String>

```

Writes all the parameters to a parameter file.

\section*{Parameters}
filename (\&str) - A valid file name. (input)
Groups
Input/Output, Parameters
Task.write_solution
```

pub fn Task::write_solution
(\&self,
whichsol : i32,
filename : \&str) -> Result<(),String>

```

Saves the current basic, interior-point, or integer solution to a file.

\section*{Parameters}
- whichsol (Soltype) - Selects a solution. (input)
- filename (\&str) - A valid file name. (input)

\section*{Groups}

Input/Output
Task.write_solution_file
```

pub fn Task::write_solution_file
(\&self,
filename : \&str) -> Result<(),String>

```

Write solution file in format determined by the filename

\section*{Parameters}
filename (\&str) - A valid file name. (input)
Groups
Input/Output

Task.write_task
```

pub fn Task::write_task
(\&self,
filename : \&str) -> Result<(),String>

```

Write a binary dump of the task data. This format saves all problem data, coefficients and parameter settings. See section The Task Format for a description of the Task format.

\section*{Parameters}
filename (\&str) - A valid file name. (input)
Groups Input/Output

\subsection*{15.5 Parameters grouped by topic}

\section*{Analysis}
- Dparam: :ANA_SOL_INFEAS_TOL
- Iparam::ANA_SOL_BASIS
- Iparam: : ANA_SOL_PRINT_VIOLATED
- Iparam: :LOG_ANA_PRO

\section*{Basis identification}
- Dparam: :SIM_LU_TOL_REL_PIV
- Iparam::BI_CLEAN_OPTIMIZER
- Iparam: :BI_IGNORE_MAX_ITER
- Iparam::BI_IGNORE_NUM_ERROR
- Iparam::BI_MAX_ITERATIONS
- Iparam: :INTPNT_BASIS
- Iparam::LOG_BI
- Iparam::LOG_BI_FREQ

Conic interior-point method
- Dparam::INTPNT_CO_TOL_DFEAS
- Dparam: : INTPNT_CO_TOL_INFEAS
- Dparam: :INTPNT_CO_TOL_MU_RED
- Dparam: :INTPNT_CO_TOL_NEAR_REL
- Dparam::INTPNT_CO_TOL_PFEAS
- Dparam: :INTPNT_CO_TOL_REL_GAP

\section*{Data check}
- Dparam: :DATA_SYM_MAT_TOL
- Dparam: :DATA_SYM_MAT_TOL_HUGE
- Dparam: :DATA_SYM_MAT_TOL_LARGE
- Dparam: :DATA_TOL_AIJ_HUGE
- Dparam: :DATA_TOL_AIJ_LARGE
- Dparam: :DATA_TOL_BOUND_INF
- Dparam: :DATA_TOL_BOUND_WRN
- Dparam: :DATA_TOL_C_HUGE
- Dparam::DATA_TOL_CJ_LARGE
- Dparam: :DATA_TOL_QIJ
- Dparam: :DATA_TOL_X
- Dparam: :SEMIDEFINITE_TOL_APPROX

\section*{Data input/output}
- Iparam: :INFEAS_REPORT_AUTO
- Iparam::LOG_FILE
- Iparam: :OPF_WRITE_HEADER
- Iparam::OPF_WRITE_HINTS
- Iparam: :OPF_WRITE_LINE_LENGTH
- Iparam::OPF_WRITE_PARAMETERS
- Iparam::OPF_WRITE_PROBLEM
- Iparam::OPF_WRITE_SOL_BAS
- Iparam::OPF_WRITE_SOL_ITG
- Iparam::OPF_WRITE_SOL_ITR
- Iparam::OPF_WRITE_SOLUTIONS
- Iparam: : PARAM_READ_CASE_NAME
- Iparam: :PARAM_READ_IGN_ERROR
- Iparam: :PTF_WRITE_PARAMETERS
- Iparam::PTF_WRITE_SOLUTIONS
- Iparam::PTF_WRITE_TRANSFORM
- Iparam: :READ_DEBUG
- Iparam: :READ_KEEP_FREE_CON
- Iparam: : READ_MPS_FORMAT
- Iparam::READ_MPS_WIDTH
- Iparam: : READ_TASK_IGNORE_PARAM
- Iparam::SOL_READ_NAME_WIDTH
- Iparam: :SOL_READ_WIDTH
- Iparam::WRITE_BAS_CONSTRAINTS
- Iparam::WRITE_BAS_HEAD
- Iparam::WRITE_BAS_VARIABLES
- Iparam::WRITE_COMPRESSION
- Iparam::WRITE_DATA_PARAM
- Iparam::WRITE_FREE_CON
- Iparam: :WRITE_GENERIC_NAMES
- Iparam: :WRITE_GENERIC_NAMES_IO
- Iparam: :WRITE_IGNORE_INCOMPATIBLE_ITEMS
- Iparam: :WRITE_INT_CONSTRAINTS
- Iparam::WRITE_INT_HEAD
- Iparam::WRITE_INT_VARIABLES
- Iparam: :WRITE_JSON_INDENTATION
- Iparam: :WRITE_LP_FULL_OBJ
- Iparam: :WRITE_LP_LINE_WIDTH
- Iparam: :WRITE_MPS_FORMAT
- Iparam: :WRITE_MPS_INT
- Iparam: :WRITE_SOL_BARVARIABLES
- Iparam: :WRITE_SOL_CONSTRAINTS
- Iparam: :WRITE_SOL_HEAD
- Iparam: :WRITE_SOL_IGNORE_INVALID_NAMES
- Iparam: : WRITE_SOL_VARIABLES
- Iparam: :WRITE_TASK_INC_SOL
- Iparam: :WRITE_XML_MODE
- Sparam: : BAS_SOL_FILE_NAME
- Sparam: :DATA_FILE_NAME
- Sparam: :DEBUG_FILE_NAME
- Sparam: : INT_SOL_FILE_NAME
- Sparam: : ITR_SOL_FILE_NAME
- Sparam: :MIO_DEBUG_STRING
- Sparam: :PARAM_COMMENT_SIGN
- Sparam: : PARAM_READ_FILE_NAME
- Sparam: :PARAM_WRITE_FILE_NAME
- Sparam: : READ_MPS_BOU_NAME
- Sparam: : READ_MPS_OBJ_NAME
- Sparam: : READ_MPS_RAN_NAME
- Sparam: : READ_MPS_RHS_NAME
- Sparam: :SENSITIVITY_FILE_NAME
- Sparam: : SENSITIVITY_RES_FILE_NAME
- Sparam: :SOL_FILTER_XC_LOW
- Sparam: : SOL_FILTER_XC_UPR
- Sparam: :SOL_FILTER_XX_LOW
- Sparam: : SOL_FILTER_XX_UPR
- Sparam: : STAT_KEY
- Sparam: : STAT_NAME
- Sparam: :WRITE_LP_GEN_VAR_NAME

\section*{Debugging}
- Iparam: :AUTO_SORT_A_BEFORE_OPT

\section*{Dual simplex}
- Iparam: :SIM_DUAL_CRASH
- Iparam: :SIM_DUAL_RESTRICT_SELECTION
- Iparam::SIM_DUAL_SELECTION

\section*{Infeasibility report}
- Iparam: :INFEAS_GENERIC_NAMES
- Iparam: :INFEAS_REPORT_LEVEL
- Iparam: :LOG_INFEAS_ANA

\section*{Interior-point method}
- Dparam: :CHECK_CONVEXITY_REL_TOL
- Dparam::INTPNT_CO_TOL_DFEAS
- Dparam::INTPNT_CO_TOL_INFEAS
- Dparam::INTPNT_CO_TOL_MU_RED
- Dparam: :INTPNT_CO_TOL_NEAR_REL
- Dparam: :INTPNT_CO_TOL_PFEAS
- Dparam: :INTPNT_CO_TOL_REL_GAP
- Dparam: :INTPNT_QO_TOL_DFEAS
- Dparam: :INTPNT_QO_TOL_INFEAS
- Dparam: :INTPNT_QO_TOL_MU_RED
- Dparam: :INTPNT_QO_TOL_NEAR_REL
- Dparam: :INTPNT_QO_TOL_PFEAS
- Dparam: :INTPNT_QO_TOL_REL_GAP
- Dparam::INTPNT_TOL_DFEAS
- Dparam: :INTPNT_TOL_DSAFE
- Dparam::INTPNT_TOL_INFEAS
- Dparam: :INTPNT_TOL_MU_RED
- Dparam::INTPNT_TOL_PATH
- Dparam: : INTPNT_TOL_PFEAS
- Dparam: :INTPNT_TOL_PSAFE
- Dparam: :INTPNT_TOL_REL_GAP
- Dparam: : INTPNT_TOL_REL_STEP
- Dparam: : INTPNT_TOL_STEP_SIZE
- Dparam: :QCQO_REFORMULATE_REL_DROP_TOL
- Iparam: :BI_IGNORE_MAX_ITER
- Iparam::BI_IGNORE_NUM_ERROR
- Iparam::INTPNT_BASIS
- Iparam: :INTPNT_DIFF_STEP
- Iparam: : INTPNT_HOTSTART
- Iparam: :INTPNT_MAX_ITERATIONS
- Iparam: : INTPNT_MAX_NUM_COR
- Iparam: :INTPNT_MAX_NUM_REFINEMENT_STEPS
- Iparam: :INTPNT_OFF_COL_TRH
- Iparam: :INTPNT_ORDER_GP_NUM_SEEDS
- Iparam: :INTPNT_ORDER_METHOD
- Iparam::INTPNT_PURIFY
- Iparam: : INTPNT_REGULARIZATION_USE
- Iparam::INTPNT_SCALING
- Iparam::INTPNT_SOLVE_FORM
- Iparam::INTPNT_STARTING_POINT
- Iparam::LOG_INTPNT

\section*{License manager}
- Iparam: :CACHE_LICENSE
- Iparam::LICENSE_DEBUG
- Iparam::LICENSE_PAUSE_TIME
- Iparam: :LICENSE_SUPPRESS_EXPIRE_WRNS
- Iparam: :LICENSE_TRH_EXPIRY_WRN
- Iparam::LICENSE_WAIT

\section*{Logging}
- Iparam: : LOG
- Iparam: :LOG_ANA_PRO
- Iparam::LOG_BI
- Iparam: :LOG_BI_FREQ
- Iparam: :LOG_CUT_SECOND_OPT
- Iparam::LOG_EXPAND
- Iparam::LOG_FEAS_REPAIR
- Iparam::LOG_FILE
- Iparam: :LOG_INCLUDE_SUMMARY
- Iparam: :LOG_INFEAS_ANA
- Iparam: :LOG_INTPNT
- Iparam: :LOG_LOCAL_INFO
- Iparam: :LOG_MIO
- Iparam: :LOG_MIO_FREQ
- Iparam: :LOG_ORDER
- Iparam: :LOG_PRESOLVE
- Iparam: :LOG_RESPONSE
- Iparam: :LOG_SENSITIVITY
- Iparam: :LOG_SENSITIVITY_OPT
- Iparam: :LOG_SIM
- Iparam: : LOG_SIM_FREQ
- Iparam: :LOG_STORAGE

\section*{Mixed-integer optimization}
- Dparam: :MIO_DJC_MAX_BIGM
- Dparam: :MIO_MAX_TIME
- Dparam: :MIO_REL_GAP_CONST
- Dparam: :MIO_TOL_ABS_GAP
- Dparam: : MIO_TOL_ABS_RELAX_INT
- Dparam: :MIO_TOL_FEAS
- Dparam: :MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
- Dparam: :MIO_TOL_REL_GAP
- Iparam: :LOG_MIO
- Iparam: :LOG_MIO_FREQ
- Iparam: : MIO_BRANCH_DIR
- Iparam: : MIO_CONIC_OUTER_APPROXIMATION
- Iparam: :MIO_CONSTRUCT_SOL
- Iparam: :MIO_CUT_CLIQUE
- Iparam: : MIO_CUT_CMIR
- Iparam: :MIO_CUT_GMI
- Iparam: :MIO_CUT_IMPLIED_BOUND
- Iparam: :MIO_CUT_KNAPSACK_COVER
- Iparam: : MIO_CUT_LIPRO
- Iparam: :MIO_CUT_SELECTION_LEVEL
- Iparam: :MIO_DATA_PERMUTATION_METHOD
- Iparam: : MIO_DUAL_RAY_ANALYSIS_LEVEL
- Iparam: :MIO_FEASPUMP_LEVEL
- Iparam: : MIO_HEURISTIC_LEVEL
- Iparam: :MIO_MAX_NUM_BRANCHES
- Iparam: :MIO_MAX_NUM_RELAXS
- Iparam: : MIO_MAX_NUM_RESTARTS
- Iparam: :MIO_MAX_NUM_ROOT_CUT_ROUNDS
- Iparam: :MIO_MAX_NUM_SOLUTIONS
- Iparam: : MIO_MEMORY_EMPHASIS_LEVEL
- Iparam: : MIO_MIN_REL
- Iparam: :MIO_NODE_OPTIMIZER
- Iparam: :MIO_NODE_SELECTION
- Iparam: :MIO_NUMERICAL_EMPHASIS_LEVEL
- Iparam: : MIO_PERSPECTIVE_REFORMULATE
- Iparam: : MIO_PROBING_LEVEL
- Iparam: : MIO_PROPAGATE_OBJECTIVE_CONSTRAINT
- Iparam: : MIO_QCQO_REFORMULATION_METHOD
- Iparam: :MIO_RINS_MAX_NODES
- Iparam: :MIO_ROOT_OPTIMIZER
- Iparam: : MIO_ROOT_REPEAT_PRESOLVE_LEVEL
- Iparam: :MIO_SEED
- Iparam: :MIO_SYMMETRY_LEVEL
- Iparam: : MIO_VAR_SELECTION
- Iparam: :MIO_VB_DETECTION_LEVEL

\section*{Output information}
- Iparam: :INFEAS_REPORT_LEVEL
- Iparam: :LICENSE_SUPPRESS_EXPIRE_WRNS
- Iparam: :LICENSE_TRH_EXPIRY_WRN
- Iparam: :LOG
- Iparam: :LOG_BI
- Iparam: :LOG_BI_FREQ
- Iparam: :LOG_CUT_SECOND_OPT
- Iparam: :LOG_EXPAND
- Iparam: :LOG_FEAS_REPAIR
- Iparam::LOG_FILE
- Iparam::LOG_INCLUDE_SUMMARY
- Iparam: :LOG_INFEAS_ANA
- Iparam::LOG_INTPNT
- Iparam::LOG_LOCAL_INFO
- Iparam::LOG_MIO
- Iparam: :LOG_MIO_FREQ
- Iparam: :LOG_ORDER
- Iparam: :LOG_RESPONSE
- Iparam::LOG_SENSITIVITY
- Iparam::LOG_SENSITIVITY_OPT
- Iparam::LOG_SIM
- Iparam::LOG_SIM_FREQ
- Iparam::LOG_SIM_MINOR
- Iparam::LOG_STORAGE
- Iparam: :MAX_NUM_WARNINGS

\section*{Overall solver}
- Iparam: :BI_CLEAN_OPTIMIZER
- Iparam: :INFEAS_PREFER_PRIMAL
- Iparam::LICENSE_WAIT
- Iparam::MIO_MODE
- Iparam::OPTIMIZER
- Iparam: : PRESOLVE_LEVEL
- Iparam: : PRESOLVE_MAX_NUM_REDUCTIONS
- Iparam: : PRESOL VE_USE
- Iparam: : PRIMAL_REPAIR_OPTIMIZER
- Iparam: :SENSITIVITY_ALL
- Iparam: :SENSITIVITY_OPTIMIZER
- Iparam: :SENSITIVITY_TYPE
- Iparam: :SOLUTION_CALLBACK

\section*{Overall system}
- Iparam: :AUTO_UPDATE_SOL_INFO
- Iparam::LICENSE_WAIT
- Iparam::LOG_STORAGE
- Iparam::MT_SPINCOUNT
- Iparam: : NUM_THREADS
- Iparam: :REMOVE_UNUSED_SOLUTIONS
- Iparam::TIMING_LEVEL
- Sparam: : REMOTE_OPTSERVER_HOST
- Sparam: : REMOTE_TLS_CERT
- Sparam: :REMOTE_TLS_CERT_PATH

\section*{Presolve}
- Dparam: :PRESOLVE_TOL_ABS_LINDEP
- Dparam::PRESOLVE_TOL_AIJ
- Dparam: :PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION
- Dparam::PRESOLVE_TOL_REL_LINDEP
- Dparam: :PRESOLVE_TOL_S
- Dparam::PRESOLVE_TOL_X
- Iparam: :MIO_PRESOLVE_AGGREGATOR_USE
- Iparam: :PRESOLVE_ELIMINATOR_MAX_FILL
- Iparam: :PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
- Iparam::PRESOLVE_LEVEL
- Iparam: :PRESOLVE_LINDEP_ABS_WORK_TRH
- Iparam: :PRESOLVE_LINDEP_NEW
- Iparam: : PRESOLVE_LINDEP_REL_WORK_TRH
- Iparam: : PRESOLVE_LINDEP_USE
- Iparam: : PRESOLVE_MAX_NUM_PASS
- Iparam: :PRESOLVE_MAX_NUM_REDUCTIONS
- Iparam: : PRESOLVE_USE

\section*{Primal simplex}
- Iparam: :SIM_PRIMAL_CRASH
- Iparam: :SIM_PRIMAL_RESTRICT_SELECTION
- Iparam::SIM_PRIMAL_SELECTION

\section*{Progress callback}
- Iparam::SOLUTION_CALLBACK

\section*{Simplex optimizer}
- Dparam::BASIS_REL_TOL_S
- Dparam::BASIS_TOL_S
- Dparam::BASIS_TOL_X
- Dparam: :SIM_LU_TOL_REL_PIV
- Dparam: :SIMPLEX_ABS_TOL_PIV
- Iparam: :BASIS_SOLVE_USE_PLUS_ONE
- Iparam::LOG_SIM
- Iparam: :LOG_SIM_FREQ
- Iparam::LOG_SIM_MINOR
- Iparam: :SENSITIVITY_OPTIMIZER
- Iparam: :SIM_BASIS_FACTOR_USE
- Iparam::SIM_DEGEN
- Iparam::SIM_DETECT_PWL
- Iparam: :SIM_DUAL_PHASEONE_METHOD
- Iparam: :SIM_EXPLOIT_DUPVEC
- Iparam::SIM_HOTSTART
- Iparam::SIM_HOTSTART_LU
- Iparam: :SIM_MAX_ITERATIONS
- Iparam: :SIM_MAX_NUM_SETBACKS
- Iparam: :SIM_NON_SINGULAR
- Iparam: :SIM_PRIMAL_PHASEONE_METHOD
- Iparam::SIM_REFACTOR_FREQ
- Iparam::SIM_REFORMULATION
- Iparam: :SIM_SAVE_LU
- Iparam::SIM_SCALING
- Iparam::SIM_SCALING_METHOD
- Iparam::SIM_SEED
- Iparam: :SIM_SOLVE_FORM
- Iparam: :SIM_STABILITY_PRIORITY
- Iparam::SIM_SWITCH_OPTIMIZER

\section*{Solution input/output}
- Iparam: :INFEAS_REPORT_AUTO
- Iparam: :SOL_FILTER_KEEP_BASIC
- Iparam: :SOL_FILTER_KEEP_RANGED
- Iparam: :SOL_READ_NAME_WIDTH
- Iparam: :SOL_READ_WIDTH
- Iparam::WRITE_BAS_CONSTRAINTS
- Iparam::WRITE_BAS_HEAD
- Iparam::WRITE_BAS_VARIABLES
- Iparam::WRITE_INT_CONSTRAINTS
- Iparam::WRITE_INT_HEAD
- Iparam::WRITE_INT_VARIABLES
- Iparam::WRITE_SOL_BARVARIABLES
- Iparam::WRITE_SOL_CONSTRAINTS
- Iparam::WRITE_SOL_HEAD
- Iparam: :WRITE_SOL_IGNORE_INVALID_NAMES
- Iparam::WRITE_SOL_VARIABLES
- Sparam::BAS_SOL_FILE_NAME
- Sparam:: INT_SOL_FILE_NAME
- Sparam: : ITR_SOL_FILE_NAME
- Sparam: : SOL_FILTER_XC_LOW
- Sparam: :SOL_FILTER_XC_UPR
- Sparam: :SOL_FILTER_XX_LOW
- Sparam: :SOL_FILTER_XX_UPR

\section*{Termination criteria}
- Dparam::BASIS_REL_TOL_S
- Dparam::BASIS_TOL_S
- Dparam::BASIS_TOL_X
- Dparam: : INTPNT_CO_TOL_DFEAS
- Dparam: :INTPNT_CO_TOL_INFEAS
- Dparam: :INTPNT_CO_TOL_MU_RED
- Dparam: :INTPNT_CO_TOL_NEAR_REL
- Dparam::INTPNT_CO_TOL_PFEAS
- Dparam: :INTPNT_CO_TOL_REL_GAP
- Dparam: :INTPNT_QO_TOL_DFEAS
- Dparam: :INTPNT_QO_TOL_INFEAS
- Dparam::INTPNT_QO_TOL_MU_RED
- Dparam: :INTPNT_QO_TOL_NEAR_REL
- Dparam: :INTPNT_QO_TOL_PFEAS
- Dparam: :INTPNT_QO_TOL_REL_GAP
- Dparam: :INTPNT_TOL_DFEAS
- Dparam: : INTPNT_TOL_INFEAS
- Dparam: : INTPNT_TOL_MU_RED
- Dparam: :INTPNT_TOL_PFEAS
- Dparam: : INTPNT_TOL_REL_GAP
- Dparam::LOWER_OBJ_CUT
- Dparam::LOWER_OBJ_CUT_FINITE_TRH
- Dparam::MIO_MAX_TIME
- Dparam::MIO_REL_GAP_CONST
- Dparam::MIO_TOL_REL_GAP
- Dparam::OPTIMIZER_MAX_TICKS
- Dparam::OPTIMIZER_MAX_TIME
- Dparam::UPPER_OBJ_CUT
- Dparam: :UPPER_OBJ_CUT_FINITE_TRH
- Iparam::BI_MAX_ITERATIONS
- Iparam: :INTPNT_MAX_ITERATIONS
- Iparam::MIO_MAX_NUM_BRANCHES
- Iparam: :MIO_MAX_NUM_ROOT_CUT_ROUNDS
- Iparam: :MIO_MAX_NUM_SOLUTIONS
- Iparam: : SIM_MAX_ITERATIONS

Other
- Iparam: :COMPRESS_STATFILE
- Iparam::NG
- Iparam::REMOTE_USE_COMPRESSION

\subsection*{15.6 Parameters (alphabetical list sorted by type)}
- Double parameters
- Integer parameters
- String parameters

\subsection*{15.6.1 Double parameters}

Dparam
The enumeration type containing all double parameters.
Dparam: :ANA_SOL_INFEAS_TOL
If a constraint violates its bound with an amount larger than this value, the constraint name, index and violation will be printed by the solution analyzer.

\section*{Default}

1e-6
Accepted
[0.0; +inf]
Example
task.put_dou_param(Dparam::ANA_SOL_INFEAS_TOL, 1e-6)
Generic name MSK_DPAR_ANA_SOL_INFEAS_TOL
Groups
Analysis
Dparam: :BASIS_REL_TOL_S
Maximum relative dual bound violation allowed in an optimal basic solution.

\section*{Default}
\[
1.0 \mathrm{e}-12
\]

Accepted
\([0.0 ;+\mathrm{inf}]\)
Example
task.put_dou_param(Dparam: :BASIS_REL_TOL_S, 1.0e-12)

\section*{Generic name} MSK_DPAR_BASIS_REL_TOL_S
Groups
Simplex optimizer, Termination criteria
Dparam: :BASIS_TOL_S
Maximum absolute dual bound violation in an optimal basic solution.

\section*{Default}
1.0e-6

Accepted
[1.0e-9; +inf]
Example
task.put_dou_param(Dparam: :BASIS_TOL_S, 1.0e-6)
Generic name MSK_DPAR_BASIS_TOL_S
Groups
Simplex optimizer, Termination criteria
Dparam: :BASIS_TOL_X
Maximum absolute primal bound violation allowed in an optimal basic solution.
Default
1.0e-6

Accepted [1.0e-9; +inf]
Example task.put_dou_param(Dparam: :BASIS_TOL_X, 1.0e-6)
Generic name MSK_DPAR_BASIS_TOL_X
```

 Groups
 Simplex optimizer, Termination criteria
 Dparam::CHECK_CONVEXITY_REL_TOL
Not in use.

```

\section*{Default}
```

$1 \mathrm{e}-10$
Accepted
[$0 ;+\mathrm{inf}]$
Example
task.put_dou_param(Dparam::CHECK_CONVEXITY_REL_TOL, 1e-10)
Generic name MSK_DPAR_CHECK_CONVEXITY_REL_TOL

```

\section*{Groups}
```

Interior-point method
Dparam::DATA_SYM_MAT_TOL

```

Absolute zero tolerance for elements in in symmetric matrices. If any value in a symmetric matrix is smaller than this parameter in absolute terms MOSEK will treat the values as zero and generate a warning.

\section*{Default}
\(1.0 \mathrm{e}-12\)
Accepted
[1.0e-16; 1.0e-6]
Example
task.put_dou_param(Dparam::DATA_SYM_MAT_TOL, 1.0e-12)
Generic name
MSK_DPAR_DATA_SYM_MAT_TOL

\section*{Groups}

Data check
Dparam: :DATA_SYM_MAT_TOL_HUGE
An element in a symmetric matrix which is larger than this value in absolute size causes an error.

\section*{Default}
1.0 e 20

Accepted
[0.0; +inf]
Example
task.put_dou_param(Dparam::DATA_SYM_MAT_TOL_HUGE, 1.0e20)
Generic name MSK_DPAR_DATA_SYM_MAT_TOL_HUGE

\section*{Groups}

Data check
Dparam::DATA_SYM_MAT_TOL_LARGE
An element in a symmetric matrix which is larger than this value in absolute size causes a warning message to be printed.

\section*{Default}
1.0 e 10

Accepted [0.0; +inf]
Example task.put_dou_param(Dparam::DATA_SYM_MAT_TOL_LARGE, 1.0e10)

\section*{Generic name}

MSK_DPAR_DATA_SYM_MAT_TOL_LARGE
Groups
Data check
Dparam: :DATA_TOL_AIJ_HUGE
An element in \(A\) which is larger than this value in absolute size causes an error.
Default 1.0 e 20

Accepted
[0.0; +inf]
Example task.put_dou_param(Dparam::DATA_TOL_AIJ_HUGE, 1.0e20)
Generic name MSK_DPAR_DATA_TOL_AIJ_HUGE
Groups Data check

Dparam: :DATA_TOL_AIJ_LARGE
An element in \(A\) which is larger than this value in absolute size causes a warning message to be printed.

\section*{Default}
1.0 e 10

Accepted
[0.0; +inf]
Example
task.put_dou_param(Dparam::DATA_TOL_AIJ_LARGE, 1.0e10)
Generic name
MSK_DPAR_DATA_TOL_AIJ_LARGE
Groups
Data check
Dparam: :DATA_TOL_BOUND_INF
Any bound which in absolute value is greater than this parameter is considered infinite.
Default
1.0 e 16

Accepted
[0.0; +inf]
Example
task.put_dou_param(Dparam::DATA_TOL_BOUND_INF, 1.0e16)
Generic name
MSK_DPAR_DATA_TOL_BOUND_INF
Groups
Data check
Dparam: :DATA_TOL_BOUND_WRN
If a bound value is larger than this value in absolute size, then a warning message is issued.

\section*{Default}
1.0 e 8

Accepted
\([0.0 ;+\mathrm{inf}]\)
Example
task.put_dou_param(Dparam::DATA_TOL_BOUND_WRN, 1.0e8)

\section*{Generic name}

MSK_DPAR_DATA_TOL_BOUND_WRN
Groups
Data check
Dparam: :DATA_TOL_C_HUGE
An element in \(c\) which is larger than the value of this parameter in absolute terms is considered to be huge and generates an error.

\section*{Default} 1.0 e 16

\section*{Accepted}
[0.0; +inf]
Example
task.put_dou_param(Dparam::DATA_TOL_C_HUGE, 1.0e16)
Generic name
MSK_DPAR_DATA_TOL_C_HUGE
Groups
Data check
Dparam: :DATA_TOL_CJ_LARGE
An element in \(c\) which is larger than this value in absolute terms causes a warning message to be printed.

\section*{Default}
1.0 e 8

Accepted
\([0.0 ;+\mathrm{inf}]\)
Example
task.put_dou_param(Dparam::DATA_TOL_CJ_LARGE, 1.0e8)
Generic name MSK_DPAR_DATA_TOL_CJ_LARGE
Groups Data check

Dparam: :DATA_TOL_QIJ
Absolute zero tolerance for elements in \(Q\) matrices.

\section*{Default} 1.0e-16

Accepted \([0.0 ;+\mathrm{inf}]\)
Example task.put_dou_param(Dparam::DATA_TOL_QIJ, 1.0e-16)
Generic name MSK_DPAR_DATA_TOL_QIJ
Groups
Data check
Dparam: :DATA_TOL_X
Zero tolerance for constraints and variables i.e. if the distance between the lower and upper bound is less than this value, then the lower and upper bound is considered identical.

\section*{Default} \(1.0 \mathrm{e}-8\)

\section*{Accepted} [0.0; +inf]

\section*{Example}
task.put_dou_param(Dparam: :DATA_TOL_X, 1.0e-8)
Generic name MSK_DPAR_DATA_TOL_X
Groups
Data check
Dparam: :INTPNT_CO_TOL_DFEAS
Dual feasibility tolerance used by the interior-point optimizer for conic problems.

\section*{Default}
\[
1.0 \mathrm{e}-8
\]

Accepted
[0.0; 1.0]
Example
task.put_dou_param(Dparam::INTPNT_CO_TOL_DFEAS, 1.0e-8)
See also
Dparam: :INTPNT_CO_TOL_NEAR_REL

\section*{Generic name}

MSK_DPAR_INTPNT_CO_TOL_DFEAS
Groups
Interior-point method, Termination criteria, Conic interior-point method
Dparam: : INTPNT_CO_TOL_INFEAS
Infeasibility tolerance used by the interior-point optimizer for conic problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

\section*{Default \\ \(1.0 \mathrm{e}-12\)}

Accepted
[0.0; 1.0]

\section*{Example}
task.put_dou_param(Dparam::INTPNT_CO_TOL_INFEAS, 1.0e-12)
Generic name
MSK_DPAR_INTPNT_CO_TOL_INFEAS

\section*{Groups}

Interior-point method, Termination criteria, Conic interior-point method
Dparam: :INTPNT_CO_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for conic problems.

\section*{Default}
\[
1.0 \mathrm{e}-8
\]

Accepted
[0.0; 1.0]

\section*{Example}
task.put_dou_param(Dparam::INTPNT_CO_TOL_MU_RED, 1.0e-8)

\section*{Generic name}

MSK_DPAR_INTPNT_CO_TOL_MU_RED

\section*{Groups}

Interior-point method, Termination criteria, Conic interior-point method

\section*{Dparam: :INTPNT_CO_TOL_NEAR_REL}

Optimality tolerance used by the interior-point optimizer for conic problems. If MOSEK cannot compute a solution that has the prescribed accuracy then it will check if the solution found satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then the solution is also declared optimal.

Default
1000
Accepted
[1.0; +inf]
Example
task.put_dou_param(Dparam::INTPNT_CO_TOL_NEAR_REL, 1000)
Generic name MSK_DPAR_INTPNT_CO_TOL_NEAR_REL
Groups
Interior-point method, Termination criteria, Conic interior-point method
Dparam: :INTPNT_CO_TOL_PFEAS
Primal feasibility tolerance used by the interior-point optimizer for conic problems.

\section*{Default} \(1.0 \mathrm{e}-8\)
Accepted
[0.0; 1.0]
Example task.put_dou_param(Dparam::INTPNT_CO_TOL_PFEAS, 1.0e-8)
See also
Dparam: :INTPNT_CO_TOL_NEAR_REL
Generic name MSK_DPAR_INTPNT_CO_TOL_PFEAS
Groups Interior-point method, Termination criteria, Conic interior-point method

Dparam: :INTPNT_CO_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for conic problems.
Default \(1.0 \mathrm{e}-8\)
Accepted [0.0; 1.0]
Example
            task.put_dou_param(Dparam::INTPNT_CO_TOL_REL_GAP, 1.0e-8)

See also
Dparam: :INTPNT_CO_TOL_NEAR_REL
Generic name MSK_DPAR_INTPNT_CO_TOL_REL_GAP
Groups
Interior-point method, Termination criteria, Conic interior-point method
Dparam: :INTPNT_QO_TOL_DFEAS
Dual feasibility tolerance used by the interior-point optimizer for quadratic problems.

\section*{Default}
\(1.0 \mathrm{e}-8\)
Accepted
[0.0; 1.0]
Example
task.put_dou_param(Dparam::INTPNT_QO_TOL_DFEAS, 1.0e-8)
See also
Dparam: :INTPNT_QO_TOL_NEAR_REL
Generic name MSK_DPAR_INTPNT_QO_TOL_DFEAS

\section*{Groups}

Interior-point method, Termination criteria

\section*{Dparam: :INTPNT_QO_TOL_INFEAS}

Infeasibility tolerance used by the interior-point optimizer for quadratic problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.

\section*{Default \\ 1.0e-12}

\section*{Accepted}
[0.0; 1.0]
Example
task.put_dou_param(Dparam::INTPNT_QO_TOL_INFEAS, 1.0e-12)
Generic name
```

 MSK_DPAR_INTPNT_QO_TOL_INFEAS
    ```

\section*{Groups}

Interior-point method, Termination criteria
Dparam: :INTPNT_QO_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for quadratic problems.

\section*{Default}
\(1.0 \mathrm{e}-8\)

\section*{Accepted}
[0.0; 1.0]

\section*{Example}
task.put_dou_param(Dparam::INTPNT_QO_TOL_MU_RED, 1.0e-8)

\section*{Generic name}

MSK_DPAR_INTPNT_QO_TOL_MU_RED

\section*{Groups}

Interior-point method, Termination criteria
```

Dparam::INTPNT_QO_TOL_NEAR_REL

```

Optimality tolerance used by the interior-point optimizer for quadratic problems. If MOSEK cannot compute a solution that has the prescribed accuracy then it will check if the solution found satisfies the termination criteria with all tolerances multiplied by the value of this parameter. If yes, then the solution is also declared optimal.

\section*{Default}

1000

\section*{Accepted}
\([1.0 ;+\mathrm{inf}]\)

\section*{Example}
task.put_dou_param(Dparam::INTPNT_QO_TOL_NEAR_REL, 1000)

\section*{Generic name}

MSK_DPAR_INTPNT_QO_TOL_NEAR_REL

\section*{Groups}

Interior-point method, Termination criteria

\section*{Dparam: :INTPNT_QO_TOL_PFEAS}

Primal feasibility tolerance used by the interior-point optimizer for quadratic problems.

\section*{Default}
\[
1.0 \mathrm{e}-8
\]

Accepted [0.0; 1.0]
Example
task.put_dou_param(Dparam::INTPNT_QO_TOL_PFEAS, 1.0e-8)
See also
Dparam: : INTPNT_QO_TOL_NEAR_REL

\section*{Generic name}

MSK_DPAR_INTPNT_QO_TOL_PFEAS
Groups
Interior-point method, Termination criteria
Dparam: :INTPNT_QO_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for quadratic problems.

\section*{Default}
\(1.0 \mathrm{e}-8\)
Accepted [0.0; 1.0]
Example task.put_dou_param(Dparam::INTPNT_QO_TOL_REL_GAP, 1.0e-8)
See also
Dparam: : INTPNT_QO_TOL_NEAR_REL
Generic name MSK_DPAR_INTPNT_QO_TOL_REL_GAP
Groups
Interior-point method, Termination criteria
Dparam: :INTPNT_TOL_DFEAS
Dual feasibility tolerance used by the interior-point optimizer for linear problems.

\section*{Default}
\(1.0 \mathrm{e}-8\)
Accepted
[0.0; 1.0]
Example
task.put_dou_param(Dparam::INTPNT_TOL_DFEAS, 1.0e-8)
Generic name
MSK_DPAR_INTPNT_TOL_DFEAS
Groups
Interior-point method, Termination criteria
Dparam: :INTPNT_TOL_DSAFE
Controls the initial dual starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly and/or the constraint or variable bounds are very large, then it might be worthwhile to increase this value.

\section*{Default}
1.0

\section*{Accepted}
[1.0e-4; +inf]
Example
task.put_dou_param(Dparam::INTPNT_TOL_DSAFE, 1.0)
Generic name MSK_DPAR_INTPNT_TOL_DSAFE
Groups
Interior-point method

\section*{Dparam: :INTPNT_TOL_INFEAS}

Infeasibility tolerance used by the interior-point optimizer for linear problems. Controls when the interior-point optimizer declares the model primal or dual infeasible. A small number means the optimizer gets more conservative about declaring the model infeasible.
```

Default
1.0e-10

```

\section*{Accepted}
[0.0; 1.0]
Example
task.put_dou_param(Dparam::INTPNT_TOL_INFEAS, 1.0e-10)
Generic name MSK_DPAR_INTPNT_TOL_INFEAS
Groups
Interior-point method, Termination criteria
Dparam: :INTPNT_TOL_MU_RED
Relative complementarity gap tolerance used by the interior-point optimizer for linear problems.

\section*{Default} 1.0e-16

Accepted [0.0; 1.0]
Example
task.put_dou_param(Dparam::INTPNT_TOL_MU_RED, 1.0e-16)
Generic name MSK_DPAR_INTPNT_TOL_MU_RED
Groups
Interior-point method, Termination criteria
Dparam::INTPNT_TOL_PATH
Controls how close the interior-point optimizer follows the central path. A large value of this parameter means the central path is followed very closely. On numerically unstable problems it may be worthwhile to increase this parameter.

\section*{Default}
\[
1.0 \mathrm{e}-8
\]

Accepted
[0.0; 0.9999]

\section*{Example}
task.put_dou_param(Dparam::INTPNT_TOL_PATH, 1.0e-8)
Generic name MSK_DPAR_INTPNT_TOL_PATH

\section*{Groups}

Interior-point method
Dparam: :INTPNT_TOL_PFEAS
Primal feasibility tolerance used by the interior-point optimizer for linear problems.

\section*{Default} \(1.0 \mathrm{e}-8\)
Accepted [0.0; 1.0]

\section*{Example}
task.put_dou_param(Dparam::INTPNT_TOL_PFEAS, 1.0e-8)

\section*{Generic name} MSK_DPAR_INTPNT_TOL_PFEAS

\section*{Groups}

Interior-point method, Termination criteria
Dparam: :INTPNT_TOL_PSAFE
Controls the initial primal starting point used by the interior-point optimizer. If the interior-point optimizer converges slowly and/or the constraint or variable bounds are very large, then it may be worthwhile to increase this value.

\section*{Default}
1.0

Accepted
[1.0e-4; +inf]
Example
task.put_dou_param(Dparam::INTPNT_TOL_PSAFE, 1.0)
Generic name MSK_DPAR_INTPNT_TOL_PSAFE
Groups
Interior-point method
Dparam: :INTPNT_TOL_REL_GAP
Relative gap termination tolerance used by the interior-point optimizer for linear problems.

\section*{Default}
\(1.0 \mathrm{e}-8\)
Accepted
[1.0e-14; +inf]
Example
task.put_dou_param(Dparam::INTPNT_TOL_REL_GAP, 1.0e-8)
Generic name
MSK_DPAR_INTPNT_TOL_REL_GAP
Groups
Termination criteria, Interior-point method
Dparam: :INTPNT_TOL_REL_STEP
Relative step size to the boundary for linear and quadratic optimization problems.

\section*{Default}
0.9999

Accepted
[1.0e-4; 0.999999]
Example
task.put_dou_param(Dparam::INTPNT_TOL_REL_STEP, 0.9999)
Generic name
MSK_DPAR_INTPNT_TOL_REL_STEP

\section*{Groups}

Interior-point method
Dparam: :INTPNT_TOL_STEP_SIZE
Minimal step size tolerance. If the step size falls below the value of this parameter, then the interior-point optimizer assumes that it is stalled. In other words the interior-point optimizer does not make any progress and therefore it is better to stop.

\section*{Default}
\(1.0 \mathrm{e}-6\)
Accepted
[0.0; 1.0]
Example
task.put_dou_param(Dparam::INTPNT_TOL_STEP_SIZE, 1.0e-6)
Generic name
MSK_DPAR_INTPNT_TOL_STEP_SIZE
Groups
Interior-point method

Dparam: :LOWER_OBJ_CUT
If either a primal or dual feasible solution is found proving that the optimal objective value is outside the interval [Dparam: :LOWER_OBJ_CUT, Dparam: : UPPER_OBJ_CUT ], then MOSEK is terminated.

\section*{Default}
-1.0e30

Accepted
[-inf; +inf]
Example
task.put_dou_param(Dparam::LOWER_OBJ_CUT, -1.0e30)
See also
Dparam: : LOWER_OBJ_CUT_FINITE_TRH
Generic name
MSK_DPAR_LOWER_OBJ_CUT

\section*{Groups}

Termination criteria
Dparam: :LOWER_OBJ_CUT_FINITE_TRH
If the lower objective cut is less than the value of this parameter value, then the lower objective cut i.e. Dparam::LOWER_OBJ_CUT is treated as \(-\infty\).

\section*{Default} -0.5e30

\section*{Accepted} [-inf; +inf]
Example
task.put_dou_param(Dparam::LOWER_OBJ_CUT_FINITE_TRH, -0.5e30)
Generic name MSK_DPAR_LOWER_OBJ_CUT_FINITE_TRH
Groups
Termination criteria
Dparam: :MIO_DJC_MAX_BIGM
Maximum allowed big-M value when reformulating disjunctive constraints to linear constraints. Higher values make it more likely that a disjunction is reformulated to linear constraints, but also increase the risk of numerical problems.

\section*{Default}

\section*{1.0 e 6}

\section*{Accepted}
\[
[0 ;+ \text { inf }]
\]

\section*{Example}
task.put_dou_param(Dparam::MIO_DJC_MAX_BIGM, 1.0e6)
Generic name MSK_DPAR_MIO_DJC_MAX_BIGM

\section*{Groups}

Mixed-integer optimization

\section*{Dparam::MIO_MAX_TIME}

This parameter limits the maximum time spent by the mixed-integer optimizer. A negative number means infinity.

\section*{Default}
-1.0
Accepted
[-inf; +inf]
Example
task.put_dou_param(Dparam::MIO_MAX_TIME, -1.0)

\section*{Generic name}

MSK_DPAR_MIO_MAX_TIME
Groups
Mixed-integer optimization, Termination criteria
Dparam: :MIO_REL_GAP_CONST
This value is used to compute the relative gap for the solution to an integer optimization problem.

\section*{Default} \(1.0 \mathrm{e}-10\)
Accepted [1.0e-15; +inf]
Example task.put_dou_param(Dparam::MIO_REL_GAP_CONST, 1.0e-10)
Generic name MSK_DPAR_MIO_REL_GAP_CONST
Groups Mixed-integer optimization, Termination criteria

Dparam: :MIO_TOL_ABS_GAP
Absolute optimality tolerance employed by the mixed-integer optimizer.

\section*{Default} 0.0

Accepted [0.0; +inf]
Example task.put_dou_param(Dparam::MIO_TOL_ABS_GAP, 0.0)
Generic name MSK_DPAR_MIO_TOL_ABS_GAP
Groups
Mixed-integer optimization
Dparam: :MIO_TOL_ABS_RELAX_INT
Absolute integer feasibility tolerance. If the distance to the nearest integer is less than this tolerance then an integer constraint is assumed to be satisfied.

\section*{Default}
1.0e-5

Accepted [1e-9; +inf]
Example task.put_dou_param(Dparam::MIO_TOL_ABS_RELAX_INT, 1.0e-5)

\section*{Generic name} MSK_DPAR_MIO_TOL_ABS_RELAX_INT

\section*{Groups}

Mixed-integer optimization
Dparam: :MIO_TOL_FEAS
Feasibility tolerance for mixed integer solver.

\section*{Default}
\(1.0 \mathrm{e}-6\)
Accepted
[1e-9; 1e-3]
Example task.put_dou_param(Dparam::MIO_TOL_FEAS, 1.0e-6)

\section*{Generic name}

MSK_DPAR_MIO_TOL_FEAS
Groups
Mixed-integer optimization
Dparam: :MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT
If the relative improvement of the dual bound is smaller than this value, the solver will terminate the root cut generation. A value of 0.0 means that the value is selected automatically.

\section*{Default}
0.0

Accepted
[0.0; 1.0]
Example
task.put_dou_param(Dparam::MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT, 0.0)

\section*{Generic name}

MSK_DPAR_MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT

\section*{Groups}

Mixed-integer optimization
Dparam: :MIO_TOL_REL_GAP
Relative optimality tolerance employed by the mixed-integer optimizer.

\section*{Default} \(1.0 \mathrm{e}-4\)

\section*{Accepted} \([0.0 ;+\mathrm{inf}]\)

\section*{Example}

\section*{Generic name} MSK_DPAR_MIO_TOL_REL_GAP

\section*{Groups}

Mixed-integer optimization, Termination criteria

\section*{Dparam::OPTIMIZER_MAX_TICKS}

\section*{CURRENTLY NOT IN USE.}

Maximum amount of ticks the optimizer is allowed to spent on the optimization. A negative number means infinity.

\section*{Default} \(-1.0\)

\section*{Accepted} [-inf; +inf]
Example task.put_dou_param(Dparam::OPTIMIZER_MAX_TICKS, -1.0)
Generic name MSK_DPAR_OPTIMIZER_MAX_TICKS
Groups
Termination criteria
Dparam::OPTIMIZER_MAX_TIME
Maximum amount of time the optimizer is allowed to spent on the optimization. A negative number means infinity.

Default
-1.0
Accepted
[-inf; +inf]

Example
task.put_dou_param(Dparam::OPTIMIZER_MAX_TIME, -1.0)
Generic name MSK_DPAR_OPTIMIZER_MAX_TIME
Groups
Termination criteria
Dparam: :PRESOLVE_TOL_ABS_LINDEP
Absolute tolerance employed by the linear dependency checker.

\section*{Default}
\(1.0 \mathrm{e}-6\)
Accepted
[0.0; +inf]
Example
task.put_dou_param(Dparam::PRESOLVE_TOL_ABS_LINDEP, 1.0e-6)
Generic name
MSK_DPAR_PRESOLVE_TOL_ABS_LINDEP
Groups
Presolve
Dparam::PRESOLVE_TOL_AIJ
Absolute zero tolerance employed for \(a_{i j}\) in the presolve.

\section*{Default}
\(1.0 \mathrm{e}-12\)
Accepted
[1.0e-15; +inf]
Example
task.put_dou_param(Dparam: :PRESOLVE_TOL_AIJ, 1.0e-12)
Generic name MSK_DPAR_PRESOLVE_TOL_AIJ
Groups
Presolve
Dparam: :PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION
The presolve is allowed to perturb a bound on a constraint or variable by this amount if it removes an infeasibility.

\section*{Default}
\(1.0 \mathrm{e}-6\)
Accepted
[0.0; +inf]
Example
task.put_dou_param(Dparam::PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION, 1.0e-6)

\section*{Generic name}

MSK_DPAR_PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION
Groups
Presolve
Dparam: :PRESOLVE_TOL_REL_LINDEP
Relative tolerance employed by the linear dependency checker.
```

Default
$1.0 \mathrm{e}-10$

```

Accepted
[0.0; +inf]

\section*{Example}
            task.put_dou_param(Dparam::PRESOLVE_TOL_REL_LINDEP, 1.0e-10)

Generic name MSK_DPAR_PRESOLVE_TOL_REL_LINDEP
Groups
Presolve
Dparam: :PRESOLVE_TOL_S
Absolute zero tolerance employed for \(s_{i}\) in the presolve.
Default
\(1.0 \mathrm{e}-8\)
Accepted
[0.0; +inf]
Example
task.put_dou_param(Dparam::PRESOLVE_TOL_S, 1.0e-8)
Generic name MSK_DPAR_PRESOLVE_TOL_S
Groups
Presolve
Dparam::PRESOLVE_TOL_X
Absolute zero tolerance employed for \(x_{j}\) in the presolve.

\section*{Default}
\(1.0 \mathrm{e}-8\)
Accepted
[0.0; +inf]
Example
task.put_dou_param(Dparam::PRESOLVE_TOL_X, 1.0e-8)
Generic name
MSK_DPAR_PRESOLVE_TOL_X
Groups
Presolve
Dparam: :QCQO_REFORMULATE_REL_DROP_TOL
This parameter determines when columns are dropped in incomplete Cholesky factorization during reformulation of quadratic problems.

\section*{Default}
\(1 \mathrm{e}-15\)
Accepted
[ \(0 ;+\inf ]\)
Example
task.put_dou_param(Dparam::QCQO_REFORMULATE_REL_DROP_TOL, 1e-15)
Generic name MSK_DPAR_QCQO_REFORMULATE_REL_DROP_TOL

\section*{Groups}

Interior-point method
Dparam: :SEMIDEFINITE_TOL_APPROX
Tolerance to define a matrix to be positive semidefinite.

\section*{Default}
\(1.0 \mathrm{e}-10\)
Accepted
[1.0e-15; +inf]

\section*{Example}
task.put_dou_param(Dparam::SEMIDEFINITE_TOL_APPROX, 1.0e-10)
Generic name
MSK_DPAR_SEMIDEFINITE_TOL_APPROX
Groups
Data check
Dparam::SIM_LU_TOL_REL_PIV
Relative pivot tolerance employed when computing the LU factorization of the basis in the simplex optimizers and in the basis identification procedure. A value closer to 1.0 generally improves numerical stability but typically also implies an increase in the computational work.

\section*{Default}
0.01

Accepted
[1.0e-6; 0.999999]
Example
task.put_dou_param(Dparam::SIM_LU_TOL_REL_PIV, 0.01)

\section*{Generic name}

MSK_DPAR_SIM_LU_TOL_REL_PIV
Groups
Basis identification, Simplex optimizer
Dparam::SIMPLEX_ABS_TOL_PIV
Absolute pivot tolerance employed by the simplex optimizers.

\section*{Default}
\(1.0 \mathrm{e}-7\)
Accepted
[1.0e-12; +inf]
Example
task.put_dou_param(Dparam::SIMPLEX_ABS_TOL_PIV, 1.0e-7)
Generic name MSK_DPAR_SIMPLEX_ABS_TOL_PIV

\section*{Groups}

Simplex optimizer
Dparam: :UPPER_OBJ_CUT
If either a primal or dual feasible solution is found proving that the optimal objective value is outside the interval [ Dparam: :LOWER_OBJ_CUT, Dparam: : UPPER_OBJ_CUT ], then MOSEK is terminated.

\section*{Default} 1.0 e 30

\section*{Accepted} [-inf; +inf]
Example task.put_dou_param(Dparam::UPPER_OBJ_CUT, 1.0e30)
See also Dparam: : UPPER_OBJ_CUT_FINITE_TRH

\section*{Generic name} MSK_DPAR_UPPER_OBJ_CUT
Groups Termination criteria

Dparam: :UPPER_OBJ_CUT_FINITE_TRH
If the upper objective cut is greater than the value of this parameter, then the upper objective cut Dparam: : UPPER_OBJ_CUT is treated as \(\infty\).

\section*{Default}
0.5 e 30

Accepted
[-inf; +inf]
Example
task.put_dou_param(Dparam::UPPER_OBJ_CUT_FINITE_TRH, 0.5e30)
Generic name
MSK_DPAR_UPPER_OBJ_CUT_FINITE_TRH
Groups
Termination criteria

\subsection*{15.6.2 Integer parameters}

Iparam
The enumeration type containing all integer parameters.
Iparam::ANA_SOL_BASIS
Controls whether the basis matrix is analyzed in solution analyzer.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::ANA_SOL_BASIS, Onoffkey::ON)
Generic name MSK_IPAR_ANA_SOL_BASIS

\section*{Groups}

Analysis
Iparam::ANA_SOL_PRINT_VIOLATED
A parameter of the problem analyzer. Controls whether a list of violated constraints is printed. All constraints violated by more than the value set by the parameter Dparam: :ANA_SOL_INFEAS_TOL will be printed.

\section*{Default}

OFF

\section*{Accepted}

ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::ANA_SOL_PRINT_VIOLATED, Onoffkey::OFF)

\section*{Generic name}

MSK_IPAR_ANA_SOL_PRINT_VIOLATED

\section*{Groups}

Analysis
Iparam: :AUTO_SORT_A_BEFORE_OPT
Controls whether the elements in each column of \(A\) are sorted before an optimization is performed. This is not required but makes the optimization more deterministic.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::AUTO_SORT_A_BEFORE_OPT, Onoffkey::OFF)
Generic name
MSK_IPAR_AUTO_SORT_A_BEFORE_OPT

\section*{Groups}

\section*{Debugging}

Iparam: :AUTO_UPDATE_SOL_INFO
Controls whether the solution information items are automatically updated after an optimization is performed.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::AUTO_UPDATE_SOL_INFO, Onoffkey::OFF)
Generic name
MSK_IPAR_AUTO_UPDATE_SOL_INFO
Groups

\section*{Overall system}

Iparam: :BASIS_SOLVE_USE_PLUS_ONE
If a slack variable is in the basis, then the corresponding column in the basis is a unit vector with -1 in the right position. However, if this parameter is set to Onoffkey::ON, -1 is replaced by 1.
This has significance for the results returned by the Task.solve_with_basis function.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::BASIS_SOLVE_USE_PLUS_ONE, Onoffkey::OFF)
Generic name
MSK_IPAR_BASIS_SOLVE_USE_PLUS_ONE
Groups
Simplex optimizer
Iparam: :BI_CLEAN_OPTIMIZER
Controls which simplex optimizer is used in the clean-up phase. Anything else than Optimizertype::PRIMAL_SIMPLEX or Optimizertype::DUAL_SIMPLEX is equivalent to Optimizertype::FREE_SIMPLEX.

\section*{Default}

\section*{FREE}

\section*{Accepted}

FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT (see Optimizertype)
Example
task.put_int_param(Iparam::BI_CLEAN_OPTIMIZER, Optimizertype::FREE)

\section*{Generic name}

MSK_IPAR_BI_CLEAN_OPTIMIZER

\section*{Groups}

Basis identification, Overall solver
Iparam: :BI_IGNORE_MAX_ITER
If the parameter Iparam::INTPNT_BASIS has the value Basindtype::NO_ERROR and the interiorpoint optimizer has terminated due to maximum number of iterations, then basis identification is performed if this parameter has the value Onoffkey::ON.

\section*{Default}

OFF

\section*{Accepted}

ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::BI_IGNORE_MAX_ITER, Onoffkey::OFF)
Generic name
MSK_IPAR_BI_IGNORE_MAX_ITER
Groups
Interior-point method, Basis identification
Iparam::BI_IGNORE_NUM_ERROR
If the parameter Iparam::INTPNT_BASIS has the value Basindtype::NO_ERROR and the interiorpoint optimizer has terminated due to a numerical problem, then basis identification is performed if this parameter has the value Onoffkey: :ON.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::BI_IGNORE_NUM_ERROR, Onoffkey::OFF)
Generic name
MSK_IPAR_BI_IGNORE_NUM_ERROR

\section*{Groups}

Interior-point method, Basis identification
Iparam: :BI_MAX_ITERATIONS
Controls the maximum number of simplex iterations allowed to optimize a basis after the basis identification.

\section*{Default}
\[
1000000
\]

Accepted
[ \(0 ;+\) inf \(]\)
Example task.put_int_param(Iparam::BI_MAX_ITERATIONS, 1000000)
Generic name MSK_IPAR_BI_MAX_ITERATIONS
Groups Basis identification, Termination criteria

Iparam: :CACHE_LICENSE
Specifies if the license is kept checked out for the lifetime of the MOSEK environment/model/process (Onoffkey: :ON) or returned to the server immediately after the optimization (Onoffkey: :OFF).
By default the license is checked out for the lifetime of the MOSEK environment by the first call to Task.optimize.
Check-in and check-out of licenses have an overhead. Frequent communication with the license server should be avoided.
```

Default
ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::CACHE_LICENSE, Onoffkey::ON)
Generic name
MSK_IPAR_CACHE_LICENSE

```

\section*{Groups}

\section*{License manager}

Iparam: :COMPRESS_STATFILE
Control compression of stat files.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::COMPRESS_STATFILE, Onoffkey::ON)
Generic name
MSK_IPAR_COMPRESS_STATFILE
Iparam: : INFEAS_GENERIC_NAMES
Controls whether generic names are used when an infeasible subproblem is created.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::INFEAS_GENERIC_NAMES, Onoffkey::OFF)
Generic name MSK_IPAR_INFEAS_GENERIC_NAMES
Groups Infeasibility report

Iparam: : INFEAS_PREFER_PRIMAL
If both certificates of primal and dual infeasibility are supplied then only the primal is used when this option is turned on.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::INFEAS_PREFER_PRIMAL, Onoffkey::ON)
Generic name
MSK_IPAR_INFEAS_PREFER_PRIMAL

\section*{Groups}

Overall solver

\section*{Iparam: :INFEAS_REPORT_AUTO}

Controls whether an infeasibility report is automatically produced after the optimization if the problem is primal or dual infeasible.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::INFEAS_REPORT_AUTO, Onoffkey::OFF)
Generic name MSK_IPAR_INFEAS_REPORT_AUTO
Groups Data input/output, Solution input/output

Iparam: :INFEAS_REPORT_LEVEL
Controls the amount of information presented in an infeasibility report. Higher values imply more information.

\section*{Default}

1
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::INFEAS_REPORT_LEVEL, 1)
Generic name MSK_IPAR_INFEAS_REPORT_LEVEL
Groups
Infeasibility report, Output information
Iparam: :INTPNT_BASIS
Controls whether the interior-point optimizer also computes an optimal basis.

\section*{Default}

ALWA YS
Accepted NEVER, ALWAYS, NO_ERROR, IF_FEASIBLE, RESERVERED (see Basindtype)
Example task.put_int_param(Iparam::INTPNT_BASIS, Basindtype::ALWAYS)
See also
Iparam::BI_IGNORE_MAX_ITER, Iparam::BI_IGNORE_NUM_ERROR, Iparam:: BI_MAX_ITERATIONS, Iparam::BI_CLEAN_OPTIMIZER

\section*{Generic name} MSK_IPAR_INTPNT_BASIS

\section*{Groups}

Interior-point method, Basis identification
Iparam: :INTPNT_DIFF_STEP
Controls whether different step sizes are allowed in the primal and dual space.

\section*{Default}

ON
Accepted
- ON: Different step sizes are allowed.
- OFF: Different step sizes are not allowed.

\section*{Example} task.put_int_param(Iparam::INTPNT_DIFF_STEP, Onoffkey::ON)
Generic name MSK_IPAR_INTPNT_DIFF_STEP
Groups Interior-point method

Iparam: :INTPNT_HOTSTART
Currently not in use.
Default
NONE
Accepted NONE, PRIMAL, DUAL, PRIMAL_DUAL (see Intpnthotstart)
Example task.put_int_param(Iparam::INTPNT_HOTSTART, Intpnthotstart::NONE)

\section*{Generic name}

MSK_IPAR_INTPNT_HOTSTART
Groups
Interior-point method
Iparam: :INTPNT_MAX_ITERATIONS
Controls the maximum number of iterations allowed in the interior-point optimizer.

\section*{Default}

400
Accepted
[ \(0 ;+\) inf]
Example
task.put_int_param(Iparam::INTPNT_MAX_ITERATIONS, 400)
Generic name
MSK_IPAR_INTPNT_MAX_ITERATIONS
Groups
Interior-point method, Termination criteria
Iparam: :INTPNT_MAX_NUM_COR
Controls the maximum number of correctors allowed by the multiple corrector procedure. A negative value means that MOSEK is making the choice.

\section*{Default}
-1
Accepted
\([-1 ;+\mathrm{inf}]\)
Example
task.put_int_param(Iparam: :INTPNT_MAX_NUM_COR, -1)
Generic name MSK_IPAR_INTPNT_MAX_NUM_COR

\section*{Groups}

Interior-point method
Iparam: :INTPNT_MAX_NUM_REFINEMENT_STEPS
Maximum number of steps to be used by the iterative refinement of the search direction. A negative value implies that the optimizer chooses the maximum number of iterative refinement steps.

\section*{Default}
-1
Accepted
[-inf; +inf]
Example
task.put_int_param(Iparam::INTPNT_MAX_NUM_REFINEMENT_STEPS, -1)
Generic name
MSK_IPAR_INTPNT_MAX_NUM_REFINEMENT_STEPS
Groups
Interior-point method
Iparam: :INTPNT_OFF_COL_TRH
Controls how many offending columns are detected in the Jacobian of the constraint matrix.
\begin{tabular}{|l|l|}
\hline 0 & no detection \\
\hline 1 & aggressive detection \\
\hline\(>1\) & higher values mean less aggressive detection \\
\hline
\end{tabular}

Default
40

\section*{Accepted}
\([0 ;+i n f]\)
Example
task.put_int_param(Iparam::INTPNT_OFF_COL_TRH, 40)
Generic name MSK_IPAR_INTPNT_OFF_COL_TRH
Groups
Interior-point method
Iparam: :INTPNT_ORDER_GP_NUM_SEEDS
The GP ordering is dependent on a random seed. Therefore, trying several random seeds may lead to a better ordering. This parameter controls the number of random seeds tried.
A value of 0 means that MOSEK makes the choice.

\section*{Default}

0
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::INTPNT_ORDER_GP_NUM_SEEDS, 0)

\section*{Generic name} MSK_IPAR_INTPNT_ORDER_GP_NUM_SEEDS

\section*{Groups}

Interior-point method
Iparam: :INTPNT_ORDER_METHOD
Controls the ordering strategy used by the interior-point optimizer when factorizing the Newton equation system.

\section*{Default}

FREE
Accepted
FREE, APPMINLOC, EXPERIMENTAL, TRY_GRAPHPAR, FORCE_GRAPHPAR, NONE (see Orderingtype)

\section*{Example}
task.put_int_param(Iparam::INTPNT_ORDER_METHOD, Orderingtype::FREE)
Generic name
MSK_IPAR_INTPNT_ORDER_METHOD

\section*{Groups}

Interior-point method
Iparam: :INTPNT_PURIFY
Currently not in use.

\section*{Default}

NONE
Accepted
NONE, PRIMAL, DUAL, PRIMAL_DUAL, AUTO (see Purify)

\section*{Example}
task.put_int_param(Iparam::INTPNT_PURIFY, Purify::NONE)
Generic name MSK_IPAR_INTPNT_PURIFY
Groups Interior-point method

\section*{Iparam: :INTPNT_REGULARIZATION_USE}

Controls whether regularization is allowed.

\section*{Default} ON
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::INTPNT_REGULARIZATION_USE, Onoffkey::ON)
Generic name MSK_IPAR_INTPNT_REGULARIZATION_USE
Groups
Interior-point method
Iparam: : INTPNT_SCALING
Controls how the problem is scaled before the interior-point optimizer is used.
Default FREE
Accepted FREE, NONE (see Scalingtype)
Example task.put_int_param(Iparam::INTPNT_SCALING, Scalingtype::FREE)
Generic name MSK_IPAR_INTPNT_SCALING
Groups Interior-point method

Iparam: :INTPNT_SOLVE_FORM
Controls whether the primal or the dual problem is solved.
Default FREE
Accepted FREE, PRIMAL, DUAL (see Solveform)
Example task.put_int_param(Iparam::INTPNT_SOLVE_FORM, Solveform: :FREE)
Generic name MSK_IPAR_INTPNT_SOLVE_FORM
Groups Interior-point method

Iparam: :INTPNT_STARTING_POINT
Starting point used by the interior-point optimizer.
Default
FREE
Accepted FREE, GUESS, CONSTANT (see Startpointtype)
Example task.put_int_param(Iparam::INTPNT_STARTING_POINT, Startpointtype:: FREE)
Generic name MSK_IPAR_INTPNT_STARTING_POINT

\section*{Groups} Interior-point method

Iparam::LICENSE_DEBUG
This option is used to turn on debugging of the license manager.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::LICENSE_DEBUG, Onoffkey::OFF)
Generic name
MSK_IPAR_LICENSE_DEBUG

\section*{Groups}

License manager
Iparam: :LICENSE_PAUSE_TIME
If Iparam::LICENSE_WAIT is Onoffkey::ON and no license is available, then MOSEK sleeps a number of milliseconds between each check of whether a license has become free.

\section*{Default}

100
Accepted
[0; 1000000]
Example
task.put_int_param(Iparam::LICENSE_PAUSE_TIME, 100)
Generic name
MSK_IPAR_LICENSE_PAUSE_TIME

\section*{Groups}

\section*{License manager}

Iparam: :LICENSE_SUPPRESS_EXPIRE_WRNS
Controls whether license features expire warnings are suppressed.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::LICENSE_SUPPRESS_EXPIRE_WRNS, Onoffkey:: OFF)
Generic name
MSK_IPAR_LICENSE_SUPPRESS_EXPIRE_WRNS

\section*{Groups}

License manager, Output information
Iparam::LICENSE_TRH_EXPIRY_WRN
If a license feature expires in a numbers of days less than the value of this parameter then a warning will be issued.

\section*{Default}

7
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LICENSE_TRH_EXPIRY_WRN, 7)
Generic name
MSK_IPAR_LICENSE_TRH_EXPIRY_WRN
Groups
License manager, Output information

Iparam: :LICENSE_WAIT
If all licenses are in use MOSEK returns with an error code. However, by turning on this parameter MOSEK will wait for an available license.

\section*{Default \\ OFF}

Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::LICENSE_WAIT, Onoffkey::OFF)
Generic name
MSK_IPAR_LICENSE_WAIT
Groups
Overall solver, Overall system, License manager
Iparam::LOG
Controls the amount of \(\log\) information. The value 0 implies that all \(\log\) information is suppressed. A higher level implies that more information is logged.
Please note that if a task is employed to solve a sequence of optimization problems the value of this parameter is reduced by the value of Iparam: :LOG_CUT_SECOND_OPT for the second and any subsequent optimizations.

\section*{Default}

10
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LOG, 10)
See also
Iparam: : LOG_CUT_SECOND_OPT
Generic name
MSK_IPAR_LOG
Groups
Output information, Logging
Iparam::LOG_ANA_PRO
Controls amount of output from the problem analyzer.

\section*{Default}

1
Accepted
[ \(0 ;+\) inf]
Example
task.put_int_param(Iparam::LOG_ANA_PRO, 1)

\section*{Generic name}

MSK_IPAR_LOG_ANA_PRO

\section*{Groups}

Analysis, Logging
Iparam::LOG_BI
Controls the amount of output printed by the basis identification procedure. A higher level implies that more information is logged.

\section*{Default}

1
Accepted
\([0 ;+\) inf \(]\)

\section*{Example}
task.put_int_param(Iparam::LOG_BI, 1)
Generic name MSK_IPAR_LOG_BI
Groups
Basis identification, Output information, Logging
Iparam::LOG_BI_FREQ
Controls how frequently the optimizer outputs information about the basis identification and how frequent the user-defined callback function is called.

\section*{Default}

2500
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LOG_BI_FREQ, 2500)
Generic name
MSK_IPAR_LOG_BI_FREQ
Groups
Basis identification, Output information, Logging
Iparam::LOG_CUT_SECOND_OPT
If a task is employed to solve a sequence of optimization problems, then the value of the log levels is reduced by the value of this parameter. E.g Iparam::LOG and Iparam::LOG_SIM are reduced by the value of this parameter for the second and any subsequent optimizations.

\section*{Default}

1

\section*{Accepted}
[ \(0 ;+\) inf]

\section*{Example}
task.put_int_param(Iparam::LOG_CUT_SECOND_OPT, 1)
See also
Iparam::LOG, Iparam::LOG_INTPNT, Iparam::LOG_MIO, Iparam::LOG_SIM

\section*{Generic name}

MSK_IPAR_LOG_CUT_SECOND_OPT

\section*{Groups}

Output information, Logging
Iparam::LOG_EXPAND
Controls the amount of logging when a data item such as the maximum number constrains is expanded.

Default
1
Accepted
\([0 ;+\mathrm{inf}]\)
Example
task.put_int_param(Iparam::LOG_EXPAND, 1)
Generic name
MSK_IPAR_LOG_EXPAND
Groups
Output information, Logging
```

Iparam::LOG_FEAS_REPAIR

```

Controls the amount of output printed when performing feasibility repair. A value higher than one means extensive logging.

\section*{Default}

1
Accepted
\([0 ;+i n f]\)
Example
task.put_int_param(Iparam::LOG_FEAS_REPAIR, 1)
Generic name
MSK_IPAR_LOG_FEAS_REPAIR
Groups
Output information, Logging
Iparam::LOG_FILE
If turned on, then some \(\log\) info is printed when a file is written or read.
Default
1
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LOG_FILE, 1)
Generic name
MSK_IPAR_LOG_FILE

\section*{Groups}

Data input/output, Output information, Logging
Iparam: :LOG_INCLUDE_SUMMARY
If on, then the solution summary will be printed by Task.optimize, so a separate call to Task. solution_summary is not necessary.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::LOG_INCLUDE_SUMMARY, Onoffkey::OFF)
Generic name
MSK_IPAR_LOG_INCLUDE_SUMMARY

\section*{Groups}

Output information, Logging
Iparam::LOG_INFEAS_ANA
Controls amount of output printed by the infeasibility analyzer procedures. A higher level implies that more information is logged.

\section*{Default}

1
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LOG_INFEAS_ANA, 1)
Generic name
MSK_IPAR_LOG_INFEAS_ANA
Groups
Infeasibility report, Output information, Logging

Iparam::LOG_INTPNT
Controls amount of output printed by the interior-point optimizer. A higher level implies that more information is logged.

\section*{Default}

1

\section*{Accepted}
\([0 ;+i n f]\)
Example
task.put_int_param(Iparam::LOG_INTPNT, 1)
Generic name
MSK_IPAR_LOG_INTPNT
Groups
Interior-point method, Output information, Logging
Iparam::LOG_LOCAL_INFO
Controls whether local identifying information like environment variables, filenames, IP addresses etc. are printed to the log.
Note that this will only affect some functions. Some functions that specifically emit system information will not be affected.

\section*{Default \\ ON}

Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::LOG_LOCAL_INFO, Onoffkey::ON)
Generic name
MSK_IPAR_LOG_LOCAL_INFO
Groups
Output information, Logging
Iparam::LOG_MIO
Controls the log level for the mixed-integer optimizer. A higher level implies that more information is logged.

\section*{Default}

4
Accepted
\([0 ;+\) inf \(]\)

\section*{Example}
task.put_int_param(Iparam::LOG_MIO, 4)

\section*{Generic name}

MSK_IPAR_LOG_MIO

\section*{Groups}

Mixed-integer optimization, Output information, Logging
Iparam: :LOG_MIO_FREQ
Controls how frequent the mixed-integer optimizer prints the log line. It will print line every time Iparam: :LOG_MIO_FREQ relaxations have been solved.

\section*{Default}

10
Accepted
[-inf; +inf]

\section*{Example}
task.put_int_param(Iparam::LOG_MIO_FREQ, 10)

\section*{Generic name}

MSK_IPAR_LOG_MIO_FREQ
Groups
Mixed-integer optimization, Output information, Logging
Iparam::LOG_ORDER
If turned on, then factor lines are added to the log.

\section*{Default}

1
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LOG_ORDER, 1)
Generic name
MSK_IPAR_LOG_ORDER
Groups
Output information, Logging
Iparam::LOG_PRESOLVE
Controls amount of output printed by the presolve procedure. A higher level implies that more information is logged.

\section*{Default}

1
Accepted
[ \(0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LOG_PRESOLVE, 1)
Generic name MSK_IPAR_LOG_PRESOLVE

\section*{Groups}

Logging
Iparam::LOG_RESPONSE
Controls amount of output printed when response codes are reported. A higher level implies that more information is logged.

\section*{Default}

0
Accepted \([0 ;+\mathrm{inf}]\)
Example task.put_int_param(Iparam::LOG_RESPONSE, 0)
Generic name MSK_IPAR_LOG_RESPONSE
Groups Output information, Logging

Iparam::LOG_SENSITIVITY
Controls the amount of logging during the sensitivity analysis.
- 0. Means no logging information is produced.
- 1. Timing information is printed.
- 2. Sensitivity results are printed.

\section*{Default}

1

\section*{Accepted}
\([0 ;+i n f]\)
Example
task.put_int_param(Iparam::LOG_SENSITIVITY, 1)
Generic name MSK_IPAR_LOG_SENSITIVITY
Groups
Output information, Logging
Iparam::LOG_SENSITIVITY_OPT
Controls the amount of logging from the optimizers employed during the sensitivity analysis. 0 means no logging information is produced.

\section*{Default}

0
Accepted
[ \(0 ;+\) inf]
Example
task.put_int_param(Iparam::LOG_SENSITIVITY_OPT, 0)
Generic name
MSK_IPAR_LOG_SENSITIVITY_OPT

\section*{Groups}

Output information, Logging
Iparam: :LOG_SIM
Controls amount of output printed by the simplex optimizer. A higher level implies that more information is logged.

\section*{Default}

4
Accepted
\([0 ;+\) inf \(]\)

\section*{Example}
task.put_int_param(Iparam::LOG_SIM, 4)
Generic name MSK_IPAR_LOG_SIM

\section*{Groups}

Simplex optimizer, Output information, Logging
Iparam::LOG_SIM_FREQ
Controls how frequent the simplex optimizer outputs information about the optimization and how frequent the user-defined callback function is called.

\section*{Default} 1000
Accepted \([0 ;+\) inf \(]\)
Example task.put_int_param(Iparam::LOG_SIM_FREQ, 1000)

\section*{Generic name} MSK_IPAR_LOG_SIM_FREQ

\section*{Groups} Simplex optimizer, Output information, Logging

Iparam::LOG_SIM_MINOR
Currently not in use.

Default
1
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LOG_SIM_MINOR, 1)
Generic name
MSK_IPAR_LOG_SIM_MINOR
Groups
Simplex optimizer, Output information
Iparam::LOG_STORAGE
When turned on, MOSEK prints messages regarding the storage usage and allocation.

\section*{Default}

0
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::LOG_STORAGE, 0)
Generic name
MSK_IPAR_LOG_STORAGE
Groups
Output information, Overall system, Logging
Iparam::MAX_NUM_WARNINGS
Each warning is shown a limited number of times controlled by this parameter. A negative value is identical to infinite number of times.

\section*{Default}

10
Accepted
[-inf; +inf]
Example
task.put_int_param(Iparam::MAX_NUM_WARNINGS, 10)
Generic name
MSK_IPAR_MAX_NUM_WARNINGS
Groups
Output information
Iparam: :MIO_BRANCH_DIR
Controls whether the mixed-integer optimizer is branching up or down by default.

\section*{Default}

\section*{FREE}

\section*{Accepted}

FREE, UP, DOWN, NEAR, FAR, ROOT_LP, GUIDED, PSEUDOCOST (see Branchdir)

\section*{Example}
task.put_int_param(Iparam::MIO_BRANCH_DIR, Branchdir::FREE)
Generic name MSK_IPAR_MIO_BRANCH_DIR

\section*{Groups}

Mixed-integer optimization
Iparam: :MIO_CONIC_OUTER_APPROXIMATION
If this option is turned on outer approximation is used when solving relaxations of conic problems; otherwise interior point is used.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::MIO_CONIC_OUTER_APPROXIMATION, Onoffkey::
OFF)
Generic name
MSK_IPAR_MIO_CONIC_OUTER_APPROXIMATION
Groups
Mixed-integer optimization
Iparam: :MIO_CONSTRUCT_SOL
If set to Onoffkey::ON and all integer variables have been given a value for which a feasible mixed integer solution exists, then MOSEK generates an initial solution to the mixed integer problem by fixing all integer values and solving the remaining problem.

\section*{Default}

OFF

\section*{Accepted}

ON, OFF (see Onoffkey)
Example
Generic name MSK_IPAR_MIO_CONSTRUCT_SOL

\section*{Groups}

Mixed-integer optimization
Iparam: :MIO_CUT_CLIQUE
Controls whether clique cuts should be generated.
Default
ON
Accepted

> ON, OFF (see Onoffkey)

Example
task.put_int_param(Iparam::MIO_CUT_CLIQUE, Onoffkey::ON)

\section*{Generic name} MSK_IPAR_MIO_CUT_CLIQUE

\section*{Groups}

Mixed-integer optimization
Iparam: :MIO_CUT_CMIR
Controls whether mixed integer rounding cuts should be generated.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::MIO_CUT_CMIR, Onoffkey::ON)
Generic name MSK_IPAR_MIO_CUT_CMIR
Groups Mixed-integer optimization

Iparam: :MIO_CUT_GMI
Controls whether GMI cuts should be generated.
Default
ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::MIO_CUT_GMI, Onoffkey::ON)
Generic name MSK_IPAR_MIO_CUT_GMI

\section*{Groups}

Mixed-integer optimization
Iparam::MIO_CUT_IMPLIED_BOUND
Controls whether implied bound cuts should be generated.
Default
ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::MIO_CUT_IMPLIED_BOUND, Onoffkey::ON)
Generic name MSK_IPAR_MIO_CUT_IMPLIED_BOUND
Groups Mixed-integer optimization

Iparam::MIO_CUT_KNAPSACK_COVER
Controls whether knapsack cover cuts should be generated.
Default
ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::MIO_CUT_KNAPSACK_COVER, Onoffkey::ON)
Generic name MSK_IPAR_MIO_CUT_KNAPSACK_COVER
Groups
Mixed-integer optimization
Iparam: :MIO_CUT_LIPRO
Controls whether lift-and-project cuts should be generated.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::MIO_CUT_LIPRO, Onoffkey::OFF)
Generic name MSK_IPAR_MIO_CUT_LIPRO
Groups
Mixed-integer optimization

Iparam: :MIO_CUT_SELECTION_LEVEL
Controls how aggressively generated cuts are selected to be included in the relaxation.
- -1 . The optimizer chooses the level of cut selection
- 0. Generated cuts less likely to be added to the relaxation
- 1. Cuts are more aggressively selected to be included in the relaxation

\section*{Default}
-1

\section*{Accepted}
\([-1 ;+1]\)
Example
task.put_int_param(Iparam: :MIO_CUT_SELECTION_LEVEL, -1)
Generic name MSK_IPAR_MIO_CUT_SELECTION_LEVEL
Groups Mixed-integer optimization

Iparam: : MIO_DATA_PERMUTATION_METHOD
Controls what problem data permutation method is appplied to mixed-integer problems.

\section*{Default}

NONE
Accepted NONE, CYCLIC_SHIFT, RANDOM (see Miodatapermmethod)
Example task.put_int_param(Iparam: :MIO_DATA_PERMUTATION_METHOD, Miodatapermmethod: :NONE)

\section*{Generic name} MSK_IPAR_MIO_DATA_PERMUTATION_METHOD
Groups
Mixed-integer optimization
Iparam: : MIO_DUAL_RAY_ANALYSIS_LEVEL
Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer in presolve.
- -1 . The optimizer chooses the level of dual ray analysis employed
- 0. Dual ray analysis is disabled
- 1. A lower amount of dual ray analysis is employed
- 2. A higher amount of dual ray analysis is employed

\section*{Default}
\(-1\)
Accepted
[-1; 2]
Example
task.put_int_param(Iparam::MIO_DUAL_RAY_ANALYSIS_LEVEL, -1)
Generic name
MSK_IPAR_MIO_DUAL_RAY_ANALYSIS_LEVEL
Groups
Mixed-integer optimization

Iparam: :MIO_FEASPUMP_LEVEL
Controls the way the Feasibility Pump heuristic is employed by the mixed-integer optimizer.
- -1 . The optimizer chooses how the Feasibility Pump is used
- 0. The Feasibility Pump is disabled
- 1. The Feasibility Pump is enabled with an effort to improve solution quality
- 2. The Feasibility Pump is enabled with an effort to reach feasibility early

\section*{Default}
-1

\section*{Accepted}
\([-1 ; 2]\)
Example
task.put_int_param(Iparam: :MIO_FEASPUMP_LEVEL, -1)
Generic name MSK_IPAR_MIO_FEASPUMP_LEVEL
Groups
Mixed-integer optimization
Iparam: :MIO_HEURISTIC_LEVEL
Controls the heuristic employed by the mixed-integer optimizer to locate an initial good integer feasible solution. A value of zero means the heuristic is not used at all. A larger value than 0 means that a gradually more sophisticated heuristic is used which is computationally more expensive. A negative value implies that the optimizer chooses the heuristic. Normally a value around 3 to 5 should be optimal.

\section*{Default}
-1
Accepted
\[
[-\mathrm{inf} ;+\mathrm{inf}]
\]

Example
task.put_int_param(Iparam::MIO_HEURISTIC_LEVEL, -1)
Generic name
MSK_IPAR_MIO_HEURISTIC_LEVEL

\section*{Groups}

\section*{Mixed-integer optimization}

Iparam: :MIO_MAX_NUM_BRANCHES
Maximum number of branches allowed during the branch and bound search. A negative value means infinite.

\section*{Default} -1

\section*{Accepted}
[-inf; +inf]
Example
task.put_int_param(Iparam: :MIO_MAX_NUM_BRANCHES, -1)

\section*{Generic name} MSK_IPAR_MIO_MAX_NUM_BRANCHES

\section*{Groups}

Mixed-integer optimization, Termination criteria
Iparam: :MIO_MAX_NUM_RELAXS
Maximum number of relaxations allowed during the branch and bound search. A negative value means infinite.

\section*{Default}
-1

\section*{Accepted}
[-inf; +inf]
Example
task.put_int_param(Iparam::MIO_MAX_NUM_RELAXS, -1)
Generic name MSK_IPAR_MIO_MAX_NUM_RELAXS
Groups
Mixed-integer optimization
Iparam: :MIO_MAX_NUM_RESTARTS
Maximum number of restarts allowed during the branch and bound search.

\section*{Default}

0
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::MIO_MAX_NUM_RESTARTS, 0)
Generic name
MSK_IPAR_MIO_MAX_NUM_RESTARTS

\section*{Groups}

Mixed-integer optimization
Iparam: :MIO_MAX_NUM_ROOT_CUT_ROUNDS
Maximum number of cut separation rounds at the root node.

\section*{Default}

100
Accepted
[ \(0 ;+\) inf]
Example
task.put_int_param(Iparam::MIO_MAX_NUM_ROOT_CUT_ROUNDS, 100)
Generic name MSK_IPAR_MIO_MAX_NUM_ROOT_CUT_ROUNDS
Groups Mixed-integer optimization, Termination criteria

Iparam: :MIO_MAX_NUM_SOLUTIONS
The mixed-integer optimizer can be terminated after a certain number of different feasible solutions has been located. If this parameter has the value \(n>0\), then the mixed-integer optimizer will be terminated when \(n\) feasible solutions have been located.

\section*{Default}
-1
Accepted
[-inf; +inf]
Example
task.put_int_param(Iparam::MIO_MAX_NUM_SOLUTIONS, -1)
Generic name
MSK_IPAR_MIO_MAX_NUM_SOLUTIONS
Groups
Mixed-integer optimization, Termination criteria
Iparam::MIO_MEMORY_EMPHASIS_LEVEL
Controls how much emphasis is put on reducing memory usage. Being more conservative about memory usage may come at the cost of decreased solution speed.
- 0 . The optimizer chooses
- 1. More emphasis is put on reducing memory usage and less on speed

Default
0
Accepted
\([0 ;+1]\)
Example
task.put_int_param(Iparam::MIO_MEMORY_EMPHASIS_LEVEL, 0)
Generic name
MSK_IPAR_MIO_MEMORY_EMPHASIS_LEVEL
Groups
Mixed-integer optimization
Iparam::MIO_MIN_REL
Number of times a variable must have been branched on for its pseudocost to be considered reliable.

\section*{Default}

5
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam: :MIO_MIN_REL, 5)
Generic name
MSK_IPAR_MIO_MIN_REL
Groups
Mixed-integer optimization
Iparam: :MIO_MODE
Controls whether the optimizer includes the integer restrictions and disjunctive constraints when solving a (mixed) integer optimization problem.

\section*{Default}

SATISFIED
Accepted
IGNORED, SATISFIED (see Miomode)

\section*{Example}
task.put_int_param(Iparam::MIO_MODE, Miomode::SATISFIED)
Generic name MSK_IPAR_MIO_MODE
Groups
Overall solver
Iparam: :MIO_NODE_OPTIMIZER
Controls which optimizer is employed at the non-root nodes in the mixed-integer optimizer.

\section*{Default}

\section*{FREE}

\section*{Accepted}

FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT (see Optimizertype)

\section*{Example}

Generic name MSK_IPAR_MIO_NODE_OPTIMIZER

\section*{Groups} Mixed-integer optimization

Iparam: :MIO_NODE_SELECTION
Controls the node selection strategy employed by the mixed-integer optimizer.
Default
FREE
Accepted FREE, FIRST, BEST, PSEUDO (see Mionodeseltype)
Example
task.put_int_param(Iparam::MIO_NODE_SELECTION, Mionodeseltype::FREE)
Generic name MSK_IPAR_MIO_NODE_SELECTION
Groups
Mixed-integer optimization
Iparam::MIO_NUMERICAL_EMPHASIS_LEVEL
Controls how much emphasis is put on reducing numerical problems possibly at the expense of solution speed.
- 0. The optimizer chooses
- 1. More emphasis is put on reducing numerical problems
- 2. Even more emphasis

\section*{Default}

0
Accepted
\([0 ;+2]\)
Example
task.put_int_param(Iparam::MIO_NUMERICAL_EMPHASIS_LEVEL, 0)
Generic name
MSK_IPAR_MIO_NUMERICAL_EMPHASIS_LEVEL
Groups
Mixed-integer optimization
Iparam::MIO_PERSPECTIVE_REFORMULATE
Enables or disables perspective reformulation in presolve.
Default
ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::MIO_PERSPECTIVE_REFORMULATE, Onoffkey::ON)
Generic name
MSK_IPAR_MIO_PERSPECTIVE_REFORMULATE

\section*{Groups}

Mixed-integer optimization
Iparam: :MIO_PRESOLVE_AGGREGATOR_USE
Controls if the aggregator should be used.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::MIO_PRESOLVE_AGGREGATOR_USE, Onoffkey::ON)

\section*{Generic name}

MSK_IPAR_MIO_PRESOLVE_AGGREGATOR_USE
Groups
Presolve
Iparam::MIO_PROBING_LEVEL
Controls the amount of probing employed by the mixed-integer optimizer in presolve.
- -1 . The optimizer chooses the level of probing employed
- 0. Probing is disabled
- 1. A low amount of probing is employed
- 2. A medium amount of probing is employed
- 3. A high amount of probing is employed

\section*{Default}
-1
Accepted
\([-1 ; 3]\)
Example
task.put_int_param(Iparam::MIO_PROBING_LEVEL, -1)
Generic name
MSK_IPAR_MIO_PROBING_LEVEL

\section*{Groups}

Mixed-integer optimization
Iparam::MIO_PROPAGATE_OBJECTIVE_CONSTRAINT
Use objective domain propagation.
Default
OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam: :MIO_PROPAGATE_OBJECTIVE_CONSTRAINT, Onoffkey: :OFF)

\section*{Generic name} MSK_IPAR_MIO_PROPAGATE_OBJECTIVE_CONSTRAINT

\section*{Groups}

Mixed-integer optimization
Iparam: :MIO_QCQO_REFORMULATION_METHOD
Controls what reformulation method is applied to mixed-integer quadratic problems.

\section*{Default}

FREE

\section*{Accepted}

FREE, NONE, LINEARIZATION, EIGEN_VAL_METHOD, DIAG_SDP, RELAX_SDP (see Miqcqoreformmethod)

\section*{Example}
task.put_int_param(Iparam::MIO_QCQO_REFORMULATION_METHOD, Miqcqoreformmethod: :FREE)

\section*{Generic name} MSK_IPAR_MIO_QCQO_REFORMULATION_METHOD
Groups Mixed-integer optimization

Controls the maximum number of nodes allowed in each call to the RINS heuristic. The default value of -1 means that the value is determined automatically. A value of zero turns off the heuristic.

\section*{Default}
-1
Accepted
\([-1 ;+\mathrm{inf}]\)
Example
task.put_int_param(Iparam::MIO_RINS_MAX_NODES, -1)
Generic name
MSK_IPAR_MIO_RINS_MAX_NODES
Groups
Mixed-integer optimization
Iparam: :MIO_ROOT_OPTIMIZER
Controls which optimizer is employed at the root node in the mixed-integer optimizer.

\section*{Default}

\section*{free}

\section*{Accepted}

FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT (see Optimizertype)

\section*{Example}
task.put_int_param(Iparam::MIO_ROOT_OPTIMIZER, Optimizertype::FREE)

\section*{Generic name} MSK_IPAR_MIO_ROOT_OPTIMIZER

\section*{Groups} Mixed-integer optimization

Iparam: :MIO_ROOT_REPEAT_PRESOLVE_LEVEL
Controls whether presolve can be repeated at root node.
- -1 . The optimizer chooses whether presolve is repeated
- 0. Never repeat presolve
- 1. Always repeat presolve

\section*{Default}
-1
Accepted
\([-1 ; 1]\)

\section*{Example}
task.put_int_param(Iparam::MIO_ROOT_REPEAT_PRESOLVE_LEVEL, -1)
Generic name MSK_IPAR_MIO_ROOT_REPEAT_PRESOLVE_LEVEL

\section*{Groups}

Mixed-integer optimization
Iparam: :MIO_SEED
Sets the random seed used for randomization in the mixed integer optimizer. Selecting a different seed can change the path the optimizer takes to the optimal solution.

\section*{Default}

42
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::MIO_SEED, 42)

\section*{Generic name}

MSK_IPAR_MIO_SEED
Groups
Mixed-integer optimization
Iparam: :MIO_SYMMETRY_LEVEL
Controls the amount of symmetry detection and handling employed by the mixed-integer optimizer in presolve.
- -1 . The optimizer chooses the level of symmetry detection and handling employed
- 0. Symmetry detection and handling is disabled
- 1. A low amount of symmetry detection and handling is employed
- 2. A medium amount of symmetry detection and handling is employed
- 3. A high amount of symmetry detection and handling is employed
- 4. An extremely high amount of symmetry detection and handling is employed

\section*{Default}
-1
Accepted
[-1; 4]
Example
task.put_int_param(Iparam::MIO_SYMMETRY_LEVEL, -1)
Generic name MSK_IPAR_MIO_SYMMETRY_LEVEL
Groups
Mixed-integer optimization
Iparam: :MIO_VAR_SELECTION
Controls the variable selection strategy employed by the mixed-integer optimizer.

\section*{Default}

FREE
Accepted
FREE, PSEUDOCOST, STRONG (see Miovarseltype)
Example
task.put_int_param(Iparam::MIO_VAR_SELECTION, Miovarseltype::FREE)
Generic name
MSK_IPAR_MIO_VAR_SELECTION
Groups
Mixed-integer optimization
Iparam::MIO_VB_DETECTION_LEVEL
Controls how much effort is put into detecting variable bounds.
- -1 . The optimizer chooses
- 0. No variable bounds are detected
- 1. Only detect variable bounds that are directly represented in the problem
- 2. Detect variable bounds in probing

\section*{Default}
-1
Accepted
\([-1 ;+2]\)
Example
task.put_int_param(Iparam::MIO_VB_DETECTION_LEVEL, -1)

\section*{Generic name}

MSK_IPAR_MIO_VB_DETECTION_LEVEL
Groups
Mixed-integer optimization
Iparam::MT_SPINCOUNT
Set the number of iterations to spin before sleeping.
Default
0
Accepted [0; 10000000000]
Example task.put_int_param(Iparam::MT_SPINCOUNT, 0)
Generic name MSK_IPAR_MT_SPINCOUNT
Groups Overall system

Iparam: :NG
Not in use.
Default
OFF
Accepted
ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::NG, Onoffkey::OFF)
Generic name MSK_IPAR_NG
Iparam: : NUM_THREADS
Controls the number of threads employed by the optimizer. If set to 0 the number of threads used will be equal to the number of cores detected on the machine.

\section*{Default}

0
Accepted \([0 ;+i n f]\)
Example
task.put_int_param(Iparam::NUM_THREADS, 0)
Generic name
MSK_IPAR_NUM_THREADS
Groups
Overall system
Iparam: :OPF_WRITE_HEADER
Write a text header with date and MOSEK version in an OPF file.

\section*{Default} ON
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::OPF_WRITE_HEADER, Onoffkey::ON)
Generic name MSK_IPAR_OPF_WRITE_HEADER
Groups Data input/output
```

Iparam::OPF_WRITE_HINTS

```

Write a hint section with problem dimensions in the beginning of an OPF file.

\section*{Default} ON
Accepted ON, OFF (see Onoffkey)
Example
```

task.put_int_param(Iparam::OPF_WRITE_HINTS, Onoffkey::ON)

```

Generic name MSK_IPAR_OPF_WRITE_HINTS

\section*{Groups} Data input/output

Iparam: :OPF_WRITE_LINE_LENGTH
Aim to keep lines in OPF files not much longer than this.
Default 80
Accepted \([0 ;+\mathrm{inf}]\)
Example task.put_int_param(Iparam::OPF_WRITE_LINE_LENGTH, 80)
Generic name MSK_IPAR_OPF _WRITE_LINE_LENGTH
Groups Data input/output

Iparam::OPF_WRITE_PARAMETERS
Write a parameter section in an OPF file.
Default
OFF
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::OPF_WRITE_PARAMETERS, Onoffkey::OFF)
Generic name MSK_IPAR_OPF_WRITE_PARAMETERS
Groups Data input/output

Iparam: :OPF_WRITE_PROBLEM
Write objective, constraints, bounds etc. to an OPF file.
Default ON
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::OPF_WRITE_PROBLEM, Onoffkey::ON)
Generic name MSK_IPAR_OPF_WRITE_PROBLEM
Groups Data input/output

Iparam::OPF_WRITE_SOL_BAS
If Iparam::OPF_WRITE_SOLUTIONS is Onoffkey::ON and a basic solution is defined, include the basic solution in OPF files.

\section*{Default \\ ON}

Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::OPF_WRITE_SOL_BAS, Onoffkey::ON)
Generic name MSK_IPAR_OPF _WRITE_SOL_BAS

\section*{Groups} Data input/output

Iparam: :OPF_WRITE_SOL_ITG
If Iparam::OPF_WRITE_SOLUTIONS is Onoffkey::ON and an integer solution is defined, write the integer solution in OPF files.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::OPF_WRITE_SOL_ITG, Onoffkey::ON)

\section*{Generic name} MSK_IPAR_OPF_WRITE_SOL_ITG

\section*{Groups}

Data input/output
Iparam::OPF_WRITE_SOL_ITR
If Iparam::OPF_WRITE_SOLUTIONS is Onoffkey::ON and an interior solution is defined, write the interior solution in OPF files.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::OPF_WRITE_SOL_ITR, Onoffkey::ON)
Generic name MSK_IPAR_OPF_WRITE_SOL_ITR

\section*{Groups}

Data input/output
Iparam::OPF_WRITE_SOLUTIONS
Enable inclusion of solutions in the OPF files.
```

Default
OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::OPF_WRITE_SOLUTIONS, Onoffkey::OFF)
Generic name
MSK_IPAR_OPF_WRITE_SOLUTIONS
Groups
Data input/output

```

Iparam: :OPTIMIZER
The parameter controls which optimizer is used to optimize the task.

\section*{Default}

FREE
Accepted
```

 FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX,
    ``` MIXED_INT (see Optimizertype)

\section*{Example}
task.put_int_param(Iparam::OPTIMIZER, Optimizertype::FREE)
Generic name MSK_IPAR_OPTIMIZER
Groups Overall solver

Iparam: :PARAM_READ_CASE_NAME
If turned on, then names in the parameter file are case sensitive.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::PARAM_READ_CASE_NAME, Onoffkey::ON)
Generic name MSK_IPAR_PARAM_READ_CASE_NAME

\section*{Groups} Data input/output

Iparam: :PARAM_READ_IGN_ERROR
If turned on, then errors in parameter settings is ignored.
Default OFF
Accepted ON, OFF (see Onoffkey)

\section*{Example}
```

 task.put_int_param(Iparam::PARAM_READ_IGN_ERROR, Onoffkey::OFF)
    ```

Generic name MSK_IPAR_PARAM_READ_IGN_ERROR

\section*{Groups} Data input/output

Iparam: :PRESOLVE_ELIMINATOR_MAX_FILL
Controls the maximum amount of fill-in that can be created by one pivot in the elimination phase of the presolve. A negative value means the parameter value is selected automatically.

\section*{Default}
-1
Accepted
[-inf; +inf]
Example
task.put_int_param(Iparam::PRESOLVE_ELIMINATOR_MAX_FILL, -1)
Generic name
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_FILL
Groups
Presolve

Iparam: :PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
Control the maximum number of times the eliminator is tried. A negative value implies MOSEK decides.

\section*{Default}
-1

\section*{Accepted}
[-inf; +inf]
Example
task.put_int_param(Iparam::PRESOLVE_ELIMINATOR_MAX_NUM_TRIES, -1)
Generic name
MSK_IPAR_PRESOLVE_ELIMINATOR_MAX_NUM_TRIES
Groups
Presolve
Iparam::PRESOLVE_LEVEL
Currently not used.

\section*{Default}
-1
Accepted
[-inf; +inf]
Example
task.put_int_param(Iparam::PRESOLVE_LEVEL, -1)
Generic name MSK_IPAR_PRESOLVE_LEVEL

\section*{Groups}

Overall solver, Presolve
Iparam: :PRESOLVE_LINDEP_ABS_WORK_TRH
Controls linear dependency check in presolve. The linear dependency check is potentially computationally expensive.

\section*{Default}

100

\section*{Accepted}
[-inf; +inf]
Example
task.put_int_param(Iparam::PRESOLVE_LINDEP_ABS_WORK_TRH, 100)
Generic name MSK_IPAR_PRESOLVE_LINDEP_ABS_WORK_TRH
Groups
Presolve
Iparam: :PRESOLVE_LINDEP_NEW
Controls whether whether a new experimental linear dependency checker is employed.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::PRESOLVE_LINDEP_NEW, Onoffkey::OFF)
Generic name
MSK_IPAR_PRESOLVE_LINDEP _NEW
Groups
Presolve

Iparam: :PRESOLVE_LINDEP_REL_WORK_TRH
Controls linear dependency check in presolve. The linear dependency check is potentially computationally expensive.

\section*{Default}

100
Accepted
[-inf; +inf]
Example task.put_int_param(Iparam::PRESOLVE_LINDEP_REL_WORK_TRH, 100)
Generic name MSK_IPAR_PRESOLVE_LINDEP_REL_WORK_TRH
Groups Presolve

Iparam: :PRESOLVE_LINDEP_USE
Controls whether the linear constraints are checked for linear dependencies.

\section*{Default} ON
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::PRESOLVE_LINDEP_USE, Onoffkey::ON)
Generic name MSK_IPAR_PRESOLVE_LINDEP_USE
Groups Presolve

Iparam: :PRESOLVE_MAX_NUM_PASS
Control the maximum number of times presolve passes over the problem. A negative value implies MOSEK decides.

\section*{Default}
-1
Accepted [-inf; +inf]

\section*{Example}
task.put_int_param(Iparam::PRESOLVE_MAX_NUM_PASS, -1)

\section*{Generic name} MSK_IPAR_PRESOLVE_MAX_NUM_PASS

\section*{Groups}

Iparam: :PRESOLVE_MAX_NUM_REDUCTIONS
Controls the maximum number of reductions performed by the presolve. The value of the parameter is normally only changed in connection with debugging. A negative value implies that an infinite number of reductions are allowed.

Default -1
Accepted
\[
[-\mathrm{inf} ;+\mathrm{inf}]
\]

Example
task.put_int_param(Iparam::PRESOLVE_MAX_NUM_REDUCTIONS, -1)
Generic name MSK_IPAR_PRESOLVE_MAX_NUM_REDUCTIONS

\section*{Groups}

Overall solver, Presolve
Iparam: :PRESOLVE_USE
Controls whether the presolve is applied to a problem before it is optimized.
Default
FREE
Accepted
OFF, ON, FREE (see Presolvemode)
Example task.put_int_param(Iparam::PRESOLVE_USE, Presolvemode::FREE)
Generic name MSK_IPAR_PRESOLVE_USE
Groups
Overall solver, Presolve
Iparam: :PRIMAL_REPAIR_OPTIMIZER
Controls which optimizer that is used to find the optimal repair.

\section*{Default}

FREE
Accepted
FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT (see Optimizertype)
Example
task.put_int_param(Iparam::PRIMAL_REPAIR_OPTIMIZER, Optimizertype:: FREE)
Generic name MSK_IPAR_PRIMAL_REPAIR_OPTIMIZER
Groups Overall solver

Iparam: :PTF_WRITE_PARAMETERS
If Iparam::PTF_WRITE_PARAMETERS is Onoffkey::ON, the parameters section is written.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::PTF_WRITE_PARAMETERS, Onoffkey::OFF)

\section*{Generic name} MSK_IPAR_PTF_WRITE_PARAMETERS

\section*{Groups} Data input/output

Iparam: :PTF_WRITE_SOLUTIONS
If Iparam: :PTF_WRITE_SOLUTIONS is Onoffkey::ON, the solution section is written if any solutions are available, otherwise solution section is not written even if solutions are available.

\section*{Default} OFF

\section*{Accepted} ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::PTF_WRITE_SOLUTIONS, Onoffkey::OFF)

\section*{Generic name}

MSK_IPAR_PTF_WRITE_SOLUTIONS
Groups
Data input/output
Iparam: :PTF_WRITE_TRANSFORM
If Iparam::PTF_WRITE_TRANSFORM is Onoffkey::ON, constraint blocks with identifiable conic slacks are transformed into conic constraints and the slacks are eliminated.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::PTF_WRITE_TRANSFORM, Onoffkey::ON)

\section*{Generic name} MSK_IPAR_PTF_WRITE_TRANSFORM

\section*{Groups} Data input/output

Iparam: :READ_DEBUG
Turns on additional debugging information when reading files.

\section*{Default}

OFF

\section*{Accepted}
ON, OFF (see Onoffkey)

Example task.put_int_param(Iparam::READ_DEBUG, Onoffkey::OFF)

\section*{Generic name} MSK_IPAR_READ_DEBUG
Groups
Data input/output
Iparam: :READ_KEEP_FREE_CON
Controls whether the free constraints are included in the problem.

\section*{Default}

OFF
Accepted
- ON: The free constraints are kept.
- OFF: The free constraints are discarded.

\section*{Example}
task.put_int_param(Iparam::READ_KEEP_FREE_CON, Onoffkey::OFF)
Generic name MSK_IPAR_READ_KEEP_FREE_CON
Groups Data input/output

Iparam: :READ_MPS_FORMAT
Controls how strictly the MPS file reader interprets the MPS format.

\section*{Default}

FREE
Accepted
STRICT, RELAXED, FREE, CPLEX (see Mpsformat)

\section*{Example}
task.put_int_param(Iparam::READ_MPS_FORMAT, Mpsformat::FREE)

\section*{Generic name}

MSK_IPAR_READ_MPS_FORMAT
Groups
Data input/output
Iparam: :READ_MPS_WIDTH
Controls the maximal number of characters allowed in one line of the MPS file.
Default 1024
Accepted [80; +inf]
Example task.put_int_param(Iparam::READ_MPS_WIDTH, 1024)
Generic name MSK_IPAR_READ_MPS_WIDTH
Groups Data input/output

Iparam::READ_TASK_IGNORE_PARAM
Controls whether MOSEK should ignore the parameter setting defined in the task file and use the default parameter setting instead.

\section*{Default}

\section*{OFF}

Accepted
ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::READ_TASK_IGNORE_PARAM, Onoffkey::OFF)
Generic name MSK_IPAR_READ_TASK_IGNORE_PARAM

\section*{Groups} Data input/output

Iparam: :REMOTE_USE_COMPRESSION
Use compression when sending data to an optimization server.
Default ZSTD
Accepted NONE, FREE, GZIP, ZSTD (see Compresstype)
Example task.put_int_param(Iparam::REMOTE_USE_COMPRESSION, Compresstype:: ZSTD)
Generic name MSK_IPAR_REMOTE_USE_COMPRESSION

Iparam::REMOVE_UNUSED_SOLUTIONS
Removes unused solutions before the optimization is performed.

\section*{Default}

OFF
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::REMOVE_UNUSED_SOLUTIONS, Onoffkey::OFF)
Generic name MSK_IPAR_REMOVE_UNUSED_SOLUTIONS

\section*{Groups}

Overall system
Iparam: :SENSITIVITY_ALL
If set to Onoffkey: :ON, then Task. sensitivity_report analyzes all bounds and variables instead of reading a specification from the file.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::SENSITIVITY_ALL, Onoffkey::OFF)
Generic name MSK_IPAR_SENSITIVITY_ALL
Groups

> Overall solver

Iparam::SENSITIVITY_OPTIMIZER
Controls which optimizer is used for optimal partition sensitivity analysis.

\section*{Default}

FREE_SIMPLEX
Accepted
FREE, INTPNT, CONIC, PRIMAL_SIMPLEX, DUAL_SIMPLEX, FREE_SIMPLEX, MIXED_INT (see Optimizertype)

\section*{Example}
task.put_int_param(Iparam::SENSITIVITY_OPTIMIZER, Optimizertype:: FREE_SIMPLEX)

\section*{Generic name} MSK_IPAR_SENSITIVITY_OPTIMIZER

\section*{Groups}

Overall solver, Simplex optimizer
Iparam: :SENSITIVITY_TYPE
Controls which type of sensitivity analysis is to be performed.

\section*{Default}

> BASIS

Accepted BASIS (see Sensitivitytype)

\section*{Example} task.put_int_param(Iparam::SENSITIVITY_TYPE, Sensitivitytype: :BASIS)
Generic name MSK_IPAR_SENSITIVITY_TYPE

\section*{Groups} Overall solver
```

Iparam::SIM_BASIS_FACTOR_USE

```

Controls whether an LU factorization of the basis is used in a hot-start. Forcing a refactorization sometimes improves the stability of the simplex optimizers, but in most cases there is a performance penalty.
```

Default
ON
Accepted
ON, OFF (see Onoffkey)

```

\section*{Example}
            task.put_int_param(Iparam::SIM_BASIS_FACTOR_USE, Onoffkey::ON)
Generic name
        MSK_IPAR_SIM_BASIS_FACTOR_USE

\section*{Groups}

Simplex optimizer
Iparam::SIM_DEGEN
Controls how aggressively degeneration is handled.
Default
FREE
Accepted
NONE, FREE, AGGRESSIVE, MODERATE, MINIMUM (see Simdegen)
Example
task.put_int_param(Iparam::SIM_DEGEN, Simdegen::FREE)
Generic name
MSK_IPAR_SIM_DEGEN
Groups
Simplex optimizer
Iparam::SIM_DETECT_PWL
Not in use.

\section*{Default}

ON
Accepted
- ON: PWL are detected.
- OFF: PWL are not detected.

Example
task.put_int_param(Iparam::SIM_DETECT_PWL, Onoffkey::ON)
Generic name MSK_IPAR_SIM_DETECT_PWL

\section*{Groups}

Simplex optimizer
Iparam: :SIM_DUAL_CRASH
Controls whether crashing is performed in the dual simplex optimizer. If this parameter is set to \(x\), then a crash will be performed if a basis consists of more than \((100-x) \bmod f_{v}\) entries, where \(f_{v}\) is the number of fixed variables.

\section*{Default}

90
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::SIM_DUAL_CRASH, 90)
Generic name
MSK_IPAR_SIM_DUAL_CRASH

\section*{Groups}

Dual simplex
Iparam: :SIM_DUAL_PHASEONE_METHOD
An experimental feature.

\section*{Default}

0

\section*{Accepted}
[0; 10]
Example
task.put_int_param(Iparam::SIM_DUAL_PHASEONE_METHOD, 0)
Generic name MSK_IPAR_SIM_DUAL_PHASEONE_METHOD
Groups
Simplex optimizer
Iparam::SIM_DUAL_RESTRICT_SELECTION
The dual simplex optimizer can use a so-called restricted selection/pricing strategy to choose the outgoing variable. Hence, if restricted selection is applied, then the dual simplex optimizer first choose a subset of all the potential outgoing variables. Next, for some time it will choose the outgoing variable only among the subset. From time to time the subset is redefined. A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

\section*{Default}

50
Accepted
[0; 100]
Example
task.put_int_param(Iparam::SIM_DUAL_RESTRICT_SELECTION, 50)
Generic name
MSK_IPAR_SIM_DUAL_RESTRICT_SELECTION
Groups
Dual simplex
Iparam: :SIM_DUAL_SELECTION
Controls the choice of the incoming variable, known as the selection strategy, in the dual simplex optimizer.

\section*{Default}

> FREE

Accepted
FREE, FULL, ASE, DEVEX, SE, PARTIAL (see Simseltype)

\section*{Example}
task.put_int_param(Iparam::SIM_DUAL_SELECTION, Simseltype::FREE)

\section*{Generic name}

> MSK_IPAR_SIM_DUAL_SELECTION

\section*{Groups}

Dual simplex
Iparam: :SIM_EXPLOIT_DUPVEC
Controls if the simplex optimizers are allowed to exploit duplicated columns.

\section*{Default}

OFF
Accepted
ON, OFF, FREE (see Simdupvec)

\section*{Example}
task.put_int_param(Iparam::SIM_EXPLOIT_DUPVEC, Simdupvec::OFF)

\section*{Generic name}

MSK_IPAR_SIM_EXPLOIT_DUPVEC

\section*{Groups}

Iparam: :SIM_HOTSTART
Controls the type of hot-start that the simplex optimizer perform.
Default
FREE
Accepted
NONE, FREE, STATUS_KEYS (see Simhotstart)
Example
task.put_int_param(Iparam::SIM_HOTSTART, Simhotstart::FREE)
Generic name
MSK_IPAR_SIM_HOTSTART
Groups
Simplex optimizer
Iparam::SIM_HOTSTART_LU
Determines if the simplex optimizer should exploit the initial factorization.

\section*{Default}

ON
Accepted
- ON: Factorization is reused if possible.
- OFF: Factorization is recomputed.

\section*{Example} task.put_int_param(Iparam::SIM_HOTSTART_LU, Onoffkey::ON)
Generic name MSK_IPAR_SIM_HOTSTART_LU
Groups Simplex optimizer

Iparam::SIM_MAX_ITERATIONS
Maximum number of iterations that can be used by a simplex optimizer.
Default 10000000
Accepted [ \(0 ;+\) inf]
Example task.put_int_param(Iparam::SIM_MAX_ITERATIONS, 10000000)
Generic name MSK_IPAR_SIM_MAX_ITERATIONS
Groups
Simplex optimizer, Termination criteria
Iparam: :SIM_MAX_NUM_SETBACKS
Controls how many set-backs are allowed within a simplex optimizer. A set-back is an event where the optimizer moves in the wrong direction. This is impossible in theory but may happen due to numerical problems.

\section*{Default} 250
Accepted \([0 ;+\) inf \(]\)
Example task.put_int_param(Iparam::SIM_MAX_NUM_SETBACKS, 250)
Generic name
```

 MSK_IPAR_SIM_MAX_NUM_SETBACKS
    ```

\section*{Groups}

Iparam::SIM_NON_SINGULAR
Controls if the simplex optimizer ensures a non-singular basis, if possible.

\section*{Default}

ON

\section*{Accepted}

ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::SIM_NON_SINGULAR, Onoffkey::ON)
Generic name
MSK_IPAR_SIM_NON_SINGULAR

\section*{Groups}

Simplex optimizer
Iparam::SIM_PRIMAL_CRASH
Controls whether crashing is performed in the primal simplex optimizer. In general, if a basis consists of more than (100-this parameter value)\% fixed variables, then a crash will be performed.

\section*{Default}

90
Accepted
[ \(0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::SIM_PRIMAL_CRASH, 90)
Generic name
MSK_IPAR_SIM_PRIMAL_CRASH
Groups
Primal simplex
Iparam::SIM_PRIMAL_PHASEONE_METHOD
An experimental feature.

\section*{Default}

0
Accepted
[0; 10]
Example
task.put_int_param(Iparam::SIM_PRIMAL_PHASEONE_METHOD, 0)
Generic name
MSK_IPAR_SIM_PRIMAL_PHASEONE_METHOD
Groups
Simplex optimizer
Iparam::SIM_PRIMAL_RESTRICT_SELECTION
The primal simplex optimizer can use a so-called restricted selection/pricing strategy to choose the outgoing variable. Hence, if restricted selection is applied, then the primal simplex optimizer first choose a subset of all the potential incoming variables. Next, for some time it will choose the incoming variable only among the subset. From time to time the subset is redefined. A larger value of this parameter implies that the optimizer will be more aggressive in its restriction strategy, i.e. a value of 0 implies that the restriction strategy is not applied at all.

\section*{Default}

50
Accepted
[0; 100]
Example
task.put_int_param(Iparam::SIM_PRIMAL_RESTRICT_SELECTION, 50)
```

Generic name
MSK_IPAR_SIM_PRIMAL_RESTRICT_SELECTION
Groups
Primal simplex
Iparam::SIM_PRIMAL_SELECTION

```

Controls the choice of the incoming variable, known as the selection strategy, in the primal simplex optimizer.

\section*{Default \\ FREE}

Accepted
FREE, FULL, ASE, DEVEX, SE, PARTIAL (see Simseltype)
Example
task.put_int_param(Iparam::SIM_PRIMAL_SELECTION, Simseltype::FREE)
Generic name
MSK_IPAR_SIM_PRIMAL_SELECTION
Groups
Primal simplex
Iparam: :SIM_REFACTOR_FREQ
Controls how frequent the basis is refactorized. The value 0 means that the optimizer determines the best point of refactorization. It is strongly recommended NOT to change this parameter.

\section*{Default}

0
Accepted
\([0 ;+\) inf \(]\)
Example
task.put_int_param(Iparam::SIM_REFACTOR_FREQ, 0)

\section*{Generic name}

MSK_IPAR_SIM_REFACTOR_FREQ

\section*{Groups}

Simplex optimizer
Iparam: :SIM_REFORMULATION
Controls if the simplex optimizers are allowed to reformulate the problem.

\section*{Default}

OFF

\section*{Accepted}

ON, OFF, FREE, AGGRESSIVE (see Simreform)

\section*{Example}
task.put_int_param(Iparam::SIM_REFORMULATION, Simreform::OFF)

\section*{Generic name} MSK_IPAR_SIM_REFORMULATION

\section*{Groups}

Simplex optimizer
Iparam::SIM_SAVE_LU
Controls if the LU factorization stored should be replaced with the LU factorization corresponding to the initial basis.

\section*{Default}

OFF
Accepted ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::SIM_SAVE_LU, Onoffkey::OFF)
Generic name MSK_IPAR_SIM_SAVE_LU
Groups
Simplex optimizer
Iparam::SIM_SCALING
Controls how much effort is used in scaling the problem before a simplex optimizer is used.

\section*{Default}

FREE
Accepted
FREE, NONE (see Scalingtype)
Example
task.put_int_param(Iparam::SIM_SCALING, Scalingtype::FREE)
Generic name
MSK_IPAR_SIM_SCALING

\section*{Groups}

Simplex optimizer
Iparam::SIM_SCALING_METHOD
Controls how the problem is scaled before a simplex optimizer is used.

\section*{Default}

POW2
Accepted
POW2, FREE (see Scalingmethod)

\section*{Example}
task.put_int_param(Iparam::SIM_SCALING_METHOD, Scalingmethod::POW2)
Generic name MSK_IPAR_SIM_SCALING_METHOD

\section*{Groups}

Simplex optimizer
Iparam::SIM_SEED
Sets the random seed used for randomization in the simplex optimizers.

\section*{Default} 23456
Accepted [0; 32749]
Example task.put_int_param(Iparam::SIM_SEED, 23456)
Generic name MSK_IPAR_SIM_SEED

\section*{Groups} Simplex optimizer

Iparam: :SIM_SOLVE_FORM
Controls whether the primal or the dual problem is solved by the primal-/dual-simplex optimizer.
```

Default
FREE
Accepted
FREE, PRIMAL,DUAL (see Solveform)
Example
task.put_int_param(Iparam::SIM_SOLVE_FORM, Solveform::FREE)

```

\section*{Generic name}

MSK_IPAR_SIM_SOLVE_FORM
Groups
Simplex optimizer
Iparam::SIM_STABILITY_PRIORITY
Controls how high priority the numerical stability should be given.

\section*{Default}

50
Accepted
[0; 100]
Example
task.put_int_param(Iparam::SIM_STABILITY_PRIORITY, 50)
Generic name MSK_IPAR_SIM_STABILITY_PRIORITY
Groups
Simplex optimizer
Iparam::SIM_SWITCH_OPTIMIZER
The simplex optimizer sometimes chooses to solve the dual problem instead of the primal problem. This implies that if you have chosen to use the dual simplex optimizer and the problem is dualized, then it actually makes sense to use the primal simplex optimizer instead. If this parameter is on and the problem is dualized and furthermore the simplex optimizer is chosen to be the primal (dual) one, then it is switched to the dual (primal).

\section*{Default}

OFF

\section*{Accepted}

ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::SIM_SWITCH_OPTIMIZER, Onoffkey::OFF)

\section*{Generic name}

MSK_IPAR_SIM_SWITCH_OPTIMIZER

\section*{Groups}

Simplex optimizer
Iparam::SOL_FILTER_KEEP_BASIC
If turned on, then basic and super basic constraints and variables are written to the solution file independent of the filter setting.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::SOL_FILTER_KEEP_BASIC, Onoffkey::OFF)
Generic name
MSK_IPAR_SOL_FILTER_KEEP_BASIC
Groups
Solution input/output
Iparam: :SOL_FILTER_KEEP_RANGED
If turned on, then ranged constraints and variables are written to the solution file independent of the filter setting.

\section*{Default}

OFF

\section*{Accepted}

ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::SOL_FILTER_KEEP_RANGED, Onoffkey::OFF)
Generic name
MSK_IPAR_SOL_FILTER_KEEP_RANGED
Groups
Solution input/output
Iparam::SOL_READ_NAME_WIDTH
When a solution is read by MOSEK and some constraint, variable or cone names contain blanks, then a maximum name width much be specified. A negative value implies that no name contain blanks.

\section*{Default}
-1
Accepted [-inf; +inf]

\section*{Example}
task.put_int_param(Iparam: :SOL_READ_NAME_WIDTH, -1)
Generic name MSK_IPAR_SOL_READ_NAME_WIDTH

\section*{Groups}

Data input/output, Solution input/output
Iparam: :SOL_READ_WIDTH
Controls the maximal acceptable width of line in the solutions when read by MOSEK.

\section*{Default}

1024

\section*{Accepted} [ \(80 ;+\mathrm{inf}]\)
Example task.put_int_param(Iparam::SOL_READ_WIDTH, 1024)

\section*{Generic name} MSK_IPAR_SOL_READ_WIDTH
Groups Data input/output, Solution input/output

Iparam: :SOLUTION_CALLBACK
Indicates whether solution callbacks will be performed during the optimization.

\section*{Default}

OFF
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::SOLUTION_CALLBACK, Onoffkey::OFF)
Generic name MSK_IPAR_SOLUTION_CALLBACK
Groups Progress callback, Overall solver

Iparam::TIMING_LEVEL
Controls the amount of timing performed inside MOSEK.

\section*{Default}

1

\section*{Accepted}
\([0 ;+i n f]\)
Example
task.put_int_param(Iparam::TIMING_LEVEL, 1)
Generic name MSK_IPAR_TIMING_LEVEL
Groups
Overall system
Iparam: :WRITE_BAS_CONSTRAINTS
Controls whether the constraint section is written to the basic solution file.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_BAS_CONSTRAINTS, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_BAS_CONSTRAINTS
Groups
Data input/output, Solution input/output
Iparam::WRITE_BAS_HEAD
Controls whether the header section is written to the basic solution file.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_BAS_HEAD, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_BAS_HEAD
Groups
Data input/output, Solution input/output
Iparam::WRITE_BAS_VARIABLES
Controls whether the variables section is written to the basic solution file.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_BAS_VARIABLES, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_BAS_VARIABLES

\section*{Groups}

Data input/output, Solution input/output
Iparam: :WRITE_COMPRESSION
Controls whether the data file is compressed while it is written. 0 means no compression while higher values mean more compression.

\section*{Default}

9

\section*{Accepted}
\([0 ;+i n f]\)
Example
task.put_int_param(Iparam::WRITE_COMPRESSION, 9)
Generic name MSK_IPAR_WRITE_COMPRESSION
Groups
Data input/output
Iparam: :WRITE_DATA_PARAM
If this option is turned on the parameter settings are written to the data file as parameters.
Default
OFF
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_DATA_PARAM, Onoffkey::OFF)
Generic name
MSK_IPAR_WRITE_DATA_PARAM
Groups
Data input/output
Iparam: :WRITE_FREE_CON
Controls whether the free constraints are written to the data file.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_FREE_CON, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_FREE_CON
Groups
Data input/output
Iparam::WRITE_GENERIC_NAMES
Controls whether generic names should be used instead of user-defined names when writing to the data file.

\section*{Default}

OFF
Accepted
ON, OFF (see Onoffkey)

\section*{Example}
task.put_int_param(Iparam::WRITE_GENERIC_NAMES, Onoffkey::OFF)
Generic name MSK_IPAR_WRITE_GENERIC_NAMES
Groups Data input/output

Iparam: :WRITE_GENERIC_NAMES_IO
Index origin used in generic names.
Default
1

\section*{Accepted}
\([0 ;+\mathrm{inf}]\)
Example
task.put_int_param(Iparam::WRITE_GENERIC_NAMES_IO, 1)
Generic name MSK_IPAR_WRITE_GENERIC_NAMES_IO
Groups
Data input/output
Iparam::WRITE_IGNORE_INCOMPATIBLE_ITEMS
Controls if the writer ignores incompatible problem items when writing files.

\section*{Default}

OFF
Accepted
- ON: Ignore items that cannot be written to the current output file format.
- OFF: Produce an error if the problem contains items that cannot the written to the current output file format.

\section*{Example} task.put_int_param(Iparam::WRITE_IGNORE_INCOMPATIBLE_ITEMS, Onoffkey: :OFF)
Generic name MSK_IPAR_WRITE_IGNORE_INCOMPATIBLE_ITEMS
Groups
Data input/output
Iparam: :WRITE_INT_CONSTRAINTS
Controls whether the constraint section is written to the integer solution file.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_INT_CONSTRAINTS, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_INT_CONSTRAINTS
Groups
Data input/output, Solution input/output
Iparam: :WRITE_INT_HEAD
Controls whether the header section is written to the integer solution file.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_INT_HEAD, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_INT_HEAD
Groups
Data input/output, Solution input/output

Controls whether the variables section is written to the integer solution file.

\section*{Default} ON
Accepted
ON, OFF (see Onoffkey)
Example
```

task.put_int_param(Iparam::WRITE_INT_VARIABLES, Onoffkey::ON)

```

Generic name MSK_IPAR_WRITE_INT_VARIABLES

\section*{Groups}

Data input/output, Solution input/output
Iparam::WRITE_JSON_INDENTATION
When set, the JSON task and solution files are written with indentation for better readability.

\section*{Default} OFF
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::WRITE_JSON_INDENTATION, Onoffkey::OFF)

\section*{Generic name} MSK_IPAR_WRITE_JSON_INDENTATION

\section*{Groups} Data input/output

Iparam: :WRITE_LP_FULL_OBJ
Write all variables, including the ones with 0 -coefficients, in the objective.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::WRITE_LP_FULL_OBJ, Onoffkey::ON)
Generic name MSK_IPAR_WRITE_LP_FULL_OBJ
Groups Data input/output

Iparam: :WRITE_LP_LINE_WIDTH
Maximum width of line in an LP file written by MOSEK.

\section*{Default} 80
Accepted [40; +inf]
Example task.put_int_param(Iparam::WRITE_LP_LINE_WIDTH, 80)
Generic name MSK_IPAR_WRITE_LP_LINE_WIDTH
Groups Data input/output

Iparam: :WRITE_MPS_FORMAT
Controls in which format the MPS is written.

\section*{Default}

FREE
Accepted STRICT, RELAXED, FREE, CPLEX (see Mpsformat)
Example task.put_int_param(Iparam::WRITE_MPS_FORMAT, Mpsformat::FREE)
Generic name MSK_IPAR_WRITE_MPS_FORMAT

\section*{Groups} Data input/output

Iparam: :WRITE_MPS_INT
Controls if marker records are written to the MPS file to indicate whether variables are integer restricted.

Default
ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_MPS_INT, Onoffkey::ON)
Generic name MSK_IPAR_WRITE_MPS_INT
Groups
Data input/output
Iparam::WRITE_SOL_BARVARIABLES
Controls whether the symmetric matrix variables section is written to the solution file.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_SOL_BARVARIABLES, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_SOL_BARVARIABLES
Groups
Data input/output, Solution input/output
Iparam::WRITE_SOL_CONSTRAINTS
Controls whether the constraint section is written to the solution file.
Default
ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_SOL_CONSTRAINTS, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_SOL_CONSTRAINTS
Groups
Data input/output, Solution input/output

Iparam: :WRITE_SOL_HEAD
Controls whether the header section is written to the solution file.
Default ON
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::WRITE_SOL_HEAD, Onoffkey::ON)
Generic name MSK_IPAR_WRITE_SOL_HEAD
Groups Data input/output, Solution input/output

Iparam: :WRITE_SOL_IGNORE_INVALID_NAMES
Even if the names are invalid MPS names, then they are employed when writing the solution file.
Default OFF
Accepted ON, OFF (see Onoffkey)
Example task.put_int_param(Iparam::WRITE_SOL_IGNORE_INVALID_NAMES, Onoffkey:: OFF)
Generic name MSK_IPAR_WRITE_SOL_IGNORE_INVALID_NAMES
Groups
Data input/output, Solution input/output
Iparam: :WRITE_SOL_VARIABLES
Controls whether the variables section is written to the solution file.

\section*{Default}

ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_SOL_VARIABLES, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_SOL_VARIABLES
Groups
Data input/output, Solution input/output
Iparam: :WRITE_TASK_INC_SOL
Controls whether the solutions are stored in the task file too.
Default
ON
Accepted
ON, OFF (see Onoffkey)
Example
task.put_int_param(Iparam::WRITE_TASK_INC_SOL, Onoffkey::ON)
Generic name
MSK_IPAR_WRITE_TASK_INC_SOL
Groups
Data input/output
```

Iparam::WRITE_XML_MODE

```

Controls if linear coefficients should be written by row or column when writing in the XML file format.

\section*{Default}

ROW
Accepted
ROW, COL (see Xmlwriteroutputtype)
Example
task.put_int_param(Iparam::WRITE_XML_MODE, Xmlwriteroutputtype::ROW)
Generic name MSK_IPAR_WRITE_XML_MODE
Groups
Data input/output

\subsection*{15.6.3 String parameters}

Sparam
The enumeration type containing all string parameters.
Sparam: :BAS_SOL_FILE_NAME
Name of the bas solution file.

\section*{Accepted}

Any valid file name.

\section*{Example}
```

task.put_str_param(Sparam::BAS_SOL_FILE_NAME, "somevalue")

```

Generic name
MSK_SPAR_BAS_SOL_FILE_NAME

\section*{Groups}

Data input/output, Solution input/output
Sparam: :DATA_FILE_NAME
Data are read and written to this file.

\section*{Accepted}

Any valid file name.
Example
task.put_str_param(Sparam::DATA_FILE_NAME, "somevalue")
Generic name MSK_SPAR_DATA_FILE_NAME

\section*{Groups}

Data input/output
Sparam: :DEBUG_FILE_NAME
MOSEK debug file.

\section*{Accepted}

Any valid file name.
Example
task.put_str_param(Sparam::DEBUG_FILE_NAME, "somevalue")
Generic name MSK_SPAR_DEBUG_FILE_NAME

\section*{Groups}

Data input/output

Sparam: :INT_SOL_FILE_NAME
Name of the int solution file.

\section*{Accepted}

Any valid file name.
Example
task.put_str_param(Sparam::INT_SOL_FILE_NAME, "somevalue")
Generic name
MSK_SPAR_INT_SOL_FILE_NAME

\section*{Groups}

Data input/output, Solution input/output
Sparam: :ITR_SOL_FILE_NAME
Name of the itr solution file.

\section*{Accepted}

Any valid file name.
Example
task.put_str_param(Sparam::ITR_SOL_FILE_NAME, "somevalue")
Generic name
MSK_SPAR_ITR_SOL_FILE_NAME
Groups
Data input/output, Solution input/output
Sparam::MIO_DEBUG_STRING
For internal debugging purposes.

\section*{Accepted}

Any valid string.
Example
task.put_str_param(Sparam::MIO_DEBUG_STRING, "somevalue")
Generic name MSK_SPAR_MIO_DEBUG_STRING

\section*{Groups}

Data input/output
Sparam: :PARAM_COMMENT_SIGN
Only the first character in this string is used. It is considered as a start of comment sign in the MOSEK parameter file. Spaces are ignored in the string.

\section*{Default}
\%\%
Accepted
Any valid string.
Example
task.put_str_param(Sparam::PARAM_COMMENT_SIGN, "\%\%")
Generic name
MSK_SPAR_PARAM_COMMENT_SIGN
Groups
Data input/output
Sparam: :PARAM_READ_FILE_NAME
Modifications to the parameter database is read from this file.
Accepted
Any valid file name.
Example
task.put_str_param(Sparam::PARAM_READ_FILE_NAME, "somevalue")

\section*{Generic name}

MSK_SPAR_PARAM_READ_FILE_NAME
Groups
Data input/output
Sparam: :PARAM_WRITE_FILE_NAME
The parameter database is written to this file.

\section*{Accepted}

Any valid file name.
Example
task.put_str_param(Sparam::PARAM_WRITE_FILE_NAME, "somevalue")
Generic name
MSK_SPAR_PARAM_WRITE_FILE_NAME
Groups
Data input/output
Sparam: :READ_MPS_BOU_NAME
Name of the BOUNDS vector used. An empty name means that the first BOUNDS vector is used.

\section*{Accepted}

Any valid MPS name.

\section*{Example} task.put_str_param(Sparam::READ_MPS_BOU_NAME, "somevalue")

\section*{Generic name} MSK_SPAR_READ_MPS_BOU_NAME

\section*{Groups}

Data input/output
Sparam: :READ_MPS_OBJ_NAME
Name of the free constraint used as objective function. An empty name means that the first constraint is used as objective function.

\section*{Accepted}

Any valid MPS name.
Example
task.put_str_param(Sparam::READ_MPS_OBJ_NAME, "somevalue")
Generic name MSK_SPAR_READ_MPS_OBJ_NAME
Groups
Data input/output
Sparam: :READ_MPS_RAN_NAME
Name of the RANGE vector used. An empty name means that the first RANGE vector is used.

\section*{Accepted}

Any valid MPS name.
Example
task.put_str_param(Sparam::READ_MPS_RAN_NAME, "somevalue")
Generic name MSK_SPAR_READ_MPS_RAN_NAME
Groups
Data input/output
Sparam: :READ_MPS_RHS_NAME
Name of the RHS used. An empty name means that the first RHS vector is used.
Accepted
Any valid MPS name.

\section*{Example}
```

 task.put_str_param(Sparam::READ_MPS_RHS_NAME, "somevalue")
    ```

Generic name MSK_SPAR_READ_MPS_RHS_NAME
Groups
Data input/output
Sparam: :REMOTE_OPTSERVER_HOST
URL of the remote optimization server in the format (http|https)://server:port. If set, all subsequent calls to any MOSEK function that involves synchronous optimization will be sent to the specified OptServer instead of being executed locally. Passing empty string deactivates this redirection.

\section*{Accepted}

Any valid URL.
Example
```

 task.put_str_param(Sparam::REMOTE_OPTSERVER_HOST, "somevalue")
    ```

Generic name MSK_SPAR_REMOTE_OPTSERVER_HOST
Groups Overall system

Sparam: : REMOTE_TLS_CERT
List of known server certificates in PEM format.

\section*{Accepted}

PEM files separated by new-lines.

\section*{Example}
task.put_str_param(Sparam::REMOTE_TLS_CERT, "somevalue")
Generic name MSK_SPAR_REMOTE_TLS_CERT
Groups Overall system

Sparam: :REMOTE_TLS_CERT_PATH
Path to known server certificates in PEM format.

\section*{Accepted} Any valid path.
Example task.put_str_param(Sparam::REMOTE_TLS_CERT_PATH, "somevalue")
Generic name MSK_SPAR_REMOTE_TLS_CERT_PATH
Groups Overall system

Sparam: :SENSITIVITY_FILE_NAME
If defined Task.sensitivity_report reads this file as a sensitivity analysis data file specifying the type of analysis to be done.

\section*{Accepted}

Any valid string.

\section*{Example} task.put_str_param(Sparam::SENSITIVITY_FILE_NAME, "somevalue")
Generic name MSK_SPAR_SENSITIVITY_FILE_NAME

\section*{Groups} Data input/output

\section*{Sparam::SENSITIVITY_RES_FILE_NAME}

If this is a nonempty string, then Task.sensitivity_report writes results to this file.

\section*{Accepted}

Any valid string.
Example
task.put_str_param(Sparam::SENSITIVITY_RES_FILE_NAME, "somevalue")

\section*{Generic name}

MSK_SPAR_SENSITIVITY_RES_FILE_NAME

\section*{Groups}

Data input/output
Sparam: :SOL_FILTER_XC_LOW
A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means that all constraints having \(\mathrm{xc}[\mathrm{i}]>0.5\) should be listed, whereas +0.5 means that all constraints having \(\mathrm{xc}[\mathrm{i}]>=\mathrm{blc}[\mathrm{i}]+0.5\) should be listed. An empty filter means that no filter is applied.

\section*{Accepted}

Any valid filter.

\section*{Example}
task.put_str_param(Sparam::SOL_FILTER_XC_LOW, "somevalue")

\section*{Generic name}

MSK_SPAR_SOL_FILTER_XC_LOW
Groups
Data input/output, Solution input/output
Sparam: :SOL_FILTER_XC_UPR
A filter used to determine which constraints should be listed in the solution file. A value of 0.5 means that all constraints having \(\mathrm{xc}[\mathrm{i}]<0.5\) should be listed, whereas -0.5 means all constraints having \(\mathrm{xc}[\mathrm{i}]<=\mathrm{buc}[\mathrm{i}]-0.5\) should be listed. An empty filter means that no filter is applied.

\section*{Accepted}

Any valid filter.

\section*{Example}
task.put_str_param(Sparam::SOL_FILTER_XC_UPR, "somevalue")
Generic name
MSK_SPAR_SOL_FILTER_XC_UPR
Groups
Data input/output, Solution input/output
Sparam: :SOL_FILTER_XX_LOW
A filter used to determine which variables should be listed in the solution file. A value of " 0.5 " means that all constraints having \(\mathrm{xx}[\mathrm{j}]>=0.5\) should be listed, whereas " +0.5 " means that all constraints having \(x[j]>=b l x[j]+0.5\) should be listed. An empty filter means no filter is applied.

\section*{Accepted}

Any valid filter.

\section*{Example}
task.put_str_param(Sparam::SOL_FILTER_XX_LOW, "somevalue")
Generic name
MSK_SPAR_SOL_FILTER_XX_LOW
Groups
Data input/output, Solution input/output
Sparam::SOL_FILTER_XX_UPR
A filter used to determine which variables should be listed in the solution file. A value of " 0.5 " means that all constraints having \(\mathrm{xx}[\mathrm{j}]<0.5\) should be printed, whereas " -0.5 " means all constraints having \(x x[j]<=b u x[j]-0.5\) should be listed. An empty filter means no filter is applied.

\section*{Accepted}

Any valid file name.
Example
```

task.put_str_param(Sparam::SOL_FILTER_XX_UPR, "somevalue")

```

Generic name MSK_SPAR_SOL_FILTER_XX_UPR
Groups Data input/output, Solution input/output

Sparam: :STAT_KEY
Key used when writing the summary file.

\section*{Accepted}

Any valid string.
Example task.put_str_param(Sparam::STAT_KEY, "somevalue")
Generic name MSK_SPAR_STAT_KEY
Groups
Data input/output
Sparam: :STAT_NAME
Name used when writing the statistics file.

\section*{Accepted}

Any valid XML string.
Example
task.put_str_param(Sparam::STAT_NAME, "somevalue")
Generic name
MSK_SPAR_STAT_NAME
Groups
Data input/output
Sparam: :WRITE_LP_GEN_VAR_NAME
Sometimes when an LP file is written additional variables must be inserted. They will have the prefix denoted by this parameter.

\section*{Default} xmskgen
Accepted
Any valid string.
Example task.put_str_param(Sparam::WRITE_LP_GEN_VAR_NAME, "xmskgen")
Generic name MSK_SPAR_WRITE_LP_GEN_VAR_NAME
Groups Data input/output

\subsection*{15.7 Response codes}

Response codes include:
- Termination codes
- Warnings
- Errors

The numerical code (in brackets) identifies the response in error messages and in the log output. Rescode

The enumeration type containing all response codes.

\subsection*{15.7.1 Termination}

Rescode::OK (0)
No error occurred.
Rescode::TRM_MAX_ITERATIONS (100000)
The optimizer terminated at the maximum number of iterations.
Rescode::TRM_MAX_TIME (100001)
The optimizer terminated at the maximum amount of time.
Rescode::TRM_OBJECTIVE_RANGE (100002)
The optimizer terminated with an objective value outside the objective range.
Rescode::TRM_MIO_NUM_RELAXS (100008)
The mixed-integer optimizer terminated as the maximum number of relaxations was reached.
Rescode::TRM_MIO_NUM_BRANCHES (100009)
The mixed-integer optimizer terminated as the maximum number of branches was reached.
Rescode::TRM_NUM_MAX_NUM_INT_SOLUTIONS (100015)
The mixed-integer optimizer terminated as the maximum number of feasible solutions was reached. Rescode::TRM_STALL (100006)

The optimizer is terminated due to slow progress.
Stalling means that numerical problems prevent the optimizer from making reasonable progress and that it makes no sense to continue. In many cases this happens if the problem is badly scaled or otherwise ill-conditioned. There is no guarantee that the solution will be feasible or optimal. However, often stalling happens near the optimum, and the returned solution may be of good quality. Therefore, it is recommended to check the status of the solution. If the solution status is optimal the solution is most likely good enough for most practical purposes.
Please note that if a linear optimization problem is solved using the interior-point optimizer with basis identification turned on, the returned basic solution likely to have high accuracy, even though the optimizer stalled.
Some common causes of stalling are a) badly scaled models, b) near feasible or near infeasible problems.
```

Rescode::TRM_USER_CALLBACK (100007)

```

The optimizer terminated due to the return of the user-defined callback function.
Rescode::TRM_MAX_NUM_SETBACKS (100020)
The optimizer terminated as the maximum number of set-backs was reached. This indicates serious numerical problems and a possibly badly formulated problem.
Rescode::TRM_NUMERICAL_PROBLEM (100025)
The optimizer terminated due to numerical problems.
Rescode::TRM_LOST_RACE (100027)
Lost a race.
Rescode::TRM_INTERNAL (100030)
The optimizer terminated due to some internal reason. Please contact MOSEK support. Rescode::TRM_INTERNAL_STOP (100031)

The optimizer terminated for internal reasons. Please contact MOSEK support.

\subsection*{15.7.2 Warnings}

\section*{Rescode::WRN_OPEN_PARAM_FILE (50)}

The parameter file could not be opened.

\section*{Rescode::WRN_LARGE_BOUND (51)}

A numerically large bound value is specified.
Rescode::WRN_LARGE_LO_BOUND (52)
A numerically large lower bound value is specified.
Rescode::WRN_LARGE_UP_BOUND (53)
A numerically large upper bound value is specified.
Rescode::WRN_LARGE_CON_FX (54)
An equality constraint is fixed to a numerically large value. This can cause numerical problems.
Rescode::WRN_LARGE_CJ (57)
A numerically large value is specified for one \(c_{j}\).
Rescode::WRN_LARGE_AIJ (62)
A numerically large value is specified for an \(a_{i, j}\) element in \(A\). The parameter Dparam::
DATA_TOL_AIJ_LARGE controls when an \(a_{i, j}\) is considered large.
Rescode::WRN_ZERO_AIJ (63)
One or more zero elements are specified in A.
Rescode::WRN_NAME_MAX_LEN (65)
A name is longer than the buffer that is supposed to hold it.
Rescode::WRN_SPAR_MAX_LEN (66)
A value for a string parameter is longer than the buffer that is supposed to hold it.
Rescode::WRN_MPS_SPLIT_RHS_VECTOR (70)
An RHS vector is split into several nonadjacent parts in an MPS file.
Rescode::WRN_MPS_SPLIT_RAN_VECTOR (71)
A RANGE vector is split into several nonadjacent parts in an MPS file.
Rescode::WRN_MPS_SPLIT_BOU_VECTOR (72)
A BOUNDS vector is split into several nonadjacent parts in an MPS file.
Rescode::WRN_LP_OLD_QUAD_FORMAT (80)
Missing '/2' after quadratic expressions in bound or objective.
Rescode::WRN_LP_DROP_VARIABLE (85)
Ignored a variable because the variable was not previously defined. Usually this implies that a variable appears in the bound section but not in the objective or the constraints.
Rescode::WRN_NZ_IN_UPR_TRI (200)
Non-zero elements specified in the upper triangle of a matrix were ignored.
Rescode::WRN_DROPPED_NZ_QOBJ (201)
One or more non-zero elements were dropped in the Q matrix in the objective.
Rescode::WRN_IGNORE_INTEGER (250)
Ignored integer constraints.
Rescode::WRN_NO_GLOBAL_OPTIMIZER (251)
No global optimizer is available.
Rescode::WRN_MIO_INFEASIBLE_FINAL (270)
The final mixed-integer problem with all the integer variables fixed at their optimal values is infeasible.
Rescode::WRN_SOL_FILTER (300)
Invalid solution filter is specified.
Rescode::WRN_UNDEF_SOL_FILE_NAME (350)
Undefined name occurred in a solution.
Rescode::WRN_SOL_FILE_IGNORED_CON (351)
One or more lines in the constraint section were ignored when reading a solution file.
Rescode::WRN_SOL_FILE_IGNORED_VAR (352)
One or more lines in the variable section were ignored when reading a solution file.

\section*{Rescode::WRN_TOO_FEW_BASIS_VARS (400)}

An incomplete basis has been specified. Too few basis variables are specified.
Rescode: :WRN_TOO_MANY_BASIS_VARS (405)
A basis with too many variables has been specified.
Rescode::WRN_LICENSE_EXPIRE (500)
The license expires.
Rescode::WRN_LICENSE_SERVER (501)
The license server is not responding.
Rescode::WRN_EMPTY_NAME (502)
A variable or constraint name is empty. The output file may be invalid.
Rescode::WRN_USING_GENERIC_NAMES (503)
Generic names are used because a name invalid. For instance when writing an LP file the names must not contain blanks or start with a digit. Also remeber to give the objective function a name.
Rescode::WRN_INVALID_MPS_NAME (504)
A name e.g. a row name is not a valid MPS name.
Rescode::WRN_INVALID_MPS_OBJ_NAME (505)
The objective name is not a valid MPS name.
Rescode::WRN_LICENSE_FEATURE_EXPIRE (509)
The license expires.
Rescode::WRN_PARAM_NAME_DOU (510)
The parameter name is not recognized as a double parameter.
Rescode::WRN_PARAM_NAME_INT (511)
The parameter name is not recognized as a integer parameter.
Rescode::WRN_PARAM_NAME_STR (512)
The parameter name is not recognized as a string parameter.
Rescode::WRN_PARAM_STR_VALUE (515)
The string is not recognized as a symbolic value for the parameter.
Rescode::WRN_PARAM_IGNORED_CMIO (516)
A parameter was ignored by the conic mixed integer optimizer.
Rescode: :WRN_ZEROS_IN_SPARSE_ROW (705)
One or more (near) zero elements are specified in a sparse row of a matrix. Since, it is redundant to specify zero elements then it may indicate an error.
Rescode::WRN_ZEROS_IN_SPARSE_COL (710)
One or more (near) zero elements are specified in a sparse column of a matrix. It is redundant to specify zero elements. Hence, it may indicate an error.
Rescode::WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK (800)
The linear dependency check(s) is incomplete. Normally this is not an important warning unless the optimization problem has been formulated with linear dependencies. Linear dependencies may prevent MOSEK from solving the problem.
Rescode::WRN_ELIMINATOR_SPACE (801)
The eliminator is skipped at least once due to lack of space.
Rescode::WRN_PRESOLVE_OUTOFSPACE (802)
The presolve is incomplete due to lack of space.
Rescode::WRN_PRESOLVE_PRIMAL_PERTUBATIONS (803)
The presolve perturbed the bounds of the primal problem. This is an indication that the problem is nearly infeasible.
Rescode::WRN_WRITE_CHANGED_NAMES (830)
Some names were changed because they were invalid for the output file format. Rescode::WRN_WRITE_DISCARDED_CFIX (831)

The fixed objective term could not be converted to a variable and was discarded in the output file. Rescode::WRN_DUPLICATE_CONSTRAINT_NAMES (850)

Two constraint names are identical.
```

Rescode::WRN_DUPLICATE_VARIABLE_NAMES (851)

```

Two variable names are identical.
Rescode::WRN_DUPLICATE_BARVARIABLE_NAMES (852)
Two barvariable names are identical.
Rescode::WRN_DUPLICATE_CONE_NAMES (853)
Two cone names are identical.
Rescode::WRN_WRITE_LP_INVALID_VAR_NAMES (854)
LP file will be written with generic variable names.
Rescode::WRN_WRITE_LP_DUPLICATE_VAR_NAMES (855)
LP file will be written with generic variable names.
Rescode::WRN_WRITE_LP_INVALID_CON_NAMES (856)
LP file will be written with generic constraint names.
Rescode::WRN_WRITE_LP_DUPLICATE_CON_NAMES (857)
LP file will be written with generic constraint names.
Rescode::WRN_ANA_LARGE_BOUNDS (900)
This warning is issued by the problem analyzer, if one or more constraint or variable bounds are very large. One should consider omitting these bounds entirely by setting them to + inf or -inf.
Rescode::WRN_ANA_C_ZERO (901)
This warning is issued by the problem analyzer, if the coefficients in the linear part of the objective are all zero.
Rescode::WRN_ANA_EMPTY_COLS (902)
This warning is issued by the problem analyzer, if columns, in which all coefficients are zero, are found.
Rescode::WRN_ANA_CLOSE_BOUNDS (903)
This warning is issued by problem analyzer, if ranged constraints or variables with very close upper and lower bounds are detected. One should consider treating such constraints as equalities and such variables as constants.
Rescode::WRN_ANA_ALMOST_INT_BOUNDS (904)
This warning is issued by the problem analyzer if a constraint is bound nearly integral.
Rescode::WRN_NO_INFEASIBILITY_REPORT_WHEN_MATRIX_VARIABLES (930)
An infeasibility report is not available when the problem contains matrix variables.
Rescode::WRN_NO_DUALIZER (950)
No automatic dualizer is available for the specified problem. The primal problem is solved.
Rescode::WRN_SYM_MAT_LARGE (960)
A numerically large value is specified for an \(e_{i, j}\) element in \(E\). The parameter Dparam: :
DATA_SYM_MAT_TOL_LARGE controls when an \(e_{i, j}\) is considered large.
Rescode::WRN_MODIFIED_DOUBLE_PARAMETER (970)
A double parameter related to solver tolerances has a non-default value.
Rescode::WRN_LARGE_FIJ (980)
A numerically large value is specified for an \(f_{i, j}\) element in \(F\). The parameter Dparam: : \(D A T A_{-} T O L_{-} A I J_{-} L A R G E\) controls when an \(f_{i, j}\) is considered large.

\subsection*{15.7.3 Errors}

Rescode::ERR_LICENSE (1000)
Invalid license.
Rescode::ERR_LICENSE_EXPIRED (1001)
The license has expired.
Rescode::ERR_LICENSE_VERSION (1002)
The license is valid for another version of MOSEK.

\section*{Rescode::ERR_LICENSE_OLD_SERVER_VERSION (1003)}

The version of the FlexLM license server is too old. You should upgrade the license server to one matching this version of MOSEK. It will support this and all older versions of MOSEK.

This error can appear if the client was updated to a new version which includes an upgrade of the licensing module, making it incompatible with a much older license server.

\section*{Rescode::ERR_SIZE_LICENSE (1005)}

The problem is bigger than the license.
Rescode::ERR_PROB_LICENSE (1006)
The software is not licensed to solve the problem.
Rescode::ERR_FILE_LICENSE (1007)
Invalid license file.
Rescode::ERR_MISSING_LICENSE_FILE (1008)
MOSEK cannot find license file or a token server. See the MOSEK licensing manual for details. Rescode::ERR_SIZE_LICENSE_CON (1010)

The problem has too many constraints to be solved with the available license.
Rescode::ERR_SIZE_LICENSE_VAR (1011)
The problem has too many variables to be solved with the available license.
Rescode::ERR_SIZE_LICENSE_INTVAR (1012)
The problem contains too many integer variables to be solved with the available license.
Rescode::ERR_OPTIMIZER_LICENSE (1013)
The optimizer required is not licensed.
Rescode::ERR_FLEXLM (1014)
The FLEXIm license manager reported an error.
Rescode::ERR_LICENSE_SERVER (1015)
The license server is not responding.
Rescode: :ERR_LICENSE_MAX (1016)
Maximum number of licenses is reached.
Rescode::ERR_LICENSE_MOSEKLM_DAEMON (1017)
The MOSEKLM license manager daemon is not up and running.
Rescode::ERR_LICENSE_FEATURE (1018)
A requested feature is not available in the license file(s). Most likely due to an incorrect license system setup.
Rescode::ERR_PLATFORM_NOT_LICENSED (1019)
A requested license feature is not available for the required platform.
Rescode::ERR_LICENSE_CANNOT_ALLOCATE (1020)
The license system cannot allocate the memory required.
Rescode: :ERR_LICENSE_CANNOT_CONNECT (1021)
MOSEK cannot connect to the license server. Most likely the license server is not up and running. Rescode: :ERR_LICENSE_INVALID_HOSTID (1025)

The host ID specified in the license file does not match the host ID of the computer.
Rescode::ERR_LICENSE_SERVER_VERSION (1026)
The version specified in the checkout request is greater than the highest version number the daemon supports.
Rescode::ERR_LICENSE_NO_SERVER_SUPPORT (1027)
The license server does not support the requested feature. Possible reasons for this error include:
- The feature has expired.
- The feature's start date is later than today's date.
- The version requested is higher than feature's the highest supported version.
- A corrupted license file.

Try restarting the license and inspect the license server debug file, usually called lmgrd.log.

Rescode::ERR_LICENSE_NO_SERVER_LINE (1028)
There is no SERVER line in the license file. All non-zero license count features need at least one SERVER line.
Rescode::ERR_OLDER_DLL (1035)
The dynamic link library is older than the specified version.
Rescode::ERR_NEWER_DLL (1036)
The dynamic link library is newer than the specified version.
Rescode::ERR_LINK_FILE_DLL (1040)
A file cannot be linked to a stream in the DLL version.
Rescode::ERR_THREAD_MUTEX_INIT (1045)
Could not initialize a mutex.
Rescode::ERR_THREAD_MUTEX_LOCK (1046)
Could not lock a mutex.
Rescode::ERR_THREAD_MUTEX_UNLOCK (1047)
Could not unlock a mutex.
Rescode::ERR_THREAD_CREATE (1048)
Could not create a thread. This error may occur if a large number of environments are created and not deleted again. In any case it is a good practice to minimize the number of environments created.
Rescode: :ERR_THREAD_COND_INIT (1049)
Could not initialize a condition.
Rescode: :ERR_UNKNOWN (1050)
Unknown error.
Rescode::ERR_SPACE (1051) Out of space.
Rescode::ERR_FILE_OPEN (1052)
Error while opening a file.
Rescode::ERR_FILE_READ (1053)
File read error.
Rescode::ERR_FILE_WRITE (1054)
File write error.
Rescode::ERR_DATA_FILE_EXT (1055)
The data file format cannot be determined from the file name.
Rescode::ERR_INVALID_FILE_NAME (1056)
An invalid file name has been specified.
Rescode::ERR_INVALID_SOL_FILE_NAME (1057)
An invalid file name has been specified.
Rescode: :ERR_END_OF_FILE (1059)
End of file reached.
Rescode::ERR_NULL_ENV (1060)
env is a None pointer.
Rescode::ERR_NULL_TASK (1061)
task is a None pointer.
Rescode::ERR_INVALID_STREAM (1062)
An invalid stream is referenced.
Rescode::ERR_NO_INIT_ENV (1063)
env is not initialized.
Rescode::ERR_INVALID_TASK (1064)
The task is invalid.
Rescode::ERR_NULL_POINTER (1065)
An argument to a function is unexpectedly a None pointer.

Rescode::ERR_LIVING_TASKS (1066)
All tasks associated with an enviroment must be deleted before the environment is deleted. There are still some undeleted tasks.
Rescode::ERR_READ_GZIP (1067)
Error encountered in GZIP stream.
Rescode::ERR_READ_ZSTD (1068)
Error encountered in ZSTD stream.
Rescode::ERR_BLANK_NAME (1070)
An all blank name has been specified.
Rescode::ERR_DUP_NAME (1071)
The same name was used multiple times for the same problem item type.
Rescode::ERR_FORMAT_STRING (1072)
The name format string is invalid.
Rescode::ERR_SPARSITY_SPECIFICATION (1073)
The sparsity included an index that was out of bounds of the shape.
Rescode::ERR_MISMATCHING_DIMENSION (1074)
Mismatching dimensions specified in arguments
Rescode::ERR_INVALID_OBJ_NAME (1075)
An invalid objective name is specified.
Rescode::ERR_INVALID_CON_NAME (1076)
An invalid constraint name is used.
Rescode::ERR_INVALID_VAR_NAME (1077)
An invalid variable name is used.
Rescode: :ERR_INVALID_CONE_NAME (1078)
An invalid cone name is used.
Rescode::ERR_INVALID_BARVAR_NAME (1079)
An invalid symmetric matrix variable name is used.
Rescode::ERR_SPACE_LEAKING (1080)
MOSEK is leaking memory. This can be due to either an incorrect use of MOSEK or a bug. Rescode::ERR_SPACE_NO_INFO (1081)

No available information about the space usage.
Rescode::ERR_DIMENSION_SPECIFICATION (1082)
Invalid dimension specification
Rescode::ERR_AXIS_NAME_SPECIFICATION (1083)
Invalid axis names specification
Rescode::ERR_READ_FORMAT (1090)
The specified format cannot be read.
Rescode::ERR_MPS_FILE (1100)
An error occurred while reading an MPS file.
Rescode::ERR_MPS_INV_FIELD (1101)
A field in the MPS file is invalid. Probably it is too wide.
Rescode::ERR_MPS_INV_MARKER (1102)
An invalid marker has been specified in the MPS file.
Rescode::ERR_MPS_NULL_CON_NAME (1103)
An empty constraint name is used in an MPS file.
Rescode::ERR_MPS_NULL_VAR_NAME (1104)
An empty variable name is used in an MPS file.
Rescode::ERR_MPS_UNDEF_CON_NAME (1105)
An undefined constraint name occurred in an MPS file.
Rescode::ERR_MPS_UNDEF_VAR_NAME (1106)
An undefined variable name occurred in an MPS file.

Rescode::ERR_MPS_INVALID_CON_KEY (1107)
An invalid constraint key occurred in an MPS file.
Rescode::ERR_MPS_INVALID_BOUND_KEY (1108)
An invalid bound key occurred in an MPS file.
Rescode::ERR_MPS_INVALID_SEC_NAME (1109)
An invalid section name occurred in an MPS file.
Rescode::ERR_MPS_NO_OBJECTIVE (1110)
No objective is defined in an MPS file.
Rescode::ERR_MPS_SPLITTED_VAR (1111)
All elements in a column of the \(A\) matrix must be specified consecutively. Hence, it is illegal to specify non-zero elements in \(A\) for variable 1 , then for variable 2 and then variable 1 again.
Rescode::ERR_MPS_MUL_CON_NAME (1112)
A constraint name was specified multiple times in the ROWS section.
Rescode::ERR_MPS_MUL_QSEC (1113)
Multiple QSECTIONs are specified for a constraint in the MPS data file.
Rescode::ERR_MPS_MUL_QOBJ (1114)
The Q term in the objective is specified multiple times in the MPS data file.
Rescode::ERR_MPS_INV_SEC_ORDER (1115)
The sections in the MPS data file are not in the correct order.
Rescode::ERR_MPS_MUL_CSEC (1116)
Multiple CSECTIONs are given the same name.
Rescode::ERR_MPS_CONE_TYPE (1117)
Invalid cone type specified in a CSECTION.
Rescode::ERR_MPS_CONE_OVERLAP (1118)
A variable is specified to be a member of several cones.
Rescode::ERR_MPS_CONE_REPEAT (1119)
A variable is repeated within the CSECTION.
Rescode::ERR_MPS_NON_SYMMETRIC_Q (1120)
A non symmetric matrix has been speciefied.
Rescode::ERR_MPS_DUPLICATE_Q_ELEMENT (1121)
Duplicate elements is specfied in a \(Q\) matrix.
Rescode::ERR_MPS_INVALID_OBJSENSE (1122)
An invalid objective sense is specified.
Rescode::ERR_MPS_TAB_IN_FIELD2 (1125)
A tab char occurred in field 2.
Rescode::ERR_MPS_TAB_IN_FIELD3 (1126)
A tab char occurred in field 3.
Rescode::ERR_MPS_TAB_IN_FIELD5 (1127)
A tab char occurred in field 5.
Rescode::ERR_MPS_INVALID_OBJ_NAME (1128)
An invalid objective name is specified.
Rescode::ERR_MPS_INVALID_KEY (1129)
An invalid indicator key occurred in an MPS file.
Rescode::ERR_MPS_INVALID_INDICATOR_CONSTRAINT (1130)
An invalid indicator constraint is used. It must not be a ranged constraint. Rescode::ERR_MPS_INVALID_INDICATOR_VARIABLE (1131)

An invalid indicator variable is specfied. It must be a binary variable.
Rescode::ERR_MPS_INVALID_INDICATOR_VALUE (1132)
An invalid indicator value is specfied. It must be either 0 or 1.
Rescode: :ERR_MPS_INVALID_INDICATOR_QUADRATIC_CONSTRAINT (1133)
A quadratic constraint can be be an indicator constraint.

Rescode: :ERR_OPF_SYNTAX (1134)
Syntax error in an OPF file
Rescode::ERR_OPF_PREMATURE_EOF (1136)
Premature end of file in an OPF file.
Rescode::ERR_OPF_MISMATCHED_TAG (1137)
Mismatched end-tag in OPF file
Rescode::ERR_OPF_DUPLICATE_BOUND (1138)
Either upper or lower bound was specified twice in OPF file
Rescode::ERR_OPF_DUPLICATE_CONSTRAINT_NAME (1139)
Duplicate constraint name in OPF File
Rescode::ERR_OPF_INVALID_CONE_TYPE (1140)
Invalid cone type in OPF File
Rescode::ERR_OPF_INCORRECT_TAG_PARAM (1141)
Invalid number of parameters in start-tag in OPF File
Rescode::ERR_OPF_INVALID_TAG (1142)
Invalid start-tag in OPF File
Rescode::ERR_OPF_DUPLICATE_CONE_ENTRY (1143)
Same variable appears in multiple cones in OPF File
Rescode::ERR_OPF_TOO_LARGE (1144)
The problem is too large to be correctly loaded
Rescode::ERR_OPF_DUAL_INTEGER_SOLUTION (1146)
Dual solution values are not allowed in OPF File
Rescode::ERR_LP_EMPTY (1151)
The problem cannot be written to an LP formatted file.
Rescode::ERR_WRITE_MPS_INVALID_NAME (1153)
An invalid name is created while writing an MPS file. Usually this will make the MPS file unreadable.
Rescode::ERR_LP_INVALID_VAR_NAME (1154)
A variable name is invalid when used in an LP formatted file.
Rescode::ERR_WRITE_OPF_INVALID_VAR_NAME (1156)
Empty variable names cannot be written to OPF files.
Rescode::ERR_LP_FILE_FORMAT (1157)
Syntax error in an LP file.
Rescode: :ERR_LP_EXPECTED_NUMBER (1158)
Expected a number in LP file
Rescode::ERR_READ_LP_MISSING_END_TAG (1159)
Syntax error in LP file. Possibly missing End tag.
Rescode::ERR_LP_INDICATOR_VAR (1160)
An indicator variable was not declared binary
Rescode::ERR_LP_EXPECTED_OBJECTIVE (1161)
Expected an objective section in LP file
Rescode::ERR_LP_EXPECTED_CONSTRAINT_RELATION (1162)
Expected constraint relation
Rescode::ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND (1163)
Constraint has ambiguous or invalid bound
Rescode::ERR_LP_DUPLICATE_SECTION (1164)
Duplicate section
Rescode::ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTED (1165)
Duplicate section
Rescode::ERR_WRITING_FILE (1166)
An error occurred while writing file

Rescode::ERR_INVALID_NAME_IN_SOL_FILE (1170)
An invalid name occurred in a solution file.
Rescode::ERR_JSON_SYNTAX (1175)
Syntax error in an JSON data
Rescode::ERR_JSON_STRING (1176)
Error in JSON string.
Rescode::ERR_JSON_NUMBER_OVERFLOW (1177)
Invalid number entry - wrong type or value overflow.
Rescode::ERR_JSON_FORMAT (1178)
Error in an JSON Task file
Rescode::ERR_JSON_DATA (1179)
Inconsistent data in JSON Task file
Rescode::ERR_JSON_MISSING_DATA (1180)
Missing data section in JSON task file.
Rescode::ERR_PTF_INCOMPATIBILITY (1181)
Incompatible item
Rescode::ERR_PTF_UNDEFINED_ITEM (1182)
Undefined symbol referenced
Rescode::ERR_PTF_INCONSISTENCY (1183)
Inconsistent size of item
Rescode: :ERR_PTF_FORMAT (1184)
Syntax error in an PTF file
Rescode: :ERR_ARGUMENT_LENNEQ (1197)
Incorrect length of arguments.
Rescode::ERR_ARGUMENT_TYPE (1198)
Incorrect argument type.
Rescode::ERR_NUM_ARGUMENTS (1199)
Incorrect number of function arguments.
Rescode::ERR_IN_ARGUMENT (1200)
A function argument is incorrect.
Rescode::ERR_ARGUMENT_DIMENSION (1201)
A function argument is of incorrect dimension.
Rescode::ERR_SHAPE_IS_TOO_LARGE (1202)
The size of the n-dimensional shape is too large.
Rescode::ERR_INDEX_IS_TOO_SMALL (1203)
An index in an argument is too small.
Rescode::ERR_INDEX_IS_TOO_LARGE (1204)
An index in an argument is too large.
Rescode::ERR_INDEX_IS_NOT_UNIQUE (1205)
An index in an argument is is unique.
Rescode::ERR_PARAM_NAME (1206)
The parameter name is not correct.
Rescode::ERR_PARAM_NAME_DOU (1207)
The parameter name is not correct for a double parameter.
Rescode::ERR_PARAM_NAME_INT (1208)
The parameter name is not correct for an integer parameter.
Rescode::ERR_PARAM_NAME_STR (1209)
The parameter name is not correct for a string parameter.
Rescode::ERR_PARAM_INDEX (1210)
Parameter index is out of range.
Rescode::ERR_PARAM_IS_TOO_LARGE (1215)
The parameter value is too large.

Rescode::ERR_PARAM_IS_TOO_SMALL (1216)
The parameter value is too small.
Rescode::ERR_PARAM_VALUE_STR (1217)
The parameter value string is incorrect.
Rescode::ERR_PARAM_TYPE (1218)
The parameter type is invalid.
Rescode::ERR_INF_DOU_INDEX (1219)
A double information index is out of range for the specified type.
Rescode::ERR_INF_INT_INDEX (1220)
An integer information index is out of range for the specified type.
Rescode::ERR_INDEX_ARR_IS_TOO_SMALL (1221)
An index in an array argument is too small.
Rescode::ERR_INDEX_ARR_IS_TOO_LARGE (1222)
An index in an array argument is too large.
Rescode::ERR_INF_LINT_INDEX (1225)
A long integer information index is out of range for the specified type.
Rescode::ERR_ARG_IS_TOD_SMALL (1226)
The value of a argument is too small.
Rescode::ERR_ARG_IS_TOO_LARGE (1227)
The value of a argument is too large.
Rescode::ERR_INVALID_WHICHSOL (1228)
whichsol is invalid.
Rescode::ERR_INF_DOU_NAME (1230)
A double information name is invalid.
Rescode::ERR_INF_INT_NAME (1231)
An integer information name is invalid.
Rescode::ERR_INF_TYPE (1232)
The information type is invalid.
Rescode::ERR_INF_LINT_NAME (1234)
A long integer information name is invalid.
Rescode::ERR_INDEX (1235)
An index is out of range.
Rescode::ERR_WHICHSOL (1236)
The solution defined by whichsol does not exists.
Rescode::ERR_SOLITEM (1237)
The solution item number solitem is invalid. Please note that Solitem: :SNX is invalid for the basic solution.
Rescode::ERR_WHICHITEM_NOT_ALLOWED (1238)
whichitem is unacceptable.
Rescode::ERR_MAXNUMCON (1240)
The maximum number of constraints specified is smaller than the number of constraints in the task.
Rescode::ERR_MAXNUMVAR (1241)
The maximum number of variables specified is smaller than the number of variables in the task.
Rescode::ERR_MAXNUMBARVAR (1242)
The maximum number of semidefinite variables specified is smaller than the number of semidefinite variables in the task.
Rescode::ERR_MAXNUMQNZ (1243)
The maximum number of non-zeros specified for the \(Q\) matrices is smaller than the number of non-zeros in the current \(Q\) matrices.
Rescode::ERR_TOO_SMALL_MAX_NUM_NZ (1245)
The maximum number of non-zeros specified is too small.

Rescode::ERR_INVALID_IDX (1246)
A specified index is invalid.
Rescode::ERR_INVALID_MAX_NUM (1247)
A specified index is invalid.
Rescode::ERR_UNALLOWED_WHICHSOL (1248)
The value od whichsol is not allowed.
Rescode::ERR_NUMCONLIM (1250)
Maximum number of constraints limit is exceeded.
Rescode::ERR_NUMVARLIM (1251)
Maximum number of variables limit is exceeded.
Rescode::ERR_TOO_SMALL_MAXNUMANZ (1252)
The maximum number of non-zeros specified for \(A\) is smaller than the number of non-zeros in the current \(A\).
Rescode::ERR_INV_APTRE (1253)
aptre[j] is strictly smaller than aptrb[j] for some \(j\).
Rescode::ERR_MUL_A_ELEMENT (1254)
An element in \(A\) is defined multiple times.
Rescode::ERR_INV_BK (1255)
Invalid bound key.
Rescode::ERR_INV_BKC (1256)
Invalid bound key is specified for a constraint.
Rescode: :ERR_INV_BKX (1257)
An invalid bound key is specified for a variable.
Rescode::ERR_INV_VAR_TYPE (1258)
An invalid variable type is specified for a variable.
Rescode: :ERR_SOLVER_PROBTYPE (1259)
Problem type does not match the chosen optimizer.
Rescode::ERR_OBJECTIVE_RANGE (1260)
Empty objective range.
Rescode::ERR_INV_RESCODE (1261)
Invalid response code.
Rescode: :ERR_INV_IINF (1262)
Invalid integer information item.
Rescode::ERR_INV_LIINF (1263)
Invalid long integer information item.
Rescode::ERR_INV_DINF (1264)
Invalid double information item.
Rescode::ERR_BASIS (1266)
An invalid basis is specified. Either too many or too few basis variables are specified.
Rescode::ERR_INV_SKC (1267)
Invalid value in skc.
Rescode::ERR_INV_SKX (1268)
Invalid value in skx.
Rescode::ERR_INV_SKN (1274)
Invalid value in skn.
Rescode: :ERR_INV_SK_STR (1269)
Invalid status key string encountered.
Rescode::ERR_INV_SK (1270)
Invalid status key code.
Rescode::ERR_INV_CONE_TYPE_STR (1271)
Invalid cone type string encountered.
```

Rescode::ERR_INV_CONE_TYPE (1272)

```

Invalid cone type code is encountered.
Rescode::ERR_INVALID_SURPLUS (1275)
Invalid surplus.
Rescode::ERR_INV_NAME_ITEM (1280)
An invalid name item code is used.
Rescode::ERR_PRO_ITEM (1281)
An invalid problem is used.
Rescode::ERR_INVALID_FORMAT_TYPE (1283)
Invalid format type.
Rescode::ERR_FIRSTI (1285)
Invalid firsti.
Rescode::ERR_LASTI (1286)
Invalid lasti.
Rescode::ERR_FIRSTJ (1287)
Invalid firstj.
Rescode::ERR_LASTJ (1288)
Invalid lastj.
Rescode::ERR_MAX_LEN_IS_TOO_SMALL (1289)
A maximum length that is too small has been specified.
Rescode::ERR_NONLINEAR_EQUALITY (1290)
The model contains a nonlinear equality which defines a nonconvex set.
Rescode::ERR_NONCONVEX (1291)
The optimization problem is nonconvex.
Rescode::ERR_NONLINEAR_RANGED (1292)
Nonlinear constraints with finite lower and upper bound always define a nonconvex feasible set. Rescode::ERR_CON_Q_NOT_PSD (1293)

The quadratic constraint matrix is not positive semidefinite as expected for a constraint with finite upper bound. This results in a nonconvex problem. The parameter Dparam: CHECK_CONVEXITY_REL_TOL can be used to relax the convexity check.
Rescode::ERR_CON_Q_NOT_NSD (1294)
The quadratic constraint matrix is not negative semidefinite as expected for a constraint with finite lower bound. This results in a nonconvex problem. The parameter Dparam: : CHECK_CONVEXITY_REL_TOL can be used to relax the convexity check.
Rescode::ERR_OBJ_Q_NOT_PSD (1295)
The quadratic coefficient matrix in the objective is not positive semidefinite as expected for a minimization problem. The parameter Dparam: :CHECK_CONVEXITY_REL_TOL can be used to relax the convexity check.
Rescode::ERR_OBJ_Q_NOT_NSD (1296)
The quadratic coefficient matrix in the objective is not negative semidefinite as expected for a maximization problem. The parameter Dparam: :CHECK_CONVEXITY_REL_TOL can be used to relax the convexity check.
Rescode::ERR_ARGUMENT_PERM_ARRAY (1299)
An invalid permutation array is specified.
Rescode::ERR_CONE_INDEX (1300)
An index of a non-existing cone has been specified.
Rescode::ERR_CONE_SIZE (1301)
A cone with incorrect number of members is specified.
Rescode::ERR_CONE_OVERLAP (1302)
One or more of the variables in the cone to be added is already member of another cone. Now assume the variable is \(x_{j}\) then add a new variable say \(x_{k}\) and the constraint
\[
x_{j}=x_{k}
\]
and then let \(x_{k}\) be member of the cone to be appended.

Rescode::ERR_CONE_REP_VAR (1303)
A variable is included multiple times in the cone.
Rescode::ERR_MAXNUMCONE (1304)
The value specified for maxnumcone is too small.
Rescode::ERR_CONE_TYPE (1305)
Invalid cone type specified.
Rescode::ERR_CONE_TYPE_STR (1306)
Invalid cone type specified.
Rescode::ERR_CONE_OVERLAP_APPEND (1307)
The cone to be appended has one variable which is already member of another cone.
Rescode::ERR_REMOVE_CONE_VARIABLE (1310)
A variable cannot be removed because it will make a cone invalid.
Rescode::ERR_APPENDING_TOO_BIG_CONE (1311)
Trying to append a too big cone.
Rescode::ERR_CONE_PARAMETER (1320)
An invalid cone parameter.
Rescode::ERR_SOL_FILE_INVALID_NUMBER (1350)
An invalid number is specified in a solution file.
Rescode::ERR_HUGE_C (1375)
A huge value in absolute size is specified for one \(c_{j}\).
Rescode::ERR_HUGE_AIJ (1380)
A numerically huge value is specified for an \(a_{i, j}\) element in \(A\). The parameter Dparam: : DATA_TOL_AIJ_HUGE controls when an \(a_{i, j}\) is considered huge.
Rescode::ERR_DUPLICATE_AIJ (1385)
An element in the A matrix is specified twice.
Rescode::ERR_LOWER_BOUND_IS_A_NAN (1390)
The lower bound specified is not a number (nan).
Rescode::ERR_UPPER_BOUND_IS_A_NAN (1391)
The upper bound specified is not a number (nan).
Rescode::ERR_INFINITE_BOUND (1400)
A numerically huge bound value is specified.
Rescode::ERR_INV_QOBJ_SUBI (1401)
Invalid value in qosubi.
Rescode::ERR_INV_QOBJ_SUBJ (1402)
Invalid value in qosubj.
Rescode::ERR_INV_QOBJ_VAL (1403)
Invalid value in qoval.
Rescode::ERR_INV_QCON_SUBK (1404)
Invalid value in qcsubk.
Rescode::ERR_INV_QCON_SUBI (1405)
Invalid value in qcsubi.
Rescode::ERR_INV_QCON_SUBJ (1406)
Invalid value in qcsubj.
Rescode::ERR_INV_QCON_VAL (1407)
Invalid value in qcval.
Rescode::ERR_QCON_SUBI_TOO_SMALL (1408)
Invalid value in qcsubi.
Rescode::ERR_QCON_SUBI_TOO_LARGE (1409)
Invalid value in qcsubi.
Rescode::ERR_QOBJ_UPPER_TRIANGLE (1415)
An element in the upper triangle of \(Q^{\circ}\) is specified. Only elements in the lower triangle should be specified.

Rescode::ERR_QCON_UPPER_TRIANGLE (1417)
An element in the upper triangle of a \(Q^{k}\) is specified. Only elements in the lower triangle should be specified.
Rescode::ERR_FIXED_BOUND_VALUES (1420)
A fixed constraint/variable has been specified using the bound keys but the numerical value of the lower and upper bound is different.
Rescode::ERR_TOO_SMALL_A_TRUNCATION_VALUE (1421)
A too small value for the A trucation value is specified.
Rescode::ERR_INVALID_OBJECTIVE_SENSE (1445)
An invalid objective sense is specified.
Rescode::ERR_UNDEFINED_OBJECTIVE_SENSE (1446)
The objective sense has not been specified before the optimization.
Rescode::ERR_Y_IS_UNDEFINED (1449)
The solution item \(y\) is undefined.
Rescode::ERR_NAN_IN_DOUBLE_DATA (1450)
An invalid floating point value was used in some double data.
Rescode::ERR_INF_IN_DOUBLE_DATA (1451)
An infinite floating point value was used in some double data.
Rescode::ERR_NAN_IN_BLC (1461)
\(l^{c}\) contains an invalid floating point value, i.e. a NaN.
Rescode::ERR_NAN_IN_BUC (1462)
\(u^{c}\) contains an invalid floating point value, i.e. a NaN.
Rescode::ERR_INVALID_CFIX (1469)
An invalid fixed term in the objective is speficied.
Rescode::ERR_NAN_IN_C (1470)
\(c\) contains an invalid floating point value, i.e. a NaN.
Rescode: :ERR_NAN_IN_BLX (1471)
\(l^{x}\) contains an invalid floating point value, i.e. a NaN.
Rescode::ERR_NAN_IN_BUX (1472)
\(u^{x}\) contains an invalid floating point value, i.e. a NaN.
Rescode::ERR_INVALID_AIJ (1473)
\(a_{i, j}\) contains an invalid floating point value, i.e. a NaN or an infinite value.
Rescode::ERR_INVALID_CJ (1474)
\(c_{j}\) contains an invalid floating point value, i.e. a NaN or an infinite value.
Rescode::ERR_SYM_MAT_INVALID (1480)
A symmetric matrix contains an invalid floating point value, i.e. a NaN or an infinite value.
Rescode::ERR_SYM_MAT_HUGE (1482)
A symmetric matrix contains a huge value in absolute size. The parameter Dparam: :
DATA_SYM_MAT_TOL_HUGE controls when an \(e_{i, j}\) is considered huge.
Rescode::ERR_INV_PROBLEM (1500)
Invalid problem type. Probably a nonconvex problem has been specified.
Rescode::ERR_MIXED_CONIC_AND_NL (1501)
The problem contains nonlinear terms conic constraints. The requested operation cannot be applied to this type of problem.
Rescode: :ERR_GLOBAL_INV_CONIC_PROBLEM (1503)
The global optimizer can only be applied to problems without semidefinite variables.
Rescode::ERR_INV_OPTIMIZER (1550)
An invalid optimizer has been chosen for the problem.
Rescode::ERR_MIO_NO_OPTIMIZER (1551)
No optimizer is available for the current class of integer optimization problems.
Rescode::ERR_NO_OPTIMIZER_VAR_TYPE (1552)
No optimizer is available for this class of optimization problems.

Rescode::ERR_FINAL_SOLUTION (1560)
An error occurred during the solution finalization.
Rescode::ERR_FIRST (1570)
Invalid first.
Rescode::ERR_LAST (1571)
Invalid index last. A given index was out of expected range.
Rescode::ERR_SLICE_SIZE (1572)
Invalid slice size specified.
Rescode::ERR_NEGATIVE_SURPLUS (1573)
Negative surplus.
Rescode::ERR_NEGATIVE_APPEND (1578)
Cannot append a negative number.
Rescode::ERR_POSTSOLVE (1580)
An error occurred during the postsolve. Please contact MOSEK support.
Rescode::ERR_OVERFLOW (1590)
A computation produced an overflow i.e. a very large number.
Rescode::ERR_NO_BASIS_SOL (1600)
No basic solution is defined.
Rescode::ERR_BASIS_FACTOR (1610)
The factorization of the basis is invalid.
Rescode::ERR_BASIS_SINGULAR (1615)
The basis is singular and hence cannot be factored.
Rescode::ERR_FACTOR (1650)
An error occurred while factorizing a matrix.
Rescode::ERR_FEASREPAIR_CANNOT_RELAX (1700)
An optimization problem cannot be relaxed.
Rescode::ERR_FEASREPAIR_SOLVING_RELAXED (1701)
The relaxed problem could not be solved to optimality. Please consult the log file for further details.
Rescode::ERR_FEASREPAIR_INCONSISTENT_BOUND (1702)
The upper bound is less than the lower bound for a variable or a constraint. Please correct this before running the feasibility repair.
Rescode: :ERR_REPAIR_INVALID_PROBLEM (1710)
The feasibility repair does not support the specified problem type.
Rescode::ERR_REPAIR_OPTIMIZATION_FAILED (1711)
Computation the optimal relaxation failed. The cause may have been numerical problems.
Rescode: :ERR_NAME_MAX_LEN (1750)
A name is longer than the buffer that is supposed to hold it.
Rescode::ERR_NAME_IS_NULL (1760)
The name buffer is a None pointer.
Rescode::ERR_INVALID_COMPRESSION (1800)
Invalid compression type.
Rescode::ERR_INVALID_IOMODE (1801)
Invalid io mode.
Rescode::ERR_NO_PRIMAL_INFEAS_CER (2000)
A certificate of primal infeasibility is not available.
Rescode::ERR_NO_DUAL_INFEAS_CER (2001)
A certificate of infeasibility is not available.
Rescode::ERR_NO_SOLUTION_IN_CALLBACK (2500)
The required solution is not available.
Rescode::ERR_INV_MARKI (2501)
Invalid value in marki.

Rescode::ERR_INV_MARKJ (2502)
Invalid value in markj.
Rescode::ERR_INV_NUMI (2503)
Invalid numi.
Rescode::ERR_INV_NUMJ (2504)
Invalid numj.
Rescode::ERR_TASK_INCOMPATIBLE (2560)
The Task file is incompatible with this platform. This results from reading a file on a 32 bit platform generated on a 64 bit platform.
Rescode::ERR_TASK_INVALID (2561)
The Task file is invalid.
Rescode::ERR_TASK_WRITE (2562)
Failed to write the task file.
Rescode::ERR_LU_MAX_NUM_TRIES (2800)
Could not compute the LU factors of the matrix within the maximum number of allowed tries.
Rescode::ERR_INVALID_UTF8 (2900)
An invalid UTF8 string is encountered.
Rescode::ERR_INVALID_WCHAR (2901)
An invalid wchar string is encountered.
Rescode::ERR_NO_DUAL_FOR_ITG_SOL (2950)
No dual information is available for the integer solution.
Rescode::ERR_NO_SNX_FOR_BAS_SOL (2953)
\(s_{n}^{x}\) is not available for the basis solution.
Rescode::ERR_INTERNAL (3000)
An internal error occurred. Please report this problem.
Rescode::ERR_API_ARRAY_TOO_SMALL (3001)
An input array was too short.
Rescode::ERR_API_CB_CONNECT (3002)
Failed to connect a callback object.
Rescode::ERR_API_FATAL_ERROR (3005)
An internal error occurred in the API. Please report this problem.

\section*{Rescode::ERR_API_INTERNAL (3999)}

An internal fatal error occurred in an interface function.
Rescode::ERR_SEN_FORMAT (3050)
Syntax error in sensitivity analysis file.
Rescode::ERR_SEN_UNDEF_NAME (3051)
An undefined name was encountered in the sensitivity analysis file.
Rescode::ERR_SEN_INDEX_RANGE (3052)
Index out of range in the sensitivity analysis file.
Rescode::ERR_SEN_BOUND_INVALID_UP (3053)
Analysis of upper bound requested for an index, where no upper bound exists.
Rescode::ERR_SEN_BOUND_INVALID_LO (3054)
Analysis of lower bound requested for an index, where no lower bound exists.
Rescode::ERR_SEN_INDEX_INVALID (3055)
Invalid range given in the sensitivity file.
Rescode::ERR_SEN_INVALID_REGEXP (3056)
Syntax error in regexp or regexp longer than 1024.
Rescode::ERR_SEN_SOLUTION_STATUS (3057)
No optimal solution found to the original problem given for sensitivity analysis.
Rescode::ERR_SEN_NUMERICAL (3058)
Numerical difficulties encountered performing the sensitivity analysis.

\section*{Rescode::ERR_SEN_UNHANDLED_PROBLEM_TYPE (3080)}

Sensitivity analysis cannot be performed for the specified problem. Sensitivity analysis is only possible for linear problems.
Rescode::ERR_UNB_STEP_SIZE (3100)
A step size in an optimizer was unexpectedly unbounded. For instance, if the step-size becomes unbounded in phase 1 of the simplex algorithm then an error occurs. Normally this will happen only if the problem is badly formulated. Please contact MOSEK support if this error occurs.
Rescode::ERR_IDENTICAL_TASKS (3101)
Some tasks related to this function call were identical. Unique tasks were expected.
Rescode::ERR_AD_INVALID_CODELIST (3102)
The code list data was invalid.
Rescode::ERR_INTERNAL_TEST_FAILED (3500)
An internal unit test function failed.
Rescode::ERR_XML_INVALID_PROBLEM_TYPE (3600)
The problem type is not supported by the XML format.
Rescode::ERR_INVALID_AMPL_STUB (3700)
Invalid AMPL stub.
Rescode::ERR_INT64_TO_INT32_CAST (3800)
A 64 bit integer could not be cast to a 32 bit integer.
Rescode::ERR_SIZE_LICENSE_NUMCORES (3900)
The computer contains more cpu cores than the license allows for.
Rescode::ERR_INFEAS_UNDEFINED (3910)
The requested value is not defined for this solution type.
Rescode::ERR_NO_BARX_FOR_SOLUTION (3915)
There is no \(\bar{X}\) available for the solution specified. In particular note there are no \(\bar{X}\) defined for the basic and integer solutions.
Rescode::ERR_NO_BARS_FOR_SOLUTION (3916)
There is no \(\bar{s}\) available for the solution specified. In particular note there are no \(\bar{s}\) defined for the basic and integer solutions.
Rescode::ERR_BAR_VAR_DIM (3920)
The dimension of a symmetric matrix variable has to be greater than 0 .
Rescode::ERR_SYM_MAT_INVALID_ROW_INDEX (3940)
A row index specified for sparse symmetric matrix is invalid.
Rescode::ERR_SYM_MAT_INVALID_COL_INDEX (3941)
A column index specified for sparse symmetric matrix is invalid.
Rescode::ERR_SYM_MAT_NOT_LOWER_TRINGULAR (3942)
Only the lower triangular part of sparse symmetric matrix should be specified.
Rescode::ERR_SYM_MAT_INVALID_VALUE (3943)
The numerical value specified in a sparse symmetric matrix is not a floating point value.
Rescode::ERR_SYM_MAT_DUPLICATE (3944)
A value in a symmetric matric as been specified more than once.
Rescode::ERR_INVALID_SYM_MAT_DIM (3950)
A sparse symmetric matrix of invalid dimension is specified.
Rescode::ERR_INVALID_FILE_FORMAT_FOR_SYM_MAT (4000)
The file format does not support a problem with symmetric matrix variables.
Rescode::ERR_INVALID_FILE_FORMAT_FOR_CFIX (4001)
The file format does not support a problem with nonzero fixed term in c. Rescode::ERR_INVALID_FILE_FORMAT_FOR_RANGED_CONSTRAINTS (4002)

The file format does not support a problem with ranged constraints.
Rescode::ERR_INVALID_FILE_FORMAT_FOR_FREE_CONSTRAINTS (4003)
The file format does not support a problem with free constraints.
Rescode::ERR_INVALID_FILE_FORMAT_FOR_CONES (4005)
The file format does not support a problem with the simple cones (deprecated).

\section*{Rescode::ERR_INVALID_FILE_FORMAT_FOR_QUADRATIC_TERMS (4006)}

The file format does not support a problem with quadratic terms.
Rescode::ERR_INVALID_FILE_FORMAT_FOR_NONLINEAR (4010)
The file format does not support a problem with nonlinear terms.
Rescode::ERR_INVALID_FILE_FORMAT_FOR_DISJUNCTIVE_CONSTRAINTS (4011)
The file format does not support a problem with disjunctive constraints.
Rescode::ERR_INVALID_FILE_FORMAT_FOR_AFFINE_CONIC_CONSTRAINTS (4012)
The file format does not support a problem with affine conic constraints.
Rescode::ERR_DUPLICATE_CONSTRAINT_NAMES (4500)
Two constraint names are identical.
Rescode::ERR_DUPLICATE_VARIABLE_NAMES (4501)
Two variable names are identical.
Rescode::ERR_DUPLICATE_BARVARIABLE_NAMES (4502)
Two barvariable names are identical.
Rescode::ERR_DUPLICATE_CONE_NAMES (4503)
Two cone names are identical.
Rescode::ERR_DUPLICATE_DOMAIN_NAMES (4504)
Two domain names are identical.
Rescode::ERR_DUPLICATE_DJC_NAMES (4505)
Two disjunctive constraint names are identical.
Rescode::ERR_NON_UNIQUE_ARRAY (5000)
An array does not contain unique elements.
Rescode: :ERR_ARGUMENT_IS_TOO_SMALL (5004)
The value of a function argument is too small.
Rescode: :ERR_ARGUMENT_IS_TOO_LARGE (5005)
The value of a function argument is too large.
Rescode::ERR_MIO_INTERNAL (5010)
A fatal error occurred in the mixed integer optimizer. Please contact MOSEK support.
Rescode::ERR_INVALID_PROBLEM_TYPE (6000)
An invalid problem type.
Rescode::ERR_UNHANDLED_SOLUTION_STATUS (6010)
Unhandled solution status.
Rescode::ERR_UPPER_TRIANGLE (6020)
An element in the upper triangle of a lower triangular matrix is specified.
Rescode::ERR_LAU_SINGULAR_MATRIX (7000)
A matrix is singular.
Rescode::ERR_LAU_NOT_POSITIVE_DEFINITE (7001)
A matrix is not positive definite.
Rescode::ERR_LAU_INVALID_LOWER_TRIANGULAR_MATRIX (7002)
An invalid lower triangular matrix.
Rescode::ERR_LAU_UNKNOWN (7005)
An unknown error.
Rescode::ERR_LAU_ARG_M (7010)
Invalid argument m.
Rescode::ERR_LAU_ARG_N (7011)
Invalid argument n .
Rescode::ERR_LAU_ARG_K (7012)
Invalid argument k.
Rescode::ERR_LAU_ARG_TRANSA (7015)
Invalid argument transa.
Rescode::ERR_LAU_ARG_TRANSB (7016)
Invalid argument transb.

Rescode::ERR_LAU_ARG_UPLO (7017)
Invalid argument uplo.
Rescode::ERR_LAU_ARG_TRANS (7018)
Invalid argument trans.
Rescode::ERR_LAU_INVALID_SPARSE_SYMMETRIC_MATRIX (7019)
An invalid sparse symmetric matrix is specfified. Note only the lower triangular part with no duplicates is specifed.
Rescode::ERR_CBF_PARSE (7100)
An error occurred while parsing an CBF file.
Rescode::ERR_CBF_OBJ_SENSE (7101)
An invalid objective sense is specified.
Rescode::ERR_CBF_NO_VARIABLES (7102)
No variables are specified.
Rescode::ERR_CBF_TOO_MANY_CONSTRAINTS (7103)
Too many constraints specified.
Rescode::ERR_CBF_TOO_MANY_VARIABLES (7104)
Too many variables specified.
Rescode::ERR_CBF_NO_VERSION_SPECIFIED (7105)
No version specified.
Rescode::ERR_CBF_SYNTAX (7106)
Invalid syntax.
Rescode::ERR_CBF_DUPLICATE_OBJ (7107)
Duplicate OBJ keyword.
Rescode::ERR_CBF_DUPLICATE_CON (7108)
Duplicate CON keyword.
Rescode::ERR_CBF_DUPLICATE_VAR (7110)
Duplicate VAR keyword.
Rescode::ERR_CBF_DUPLICATE_INT (7111)
Duplicate INT keyword.
Rescode::ERR_CBF_INVALID_VAR_TYPE (7112)
Invalid variable type.
Rescode::ERR_CBF_INVALID_CON_TYPE (7113)
Invalid constraint type.
Rescode::ERR_CBF_INVALID_DOMAIN_DIMENSION (7114)
Invalid domain dimension.
Rescode::ERR_CBF_DUPLICATE_OBJACOORD (7115)
Duplicate index in OBJCOORD.
Rescode::ERR_CBF_DUPLICATE_BCOORD (7116)
Duplicate index in BCOORD.
Rescode::ERR_CBF_DUPLICATE_ACOORD (7117)
Duplicate index in ACOORD.
Rescode::ERR_CBF_TOO_FEW_VARIABLES (7118)
Too few variables defined.
Rescode::ERR_CBF_TOO_FEW_CONSTRAINTS (7119)
Too few constraints defined.
Rescode::ERR_CBF_TOO_FEW_INTS (7120)
Too few ints are specified.
Rescode::ERR_CBF_TOO_MANY_INTS (7121)
Too many ints are specified.
Rescode::ERR_CBF_INVALID_INT_INDEX (7122)
Invalid INT index.

Rescode::ERR_CBF_UNSUPPORTED (7123)
Unsupported feature is present.
Rescode::ERR_CBF_DUPLICATE_PSDVAR (7124)
Duplicate PSDVAR keyword.
Rescode::ERR_CBF_INVALID_PSDVAR_DIMENSION (7125)
Invalid PSDVAR dimension.
Rescode::ERR_CBF_TOO_FEW_PSDVAR (7126)
Too few variables defined.
Rescode::ERR_CBF_INVALID_EXP_DIMENSION (7127)
Invalid dimension of a exponential cone.
Rescode::ERR_CBF_DUPLICATE_POW_CONES (7130)
Multiple POWCONES specified.
Rescode::ERR_CBF_DUPLICATE_POW_STAR_CONES (7131)
Multiple POW*CONES specified.
Rescode::ERR_CBF_INVALID_POWER (7132)
Invalid power specified.
Rescode::ERR_CBF_POWER_CONE_IS_TOO_LONG (7133)
Power cone is too long.
Rescode::ERR_CBF_INVALID_POWER_CONE_INDEX (7134)
Invalid power cone index.
Rescode: :ERR_CBF_INVALID_POWER_STAR_CONE_INDEX (7135)
Invalid power star cone index.
Rescode::ERR_CBF_UNHANDLED_POWER_CONE_TYPE (7136)
An unhandled power cone type.
Rescode::ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE (7137)
An unhandled power star cone type.
Rescode::ERR_CBF_POWER_CONE_MISMATCH (7138)
The power cone does not match with it definition.
Rescode: :ERR_CBF_POWER_STAR_CONE_MISMATCH (7139)
The power star cone does not match with it definition.
Rescode::ERR_CBF_INVALID_NUMBER_OF_CONES (7140)
Invalid number of cones.
Rescode::ERR_CBF_INVALID_DIMENSION_OF_CONES (7141)
Invalid number of cones.
Rescode::ERR_CBF_INVALID_NUM_OBJACOORD (7150)
Invalid number of OBJACOORD.
Rescode::ERR_CBF_INVALID_NUM_OBJFCOORD (7151)
Invalid number of OBJFCOORD.
Rescode::ERR_CBF_INVALID_NUM_ACOORD (7152)
Invalid number of ACOORD.
Rescode::ERR_CBF_INVALID_NUM_BCOORD (7153)
Invalid number of BCOORD.
Rescode::ERR_CBF_INVALID_NUM_FCOORD (7155)
Invalid number of FCOORD.
Rescode::ERR_CBF_INVALID_NUM_HCOORD (7156)
Invalid number of HCOORD.
Rescode::ERR_CBF_INVALID_NUM_DCOORD (7157)
Invalid number of DCOORD.
Rescode::ERR_CBF_EXPECTED_A_KEYWORD (7158)
Expected a key word.
Rescode: :ERR_CBF_INVALID_NUM_PSDCON (7200)
Invalid number of PSDCON.

Rescode::ERR_CBF_DUPLICATE_PSDCON (7201)
Duplicate CON keyword.
Rescode::ERR_CBF_INVALID_DIMENSION_OF_PSDCON (7202)
Invalid PSDCON dimension.
Rescode::ERR_CBF_INVALID_PSDCON_INDEX (7203)
Invalid PSDCON index.
Rescode::ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX (7204)
Invalid PSDCON index.
Rescode::ERR_CBF_INVALID_PSDCON_BLOCK_INDEX (7205)
Invalid PSDCON index.
Rescode::ERR_CBF_UNSUPPORTED_CHANGE (7210)
The CHANGE section is not supported.
Rescode::ERR_MIO_INVALID_ROOT_OPTIMIZER (7700)
An invalid root optimizer was selected for the problem type.
Rescode::ERR_MIO_INVALID_NODE_OPTIMIZER (7701)
An invalid node optimizer was selected for the problem type.
Rescode::ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYPE (7750)
An invalid cone type occurs when writing a CPLEX formatted MPS file.
Rescode::ERR_TOCONIC_CONSTR_Q_NOT_PSD (7800)
The matrix defining the quadratric part of constraint is not positive semidefinite.
Rescode: :ERR_TOCONIC_CONSTRAINT_FX (7801)
The quadratic constraint is an equality, thus not convex.
Rescode: :ERR_TOCONIC_CONSTRAINT_RA (7802)
The quadratic constraint has finite lower and upper bound, and therefore it is not convex.
Rescode::ERR_TOCONIC_CONSTR_NOT_CONIC (7803)
The constraint is not conic representable.
Rescode: :ERR_TOCONIC_OBJECTIVE_NOT_PSD (7804)
The matrix defining the quadratric part of the objective function is not positive semidefinite.
Rescode::ERR_SERVER_CONNECT (8000)
Failed to connect to remote solver server. The server string or the port string were invalid, or the server did not accept connection.
Rescode::ERR_SERVER_PROTOCOL (8001)
Unexpected message or data from solver server.
Rescode::ERR_SERVER_STATUS (8002)
Server returned non-ok HTTP status code
Rescode::ERR_SERVER_TOKEN (8003)
The job ID specified is incorrect or invalid
Rescode::ERR_SERVER_ADDRESS (8004)
Invalid address string
Rescode::ERR_SERVER_CERTIFICATE (8005)
Invalid TLS certificate format or path
Rescode::ERR_SERVER_TLS_CLIENT (8006)
Failed to create TLS cleint
Rescode::ERR_SERVER_ACCESS_TOKEN (8007)
Invalid access token
Rescode::ERR_SERVER_PROBLEM_SIZE (8008)
The size of the problem exceeds the dimensions permitted by the instance of the OptServer where it was run.
Rescode::ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRIX (20050)
An element in a sparse matrix is specified twice.
Rescode::ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST (20060)
An index is specified twice in an affine expression list.

Rescode::ERR_DUPLICATE_FIJ (20100)
An element in the F matrix is specified twice.
Rescode::ERR_INVALID_FIJ (20101)
\(f_{i, j}\) contains an invalid floating point value, i.e. a NaN or an infinite value.
Rescode::ERR_HUGE_FIJ (20102)
A numerically huge value is specified for an \(f_{i, j}\) element in \(F\). The parameter Dparam: : DATA_TOL_AIJ_HUGE controls when an \(f_{i, j}\) is considered huge.
Rescode::ERR_INVALID_G (20103)
\(g\) contains an invalid floating point value, i.e. a NaN or an infinite value.
Rescode::ERR_INVALID_B (20150)
\(b\) contains an invalid floating point value, i.e. a NaN or an infinite value.
Rescode::ERR_DOMAIN_INVALID_INDEX (20400)
A domain index is invalid.
Rescode::ERR_DOMAIN_DIMENSION (20401)
A domain dimension is invalid.
Rescode::ERR_DOMAIN_DIMENSION_PSD (20402)
A PSD domain dimension is invalid.
Rescode::ERR_NOT_POWER_DOMAIN (20403)
The function is only applicable to primal and dual power cone domains.
Rescode::ERR_DOMAIN_POWER_INVALID_ALPHA (20404)
Alpha contains an invalid floating point value, i.e. a NaN or an infinite value.
Rescode::ERR_DOMAIN_POWER_NEGATIVE_ALPHA (20405)
Alpha contains a negative value or zero.
Rescode::ERR_DOMAIN_POWER_NLEFT (20406)
The value of \(n_{\text {left }}\) is not in \([1, n-1]\) where \(n\) is the dimension.
Rescode::ERR_AFE_INVALID_INDEX (20500)
An affine expression index is invalid.
Rescode::ERR_ACC_INVALID_INDEX (20600)
A affine conic constraint index is invalid.
Rescode::ERR_ACC_INVALID_ENTRY_INDEX (20601)
The index of an element in an affine conic constraint is invalid.
Rescode::ERR_ACC_AFE_DOMAIN_MISMATCH (20602)
There is a mismatch between between the number of affine expressions and total dimension of the domain(s).
Rescode::ERR_DJC_INVALID_INDEX (20700)
A disjunctive constraint index is invalid.
Rescode::ERR_DJC_UNSUPPORTED_DOMAIN_TYPE (20701)
An unsupported domain type has been used in a disjunctive constraint.
Rescode: :ERR_DJC_AFE_DOMAIN_MISMATCH (20702)
There is a mismatch between the number of affine expressions and total dimension of the domain(s).
Rescode::ERR_DJC_INVALID_TERM_SIZE (20703)
A termize is invalid.
Rescode::ERR_DJC_DOMAIN_TERMSIZE_MISMATCH (20704)
There is a mismatch between the number of domains and the term sizes.
Rescode::ERR_DJC_TOTAL_NUM_TERMS_MISMATCH (20705)
There total number of terms in all domains does not match.
Rescode::ERR_UNDEF_SOLUTION (22000)
MOSEK has the following solution types:
- an interior-point solution,
- a basic solution,
- and an integer solution.

Each optimizer may set one or more of these solutions; e.g by default a successful optimization with the interior-point optimizer defines the interior-point solution and, for linear problems, also the basic solution. This error occurs when asking for a solution or for information about a solution that is not defined.
Rescode::ERR_NO_DOTY (22010)
No doty is available

\subsection*{15.8 Enumerations}

\section*{Basindtype}

Basis identification
Basindtype: : NEVER
Never do basis identification.
Basindtype: :ALWAYS
Basis identification is always performed even if the interior-point optimizer terminates abnormally.
Basindtype: :NO_ERROR
Basis identification is performed if the interior-point optimizer terminates without an error.
Basindtype: :IF_FEASIBLE
Basis identification is not performed if the interior-point optimizer terminates with a problem status saying that the problem is primal or dual infeasible.
Basindtype: :RESERVERED
Not currently in use.
Boundkey
Bound keys
Boundkey::LO
The constraint or variable has a finite lower bound and an infinite upper bound.
Boundkey: :UP
The constraint or variable has an infinite lower bound and an finite upper bound.
Boundkey: :FX
The constraint or variable is fixed.
Boundkey: :FR
The constraint or variable is free.
Boundkey::RA
The constraint or variable is ranged.

\section*{Mark}

Mark
Mark: :LO
The lower bound is selected for sensitivity analysis.
Mark: :UP
The upper bound is selected for sensitivity analysis.
Simdegen
Degeneracy strategies
Simdegen: : NONE
The simplex optimizer should use no degeneration strategy.
Simdegen: :FREE
The simplex optimizer chooses the degeneration strategy.

\section*{Simdegen::AGGRESSIVE}

The simplex optimizer should use an aggressive degeneration strategy.
Simdegen: :MODERATE
The simplex optimizer should use a moderate degeneration strategy.
Simdegen: :MINIMUM
The simplex optimizer should use a minimum degeneration strategy.
Transpose
Transposed matrix.
Transpose: :NO
No transpose is applied.
Transpose: :YES
A transpose is applied.
Uplo
Triangular part of a symmetric matrix.
Uplo::LO
Lower part.
Uplo: :UP
Upper part.
Simreform
Problem reformulation.
Simreform: : ON
Allow the simplex optimizer to reformulate the problem.
Simreform: : OFF
Disallow the simplex optimizer to reformulate the problem.
Simreform: :FREE
The simplex optimizer can choose freely.
Simreform: :AGGRESSIVE
The simplex optimizer should use an aggressive reformulation strategy.
Simdupvec
Exploit duplicate columns.
Simdupvec: : ON
Allow the simplex optimizer to exploit duplicated columns.
Simdupvec: OFF
Disallow the simplex optimizer to exploit duplicated columns.
Simdupvec: :FREE
The simplex optimizer can choose freely.

\section*{Simhotstart}

Hot-start type employed by the simplex optimizer
Simhotstart: : NONE
The simplex optimizer performs a coldstart.
Simhotstart: :FREE
The simplex optimize chooses the hot-start type.
Simhotstart::STATUS_KEYS
Only the status keys of the constraints and variables are used to choose the type of hot-start.
Intpnthotstart
Hot-start type employed by the interior-point optimizers.

\section*{Intpnthotstart: :NONE}

The interior-point optimizer performs a coldstart.
Intpnthotstart: :PRIMAL
The interior-point optimizer exploits the primal solution only.

\section*{Intpnthotstart: DUAL}

The interior-point optimizer exploits the dual solution only.

\section*{Intpnthotstart::PRIMAL_DUAL}

The interior-point optimizer exploits both the primal and dual solution.

\section*{Purify}

Solution purification employed optimizer.

\section*{Purify: NONE}

The optimizer performs no solution purification.
Purify: :PRIMAL
The optimizer purifies the primal solution.
Purify::DUAL
The optimizer purifies the dual solution.
Purify: :PRIMAL_DUAL
The optimizer purifies both the primal and dual solution.
Purify: AUTO
TBD
Callbackcode
Progress callback codes
Callbackcode::BEGIN_BI
The basis identification procedure has been started.
Callbackcode: :BEGIN_CONIC
The callback function is called when the conic optimizer is started.
Callbackcode: :BEGIN_DUAL_BI
The callback function is called from within the basis identification procedure when the dual phase is started.
Callbackcode: :BEGIN_DUAL_SENSITIVITY
Dual sensitivity analysis is started.
Callbackcode: :BEGIN_DUAL_SETUP_BI
The callback function is called when the dual BI phase is started.
Callbackcode: :BEGIN_DUAL_SIMPLEX
The callback function is called when the dual simplex optimizer started.
Callbackcode: :BEGIN_DUAL_SIMPLEX_BI
The callback function is called from within the basis identification procedure when the dual simplex clean-up phase is started.
```

Callbackcode: :BEGIN_INFEAS_ANA

```

The callback function is called when the infeasibility analyzer is started.
Callbackcode: :BEGIN_INTPNT
The callback function is called when the interior-point optimizer is started.
Callbackcode: :BEGIN_LICENSE_WAIT
Begin waiting for license.
Callbackcode: :BEGIN_MIO
The callback function is called when the mixed-integer optimizer is started.

\section*{Callbackcode: :BEGIN_OPTIMIZER}

The callback function is called when the optimizer is started.

\section*{Callbackcode: :BEGIN_PRESOLVE}

The callback function is called when the presolve is started.

\section*{Callbackcode::BEGIN_PRIMAL_BI}

The callback function is called from within the basis identification procedure when the primal phase is started.

\section*{Callbackcode: :BEGIN_PRIMAL_REPAIR}

Begin primal feasibility repair.
Callbackcode: :BEGIN_PRIMAL_SENSITIVITY
Primal sensitivity analysis is started.
Callbackcode: :BEGIN_PRIMAL_SETUP_BI
The callback function is called when the primal BI setup is started.

\section*{Callbackcode::BEGIN_PRIMAL_SIMPLEX}

The callback function is called when the primal simplex optimizer is started.

\section*{Callbackcode::BEGIN_PRIMAL_SIMPLEX_BI}

The callback function is called from within the basis identification procedure when the primal simplex clean-up phase is started.

Callbackcode: :BEGIN_QCQO_REFORMULATE
Begin QCQO reformulation.
Callbackcode: :BEGIN_READ
MOSEK has started reading a problem file.
Callbackcode: :BEGIN_ROOT_CUTGEN
The callback function is called when root cut generation is started.
Callbackcode: :BEGIN_SIMPLEX
The callback function is called when the simplex optimizer is started.
Callbackcode: :BEGIN_SIMPLEX_BI
The callback function is called from within the basis identification procedure when the simplex clean-up phase is started.
Callbackcode: :BEGIN_SOLVE_ROOT_RELAX
The callback function is called when solution of root relaxation is started.

\section*{Callbackcode: :BEGIN_TO_CONIC}

Begin conic reformulation.
Callbackcode: :BEGIN_WRITE
MOSEK has started writing a problem file.
Callbackcode: : CONIC
The callback function is called from within the conic optimizer after the information database has been updated.
```

Callbackcode::DUAL_SIMPLEX

```

The callback function is called from within the dual simplex optimizer.

\section*{Callbackcode::END_BI}

The callback function is called when the basis identification procedure is terminated.

\section*{Callbackcode: :END_CONIC}

The callback function is called when the conic optimizer is terminated.
Callbackcode: :END_DUAL_BI
The callback function is called from within the basis identification procedure when the dual phase is terminated.

\section*{Callbackcode::END_DUAL_SENSITIVITY}

Dual sensitivity analysis is terminated.
Callbackcode: :END_DUAL_SETUP_BI
The callback function is called when the dual BI phase is terminated.
Callbackcode: :END_DUAL_SIMPLEX
The callback function is called when the dual simplex optimizer is terminated.

\section*{Callbackcode: :END_DUAL_SIMPLEX_BI}

The callback function is called from within the basis identification procedure when the dual clean-up phase is terminated.

Callbackcode: :END_INFEAS_ANA
The callback function is called when the infeasibility analyzer is terminated.

\section*{Callbackcode::END_INTPNT}

The callback function is called when the interior-point optimizer is terminated.
```

Callbackcode::END_LICENSE_WAIT

```

End waiting for license.
Callbackcode: :END_MIO
The callback function is called when the mixed-integer optimizer is terminated.

\section*{Callbackcode::END_OPTIMIZER}

The callback function is called when the optimizer is terminated.

\section*{Callbackcode: :END_PRESOLVE}

The callback function is called when the presolve is completed.
Callbackcode: :END_PRIMAL_BI
The callback function is called from within the basis identification procedure when the primal phase is terminated.
```

Callbackcode::END_PRIMAL_REPAIR

```

End primal feasibility repair.

\section*{Callbackcode: :END_PRIMAL_SENSITIVITY}

Primal sensitivity analysis is terminated.
Callbackcode: :END_PRIMAL_SETUP_BI
The callback function is called when the primal BI setup is terminated.

\section*{Callbackcode::END_PRIMAL_SIMPLEX}

The callback function is called when the primal simplex optimizer is terminated.
```

Callbackcode::END_PRIMAL_SIMPLEX_BI

```

The callback function is called from within the basis identification procedure when the primal clean-up phase is terminated.

\section*{Callbackcode::END_QCQO_REFORMULATE}

End QCQO reformulation.

\section*{Callbackcode::END_READ}

MOSEK has finished reading a problem file.
Callbackcode: :END_ROOT_CUTGEN
The callback function is called when root cut generation is terminated.
Callbackcode: :END_SIMPLEX
The callback function is called when the simplex optimizer is terminated.

\section*{Callbackcode::END_SIMPLEX_BI}

The callback function is called from within the basis identification procedure when the simplex clean-up phase is terminated.

\section*{Callbackcode: :END_SOLVE_ROOT_RELAX}

The callback function is called when solution of root relaxation is terminated.

\section*{Callbackcode: :END_TO_CONIC}

End conic reformulation.
Callbackcode: :END_WRITE
MOSEK has finished writing a problem file.
Callbackcode::IM_BI
The callback function is called from within the basis identification procedure at an intermediate point.

\section*{Callbackcode::IM_CONIC}

The callback function is called at an intermediate stage within the conic optimizer where the information database has not been updated.
```

Callbackcode::IM_DUAL_BI

```

The callback function is called from within the basis identification procedure at an intermediate point in the dual phase.

\section*{Callbackcode::IM_DUAL_SENSIVITY}

The callback function is called at an intermediate stage of the dual sensitivity analysis.

\section*{Callbackcode::IM_DUAL_SIMPLEX}

The callback function is called at an intermediate point in the dual simplex optimizer.

\section*{Callbackcode::IM_INTPNT}

The callback function is called at an intermediate stage within the interior-point optimizer where the information database has not been updated.

\section*{Callbackcode::IM_LICENSE_WAIT}

MOSEK is waiting for a license.

\section*{Callbackcode::IM_LU}

The callback function is called from within the LU factorization procedure at an intermediate point.

\section*{Callbackcode::IM_MIO}

The callback function is called at an intermediate point in the mixed-integer optimizer.

\section*{Callbackcode::IM_MIO_DUAL_SIMPLEX}

The callback function is called at an intermediate point in the mixed-integer optimizer while running the dual simplex optimizer.

\section*{Callbackcode: :IM_MIO_INTPNT}

The callback function is called at an intermediate point in the mixed-integer optimizer while running the interior-point optimizer.

Callbackcode::IM_MIO_PRIMAL_SIMPLEX
The callback function is called at an intermediate point in the mixed-integer optimizer while running the primal simplex optimizer.

\section*{Callbackcode::IM_ORDER}

The callback function is called from within the matrix ordering procedure at an intermediate point.
Callbackcode::IM_PRESOLVE
The callback function is called from within the presolve procedure at an intermediate stage.
```

Callbackcode::IM_PRIMAL_BI

```

The callback function is called from within the basis identification procedure at an intermediate point in the primal phase.

Callbackcode::IM_PRIMAL_SENSIVITY
The callback function is called at an intermediate stage of the primal sensitivity analysis.

\section*{Callbackcode::IM_PRIMAL_SIMPLEX}

The callback function is called at an intermediate point in the primal simplex optimizer.

\section*{Callbackcode::IM_QO_REFORMULATE}

The callback function is called at an intermediate stage of the conic quadratic reformulation.

\section*{Callbackcode: :IM_READ}

Intermediate stage in reading.

\section*{Callbackcode::IM_ROOT_CUTGEN}

The callback is called from within root cut generation at an intermediate stage.

\section*{Callbackcode: :IM_SIMPLEX}

The callback function is called from within the simplex optimizer at an intermediate point.

\section*{Callbackcode::IM_SIMPLEX_BI}

The callback function is called from within the basis identification procedure at an intermediate point in the simplex clean-up phase. The frequency of the callbacks is controlled by the Iparam: :LOG_SIM_FREQ parameter.

\section*{Callbackcode: :INTPNT}

The callback function is called from within the interior-point optimizer after the information database has been updated.

\section*{Callbackcode::NEW_INT_MIO}

The callback function is called after a new integer solution has been located by the mixedinteger optimizer.

\section*{Callbackcode: :PRIMAL_SIMPLEX}

The callback function is called from within the primal simplex optimizer.

\section*{Callbackcode: :READ_OPF}

The callback function is called from the OPF reader.

\section*{Callbackcode: :READ_OPF_SECTION}

A chunk of \(Q\) non-zeros has been read from a problem file.

\section*{Callbackcode: :RESTART_MIO}

The callback function is called when the mixed-integer optimizer is restarted.

\section*{Callbackcode: :SOLVING_REMOTE}

The callback function is called while the task is being solved on a remote server.

\section*{Callbackcode: :UPDATE_DUAL_BI}

The callback function is called from within the basis identification procedure at an intermediate point in the dual phase.
```

Callbackcode::UPDATE_DUAL_SIMPLEX

```

The callback function is called in the dual simplex optimizer.

\section*{Callbackcode: :UPDATE_DUAL_SIMPLEX_BI}

The callback function is called from within the basis identification procedure at an intermediate point in the dual simplex clean-up phase. The frequency of the callbacks is controlled by the Iparam: :LOG_SIM_FREQ parameter.

\section*{Callbackcode: :UPDATE_PRESOLVE}

The callback function is called from within the presolve procedure.
```

Callbackcode::UPDATE_PRIMAL_BI

```

The callback function is called from within the basis identification procedure at an intermediate point in the primal phase.
Callbackcode: :UPDATE_PRIMAL_SIMPLEX
The callback function is called in the primal simplex optimizer.

Callbackcode: :UPDATE_PRIMAL_SIMPLEX_BI
The callback function is called from within the basis identification procedure at an intermediate point in the primal simplex clean-up phase. The frequency of the callbacks is controlled by the Iparam: :LOG_SIM_FREQ parameter.
Callbackcode: :UPDATE_SIMPLEX
The callback function is called from simplex optimizer.
Callbackcode: :WRITE_OPF
The callback function is called from the OPF writer.
Compresstype
Compression types
Compresstype: :NONE
No compression is used.
Compresstype: :FREE
The type of compression used is chosen automatically.
Compresstype: :GZIP
The type of compression used is gzip compatible.
Compresstype: :ZSTD
The type of compression used is zstd compatible.

\section*{Conetype}

Cone types
Conetype: : QUAD
The cone is a quadratic cone.

\section*{Conetype: :RQUAD}

The cone is a rotated quadratic cone.

\section*{Conetype: : PEXP}

A primal exponential cone.
Conetype: DEXP
A dual exponential cone.
Conetype: :PPOW
A primal power cone.
Conetype: :DPOW
A dual power cone.
Conetype: :ZERO
The zero cone.

\section*{Domaintype}

Cone types
Domaintype: : R
R.

Domaintype: : RZERO
The zero vector.
Domaintype: :RPLUS
The positive orthant.
Domaintype: :RMINUS
The negative orthant.
Domaintype: :QUADRATIC_CONE
The quadratic cone.

\section*{Domaintype: :RQUADRATIC_CONE}

The rotated quadratic cone.
Domaintype::PRIMAL_EXP_CONE
The primal exponential cone.
Domaintype: :DUAL_EXP_CONE
The dual exponential cone.
Domaintype::PRIMAL_POWER_CONE
The primal power cone.
Domaintype: :DUAL_POWER_CONE
The dual power cone.
Domaintype: :PRIMAL_GEO_MEAN_CONE
The primal geometric mean cone.
Domaintype: :DUAL_GEO_MEAN_CONE The dual geometric mean cone.
Domaintype: :SVEC_PSD_CONE The vectorized positive semidefinite cone.

\section*{Nametype}

Name types
Nametype: :GEN
General names. However, no duplicate and blank names are allowed.
Nametype: :MPS
MPS type names.
Nametype: LP
LP type names.
Symmattype
Cone types
Symmattype::SPARSE
Sparse symmetric matrix.
Dataformat
Data format types
Dataformat::EXTENSION
The file extension is used to determine the data file format.
Dataformat: :MPS
The data file is MPS formatted.
Dataformat: :LP
The data file is LP formatted.
Dataformat: : OP
The data file is an optimization problem formatted file.
Dataformat: :FREE_MPS
The data a free MPS formatted file.
Dataformat: :TASK
Generic task dump file.
Dataformat: :PTF
(P)retty (T)ext (F)format.

Dataformat: :CB
Conic benchmark format,

Dataformat:: JSON_TASK
JSON based task format.
Solformat
Data format types
Solformat: :EXTENSION
The file extension is used to determine the data file format.

\section*{Solformat: : B}

Simple binary format
Solformat: :TASK
Tar based format.
Solformat: : JSON_TASK
JSON based format.

\section*{Dinfitem}

Double information items
Dinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_DENSITY
Density percentage of the scalarized constraint matrix.
Dinfitem::BI_CLEAN_DUAL_TIME
Time spent within the dual clean-up optimizer of the basis identification procedure since its invocation.
Dinfitem: :BI_CLEAN_PRIMAL_TIME
Time spent within the primal clean-up optimizer of the basis identification procedure since its invocation.

Dinfitem: :BI_CLEAN_TIME
Time spent within the clean-up phase of the basis identification procedure since its invocation.
Dinfitem: :BI_DUAL_TIME
Time spent within the dual phase basis identification procedure since its invocation.
Dinfitem: :BI_PRIMAL_TIME
Time spent within the primal phase of the basis identification procedure since its invocation.
Dinfitem: :BI_TIME
Time spent within the basis identification procedure since its invocation.
Dinfitem: :INTPNT_DUAL_FEAS
Dual feasibility measure reported by the interior-point optimizer. (For the interior-point optimizer this measure is not directly related to the original problem because a homogeneous model is employed.)

Dinfitem: :INTPNT_DUAL_OBJ
Dual objective value reported by the interior-point optimizer.
Dinfitem: :INTPNT_FACTOR_NUM_FLOPS
An estimate of the number of flops used in the factorization.

\section*{Dinfitem::INTPNT_OPT_STATUS}

A measure of optimality of the solution. It should converge to +1 if the problem has a primaldual optimal solution, and converge to -1 if the problem is (strictly) primal or dual infeasible. If the measure converges to another constant, or fails to settle, the problem is usually ill-posed.
Dinfitem: :INTPNT_ORDER_TIME
Order time (in seconds).
Dinfitem: :INTPNT_PRIMAL_FEAS
Primal feasibility measure reported by the interior-point optimizer. (For the interior-point optimizer this measure is not directly related to the original problem because a homogeneous model is employed).

\section*{Dinfitem::INTPNT_PRIMAL_OBJ}

Primal objective value reported by the interior-point optimizer.
Dinfitem: :INTPNT_TIME
Time spent within the interior-point optimizer since its invocation.
Dinfitem: :MIO_CLIQUE_SELECTION_TIME
Selection time for clique cuts.

\section*{Dinfitem: :MIO_CLIQUE_SEPARATION_TIME}

Separation time for clique cuts.
Dinfitem::MIO_CMIR_SELECTION_TIME
Selection time for CMIR cuts.
Dinfitem: :MIO_CMIR_SEPARATION_TIME
Separation time for CMIR cuts.
Dinfitem: :MIO_CONSTRUCT_SOLUTION_OBJ
If MOSEK has successfully constructed an integer feasible solution, then this item contains the optimal objective value corresponding to the feasible solution.

\section*{Dinfitem::MIO_DUAL_BOUND_AFTER_PRESOLVE}

Value of the dual bound after presolve but before cut generation.

\section*{Dinfitem::MIO_GMI_SELECTION_TIME}

Selection time for GMI cuts.
```

Dinfitem::MIO_GMI_SEPARATION_TIME

```

Separation time for GMI cuts.
```

Dinfitem::MIO_IMPLIED_BOUND_SELECTION_TIME

```

Selection time for implied bound cuts.
```

Dinfitem::MIO_IMPLIED_BOUND_SEPARATION_TIME

```

Separation time for implied bound cuts.
```

Dinfitem::MIO_INITIAL_FEASIBLE_SOLUTION_OBJ

```

If the user provided solution was found to be feasible this information item contains it's objective value.
```

Dinfitem::MIO_KNAPSACK_COVER_SELECTION_TIME

```

Selection time for knapsack cover.
Dinfitem: :MIO_KNAPSACK_COVER_SEPARATION_TIME
Separation time for knapsack cover.

\section*{Dinfitem: :MIO_LIPRO_SELECTION_TIME}

Selection time for lift-and-project cuts.
Dinfitem::MIO_LIPRO_SEPARATION_TIME
Separation time for lift-and-project cuts.
Dinfitem: :MIO_OBJ_ABS_GAP
Given the mixed-integer optimizer has computed a feasible solution and a bound on the optimal objective value, then this item contains the absolute gap defined by
\(\mid\) (objective value of feasible solution) - (objective bound) \(\mid\).
Otherwise it has the value -1.0 .
Dinfitem::MIO_OBJ_BOUND
The best known bound on the objective function. This value is undefined until at least one relaxation has been solved: To see if this is the case check that Iinfitem: :MIO_NUM_RELAX is strictly positive.

\section*{Dinfitem: :MIO_OBJ_INT}

The primal objective value corresponding to the best integer feasible solution. Please note that at least one integer feasible solution must have been located i.e. check Iinfitem: : MIO_NUM_INT_SOLUTIONS.
```

Dinfitem::MIO_OBJ_REL_GAP

```

Given that the mixed-integer optimizer has computed a feasible solution and a bound on the optimal objective value, then this item contains the relative gap defined by
\[
\frac{\mid \text { (objective value of feasible solution })-(\text { objective bound }) \mid}{\max (\delta . \mid \text { (obiective value of feasible solution }) \mid)} .
\]
where \(\delta\) is given by the parameter Dparam::MIO_REL_GAP_CONST. Otherwise it has the value -1.0 .
```

Dinfitem::MIO_PROBING_TIME

```

Total time for probing.
```

Dinfitem::MIO_ROOT_CUT_SELECTION_TIME

```

Total time for cut selection.
```

Dinfitem::MIO_ROOT_CUT_SEPARATION_TIME

```

Total time for cut separation.
```

Dinfitem::MIO_ROOT_OPTIMIZER_TIME

```

Time spent in the contiuous optimizer while processing the root node relaxation.

\section*{Dinfitem::MIO_ROOT_PRESOLVE_TIME}

Time spent presolving the problem at the root node.

\section*{Dinfitem: :MIO_ROOT_TIME}

Time spent processing the root node.

\section*{Dinfitem::MIO_SYMMETRY_DETECTION_TIME}

Total time for symmetry detection.

\section*{Dinfitem: :MIO_SYMMETRY_FACTOR}

Degree to which the problem is affected by detected symmetry.

\section*{Dinfitem::MIO_TIME}

Time spent in the mixed-integer optimizer.

\section*{Dinfitem: :MIO_USER_OBJ_CUT}

If the objective cut is used, then this information item has the value of the cut.

\section*{Dinfitem::OPTIMIZER_TICKS}

Total number of ticks spent in the optimizer since it was invoked. It is strictly negative if it is not available.

\section*{Dinfitem::OPTIMIZER_TIME}

Total time spent in the optimizer since it was invoked.

\section*{Dinfitem::PRESOLVE_ELI_TIME}

Total time spent in the eliminator since the presolve was invoked.
Dinfitem: :PRESOLVE_LINDEP_TIME
Total time spent in the linear dependency checker since the presolve was invoked.

\section*{Dinfitem: :PRESOLVE_TIME}

Total time (in seconds) spent in the presolve since it was invoked.

\section*{Dinfitem: :PRESOLVE_TOTAL_PRIMAL_PERTURBATION}

Total perturbation of the bounds of the primal problem.
Dinfitem::PRIMAL_REPAIR_PENALTY_OBJ
The optimal objective value of the penalty function.

\section*{Dinfitem::QCQO_REFORMULATE_MAX_PERTURBATION}

Maximum absolute diagonal perturbation occurring during the QCQO reformulation.
Dinfitem: :QCQO_REFORMULATE_TIME
Time spent with conic quadratic reformulation.
Dinfitem: :QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING
Worst Cholesky column scaling.
Dinfitem: :QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING
Worst Cholesky diagonal scaling.
Dinfitem: :READ_DATA_TIME
Time spent reading the data file.

\section*{Dinfitem: :REMOTE_TIME}

The total real time in seconds spent when optimizing on a server by the process performing the optimization on the server
```

Dinfitem::SIM_DUAL_TIME

```

Time spent in the dual simplex optimizer since invoking it.
```

Dinfitem::SIM_FEAS

```

Feasibility measure reported by the simplex optimizer.

\section*{Dinfitem: :SIM_OBJ}

Objective value reported by the simplex optimizer.

\section*{Dinfitem: :SIM_PRIMAL_TIME}

Time spent in the primal simplex optimizer since invoking it.

\section*{Dinfitem::SIM_TIME}

Time spent in the simplex optimizer since invoking it.

\section*{Dinfitem::SOL_BAS_DUAL_OBJ}

Dual objective value of the basic solution. Updated if Iparam: :AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_BAS_DVIOLCON}

Maximal dual bound violation for \(x^{c}\) in the basic solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_BAS_DVIOLVAR}

Maximal dual bound violation for \(x^{x}\) in the basic solution. Updated if Iparam:: AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem: :SOL_BAS_NRM_BARX}

Infinity norm of \(\bar{X}\) in the basic solution.
```

Dinfitem::SOL_BAS_NRM_SLC

```

Infinity norm of \(s_{l}^{c}\) in the basic solution.
Dinfitem: :SOL_BAS_NRM_SLX
Infinity norm of \(s_{l}^{x}\) in the basic solution.

\section*{Dinfitem: :SOL_BAS_NRM_SUC}

Infinity norm of \(s_{u}^{c}\) in the basic solution.
Dinfitem: :SOL_BAS_NRM_SUX
Infinity norm of \(s_{u}^{X}\) in the basic solution.
Dinfitem::SOL_BAS_NRM_XC
Infinity norm of \(x^{c}\) in the basic solution.
Dinfitem: :SOL_BAS_NRM_XX
Infinity norm of \(x^{x}\) in the basic solution.
```

Dinfitem::SOL_BAS_NRM_Y

```

Infinity norm of \(y\) in the basic solution.
```

Dinfitem::SOL_BAS_PRIMAL_OBJ

```

Primal objective value of the basic solution. Updated if Iparam::AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem: :SOL_BAS_PVIOLCON}

Maximal primal bound violation for \(x^{c}\) in the basic solution. Updated if Iparam:: AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_BAS_PVIOLVAR}

Maximal primal bound violation for \(x^{x}\) in the basic solution. Updated if Iparam:: AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem: :SOL_ITG_NRM_BARX}

Infinity norm of \(\bar{X}\) in the integer solution.

\section*{Dinfitem: :SOL_ITG_NRM_XC}

Infinity norm of \(x^{c}\) in the integer solution.

\section*{Dinfitem::SOL_ITG_NRM_XX}

Infinity norm of \(x^{x}\) in the integer solution.

\section*{Dinfitem::SOL_ITG_PRIMAL_OBJ}

Primal objective value of the integer solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem: :SOL_ITG_PVIOLACC}

Maximal primal violation for affine conic constraints in the integer solution. Updated if Iparam: :AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITG_PVIOLBARVAR}

Maximal primal bound violation for \(\bar{X}\) in the integer solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITG_PVIOLCON}

Maximal primal bound violation for \(x^{c}\) in the integer solution. Updated if Iparam:: AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITG_PVIOLCONES}

Maximal primal violation for primal conic constraints in the integer solution. Updated if Iparam: :AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITG_PVIOLDJC}

Maximal primal violation for disjunctive constraints in the integer solution. Updated if Iparam: :AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem: :SOL_ITG_PVIOLITG}

Maximal violation for the integer constraints in the integer solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITG_PVIOLVAR}

Maximal primal bound violation for \(x^{x}\) in the integer solution. Updated if Iparam:: AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.
```

Dinfitem::SOL_ITR_DUAL_OBJ

```

Dual objective value of the interior-point solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.
Dinfitem: :SOL_ITR_DVIOLACC
Maximal dual violation for the affine conic constraints in the interior-point solution. Updated if Iparam: :AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITR_DVIOLBARVAR}

Maximal dual bound violation for \(\bar{X}\) in the interior-point solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITR_DVIOLCON}

Maximal dual bound violation for \(x^{c}\) in the interior-point solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITR_DVIOLCONES}

Maximal dual violation for conic constraints in the interior-point solution. Updated if Iparam: :AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITR_DVIOLVAR}

Maximal dual bound violation for \(x^{x}\) in the interior-point solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem: :SOL_ITR_NRM_BARS}

Infinity norm of \(\bar{S}\) in the interior-point solution.

\section*{Dinfitem: :SOL_ITR_NRM_BARX}

Infinity norm of \(\bar{X}\) in the interior-point solution.

\section*{Dinfitem: :SOL_ITR_NRM_SLC}

Infinity norm of \(s_{l}^{c}\) in the interior-point solution.

\section*{Dinfitem: :SOL_ITR_NRM_SLX}

Infinity norm of \(s_{l}^{x}\) in the interior-point solution.

\section*{Dinfitem: :SOL_ITR_NRM_SNX}

Infinity norm of \(s_{n}^{x}\) in the interior-point solution.

\section*{Dinfitem: :SOL_ITR_NRM_SUC}

Infinity norm of \(s_{u}^{c}\) in the interior-point solution.

\section*{Dinfitem::SOL_ITR_NRM_SUX}

Infinity norm of \(s_{u}^{X}\) in the interior-point solution.

\section*{Dinfitem::SOL_ITR_NRM_XC}

Infinity norm of \(x^{c}\) in the interior-point solution.

\section*{Dinfitem: :SOL_ITR_NRM_XX}

Infinity norm of \(x^{x}\) in the interior-point solution.
```

Dinfitem::SOL_ITR_NRM_Y

```

Infinity norm of \(y\) in the interior-point solution.

\section*{Dinfitem::SOL_ITR_PRIMAL_OBJ}

Primal objective value of the interior-point solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITR_PVIOLACC}

Maximal primal violation for affine conic constraints in the interior-point solution. Updated if Iparam: :AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITR_PVIOLBARVAR}

Maximal primal bound violation for \(\bar{X}\) in the interior-point solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.
```

Dinfitem::SOL_ITR_PVIOLCON

```

Maximal primal bound violation for \(x^{c}\) in the interior-point solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.
Dinfitem::SOL_ITR_PVIOLCONES
Maximal primal violation for conic constraints in the interior-point solution. Updated if Iparam::AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.

\section*{Dinfitem::SOL_ITR_PVIOLVAR}

Maximal primal bound violation for \(x^{x}\) in the interior-point solution. Updated if Iparam: : AUTO_UPDATE_SOL_INFO is set or by the method Task.update_solution_info.
Dinfitem: :TO_CONIC_TIME
Time spent in the last to conic reformulation.
Dinfitem: :WRITE_DATA_TIME
Time spent writing the data file.

\section*{Feature}

License feature
Feature: :PTS
Base system.
Feature: :PTON
Conic extension.

\section*{Liinfitem}

Long integer information items.
Liinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_COLUMNS
Number of columns in the scalarized constraint matrix.
Liinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_NZ
Number of non-zero entries in the scalarized constraint matrix.
Liinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_ROWS
Number of rows in the scalarized constraint matrix.
Liinfitem::BI_CLEAN_DUAL_DEG_ITER
Number of dual degenerate clean iterations performed in the basis identification.
Liinfitem::BI_CLEAN_DUAL_ITER
Number of dual clean iterations performed in the basis identification.
Liinfitem: :BI_CLEAN_PRIMAL_DEG_ITER
Number of primal degenerate clean iterations performed in the basis identification.
Liinfitem: :BI_CLEAN_PRIMAL_ITER
Number of primal clean iterations performed in the basis identification.
Liinfitem: :BI_DUAL_ITER
Number of dual pivots performed in the basis identification.
Liinfitem: :BI_PRIMAL_ITER
Number of primal pivots performed in the basis identification.
Liinfitem: :INTPNT_FACTOR_NUM_NZ
Number of non-zeros in factorization.
Liinfitem: :MIO_ANZ
Number of non-zero entries in the constraint matrix of the problem to be solved by the mixedinteger optimizer.

Liinfitem: :MIO_INTPNT_ITER
Number of interior-point iterations performed by the mixed-integer optimizer.
Liinfitem: :MIO_NUM_DUAL_ILLPOSED_CER
Number of dual illposed certificates encountered by the mixed-integer optimizer.
Liinfitem: :MIO_NUM_PRIM_ILLPOSED_CER
Number of primal illposed certificates encountered by the mixed-integer optimizer.
Liinfitem: :MIO_PRESOLVED_ANZ
Number of non-zero entries in the constraint matrix of the problem after the mixed-integer optimizer's presolve.

\section*{Liinfitem: :MIO_SIMPLEX_ITER}

Number of simplex iterations performed by the mixed-integer optimizer.

\section*{Liinfitem: :RD_NUMACC}

Number of affince conic constraints.
Liinfitem: :RD_NUMANZ
Number of non-zeros in A that is read.

\section*{Liinfitem: :RD_NUMDJC}

Number of disjuncive constraints.

\section*{Liinfitem: :RD_NUMQNZ}

Number of Q non-zeros.
Liinfitem: :SIMPLEX_ITER
Number of iterations performed by the simplex optimizer.

\section*{Iinfitem}

Integer information items.
Iinfitem: :ANA_PRO_NUM_CON
Number of constraints in the problem. This value is set by Task.analyze_problem.
Iinfitem: :ANA_PRO_NUM_CON_EQ
Number of equality constraints. This value is set by Task. analyze_problem.
Iinfitem: :ANA_PRO_NUM_CON_FR
Number of unbounded constraints. This value is set by Task. analyze_problem.
Iinfitem::ANA_PRO_NUM_CON_LO
Number of constraints with a lower bound and an infinite upper bound. This value is set by Task.analyze_problem.

\section*{Iinfitem: :ANA_PRO_NUM_CON_RA}

Number of constraints with finite lower and upper bounds. This value is set by Task. analyze_problem.

\section*{Iinfitem: :ANA_PRO_NUM_CON_UP}

Number of constraints with an upper bound and an infinite lower bound. This value is set by Task.analyze_problem.

\section*{Iinfitem::ANA_PRO_NUM_VAR}

Number of variables in the problem. This value is set by Task. analyze_problem.

\section*{Iinfitem: :ANA_PRO_NUM_VAR_BIN}

Number of binary (0-1) variables. This value is set by Task. analyze_problem.

\section*{Iinfitem::ANA_PRO_NUM_VAR_CONT}

Number of continuous variables. This value is set by Task. analyze_problem.

\section*{Iinfitem: :ANA_PRO_NUM_VAR_EQ}

Number of fixed variables. This value is set by Task.analyze_problem.

\section*{Iinfitem::ANA_PRO_NUM_VAR_FR}

Number of free variables. This value is set by Task. analyze_problem.

\section*{Iinfitem::ANA_PRO_NUM_VAR_INT}

Number of general integer variables. This value is set by Task. analyze_problem.

\section*{Iinfitem: :ANA_PRO_NUM_VAR_LO}

Number of variables with a lower bound and an infinite upper bound. This value is set by Task. analyze_problem.

Iinfitem: :ANA_PRO_NUM_VAR_RA
Number of variables with finite lower and upper bounds. This value is set by Task. analyze_problem.
```

Iinfitem::ANA_PRO_NUM_VAR_UP

```

Number of variables with an upper bound and an infinite lower bound. This value is set by Task.analyze_problem.
```

Iinfitem::INTPNT_FACTOR_DIM_DENSE

```

Dimension of the dense sub system in factorization.

\section*{Iinfitem: :INTPNT_ITER}

Number of interior-point iterations since invoking the interior-point optimizer.

\section*{Iinfitem: :INTPNT_NUM_THREADS}

Number of threads that the interior-point optimizer is using.

\section*{Iinfitem::INTPNT_SOLVE_DUAL}

Non-zero if the interior-point optimizer is solving the dual problem.
```

Iinfitem::MIO_ABSGAP_SATISFIED

```

Non-zero if absolute gap is within tolerances.
Iinfitem: :MIO_CLIQUE_TABLE_SIZE
Size of the clique table.
Iinfitem: :MIO_CONSTRUCT_SOLUTION
This item informs if MOSEK constructed an initial integer feasible solution.
- -1: tried, but failed,
- 0: no partial solution supplied by the user,
- 1: constructed feasible solution.

Iinfitem: :MIO_INITIAL_FEASIBLE_SOLUTION
This item informs if MOSEK found the solution provided by the user to be feasible
- 0: solution provided by the user was not found to be feasible for the current problem,
- 1: user provided solution was found to be feasible.

Iinfitem: :MIO_NODE_DEPTH
Depth of the last node solved.
Iinfitem: :MIO_NUM_ACTIVE_NODES
Number of active branch and bound nodes.
Iinfitem::MIO_NUM_ACTIVE_ROOT_CUTS
Number of active cuts in the final relaxation after the mixed-integer optimizer's root cut generation.

\section*{Iinfitem: :MIO_NUM_BRANCH}

Number of branches performed during the optimization.

\section*{Iinfitem: :MIO_NUM_INT_SOLUTIONS}

Number of integer feasible solutions that have been found.
Iinfitem: :MIO_NUM_RELAX
Number of relaxations solved during the optimization.
Iinfitem: :MIO_NUM_REPEATED_PRESOLVE
Number of times presolve was repeated at root.
Iinfitem: :MIO_NUM_RESTARTS
Number of restarts performed during the optimization.
Iinfitem::MIO_NUM_ROOT_CUT_ROUNDS
Number of cut separation rounds at the root node of the mixed-integer optimizer.
Iinfitem: :MIO_NUM_SELECTED_CLIQUE_CUTS
Number of clique cuts selected to be included in the relaxation.
```

Iinfitem::MIO_NUM_SELECTED_CMIR_CUTS

```

Number of Complemented Mixed Integer Rounding (CMIR) cuts selected to be included in the relaxation.
```

Iinfitem::MIO_NUM_SELECTED_GOMORY_CUTS

```

Number of Gomory cuts selected to be included in the relaxation.

\section*{Iinfitem: :MIO_NUM_SELECTED_IMPLIED_BOUND_CUTS}

Number of implied bound cuts selected to be included in the relaxation.
```

Iinfitem::MIO_NUM_SELECTED_KNAPSACK_COVER_CUTS

```

Number of clique cuts selected to be included in the relaxation.
Iinfitem::MIO_NUM_SELECTED_LIPRO_CUTS
Number of lift-and-project cuts selected to be included in the relaxation.
Iinfitem: :MIO_NUM_SEPARATED_CLIQUE_CUTS
Number of separated clique cuts.
Iinfitem::MIO_NUM_SEPARATED_CMIR_CUTS
Number of separated Complemented Mixed Integer Rounding (CMIR) cuts.
Iinfitem: :MIO_NUM_SEPARATED_GOMORY_CUTS
Number of separated Gomory cuts.
```

Iinfitem::MIO_NUM_SEPARATED_IMPLIED_BOUND_CUTS

```

Number of separated implied bound cuts.
Iinfitem::MIO_NUM_SEPARATED_KNAPSACK_COVER_CUTS
Number of separated clique cuts.
Iinfitem: :MIO_NUM_SEPARATED_LIPRO_CUTS
Number of separated lift-and-project cuts.
Iinfitem: :MIO_NUM_SOLVED_NODES
Number of branch and bounds nodes solved in the main branch and bound tree.

\section*{Iinfitem::MIO_NUMBIN}

Number of binary variables in the problem to be solved by the mixed-integer optimizer.

\section*{Iinfitem::MIO_NUMBINCONEVAR}

Number of binary cone variables in the problem to be solved by the mixed-integer optimizer.
```

Iinfitem::MIO_NUMCON

```

Number of constraints in the problem to be solved by the mixed-integer optimizer.
```

Iinfitem::MIO_NUMCONE

```

Number of cones in the problem to be solved by the mixed-integer optimizer.

\section*{Iinfitem::MIO_NUMCONEVAR}

Number of cone variables in the problem to be solved by the mixed-integer optimizer.
```

Iinfitem::MIO_NUMCONT

```

Number of continuous variables in the problem to be solved by the mixed-integer optimizer. Iinfitem: :MIO_NUMCONTCONEVAR

Number of continuous cone variables in the problem to be solved by the mixed-integer optimizer.

\section*{Iinfitem::MIO_NUMDEXPCONES}

Number of dual exponential cones in the problem to be solved by the mixed-integer optimizer. Iinfitem: :MIO_NUMDJC

Number of disjunctive constraints in the problem to be solved by the mixed-integer optimizer. Iinfitem: :MIO_NUMDPOWCONES

Number of dual power cones in the problem to be solved by the mixed-integer optimizer.

\section*{Iinfitem: :MIO_NUMINT}

Number of integer variables in the problem to be solved by the mixed-integer optimizer. Iinfitem: :MIO_NUMINTCONEVAR

Number of integer cone variables in the problem to be solved by the mixed-integer optimizer. Iinfitem: :MIO_NUMPEXPCONES

Number of primal exponential cones in the problem to be solved by the mixed-integer optimizer.
```

Iinfitem::MIO_NUMPPOWCONES

```

Number of primal power cones in the problem to be solved by the mixed-integer optimizer.

\section*{Iinfitem: :MIO_NUMQCONES}

Number of quadratic cones in the problem to be solved by the mixed-integer optimizer.

\section*{Iinfitem: :MIO_NUMRQCONES}

Number of rotated quadratic cones in the problem to be solved by the mixed-integer optimizer.
```

Iinfitem::MIO_NUMVAR

```

Number of variables in the problem to be solved by the mixed-integer optimizer.
```

Iinfitem::MIO_OBJ_BOUND_DEFINED

```

Non-zero if a valid objective bound has been found, otherwise zero.
```

Iinfitem::MIO_PRESOLVED_NUMBIN

```

Number of binary variables in the problem after the mixed-integer optimizer's presolve.
```

Iinfitem::MIO_PRESOLVED_NUMBINCONEVAR

```

Number of binary cone variables in the problem after the mixed-integer optimizer's presolve. Iinfitem: :MIO_PRESOLVED_NUMCON

Number of constraints in the problem after the mixed-integer optimizer's presolve.

\section*{Iinfitem: :MIO_PRESOLVED_NUMCONE}

Number of cones in the problem after the mixed-integer optimizer's presolve.

\section*{Iinfitem: :MIO_PRESOLVED_NUMCONEVAR}

Number of cone variables in the problem after the mixed-integer optimizer's presolve.
```

Iinfitem::MIO_PRESOLVED_NUMCONT

```

Number of continuous variables in the problem after the mixed-integer optimizer's presolve. Iinfitem: :MIO_PRESOLVED_NUMCONTCONEVAR

Number of continuous cone variables in the problem after the mixed-integer optimizer's presolve.

\section*{Iinfitem: :MIO_PRESOLVED_NUMDEXPCONES}

Number of dual exponential cones in the problem after the mixed-integer optimizer's presolve. Iinfitem: :MIO_PRESOLVED_NUMDJC

Number of disjunctive constraints in the problem after the mixed-integer optimizer's presolve. Iinfitem: :MIO_PRESOLVED_NUMDPOWCONES

Number of dual power cones in the problem after the mixed-integer optimizer's presolve.

\section*{Iinfitem: :MIO_PRESOLVED_NUMINT}

Number of integer variables in the problem after the mixed-integer optimizer's presolve.

\section*{Iinfitem: :MIO_PRESOLVED_NUMINTCONEVAR}

Number of integer cone variables in the problem after the mixed-integer optimizer's presolve. Iinfitem: :MIO_PRESOLVED_NUMPEXPCONES

Number of primal exponential cones in the problem after the mixed-integer optimizer's presolve.

\section*{Iinfitem: :MIO_PRESOLVED_NUMPPOWCONES}

Number of primal power cones in the problem after the mixed-integer optimizer's presolve.

\section*{Iinfitem: :MIO_PRESOLVED_NUMQCONES}

Number of quadratic cones in the problem after the mixed-integer optimizer's presolve.

\section*{Iinfitem: :MIO_PRESOLVED_NUMRQCONES}

Number of rotated quadratic cones in the problem after the mixed-integer optimizer's presolve.
```

Iinfitem::MIO_PRESOLVED_NUMVAR

```

Number of variables in the problem after the mixed-integer optimizer's presolve.
Iinfitem: :MIO_RELGAP_SATISFIED
Non-zero if relative gap is within tolerances.
Iinfitem: :MIO_TOTAL_NUM_SELECTED_CUTS
Total number of cuts selected to be included in the relaxation by the mixed-integer optimizer. Iinfitem::MIO_TOTAL_NUM_SEPARATED_CUTS

Total number of cuts separated by the mixed-integer optimizer.
```

Iinfitem::MIO_USER_OBJ_CUT

```

If it is non-zero, then the objective cut is used.
```

Iinfitem::OPT_NUMCON

```

Number of constraints in the problem solved when the optimizer is called.
Iinfitem: :OPT_NUMVAR
Number of variables in the problem solved when the optimizer is called

\section*{Iinfitem::OPTIMIZE_RESPONSE}

The response code returned by optimize.

\section*{Iinfitem: :PRESOLVE_NUM_PRIMAL_PERTURBATIONS}

Number perturbations to the bounds of the primal problem.
Iinfitem: :PURIFY_DUAL_SUCCESS
Is nonzero if the dual solution is purified.
Iinfitem: :PURIFY_PRIMAL_SUCCESS
Is nonzero if the primal solution is purified.
Iinfitem::RD_NUMBARVAR
Number of symmetric variables read.

\section*{Iinfitem: :RD_NUMCON}

Number of constraints read.
Iinfitem: :RD_NUMCONE
Number of conic constraints read.
Iinfitem: :RD_NUMINTVAR
Number of integer-constrained variables read.
Iinfitem: :RD_NUMQ
Number of nonempty Q matrices read.
Iinfitem: :RD_NUMVAR
Number of variables read.
Iinfitem: :RD_PROTYPE
Problem type.
Iinfitem: :SIM_DUAL_DEG_ITER
The number of dual degenerate iterations.
Iinfitem: :SIM_DUAL_HOTSTART
If 1 then the dual simplex algorithm is solving from an advanced basis.
```

Iinfitem::SIM_DUAL_HOTSTART_LU

```

If 1 then a valid basis factorization of full rank was located and used by the dual simplex algorithm.
Iinfitem: :SIM_DUAL_INF_ITER
The number of iterations taken with dual infeasibility.
```

Iinfitem::SIM_DUAL_ITER

```

Number of dual simplex iterations during the last optimization.
Iinfitem: :SIM_NUMCON
Number of constraints in the problem solved by the simplex optimizer.
Iinfitem: :SIM_NUMVAR
Number of variables in the problem solved by the simplex optimizer.
Iinfitem: :SIM_PRIMAL_DEG_ITER
The number of primal degenerate iterations.
Iinfitem: :SIM_PRIMAL_HOTSTART
If 1 then the primal simplex algorithm is solving from an advanced basis.
Iinfitem: :SIM_PRIMAL_HOTSTART_LU
If 1 then a valid basis factorization of full rank was located and used by the primal simplex algorithm.

Iinfitem: :SIM_PRIMAL_INF_ITER
The number of iterations taken with primal infeasibility.
Iinfitem: :SIM_PRIMAL_ITER
Number of primal simplex iterations during the last optimization.
Iinfitem: :SIM_SOLVE_DUAL
Is non-zero if dual problem is solved.
Iinfitem: :SOL_BAS_PROSTA
Problem status of the basic solution. Updated after each optimization.
Iinfitem: :SOL_BAS_SOLSTA
Solution status of the basic solution. Updated after each optimization.
Iinfitem::SOL_ITG_PROSTA
Problem status of the integer solution. Updated after each optimization.
Iinfitem: :SOL_ITG_SOLSTA
Solution status of the integer solution. Updated after each optimization.
Iinfitem: :SOL_ITR_PROSTA
Problem status of the interior-point solution. Updated after each optimization.
Iinfitem: :SOL_ITR_SOLSTA
Solution status of the interior-point solution. Updated after each optimization.
Iinfitem: :STO_NUM_A_REALLOC
Number of times the storage for storing \(A\) has been changed. A large value may indicates that memory fragmentation may occur.

\section*{Inftype}

Information item types
Inftype: :DOU_TYPE
Is a double information type.
Inftype: : INT_TYPE
Is an integer.
Inftype: :LINT_TYPE
Is a long integer.

Iomode
Input/output modes
Iomode: :READ
The file is read-only.
Iomode: :WRITE
The file is write-only. If the file exists then it is truncated when it is opened. Otherwise it is created when it is opened.

Iomode: :READWRITE
The file is to read and write.

\section*{Branchdir}

Specifies the branching direction.
Branchdir: :FREE
The mixed-integer optimizer decides which branch to choose.
Branchdir: :UP
The mixed-integer optimizer always chooses the up branch first.
Branchdir: :DOWN
The mixed-integer optimizer always chooses the down branch first.
Branchdir: :NEAR
Branch in direction nearest to selected fractional variable.
Branchdir: :FAR
Branch in direction farthest from selected fractional variable.
Branchdir: :ROOT_LP
Chose direction based on root lp value of selected variable.
Branchdir: :GUIDED
Branch in direction of current incumbent.
Branchdir: :PSEUDOCOST
Branch based on the pseudocost of the variable.

\section*{Miqcqoreformmethod}

Specifies the reformulation method for mixed-integer quadratic problems.
Miqcqoreformmethod: :FREE
The mixed-integer optimizer decides which reformulation method to apply.
Miqcqoreformmethod: : NONE
No reformulation method is applied.
Miqcqoreformmethod: :LINEARIZATION
A reformulation via linearization is applied.
Miqcqoreformmethod::EIGEN_VAL_METHOD
The eigenvalue method is applied.
Miqcqoreformmethod: :DIAG_SDP
A perturbation of matrix diagonals via the solution of SDPs is applied.
Miqcqoreformmethod: :RELAX_SDP
A Reformulation based on the solution of an SDP-relaxation of the problem is applied.
Miodatapermmethod
Specifies the problem data permutation method for mixed-integer problems.
Miodatapermmethod: : NONE
No problem data permutation is applied.
Miodatapermmethod: :CYCLIC_SHIFT
A random cyclic shift is applied to permute the problem data.

\section*{Miodatapermmethod::RANDOM}

A random permutation is applied to the problem data.

\section*{Miocontsoltype}

Continuous mixed-integer solution type
Miocontsoltype: :NONE
No interior-point or basic solution are reported when the mixed-integer optimizer is used.
Miocontsoltype: ROOT
The reported interior-point and basic solutions are a solution to the root node problem when mixed-integer optimizer is used.

\section*{Miocontsoltype: :ITG}

The reported interior-point and basic solutions are a solution to the problem with all integer variables fixed at the value they have in the integer solution. A solution is only reported in case the problem has a primal feasible solution.
Miocontsoltype: :ITG_REL
In case the problem is primal feasible then the reported interior-point and basic solutions are a solution to the problem with all integer variables fixed at the value they have in the integer solution. If the problem is primal infeasible, then the solution to the root node problem is reported.

\section*{Miomode}

Integer restrictions
Miomode: :IGNORED
The integer constraints are ignored and the problem is solved as a continuous problem.
Miomode: :SATISFIED
Integer restrictions should be satisfied.
Mionodeseltype
Mixed-integer node selection types
Mionodeseltype: :FREE
The optimizer decides the node selection strategy.
Mionodeseltype::FIRST
The optimizer employs a depth first node selection strategy.
Mionodeseltype: :BEST
The optimizer employs a best bound node selection strategy.
Mionodeseltype: :PSEUDO
The optimizer employs selects the node based on a pseudo cost estimate.
Miovarseltype
Mixed-integer variable selection types
Miovarseltype: :FREE
The optimizer decides the variable selection strategy.
Miovarseltype: : PSEUDOCOST
The optimizer employs pseudocost variable selection.
Miovarseltype: :STRONG
The optimizer employs strong branching variable selection.
Mpsformat
MPS file format type
Mpsformat: :STRICT
It is assumed that the input file satisfies the MPS format strictly.
Mpsformat: :RELAXED
It is assumed that the input file satisfies a slightly relaxed version of the MPS format.

\section*{Mpsformat: :FREE}

It is assumed that the input file satisfies the free MPS format. This implies that spaces are not allowed in names. Otherwise the format is free.

Mpsformat: :CPLEX
The CPLEX compatible version of the MPS format is employed.
Objsense
Objective sense types
Objsense::MINIMIZE
The problem should be minimized.
Objsense: :MAXIMIZE
The problem should be maximized.
Onoffkey
On/off
Onoffkey::ON
Switch the option on.
Onoffkey: : OFF
Switch the option off.

\section*{Optimizertype}

Optimizer types
Optimizertype: :CONIC
The optimizer for problems having conic constraints.
Optimizertype: :DUAL_SIMPLEX
The dual simplex optimizer is used.
Optimizertype: :FREE
The optimizer is chosen automatically.
Optimizertype::FREE_SIMPLEX
One of the simplex optimizers is used.
Optimizertype: :INTPNT
The interior-point optimizer is used.
Optimizertype: :MIXED_INT
The mixed-integer optimizer.
Optimizertype::PRIMAL_SIMPLEX
The primal simplex optimizer is used.

\section*{Orderingtype}

Ordering strategies
Orderingtype: :FREE
The ordering method is chosen automatically.
Orderingtype: :APPMINLOC
Approximate minimum local fill-in ordering is employed.
Orderingtype: :EXPERIMENTAL
This option should not be used.
Orderingtype: :TRY_GRAPHPAR
Always try the graph partitioning based ordering.
Orderingtype: :FORCE_GRAPHPAR
Always use the graph partitioning based ordering even if it is worse than the approximate minimum local fill ordering.

Orderingtype: :NONE
No ordering is used. Note using this value almost always leads to a significantly slow down. Presolvemode

Presolve method.
Presolvemode: :OFF
The problem is not presolved before it is optimized.
Presolvemode: : ON
The problem is presolved before it is optimized.
Presolvemode: :FREE
It is decided automatically whether to presolve before the problem is optimized.
Parametertype
Parameter type
Parametertype: :INVALID_TYPE
Not a valid parameter.
Parametertype: :DOU_TYPE
Is a double parameter.
Parametertype::INT_TYPE
Is an integer parameter.
Parametertype::STR_TYPE
Is a string parameter.
Problemitem
Problem data items
Problemitem: :VAR
Item is a variable.
Problemitem: CON
Item is a constraint.
Problemitem: :CONE
Item is a cone.
Problemtype
Problem types
Problemtype: :LO
The problem is a linear optimization problem.
Problemtype: :QO
The problem is a quadratic optimization problem.
Problemtype::QCQO
The problem is a quadratically constrained optimization problem.
Problemtype: :CONIC
A conic optimization.
Problemtype: :MIXED
General nonlinear constraints and conic constraints. This combination can not be solved by MOSEK.
Prosta
Problem status keys
Prosta: :UNKNOWN
Unknown problem status.
Prosta: :PRIM_AND_DUAL_FEAS
The problem is primal and dual feasible.

\section*{Prosta: :PRIM_FEAS}

The problem is primal feasible.
Prosta: :DUAL_FEAS
The problem is dual feasible.
Prosta: :PRIM_INFEAS
The problem is primal infeasible.
Prosta: :DUAL_INFEAS
The problem is dual infeasible.
Prosta: :PRIM_AND_DUAL_INFEAS
The problem is primal and dual infeasible.
Prosta: :ILL_POSED
The problem is ill-posed. For example, it may be primal and dual feasible but have a positive duality gap.
Prosta: :PRIM_INFEAS_OR_UNBOUNDED
The problem is either primal infeasible or unbounded. This may occur for mixed-integer problems.
Xmlwriteroutputtype
XML writer output mode
Xmlwriteroutputtype: :ROW
Write in row order.
Xmlwriteroutputtype: COL
Write in column order.
Rescodetype
Response code type
Rescodetype: : OK
The response code is OK.
Rescodetype: :WRN
The response code is a warning.
Rescodetype: :TRM
The response code is an optimizer termination status.
Rescodetype: :ERR
The response code is an error.
Rescodetype: :UNK
The response code does not belong to any class.
Scalingtype
Scaling type
Scalingtype: :FREE
The optimizer chooses the scaling heuristic.
Scalingtype: : NONE
No scaling is performed.
Scalingmethod
Scaling method
Scalingmethod: :POW2
Scales only with power of 2 leaving the mantissa untouched.
Scalingmethod: :FREE
The optimizer chooses the scaling heuristic.

\section*{Sensitivitytype}

Sensitivity types
Sensitivitytype: BASIS
Basis sensitivity analysis is performed.

\section*{Simseltype}

Simplex selection strategy
Simseltype: :FREE
The optimizer chooses the pricing strategy.
Simseltype: :FULL
The optimizer uses full pricing.
Simseltype: : ASE
The optimizer uses approximate steepest-edge pricing.

\section*{Simseltype: :DEVEX}

The optimizer uses devex steepest-edge pricing (or if it is not available an approximate steepedge selection).
Simseltype: :SE
The optimizer uses steepest-edge selection (or if it is not available an approximate steep-edge selection).
Simseltype: :PARTIAL
The optimizer uses a partial selection approach. The approach is usually beneficial if the number of variables is much larger than the number of constraints.
Solitem
Solution items
Solitem: : XC
Solution for the constraints.
Solitem: :XX
Variable solution.
Solitem: :Y
Lagrange multipliers for equations.
Solitem: :SLC
Lagrange multipliers for lower bounds on the constraints.
Solitem: :SUC
Lagrange multipliers for upper bounds on the constraints.
Solitem: :SLX
Lagrange multipliers for lower bounds on the variables.
Solitem::SUX
Lagrange multipliers for upper bounds on the variables.
Solitem: :SNX
Lagrange multipliers corresponding to the conic constraints on the variables.
Solsta
Solution status keys
Solsta: :UNKNOWN
Status of the solution is unknown.
Solsta: :OPTIMAL
The solution is optimal.
Solsta: :PRIM_FEAS
The solution is primal feasible.

Solsta: :DUAL_FEAS
The solution is dual feasible.
Solsta: :PRIM_AND_DUAL_FEAS
The solution is both primal and dual feasible.
Solsta: :PRIM_INFEAS_CER
The solution is a certificate of primal infeasibility.
Solsta: :DUAL_INFEAS_CER
The solution is a certificate of dual infeasibility.
Solsta: :PRIM_ILLPOSED_CER
The solution is a certificate that the primal problem is illposed.
Solsta: :DUAL_ILLPOSED_CER
The solution is a certificate that the dual problem is illposed.
Solsta: :INTEGER_OPTIMAL
The primal solution is integer optimal.

\section*{Soltype}

Solution types
Soltype: :BAS
The basic solution.
Soltype: :ITR
The interior solution.
Soltype: :ITG
The integer solution.
Solveform
Solve primal or dual form
Solveform: :FREE
The optimizer is free to solve either the primal or the dual problem.
Solveform: :PRIMAL
The optimizer should solve the primal problem.
Solveform: :DUAL
The optimizer should solve the dual problem.
Stakey
Status keys
Stakey: :UNK
The status for the constraint or variable is unknown.
Stakey: :BAS
The constraint or variable is in the basis.
Stakey: :SUPBAS
The constraint or variable is super basic.
Stakey: :LOW
The constraint or variable is at its lower bound.
Stakey: :UPR
The constraint or variable is at its upper bound.
Stakey: :FIX
The constraint or variable is fixed.
Stakey: :INF
The constraint or variable is infeasible in the bounds.

\section*{Startpointtype}

Starting point types
Startpointtype: :FREE
The starting point is chosen automatically.
Startpointtype: :GUESS
The optimizer guesses a starting point.
Startpointtype: CONSTANT
The optimizer constructs a starting point by assigning a constant value to all primal and dual variables. This starting point is normally robust.
Streamtype
Stream types
Streamtype: :LOG
Log stream. Contains the aggregated contents of all other streams. This means that a message written to any other stream will also be written to this stream.
Streamtype: :MSG
Message stream. Log information relating to performance and progress of the optimization is written to this stream.

Streamtype: :ERR
Error stream. Error messages are written to this stream.
Streamtype: :WRN
Warning stream. Warning messages are written to this stream.
Value
Integer values
Value: :MAX_STR_LEN
Maximum string length allowed in MOSEK.
Value::LICENSE_BUFFER_LENGTH
The length of a license key buffer.
Variabletype
Variable types
Variabletype::TYPE_CONT
Is a continuous variable.
Variabletype: :TYPE_INT
Is an integer variable.

\subsection*{15.9 Supported domains}

This section lists the domains supported by MOSEK. See Sec. 6 for how to apply domains to specify affine conic constraints (ACCs) and disjunctive constraints (DJCs).

\subsection*{15.9.1 Linear domains}

Each linear domain is determined by the dimension \(n\).
- Task.append_rzero_domain : the zero domain, consisting of the origin \(0^{n} \in \mathbb{R}^{n}\).
- Task.append_rplus_domain : the nonnegative orthant domain \(\mathbb{R}_{\geq 0}^{n}\).
- Task.append_rminus_domain : the nonpositive orthant domain \(\mathbb{R}_{\leq 0}^{n}\).
- Task.append_r_domain : the free domain, consisting of the whole \(\mathbb{R}^{n}\).

Membership in a linear domain is equivalent to imposing the corresponding set of \(n\) linear constraints, for instance \(F x+g \in 0^{n}\) is equivalent to \(F x+g=0\) and so on. The free domain imposes no restriction.

\subsection*{15.9.2 Quadratic cone domains}

The quadratic domains are determined by the dimension \(n\).
- Task.append_quadratic_cone_domain : the quadratic cone domain is the subset of \(\mathbb{R}^{n}\) defined as
\[
\mathcal{Q}^{n}=\left\{x \in \mathbb{R}^{n}: x_{1} \geq \sqrt{x_{2}^{2}+\cdots+x_{n}^{2}}\right\} .
\]
- Task.append_r_quadratic_cone_domain : the rotated quadratic cone domain is the subset of \(\mathbb{R}^{n}\) defined as
\[
\mathcal{Q}_{r}^{n}=\left\{x \in \mathbb{R}^{n}: 2 x_{1} x_{2} \geq x_{3}^{2}+\cdots+x_{n}^{2}, x_{1}, x_{2} \geq 0\right\}
\]

\subsection*{15.9.3 Exponential cone domains}
- Task.append_primal_exp_cone_domain : the primal exponential cone domain is the subset of \(\mathbb{R}^{3}\) defined as
\[
K_{\exp }=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1} \geq x_{2} \exp \left(x_{3} / x_{2}\right), x_{1}, x_{2} \geq 0\right\}
\]
- Task.append_dual_exp_cone_domain : the dual exponential cone domain is the subset of \(\mathbb{R}^{3}\) defined as
\[
K_{\exp }^{*}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1} \geq-x_{3} \exp \left(x_{2} / x_{3}-1\right), x_{1} \geq 0, x_{3} \leq 0\right\}
\]

\subsection*{15.9.4 Power cone domains}

A power cone domain is determined by the dimension \(n\) and a sequence of \(1 \leq n_{l}<n\) positive real numbers (weights) \(\alpha_{1}, \ldots, \alpha_{n_{l}}\).
- Task.append_primal_power_cone_domain : the primal power cone domain is the subset of \(\mathbb{R}^{n}\) defined as
\[
\mathcal{P}_{n}^{\left(\alpha_{1}, \ldots, \alpha_{n_{l}}\right)}=\left\{x \in \mathbb{R}^{n}: \prod_{i=1}^{n_{l}} x_{i}^{\beta_{i}} \geq \sqrt{x_{n_{l}+1}^{2}+\cdots+x_{n}^{2}}, x_{1}, \ldots, x_{n_{l}} \geq 0\right\}
\]
where \(\beta_{i}\) are the weights normalized to add up to 1 , ie. \(\beta_{i}=\alpha_{i} /\left(\sum_{j} \alpha_{j}\right)\) for \(i=1, \ldots, n_{l}\). The name \(n_{l}\) reads as " n left", the length of the product on the left-hand side of the definition.
- Task.append_dual_power_cone_domain : the dual power cone domain is the subset of \(\mathbb{R}^{n}\) defined as
\[
\left(\mathcal{P}_{n}^{\left(\alpha_{1}, \ldots, \alpha_{n_{l}}\right)}\right)^{*}=\left\{x \in \mathbb{R}^{n}: \prod_{i=1}^{n_{l}}\left(\frac{x_{i}}{\beta_{i}}\right)^{\beta_{i}} \geq \sqrt{x_{n_{l}+1}^{2}+\cdots+x_{n}^{2}}, x_{1}, \ldots, x_{n_{l}} \geq 0\right\}
\]
where \(\beta_{i}\) are the weights normalized to add up to 1 , ie. \(\beta_{i}=\alpha_{i} /\left(\sum_{j} \alpha_{j}\right)\) for \(i=1, \ldots, n_{l}\). The name \(n_{l}\) reads as " n left", the length of the product on the left-hand side of the definition.
- Remark: in MOSEK 9 power cones were available only in the special case with \(n_{l}=2\) and weights ( \(\alpha, 1-\alpha\) ) for some \(0<\alpha<1\) specified as cone parameter.

\subsection*{15.9.5 Geometric mean cone domains}

A geometric mean cone domain is determined by the dimension \(n\).
- Task.append_primal_geo_mean_cone_domain : the primal geometric mean cone domain is the subset of \(\mathbb{R}^{n}\) defined as
\[
\mathcal{G} \mathcal{M}^{n}=\left\{x \in \mathbb{R}^{n}:\left(\prod_{i=1}^{n-1} x_{i}\right)^{1 /(n-1)} \geq\left|x_{n}\right|, x_{1}, \ldots, x_{n-1} \geq 0\right\}
\]

It is a special case of the primal power cone domain with \(n_{l}=n-1\) and weights \(\alpha=(1, \ldots, 1)\).
- Task.append_dual_geo_mean_cone_domain : the dual geometric mean cone domain is the subset of \(\mathbb{R}^{n}\) defined as
\[
\left(\mathcal{G} \mathcal{M}^{n}\right)^{*}=\left\{x \in \mathbb{R}^{n}:(n-1)\left(\prod_{i=1}^{n-1} x_{i}\right)^{1 /(n-1)} \geq\left|x_{n}\right|, x_{1}, \ldots, x_{n-1} \geq 0\right\}
\]

It is a special case of the dual power cone domain with \(n_{l}=n-1\) and weights \(\alpha=(1, \ldots, 1)\).

\subsection*{15.9.6 Vectorized semidefinite domain}
- Task.append_svec_psd_cone_domain : the vectorized PSD cone domain is determined by the dimension \(n\), which must be of the form \(n=d(d+1) / 2\). Then the domain is defined as
\[
\mathcal{S}_{+}^{d, \mathrm{vec}}=\left\{\left(x_{1}, \ldots, x_{d(d+1) / 2}\right) \in \mathbb{R}^{n}: \operatorname{sMat}(x) \in \mathcal{S}_{+}^{d}\right\},
\]
where
\[
\operatorname{sMat}(x)=\left[\begin{array}{cccc}
x_{1} & x_{2} / \sqrt{2} & \cdots & x_{d} / \sqrt{2} \\
x_{2} / \sqrt{2} & x_{d+1} & \cdots & x_{2 d-1} / \sqrt{2} \\
\cdots & \cdots & \cdots & \cdots \\
x_{d} / \sqrt{2} & x_{2 d-1} / \sqrt{2} & \cdots & x_{d(d+1) / 2}
\end{array}\right],
\]
or equivalently
\[
\mathcal{S}_{+}^{d, \text { vec }}=\left\{\operatorname{sVec}(X): X \in \mathcal{S}_{+}^{d}\right\},
\]
where
\[
\operatorname{sVec}(X)=\left(X_{11}, \sqrt{2} X_{21}, \ldots, \sqrt{2} X_{d 1}, X_{22}, \sqrt{2} X_{32}, \ldots, X_{d d}\right)
\]

In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidefinite matrix, with the non-diagonal elements additionally rescaled.

\section*{Chapter 16}

\section*{Supported File Formats}

MOSEK supports a range of problem and solution formats listed in Table 16.1 and Table 16.2.
The most important are:
- the Task format, MOSEK's native binary format which supports all features that MOSEK supports. It is the closest possible representation of the internal data in a task and it is ideal for submitting problem data support questions.
- the PTF format, MOSEK's human-readable format that supports all linear, conic and mixedinteger features. It is ideal for debugging. It is not an exact copy of all the data in the task, but it contains all information required to reconstruct it, presented in a readable fashion.
- MPS, LP, CBF formats are industry standards, each supporting some limited set of features, and potentially requiring some degree of reformulation during read/write.

\section*{Problem formats}

Table 16.1: List of supported file formats for optimization prob-
lems.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Format Type & Ext. & Binary/Text & LP & QCQO & ACC & SDP & DJC & Sol & Param \\
\hline\(L P\) & lp & plain text & X & X & & & & & \\
\hline\(M P S\) & mps & plain text & X & X & & & & & \\
\hline\(P T F\) & ptf & plain text & X & & X & X & X & X & X \\
\hline CBF & cbf & plain text & X & & X & X & & & \\
\hline Task format & task & binary & X & X & X & X & X & X & X \\
\hline Jtask format & jtask & text/JSON & X & X & X & X & X & X & X \\
\hline OPF (deprecated for conic problems) & opf & plain text & X & X & & & & X & X \\
\hline
\end{tabular}

The columns of the table indicate if the specified file format supports:
- LP - linear problems, possibly with integer variables,
- QCQO - quadratic objective or constraints,
- ACC - affine conic constraints,
- SDP - semidefinite cone/variables,
- DJC - disjunctive constraints,
- Sol - solutions,
- Param - optimizer parameters.

\section*{Solution formats}

Table 16.2: List of supported solution formats.
\begin{tabular}{|l|c|c|l|}
\hline Format Type & Ext. & Binary/Text & Description \\
\hline \multirow{3}{*}{ SOL } & sol & plain text & Interior Solution \\
\cline { 2 - 4 } & bas & plain text & Basic Solution \\
\cline { 2 - 4 } & int & plain text & Integer \\
\hline Jsol format & jsol & text/JSON & All solutions \\
\hline
\end{tabular}

\section*{Compression}

MOSEK supports GZIP and Zstandard compression. Problem files with extension .gz (for GZIP) and .zst (for Zstandard) are assumed to be compressed when read, and are automatically compressed when written. For example, a file called
```

problem.mps.zst

```
will be considered as a Zstandard compressed MPS file.

\subsection*{16.1 The LP File Format}

MOSEK supports the LP file format with some extensions. The LP format is not a completely welldefined standard and hence different optimization packages may interpret the same LP file in slightly different ways. MOSEK tries to emulate as closely as possible CPLEX's behavior, but tries to stay backward compatible.

The LP file format can specify problems of the form

where
- \(x \in \mathbb{R}^{n}\) is the vector of decision variables.
- \(c \in \mathbb{R}^{n}\) is the linear term in the objective.
- \(q^{o}: \in \mathbb{R}^{n} \rightarrow \mathbb{R}\) is the quadratic term in the objective where
\[
q^{o}(x)=x^{T} Q^{o} x
\]
and it is assumed that
\[
Q^{o}=\left(Q^{o}\right)^{T}
\]
- \(A \in \mathbb{R}^{m \times n}\) is the constraint matrix.
- \(l^{c} \in \mathbb{R}^{m}\) is the lower limit on the activity for the constraints.
- \(u^{c} \in \mathbb{R}^{m}\) is the upper limit on the activity for the constraints.
- \(l^{x} \in \mathbb{R}^{n}\) is the lower limit on the activity for the variables.
- \(u^{x} \in \mathbb{R}^{n}\) is the upper limit on the activity for the variables.
- \(q: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is a vector of quadratic functions. Hence,
\[
q_{i}(x)=x^{T} Q^{i} x
\]
where it is assumed that
\[
Q^{i}=\left(Q^{i}\right)^{T}
\]
- \(\mathcal{J} \subseteq\{1,2, \ldots, n\}\) is an index set of the integer constrained variables.

\subsection*{16.1.1 File Sections}

An LP formatted file contains a number of sections specifying the objective, constraints, variable bounds, and variable types. The section keywords may be any mix of upper and lower case letters.

\section*{Objective Function}

The first section beginning with one of the keywords
```

max
maximum
maximize
min
minimum
minimize

```
defines the objective sense and the objective function, i.e.
\[
c^{T} x+\frac{1}{2} x^{T} Q^{o} x
\]

The objective may be given a name by writing

\section*{myname:}
before the expressions. If no name is given, then the objective is named obj.
The objective function contains linear and quadratic terms. The linear terms are written as
```

4 x1 + x2 - 0.1 x3

```
and so forth. The quadratic terms are written in square brackets ([ \(] / 2\) ) and are either squared or multiplied as in the examples
```

x1~2

```
and
```

x1 * x2

```

There may be zero or more pairs of brackets containing quadratic expressions.
An example of an objective section is
minimize
myobj: \(4 \mathrm{x} 1+\mathrm{x} 2-0.1 \mathrm{x} 3+\left[\mathrm{x} 1^{\wedge} 2+2.1 \mathrm{x} 1 * \mathrm{x} 2\right] / 2\)
Please note that the quadratic expressions are multiplied with \(\frac{1}{2}\), so that the above expression means
\[
\operatorname{minimize} \quad 4 x_{1}+x_{2}-0.1 \cdot x_{3}+\frac{1}{2}\left(x_{1}^{2}+2.1 \cdot x_{1} \cdot x_{2}\right)
\]

If the same variable occurs more than once in the linear part, the coefficients are added, so that \(4 \times 1+\) 2 x 1 is equivalent to 6 x 1 . In the quadratic expressions \(\mathrm{x} 1 * \mathrm{x} 2\) is equivalent to \(\mathrm{x} 2 * \mathrm{x} 1\) and, as in the linear part, if the same variables multiplied or squared occur several times their coefficients are added.

\section*{Constraints}

The second section beginning with one of the keywords
```

subj to
subject to
s.t.
st

```
defines the linear constraint matrix \(A\) and the quadratic matrices \(Q^{i}\).
A constraint contains a name (optional), expressions adhering to the same rules as in the objective and a bound:
```

subject to
con1: x1 + x2 + [x3~2]/2 <= 5.1

```

The bound type (here \(<=\) ) may be any of \(<,<=,=,>,>=(<\) and \(<=\) mean the same), and the bound may be any number.

In the standard LP format it is not possible to define more than one bound per line, but MOSEK supports defining ranged constraints by using double-colon (::) instead of a single-colon (:) after the constraint name, i.e.
\[
\begin{equation*}
-5 \leq x_{1}+x_{2} \leq 5 \tag{16.1}
\end{equation*}
\]
may be written as
```

con:: -5 < x_1 + x_2 < 5

```

By default MOSEK writes ranged constraints this way.
If the files must adhere to the LP standard, ranged constraints must either be split into upper bounded and lower bounded constraints or be written as an equality with a slack variable. For example the expression (16.1) may be written as
\[
x_{1}+x_{2}-s l_{1}=0,-5 \leq s l_{1} \leq 5
\]

\section*{Bounds}

Bounds on the variables can be specified in the bound section beginning with one of the keywords
```

bound

```
bounds

The bounds section is optional but should, if present, follow the subject to section. All variables listed in the bounds section must occur in either the objective or a constraint.

The default lower and upper bounds are 0 and \(+\infty\). A variable may be declared free with the keyword free, which means that the lower bound is \(-\infty\) and the upper bound is \(+\infty\). Furthermore it may be assigned a finite lower and upper bound. The bound definitions for a given variable may be written in one or two lines, and bounds can be any number or \(\pm \infty\) (written as +inf/-inf/+infinity/-infinity) as in the example
```

bounds
x1 free
x2 <= 5
0.1 <= x2
x3 = 42
2 <= x4 < +inf

```

\section*{Variable Types}

The final two sections are optional and must begin with one of the keywords
```

bin
binaries
binary

```
    and
```

gen
general

```

Under general all integer variables are listed, and under binary all binary (integer variables with bounds 0 and 1) are listed:
```

general

```
x1 x2
binary
x3 x4

Again, all variables listed in the binary or general sections must occur in either the objective or a constraint.

\section*{Terminating Section}

Finally, an LP formatted file must be terminated with the keyword
```

end

```

\subsection*{16.1.2 LP File Examples}

Linear example lo1.lp
```

\ File: lo1.lp
maximize
obj: 3 x1 + x2 + 5 x3 + x4
subject to
c1: 3 x1 + x2 + 2 x3 = 30
c2: 2 x1 + x2 + 3 x3 + x4 >= 15
c3: 2 x2 + 3 x4 <= 25
bounds
0 <= x1 <= +infinity
0<= x2 <= 10
0 <= x3 <= +infinity
0 <= x4 <= +infinity
end

```

Mixed integer example milo1.lp
```

maximize
obj: x1 + 6.4e-01 x2
subject to
c1: 5e+01 x1 + 3.1e+01 x2 <= 2.5e+02
c2: 3e+00 x1 - 2e+00 x2 >= -4e+00
bounds
0 <= x1 <= +infinity
0<= x2 <= +infinity
general
x1 x2
end

```

\subsection*{16.1.3 LP Format peculiarities}

\section*{Comments}

Anything on a line after a \(\backslash\) is ignored and is treated as a comment.

\section*{Names}

A name for an objective, a constraint or a variable may contain the letters a-z, A-Z, the digits 0-9 and the characters
!"\#\$\%\&()/, .;?@_'-।~

The first character in a name must not be a number, a period or the letter e or E. Keywords must not be used as names.

MOSEK accepts any character as valid for names, except \(\backslash 0\). A name that is not allowed in LP file will be changed and a warning will be issued.

The algorithm for making names LP valid works as follows: The name is interpreted as an utf-8 string. For a Unicode character c:
- If \(\mathrm{c}===_{-}\)(underscore), the output is _- (two underscores).
- If c is a valid LP name character, the output is just c .
- If c is another character in the ASCII range, the output is _XX, where XX is the hexadecimal code for the character.
- If \(c\) is a character in the range \(127-65535\), the output is _uXXXX, where XXXX is the hexadecimal code for the character.
- If \(c\) is a character above 65535 , the output is _UXXXXXXXXX, where XXXXXXXX is the hexadecimal code for the character.

Invalid utf-8 substrings are escaped as _XX', and if a name starts with a period, e or E, that character is escaped as _XX.

\section*{Variable Bounds}

Specifying several upper or lower bounds on one variable is possible but MOSEK uses only the tightest bounds. If a variable is fixed (with \(=\) ), then it is considered the tightest bound.

\subsection*{16.2 The MPS File Format}

MOSEK supports the standard MPS format with some extensions. For a detailed description of the MPS format see the book by Nazareth [Naz87].

\subsection*{16.2.1 MPS File Structure}

The version of the MPS format supported by MOSEK allows specification of an optimization problem of the form
\[
\begin{array}{rccc}
\text { maximize/minimize } & c^{T} x+q_{0}(x) \\
l^{c} \leq & A x+q(x) & \leq u^{c},  \tag{16.2}\\
l^{x} \leq & x & \leq u^{x}, \\
& x \in \mathcal{K}, & \\
& x_{\mathcal{J}} \text { integer, } &
\end{array}
\]
where
- \(x \in \mathbb{R}^{n}\) is the vector of decision variables.
- \(A \in \mathbb{R}^{m \times n}\) is the constraint matrix.
- \(l^{c} \in \mathbb{R}^{m}\) is the lower limit on the activity for the constraints.
- \(u^{c} \in \mathbb{R}^{m}\) is the upper limit on the activity for the constraints.
- \(l^{x} \in \mathbb{R}^{n}\) is the lower limit on the activity for the variables.
- \(u^{x} \in \mathbb{R}^{n}\) is the upper limit on the activity for the variables.
- \(q: \mathbb{R}^{n} \rightarrow \mathbb{R}\) is a vector of quadratic functions. Hence,
\[
q_{i}(x)=\frac{1}{2} x^{T} Q^{i} x
\]
where it is assumed that \(Q^{i}=\left(Q^{i}\right)^{T}\). Please note the explicit \(\frac{1}{2}\) in the quadratic term and that \(Q^{i}\) is required to be symmetric. The same applies to \(q_{0}\).
- \(\mathcal{K}\) is a convex cone.
- \(\mathcal{J} \subseteq\{1,2, \ldots, n\}\) is an index set of the integer-constrained variables.
- \(c\) is the vector of objective coefficients.

An MPS file with one row and one column can be illustrated like this:
```

* 1 1 2 <rllll
*23456789012345678901234567890123456789012345678901234567890
NAME [name]
OBJSENSE
[objsense]
OBJNAME [objname]
ROWS
? [cname1]
COLUMNS
[vname1] [cname1] [value1] [cname2] [value2]
RHS
[name] [cname1] [value1] [cname2] [value2]
RANGES
[name] [cname1] [value1] [cname2] [value2]
QSECTION [cname1]
[vname1] [vname2] [value1] [vname3] [value2]
QMATRIX
[vname1] [vname2] [value1]
QUADOBJ
[vname1] [vname2] [value1]
QCMATRIX [cname1]
[vname1] [vname2] [value1]
BOUNDS
?? [name] [vname1] [value1]
CSECTION [kname1] [value1] [ktype]
[vname1]
ENDATA

```

Here the names in capitals are keywords of the MPS format and names in brackets are custom defined names or values. A couple of notes on the structure:
- Fields: All items surrounded by brackets appear in fields. The fields named "valueN" are numerical values. Hence, they must have the format

\section*{[+|-]XXXXXXX.XXXXXX[[e|E][+|-]XXX]}
where
```

X = [0|1|2|3|4|5|6|7|8|9].

```
- Sections: The MPS file consists of several sections where the names in capitals indicate the beginning of a new section. For example, COLUMNS denotes the beginning of the columns section.
- Comments: Lines starting with an \(*\) are comment lines and are ignored by MOSEK.
- Keys: The question marks represent keys to be specified later.
- Extensions: The sections QSECTION and CSECTION are specific MOSEK extensions of the MPS format. The sections QMATRIX, QUADOBJ and QCMATRIX are included for sake of compatibility with other vendors extensions to the MPS format.
- The standard MPS format is a fixed format, i.e. everything in the MPS file must be within certain fixed positions. MOSEK also supports a free format. See Sec. 16.2.5 for details.

\section*{Linear example lo1.mps}

A concrete example of a MPS file is presented below:
```

* File: lo1.mps
NAME lo1
OBJSENSE
MAX
ROWS
N obj
E c1
G c2
L c3
COLUMNS
x1 obj 3
x1 c1 3
x1 c2 2
x2 obj 1
x2 c1 1
x2 c2 1
x2 c3 2
x3 obj 5
x3 c1 2
x3 c2 3
x4 obj 1
x4 c2 1
x4 c3 3
RHS
rhs c1 30
rhs c2 15
rhs c3 25
RANGES
BOUNDS
UP bound x2 10
ENDATA

```

Subsequently each individual section in the MPS format is discussed.

\section*{NAME (optional)}

In this section a name ([name]) is assigned to the problem.

\section*{OBJSENSE (optional)}

This is an optional section that can be used to specify the sense of the objective function. The OBJSENSE section contains one line at most which can be one of the following:
```

MIN
MINIMIZE
MAX

```
MAXIMIZE

It should be obvious what the implication is of each of these four lines.

\section*{OBJNAME (optional)}

This is an optional section that can be used to specify the name of the row that is used as objective function. objname should be a valid row name.

\section*{ROWS}

A record in the ROWS section has the form
```

? [cname1]

```
where the requirements for the fields are as follows:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & required & Description \\
\hline\(?\) & 2 & 1 & Yes & Constraint key \\
\hline [cname1] & 5 & 8 & Yes & Constraint name \\
\hline
\end{tabular}

Hence, in this section each constraint is assigned a unique name denoted by [cname1]. Please note that [cname1] starts in position 5 and the field can be at most 8 characters wide. An initial key ? must be present to specify the type of the constraint. The key can have values E, G, L, or \(N\) with the following interpretation:
\begin{tabular}{|l|l|l|}
\hline Constraint type & \(l_{i}^{c}\) & \(u_{i}^{c}\) \\
\hline E (equal) & finite & \(=l_{i}^{c}\) \\
\hline G (greater) & finite & \(\infty\) \\
\hline L (lower) & \(-\infty\) & finite \\
\hline N (none) & \(-\infty\) & \(\infty\) \\
\hline
\end{tabular}

In the MPS format the objective vector is not specified explicitly, but one of the constraints having the key N will be used as the objective vector \(c\). In general, if multiple N type constraints are specified, then the first will be used as the objective vector \(c\), unless something else was specified in the section OBJNAME.

COLUMNS
In this section the elements of \(A\) are specified using one or more records having the form:
```

[vname1] [cname1] [value1] [cname2] [value2]

```
where the requirements for each field are as follows:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & required & Description \\
\hline [vname1] & 5 & 8 & Yes & Variable name \\
\hline [cname1] & 15 & 8 & Yes & Constraint name \\
\hline [value1] & 25 & 12 & Yes & Numerical value \\
\hline [cname2] & 40 & 8 & No & Constraint name \\
\hline [value2] & 50 & 12 & No & Numerical value \\
\hline
\end{tabular}

Hence, a record specifies one or two elements \(a_{i j}\) of \(A\) using the principle that [vname1] and [cname1] determines \(j\) and \(i\) respectively. Please note that [cname1] must be a constraint name specified in the

ROWS section. Finally, [value1] denotes the numerical value of \(a_{i j}\). Another optional element is specified by [cname2], and [value2] for the variable specified by [vname1]. Some important comments are:
- All elements belonging to one variable must be grouped together.
- Zero elements of \(A\) should not be specified.
- At least one element for each variable should be specified.

\section*{RHS (optional)}

A record in this section has the format
[name] [cname1] [value1] [cname2] [value2]
where the requirements for each field are as follows:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & required & Description \\
\hline [name] & 5 & 8 & Yes & Name of the RHS vector \\
\hline [cname1] & 15 & 8 & Yes & Constraint name \\
\hline [value1] & 25 & 12 & Yes & Numerical value \\
\hline [cname2] & 40 & 8 & No & Constraint name \\
\hline [value2] & 50 & 12 & No & Numerical value \\
\hline
\end{tabular}

The interpretation of a record is that [name] is the name of the RHS vector to be specified. In general, several vectors can be specified. [cname1] denotes a constraint name previously specified in the ROWS section. Now, assume that this name has been assigned to the \(i-\mathrm{h}\) constraint and \(v_{1}\) denotes the value specified by [value1], then the interpretation of \(v_{1}\) is:
\begin{tabular}{|l|c|c|}
\hline Constraint & \(l_{i}^{c}\) & \(u_{i}^{c}\) \\
\hline E & \(v_{1}\) & \(v_{1}\) \\
\hline G & \(v_{1}\) & \\
\hline L & & \(v_{1}\) \\
\hline N & & \\
\hline
\end{tabular}

An optional second element is specified by [cname2] and [value2] and is interpreted in the same way. Please note that it is not necessary to specify zero elements, because elements are assumed to be zero.

\section*{RANGES (optional)}

A record in this section has the form
```

[name] [cname1] [value1] [cname2] [value2]

```
where the requirements for each fields are as follows:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & required & Description \\
\hline [name] & 5 & 8 & Yes & Name of the RANGE vector \\
\hline [cname1] & 15 & 8 & Yes & Constraint name \\
\hline [value1] & 25 & 12 & Yes & Numerical value \\
\hline [cname2] & 40 & 8 & No & Constraint name \\
\hline [value2] & 50 & 12 & No & Numerical value \\
\hline
\end{tabular}

The records in this section are used to modify the bound vectors for the constraints, i.e. the values in \(l^{c}\) and \(u^{c}\). A record has the following interpretation:[name] is the name of the RANGE vector and [cname1] is a valid constraint name. Assume that [cname1] is assigned to the \(i\)-th constraint and let \(v_{1}\) be the value specified by [value1], then a record has the interpretation:
\begin{tabular}{|l|l|l|l|}
\hline Constraint type & Sign of \(v_{1}\) & \(l_{i}^{c}\) & \(u_{i}^{c}\) \\
\hline E & - & \(u_{i}^{c}+v_{1}\) & \\
\hline E & + & & \(l_{i}^{c}+v_{1}\) \\
\hline G & - or + & & \(l_{i}^{c}+\left|v_{1}\right|\) \\
\hline L & - or + & \(u_{i}^{c}-\left|v_{1}\right|\) & \\
\hline N & & & \\
\hline
\end{tabular}

Another constraint bound can optionally be modified using [cname2] and [value2] the same way.

\section*{QSECTION (optional)}

Within the QSECTION the label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1] denotes the constraint to which the quadratic terms belong. A record in the QSECTION has the form
[vname1] [vname2] [value1] [vname3] [value2]
where the requirements for each field are:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & required & Description \\
\hline [vname1] & 5 & 8 & Yes & Variable name \\
\hline [vname2] & 15 & 8 & Yes & Variable name \\
\hline [value1] & 25 & 12 & Yes & Numerical value \\
\hline [vname3] & 40 & 8 & No & Variable name \\
\hline [value2] & 50 & 12 & No & Numerical value \\
\hline
\end{tabular}

A record specifies one or two elements in the lower triangular part of the \(Q^{i}\) matrix where [cname1] specifies the \(i\). Hence, if the names [vname1] and [vname2] have been assigned to the \(k\)-th and \(j\)-th variable, then \(Q_{k j}^{i}\) is assigned the value given by [value1] An optional second element is specified in the same way by the fields [vname1], [vname3], and [value2].

The example
\[
\begin{array}{lc}
\operatorname{minimize} & -x_{2}+\frac{1}{2}\left(2 x_{1}^{2}-2 x_{1} x_{3}+0.2 x_{2}^{2}+2 x_{3}^{2}\right) \\
\text { subject to } & x_{1}+x_{2}+x_{3} \\
x \geq 0
\end{array}
\]
has the following MPS file representation
```

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0
RHS
rhs c1 1.0
QSECTION
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0
ENDATA

```

Regarding the QSECTIONs please note that:
- Only one QSECTION is allowed for each constraint.
- The QSECTIONs can appear in an arbitrary order after the COLUMNS section.
- All variable names occurring in the QSECTION must already be specified in the COLUMNS section.
- All entries specified in a QSECTION are assumed to belong to the lower triangular part of the quadratic term of \(Q\).

\section*{QMATRIX/QUADOBJ (optional)}

The QMATRIX and QUADOBJ sections allow to define the quadratic term of the objective function. They differ in how the quadratic term of the objective function is stored:
- QMATRIX stores all the nonzeros coefficients, without taking advantage of the symmetry of the \(Q\) matrix.
- QUADOBJ stores the upper diagonal nonzero elements of the \(Q\) matrix.

A record in both sections has the form:
```

[vname1] [vname2] [value1]

```
where the requirements for each field are:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & required & Description \\
\hline [vname1] & 5 & 8 & Yes & Variable name \\
\hline [vname2] & 15 & 8 & Yes & Variable name \\
\hline [value1] & 25 & 12 & Yes & Numerical value \\
\hline
\end{tabular}

A record specifies one elements of the \(Q\) matrix in the objective function. Hence, if the names [vname1] and [vname2] have been assigned to the \(k\)-th and \(j\)-th variable, then \(Q_{k j}\) is assigned the value given by [value1]. Note that a line must appear for each off-diagonal coefficient if using a QMATRIX section, while only one entry is required in a QUADOBJ section. The quadratic part of the objective function will be evaluated as \(1 / 2 x^{T} Q x\).

The example
\[
\begin{array}{lc}
\operatorname{minimize} & -x_{2}+\frac{1}{2}\left(2 x_{1}^{2}-2 x_{1} x_{3}+0.2 x_{2}^{2}+2 x_{3}^{2}\right) \\
\text { subject to } & x_{1}+x_{2}+x_{3} \\
& x \geq 0
\end{array}
\]
has the following MPS file representation using QMATRIX
```

* File: qo1_matrix.mps
NAME qo1_qmatrix
ROWS
N obj
G c1
COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0
RHS
rhs c1 1.0
QMATRIX
x1 x1 2.0
x1 x3 -1.0
x3 x1 -1.0
x2 x2 0.2
x3 x3 2.0
ENDATA

```
or the following using QUADOBJ
```

* File: qo1_quadobj.mps
NAME qo1_quadobj
ROWS
N obj
G c1
COLUMNS
x1 c1 1.0
x2 obj -1.0
x2 c1 1.0
x3 c1 1.0
RHS
rhs c1 1.0
QUADOBJ
x1 x1 2.0
x1 x3 -1.0
x2 x2 0.2
x3 x3 2.0
ENDATA

```

Please also note that:
- A QMATRIX/QUADOBJ section can appear in an arbitrary order after the COLUMNS section.
- All variable names occurring in the QMATRIX/QUADOBJ section must already be specified in the COLUMNS section.

\section*{QCMATRIX (optional)}

A QCMATRIX section allows to specify the quadratic part of a given constraint. Within the QCMATRIX the label [cname1] must be a constraint name previously specified in the ROWS section. The label [cname1] denotes the constraint to which the quadratic term belongs. A record in the QSECTION has the form
```

[vname1] [vname2] [value1]

```
where the requirements for each field are:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & required & Description \\
\hline [vname1] & 5 & 8 & Yes & Variable name \\
\hline [vname2] & 15 & 8 & Yes & Variable name \\
\hline [value1] & 25 & 12 & Yes & Numerical value \\
\hline
\end{tabular}

A record specifies an entry of the \(Q^{i}\) matrix where [cname1] specifies the \(i\). Hence, if the names [vname1] and [vname2] have been assigned to the \(k\)-th and \(j\)-th variable, then \(Q_{k j}^{i}\) is assigned the value given by [value1]. Moreover, the quadratic term is represented as \(1 / 2 x^{T} Q x\).

The example
\[
\begin{array}{lc}
\operatorname{minimize} & x_{2} \\
\text { subject to } & x_{1}+x_{2}+x_{3} \\
& \frac{1}{2}\left(-2 x_{1} x_{3}+0.2 x_{2}^{2}+2 x_{3}^{2}\right) \\
& x \geq 0
\end{array}
\]
has the following MPS file representation
```

* File: qo1.mps
NAME qo1
ROWS
N obj
G c1
L q1
COLUMNS

```
\begin{tabular}{|lll|}
\hline x 1 & c 1 & 1.0 \\
x 2 & obj & -1.0 \\
x 2 & c 1 & 1.0 \\
x 3 & c 1 & 1.0 \\
RHS & & \\
rhs & c 1 & 1.0 \\
rhs & q 1 & 10.0 \\
QCMATRIX & q 1 & \\
x1 & x 1 & 2.0 \\
x1 & x 3 & -1.0 \\
x3 & x 1 & -1.0 \\
x2 & x 2 & 0.2 \\
x3 & x 3 & 2.0 \\
ENDATA & &
\end{tabular}

Regarding the QCMATRIXs please note that:
- Only one QCMATRIX is allowed for each constraint.
- The QCMATRIXs can appear in an arbitrary order after the COLUMNS section.
- All variable names occurring in the QSECTION must already be specified in the COLUMNS section.
- QCMATRIX does not exploit the symmetry of \(Q\) : an off-diagonal entry \((i, j)\) should appear twice.

\section*{BOUNDS (optional)}

In the BOUNDS section changes to the default bounds vectors \(l^{x}\) and \(u^{x}\) are specified. The default bounds vectors are \(l^{x}=0\) and \(u^{x}=\infty\). Moreover, it is possible to specify several sets of bound vectors. A record in this section has the form
```

?? [name] [vname1] [value1]

```
where the requirements for each field are:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & Required & Description \\
\hline\(? ?\) & 2 & 2 & Yes & Bound key \\
\hline [name \(]\) & 5 & 8 & Yes & Name of the BOUNDS vector \\
\hline [vname1] & 15 & 8 & Yes & Variable name \\
\hline [value1] & 25 & 12 & No & Numerical value \\
\hline
\end{tabular}

Hence, a record in the BOUNDS section has the following interpretation: [name] is the name of the bound vector and [vname1] is the name of the variable for which the bounds are modified by the record. ?? and [value1] are used to modify the bound vectors according to the following table:
\begin{tabular}{|l|l|l|l|}
\hline\(? ?\) & \(l_{j}^{x}\) & \(u_{j}^{x}\) & Made integer (added to \(\mathcal{J}\) ) \\
\hline FR & \(-\infty\) & \(\infty\) & No \\
\hline FX & \(v_{1}\) & \(v_{1}\) & No \\
\hline LO & \(v_{1}\) & unchanged & No \\
\hline MI & \(-\infty\) & unchanged & No \\
\hline PL & unchanged & \(\infty\) & No \\
\hline UP & unchanged & \(v_{1}\) & No \\
\hline BV & 0 & 1 & Yes \\
\hline LI & \(\left\lceil v_{1}\right\rceil\) & unchanged & Yes \\
\hline UI & unchanged & \(\left\lfloor v_{1}\right\rfloor\) & Yes \\
\hline
\end{tabular}

Here \(v_{1}\) is the value specified by [value1].

\section*{CSECTION (optional)}

The purpose of the CSECTION is to specify the conic constraint
\[
x \in \mathcal{K}
\]
in (16.2). It is assumed that \(\mathcal{K}\) satisfies the following requirements. Let
\[
x^{t} \in \mathbb{R}^{n^{t}}, \quad t=1, \ldots, k
\]
be vectors comprised of parts of the decision variables \(x\) so that each decision variable is a member of exactly one vector \(x^{t}\), for example
\[
x^{1}=\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{7}
\end{array}\right] \quad \text { and } \quad x^{2}=\left[\begin{array}{c}
x_{6} \\
x_{5} \\
x_{3} \\
x_{2}
\end{array}\right] .
\]

Next define
\[
\mathcal{K}:=\left\{x \in \mathbb{R}^{n}: \quad x^{t} \in \mathcal{K}_{t}, \quad t=1, \ldots, k\right\}
\]
where \(\mathcal{K}_{t}\) must have one of the following forms:
- \(\mathbb{R}\) set:
\[
\mathcal{K}_{t}=\mathbb{R}^{n^{t}}
\]
- Zero cone:
\[
\begin{equation*}
\mathcal{K}_{t}=\{0\} \subseteq \mathbb{R}^{n^{t}} \tag{16.3}
\end{equation*}
\]
- Quadratic cone:
\[
\begin{equation*}
\mathcal{K}_{t}=\left\{x \in \mathbb{R}^{n^{t}}: x_{1} \geq \sqrt{\sum_{j=2}^{n^{t}} x_{j}^{2}}\right\} \tag{16.4}
\end{equation*}
\]
- Rotated quadratic cone:
\[
\begin{equation*}
\mathcal{K}_{t}=\left\{x \in \mathbb{R}^{n^{t}}: 2 x_{1} x_{2} \geq \sum_{j=3}^{n^{t}} x_{j}^{2}, \quad x_{1}, x_{2} \geq 0\right\} \tag{16.5}
\end{equation*}
\]
- Primal exponential cone:
\[
\begin{equation*}
\mathcal{K}_{t}=\left\{x \in \mathbb{R}^{3}: x_{1} \geq x_{2} \exp \left(x_{3} / x_{2}\right), \quad x_{1}, x_{2} \geq 0\right\} . \tag{16.6}
\end{equation*}
\]
- Primal power cone (with parameter \(0<\alpha<1\) ):
\[
\begin{equation*}
\mathcal{K}_{t}=\left\{x \in \mathbb{R}^{n^{t}}: x_{1}^{\alpha} x_{2}^{1-\alpha} \geq \sqrt{\sum_{j=3}^{n^{t}} x_{j}^{2}}, \quad x_{1}, x_{2} \geq 0\right\} \tag{16.7}
\end{equation*}
\]
- Dual exponential cone:
\[
\begin{equation*}
\mathcal{K}_{t}=\left\{x \in \mathbb{R}^{3}: x_{1} \geq-x_{3} e^{-1} \exp \left(x_{2} / x_{3}\right), \quad x_{3} \leq 0, x_{1} \geq 0\right\} \tag{16.8}
\end{equation*}
\]
- Dual power cone (with parameter \(0<\alpha<1\) ):
\[
\begin{equation*}
\mathcal{K}_{t}=\left\{x \in \mathbb{R}^{n^{t}}:\left(\frac{x_{1}}{\alpha}\right)^{\alpha}\left(\frac{x_{2}}{1-\alpha}\right)^{1-\alpha} \geq \sqrt{\sum_{j=3}^{n^{t}} x_{j}^{2}}, \quad x_{1}, x_{2} \geq 0\right\} \tag{16.9}
\end{equation*}
\]

In general, membership in the \(\mathbb{R}\) set is not specified. If a variable is not a member of any other cone then it is assumed to be a member of the \(\mathbb{R}\) cone.

Next, let us study an example. Assume that the power cone
\[
x_{4}^{1 / 3} x_{5}^{2 / 3} \geq\left|x_{8}\right|
\]
and the rotated quadratic cone
\[
2 x_{3} x_{7} \geq x_{1}^{2}+x_{0}^{2}, \quad x_{3}, x_{7} \geq 0
\]
should be specified in the MPS file. One CSECTION is required for each cone and they are specified as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline * 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \multicolumn{6}{|l|}{*23456789012345678901234567890123456789012345678901234567890} \\
\hline CSECTION & konea & \(3 \mathrm{e}-1\) & PPOW & & \\
\hline x4 & & & & & \\
\hline x5 & & & & & \\
\hline x8 & & & & & \\
\hline CSECTION & koneb & 0.0 & RQUAD & & \\
\hline x7 & & & & & \\
\hline x3 & & & & & \\
\hline x 1 & & & & & \\
\hline x0 & & & & & \\
\hline
\end{tabular}

In general, a CSECTION header has the format

\section*{CSECTION [kname1] [value1] [ktype]}
where the requirements for each field are as follows:
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & Required & Description \\
\hline [kname1] & 15 & 8 & Yes & Name of the cone \\
\hline [value1] & 25 & 12 & No & Cone parameter \\
\hline [ktype \(]\) & 40 & & Yes & Type of the cone. \\
\hline
\end{tabular}

The possible cone type keys are:
\begin{tabular}{|l|l|l|l|}
\hline [ktype] & Members & [value1] & Interpretation. \\
\hline ZERO & \(\geq 0\) & unused & Zero cone (16.3). \\
\hline QUAD & \(\geq 1\) & unused & Quadratic cone (16.4). \\
\hline RQUAD & \(\geq 2\) & unused & Rotated quadratic cone (16.5). \\
\hline PEXP & 3 & unused & Primal exponential cone (16.6). \\
\hline PPOW & \(\geq 2\) & \(\alpha\) & Primal power cone (16.7). \\
\hline DEXP & 3 & unused & Dual exponential cone (16.8). \\
\hline DPOW & \(\geq 2\) & \(\alpha\) & Dual power cone (16.9). \\
\hline
\end{tabular}

A record in the CSECTION has the format

\section*{[vname1]}
where the requirements for each field are
\begin{tabular}{|l|l|l|l|l|}
\hline Field & Starting Position & Max Width & required & Description \\
\hline [vname1] & 5 & 8 & Yes & A valid variable name \\
\hline
\end{tabular}

A variable must occur in at most one CSECTION.

ENDATA
This keyword denotes the end of the MPS file.

\subsection*{16.2.2 Integer Variables}

Using special bound keys in the BOUNDS section it is possible to specify that some or all of the variables should be integer-constrained i.e. be members of \(\mathcal{J}\). However, an alternative method is available. This method is available only for backward compatibility and we recommend that it is not used. This method requires that markers are placed in the COLUMNS section as in the example:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{COLUMNS} \\
\hline x 1 & obj & -10.0 & c1 & 0.7 \\
\hline x 1 & c2 & 0.5 & c3 & 1.0 \\
\hline x 1 & c4 & 0.1 & & \\
\hline \multicolumn{5}{|l|}{* Start of integer-constrained variables.} \\
\hline \multicolumn{5}{|l|}{MARK000 'MARKER' 'INTORG'} \\
\hline x 2 & obj & -9.0 & c1 & 1.0 \\
\hline x2 & c2 & 0.8333333333 & c3 & 0.66666667 \\
\hline x2 & c4 & 0.25 & & \\
\hline x3 & obj & 1.0 & c6 & 2.0 \\
\hline MARK001 & 'MAR & & 'IN & \\
\hline \multicolumn{5}{|l|}{* End of integer-constrained var} \\
\hline
\end{tabular}

Please note that special marker lines are used to indicate the start and the end of the integer variables. Furthermore be aware of the following
- All variables between the markers are assigned a default lower bound of 0 and a default upper bound of 1 . This may not be what is intended. If it is not intended, the correct bounds should be defined in the BOUNDS section of the MPS formatted file.
- MOSEK ignores field 1, i.e. MARK0001 and MARK001, however, other optimization systems require them.
- Field 2, i.e. MARKER, must be specified including the single quotes. This implies that no row can be assigned the name MARKER.
- Field 3 is ignored and should be left blank.
- Field 4, i.e. INTORG and INTEND, must be specified.
- It is possible to specify several such integer marker sections within the COLUMNS section.

\subsection*{16.2.3 General Limitations}
- An MPS file should be an ASCII file.

\subsection*{16.2.4 Interpretation of the MPS Format}

Several issues related to the MPS format are not well-defined by the industry standard. However, MOSEK uses the following interpretation:
- If a matrix element in the COLUMNS section is specified multiple times, then the multiple entries are added together.
- If a matrix element in a QSECTION section is specified multiple times, then the multiple entries are added together.

\subsection*{16.2.5 The Free MPS Format}

MOSEK supports a free format variation of the MPS format. The free format is similar to the MPS file format but less restrictive, e.g. it allows longer names. However, a name must not contain any blanks.

Moreover, by default a line in the MPS file must not contain more than 1024 characters. By modifying the parameter Iparam: :READ_MPS_WIDTH an arbitrary large line width will be accepted.

The free MPS format is default. To change to the strict and other formats use the parameter Iparam: : READ_MPS_FORMAT.

Warning: This file format is to a large extent deprecated. While it can still be used for linear and quadratic problems, for conic problems the Sec. 16.5 is recommended.

\subsection*{16.3 The OPF Format}

The Optimization Problem Format ( \(O P F\) ) is an alternative to LP and MPS files for specifying optimization problems. It is row-oriented, inspired by the CPLEX LP format.

Apart from containing objective, constraints, bounds etc. it may contain complete or partial solutions, comments and extra information relevant for solving the problem. It is designed to be easily read and modified by hand and to be forward compatible with possible future extensions.

\section*{Intended use}

The OPF file format is meant to replace several other files:
- The LP file format: Any problem that can be written as an LP file can be written as an OPF file too; furthermore it naturally accommodates ranged constraints and variables as well as arbitrary characters in names, fixed expressions in the objective, empty constraints, and conic constraints.
- Parameter files: It is possible to specify integer, double and string parameters along with the problem (or in a separate OPF file).
- Solution files: It is possible to store a full or a partial solution in an OPF file and later reload it.

\subsection*{16.3.1 The File Format}

The format uses tags to structure data. A simple example with the basic sections may look like this:
```

[comment]
This is a comment. You may write almost anything here...
[/comment]

This is a single-line comment.

[objective min 'myobj']
x + 3 y + x^2 + 3 y^2 + z + 1
[/objective]
[constraints]
[con 'con01'] 4 <= x + y [/con]
[/constraints]
[bounds]
[b] -10 <= x,y <= 10 [/b]
[cone quad] x,y,z [/cone]
[/bounds]

```

A scope is opened by a tag of the form [tag] and closed by a tag of the form [/tag]. An opening tag may accept a list of unnamed and named arguments, for examples:
```

[tag value] tag with one unnamed argument [/tag]
[tag arg=value] tag with one named argument [/tag]

```

Unnamed arguments are identified by their order, while named arguments may appear in any order, but never before an unnamed argument. The value can be a quoted, single-quoted or double-quoted text string, i.e.
```

[tag 'value'] single-quoted value [/tag]
[tag arg='value'] single-quoted value [/tag]
[tag "value"] double-quoted value [/tag]
[tag arg="value"] double-quoted value [/tag]

```

\subsection*{16.3.2 Sections}

The recognized tags are

\section*{[comment]}

A comment section. This can contain almost any text: Between single quotes (') or double quotes (") any text may appear. Outside quotes the markup characters ([ and ]) must be prefixed by backslashes. Both single and double quotes may appear alone or inside a pair of quotes if it is prefixed by a backslash.
```

[objective]

```

The objective function: This accepts one or two parameters, where the first one (in the above example \(\min\) ) is either min or max (regardless of case) and defines the objective sense, and the second one (above myobj), if present, is the objective name. The section may contain linear and quadratic expressions.

If several objectives are specified, all but the last are ignored.

\section*{[constraints]}

This does not directly contain any data, but may contain subsections con defining a linear constraint.

\section*{[con]}

Defines a single constraint; if an argument is present ([con NAME]) this is used as the name of the constraint, otherwise it is given a null-name. The section contains a constraint definition written as linear and quadratic expressions with a lower bound, an upper bound, with both or with an equality. Examples:
```

[constraints]
[con 'con1'] 0 <= x + y [/con]
[con 'con2'] 0 >= x + y [/con]
[con 'con3'] 0 <= x + y <= 10 [/con]
[con 'con4'] x + y = 10 [/con]
[/constraints]

```

Constraint names are unique. If a constraint is specified which has the same name as a previously defined constraint, the new constraint replaces the existing one.
[bounds]
This does not directly contain any data, but may contain subsections b (linear bounds on variables) and cone (cones).

\section*{[b]}

Bound definition on one or several variables separated by comma (,). An upper or lower bound on a variable replaces any earlier defined bound on that variable. If only one bound (upper or lower) is given only this bound is replaced. This means that upper and lower bounds can be specified separately. So the OPF bound definition:
```

[b] x,y >= -10 [/b]
[b] x,y <= 10 [/b]

```
results in the bound \(-10 \leq x, y \leq 10\).

\section*{[cone]}

Specifies a cone. A cone is defined as a sequence of variables which belong to a single unique cone. The supported cone types are:
- quad: a quadratic cone of \(n\) variables \(x_{1}, \ldots, x_{n}\) defines a constraint of the form
\[
x_{1}^{2} \geq \sum_{i=2}^{n} x_{i}^{2}, \quad x_{1} \geq 0
\]
- rquad: a rotated quadratic cone of \(n\) variables \(x_{1}, \ldots, x_{n}\) defines a constraint of the form
\[
2 x_{1} x_{2} \geq \sum_{i=3}^{n} x_{i}^{2}, \quad x_{1}, x_{2} \geq 0
\]
- pexp: primal exponential cone of 3 variables \(x_{1}, x_{2}, x_{3}\) defines a constraint of the form
\[
x_{1} \geq x_{2} \exp \left(x_{3} / x_{2}\right), \quad x_{1}, x_{2} \geq 0
\]
- ppow with parameter \(0<\alpha<1\) : primal power cone of \(n\) variables \(x_{1}, \ldots, x_{n}\) defines a constraint of the form
\[
x_{1}^{\alpha} x_{2}^{1-\alpha} \geq \sqrt{\sum_{j=3}^{n} x_{j}^{2}}, \quad x_{1}, x_{2} \geq 0
\]
- dexp: dual exponential cone of 3 variables \(x_{1}, x_{2}, x_{3}\) defines a constraint of the form
\[
x_{1} \geq-x_{3} e^{-1} \exp \left(x_{2} / x_{3}\right), \quad x_{3} \leq 0, x_{1} \geq 0
\]
- dpow with parameter \(0<\alpha<1\) : dual power cone of \(n\) variables \(x_{1}, \ldots, x_{n}\) defines a constraint of the form
\[
\left(\frac{x_{1}}{\alpha}\right)^{\alpha}\left(\frac{x_{2}}{1-\alpha}\right)^{1-\alpha} \geq \sqrt{\sum_{j=3}^{n^{t}} x_{j}^{2}}, \quad x_{1}, x_{2} \geq 0
\]
- zero: zero cone of \(n\) variables \(x_{1}, \ldots, x_{n}\) defines a constraint of the form
\[
x_{1}=\cdots=x_{n}=0
\]

A [bounds]-section example:
```

[bounds]
[b] 0 <= x,y <= 10 [/b] \# ranged bound
[b] 10 >= x,y >= 0 [/b] \# ranged bound
[b] 0 <= x,y <= inf [/b] \# using inf
[b] x,y free [/b] \# free variables

Let (x,y,z,w) belong to the cone K

[cone rquad] x,y,z,w [/cone] \# rotated quadratic cone
[cone ppow '3e-01' 'a'] x1, x2, x3 [/cone] \# power cone with alpha=1/3 and name 'a'
[/bounds]

```

By default all variables are free.
```

[variables]

```

This defines an ordering of variables as they should appear in the problem. This is simply a spaceseparated list of variable names.

\section*{[integer]}

This contains a space-separated list of variables and defines the constraint that the listed variables must be integer-valued.

\section*{[hints]}

This may contain only non-essential data; for example estimates of the number of variables, constraints and non-zeros. Placed before all other sections containing data this may reduce the time spent reading the file.

In the hints section, any subsection which is not recognized by MOSEK is simply ignored. In this section a hint is defined as follows:
```

[hint ITEM] value [/hint]

```

The hints recognized by MOSEK are:
- numvar (number of variables),
- numcon (number of linear/quadratic constraints),
- numanz (number of linear non-zeros in constraints),
- numqnz (number of quadratic non-zeros in constraints).

\section*{[solutions]}

This section can contain a set of full or partial solutions to a problem. Each solution must be specified using a [solution]-section, i.e.
```

[solutions]
[solution]...[/solution] \#solution 1
[solution]...[/solution] \#solution 2
\#other solutions....
[solution]...[/solution] \#solution n
[/solutions]

```

The syntax of a [solution]-section is the following:
```

[solution SOLTYPE status=STATUS]...[/solution]

```
where SOLTYPE is one of the strings
- interior, a non-basic solution,
- basic, a basic solution,
- integer, an integer solution, and STATUS is one of the strings
- UNKNOWN,
- OPTIMAL,
- INTEGER_OPTIMAL,
- PRIM_FEAS,
- DUAL_FEAS,
- PRIM_AND_DUAL_FEAS,
- NEAR_OPTIMAL,
- NEAR_PRIM_FEAS,
- NEAR_DUAL_FEAS,
- NEAR_PRIM_AND_DUAL_FEAS,
- PRIM_INFEAS_CER,
- DUAL_INFEAS_CER,
- NEAR_PRIM_INFEAS_CER,
- NEAR_DUAL_INFEAS_CER,
- NEAR_INTEGER_OPTIMAL.

Most of these values are irrelevant for input solutions; when constructing a solution for simplex hot-start or an initial solution for a mixed integer problem the safe setting is UNKNOWN.

A [solution]-section contains [con] and [var] sections. Each [con] and [var] section defines solution information for a single variable or constraint, specified as list of KEYWORD/value pairs, in any order, written as

\section*{KEYWORD=value}

Allowed keywords are as follows:
- sk. The status of the item, where the value is one of the following strings:
- LOW, the item is on its lower bound.
- UPR, the item is on its upper bound.
- FIX, it is a fixed item.
- BAS, the item is in the basis.
- SUPBAS, the item is super basic.
- UNK, the status is unknown.
- INF, the item is outside its bounds (infeasible).
- lvl Defines the level of the item.
- sl Defines the level of the dual variable associated with its lower bound.
- su Defines the level of the dual variable associated with its upper bound.
- sn Defines the level of the variable associated with its cone.
- y Defines the level of the corresponding dual variable (for constraints only).

A [var] section should always contain the items sk, lvl, sl and su. Items sl and su are not required for integer solutions.

A [con] section should always contain sk, lvl, sl, su and y.
An example of a solution section
```

[solution basic status=UNKNOWN]
[var x0] sk=LOW lvl=5.0 [/var]
[var x1] sk=UPR lvl=10.0 [/var]
[var x2] sk=SUPBAS lvl=2.0 sl=1.5 su=0.0 [/var]
[con c0] sk=LOW lvl=3.0 y=0.0 [/con]
[con c0] sk=UPR lvl=0.0 y=5.0 [/con]
[/solution]

```
- [vendor] This contains solver/vendor specific data. It accepts one argument, which is a vendor ID - for MOSEK the ID is simply mosek - and the section contains the subsection parameters defining solver parameters. When reading a vendor section, any unknown vendor can be safely ignored. This is described later.

Comments using the \# may appear anywhere in the file. Between the \# and the following line-break any text may be written, including markup characters.

\subsection*{16.3.3 Numbers}

Numbers, when used for parameter values or coefficients, are written in the usual way by the printf function. That is, they may be prefixed by a sign (+ or -) and may contain an integer part, decimal part and an exponent. The decimal point is always . (a dot). Some examples are
```

1
1.0
.0
1.
1e10
1e+10
1e-10

```

Some invalid examples are
```

e10 \# invalid, must contain either integer or decimal part
. \# invalid
.e10 \# invalid

```

More formally, the following standard regular expression describes numbers as used:
```

[+|-]?([0-9]+[.][0-9]*|[.][0-9]+)([eE][+|-]?[0-9]+)?

```

\subsection*{16.3.4 Names}

Variable names, constraint names and objective name may contain arbitrary characters, which in some cases must be enclosed by quotes (single or double) that in turn must be preceded by a backslash. Unquoted names must begin with a letter ( \(a-z\) or \(A-Z\) ) and contain only the following characters: the letters \(\mathrm{a}-\mathrm{z}\) and \(\mathrm{A}-\mathrm{Z}\), the digits \(0-9\), braces ( \(\{\) and \}) and underscore (_).

Some examples of legal names:
```

an_unquoted_name
another_name{123}
'single quoted name'
"double quoted name"
"name with
"quote
" in it"
"name with []s in it"

```

\subsection*{16.3.5 Parameters Section}

In the vendor section solver parameters are defined inside the parameters subsection. Each parameter is written as
```

[p PARAMETER_NAME] value [/p]

```
where PARAMETER_NAME is replaced by a MOSEK parameter name, usually of the form MSK_IPAR_. .., MSK_DPAR_... or MSK_SPAR_..., and the value is replaced by the value of that parameter; both integer values and named values may be used. Some simple examples are
```

[vendor mosek]
[parameters]
[p MSK_IPAR_OPF_MAX_TERMS_PER_LINE] 10 [/p]
[p MSK_IPAR_OPF_WRITE_PARAMETERS] MSK_ON [/p]
[p MSK_DPAR_DATA_TOL_BOUND_INF] 1.0e18 [/p]
[/parameters]
[/vendor]

```

\subsection*{16.3.6 Writing OPF Files from MOSEK}

To write an OPF file then make sure the file extension is .opf.
Then modify the following parameters to define what the file should contain:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Iparam: \\
OPF_WRITE_SOL_BAS
\end{tabular} & Include basic solution, if defined. \\
\hline \begin{tabular}{l} 
Iparam: \\
OPF_WRITE_SOL_ITG
\end{tabular} & Include integer solution, if defined. \\
\hline \begin{tabular}{l} 
Iparam: \\
OPF_WRITE_SOL_ITR
\end{tabular} & Include interior solution, if defined. \\
\hline \begin{tabular}{l} 
Iparam: \\
OPF_WRITE_SOLUTIONS
\end{tabular} & \begin{tabular}{l} 
Include solutions if they are defined. If this is off, no solutions are \\
included.
\end{tabular} \\
\hline Iparam: :OPF_WRITE_HEADER & Include a small header with comments. \\
\hline \begin{tabular}{l} 
Iparam: : \\
OPF_WRITE_PROBLEM
\end{tabular} & Include the problem itself - objective, constraints and bounds. \\
\hline \begin{tabular}{l} 
Iparam: \\
OPF-WRITE_PARAMETERS
\end{tabular} & Include all parameter settings. \\
\hline Iparam::OPF_WRITE_HINTS & Include hints about the size of the problem. \\
\hline
\end{tabular}

\subsection*{16.3.7 Examples}

This section contains a set of small examples written in OPF and describing how to formulate linear, quadratic and conic problems.

Linear Example lo1.opf
Consider the example:
\[
\begin{array}{lllll}
\operatorname{maximize} & 3 x_{0}+1 x_{1}+5 x_{2}+1 x_{3} \\
\text { subject to } & 3 x_{0}+1 x_{1}+2 x_{2} & & \\
& 2 x_{0}+1 x_{1}+3 x_{2} & +1 x_{3} \geq 15 \\
& & 2 x_{1} & +3 x_{3} \leq 25
\end{array}
\]
having the bounds
\(0 \leq x_{0} \leq \infty\)
\(0 \leq x_{1} \leq 10\),
\(0 \leq x_{2} \leq \infty\),
\(0 \leq x_{3} \leq \infty\)

In the OPF format the example is displayed as shown in Listing 16.1.

Listing 16.1: Example of an OPF file for a linear problem.
```

[comment]
The lo1 example in OPF format
[/comment]
[hints]
[hint NUMVAR] 4 [/hint]
[hint NUMCON] 3 [/hint]
[hint NUMANZ] 9 [/hint]
[/hints]
[variables disallow_new_variables]
x1 x2 x3 x4
[/variables]
[objective maximize 'obj']
3 x1 + x2 + 5 x3 + x4
[/objective]
[constraints]
[con 'c1'] 3 x1 + x2 + 2 x3 = 30 [/con]
[con 'c2'] 2 x1 + x2 + 3 x3 + x4 >= 15 [/con]
[con 'c3'] 2 x2 + 3 x4 <= 25 [/con]
[/constraints]
[bounds]
[b] 0 <= * [/b]
[b] 0 <= x2 <= 10 [/b]
[/bounds]

```

Quadratic Example qo1.opf
An example of a quadratic optimization problem is
\[
\begin{aligned}
& \operatorname{minimize} \\
& \text { subject to } 1 \leq \begin{array}{l}
x_{1}^{2}+0.1 x_{2}^{2}+x_{3}^{2}-x_{1} x_{3}-x_{2} \\
x_{1}+x_{2}+x_{3} \\
x \geq 0
\end{array}
\end{aligned}
\]

This can be formulated in opf as shown below.
Listing 16.2: Example of an OPF file for a quadratic problem.
```

[comment]
The qo1 example in OPF format
[/comment]
[hints]
[hint NUMVAR] 3 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[hint NUMQNZ] 4 [/hint]
[/hints]
[variables disallow_new_variables]
x1 x2 x3
[/variables]

```
```

[objective minimize 'obj']
\# The quadratic terms are often written with a factor of 1/2 as here,
\# but this is not required.
- x2 + 0.5 (2.0 x1 ~ 2 - 2.0 x3 * x1 + 0.2 x2 ~ 2 + 2.0 x3 ~ 2)
[/objective]
[constraints]
[con 'c1'] 1.0 <= x1 + x2 + x3 [/con]
[/constraints]
[bounds]
[b] 0 <= * [/b]
[/bounds]

```

\section*{Conic Quadratic Example cqo1.opf}

Consider the example:
\[
\begin{array}{lcl}
\operatorname{minimize} & x_{3}+x_{4}+x_{5} \\
\text { subject to } & x_{0}+x_{1}+2 x_{2} & =1, \\
& x_{0}, x_{1}, x_{2} & \geq 0, \\
& x_{3} \geq \sqrt{x_{0}^{2}+x_{1}^{2}} \\
& 2 x_{4} x_{5} \geq x_{2}^{2} .
\end{array}
\]

Please note that the type of the cones is defined by the parameter to [cone ...]; the content of the cone-section is the names of variables that belong to the cone. The resulting OPF file is in Listing 16.3.

Listing 16.3: Example of an OPF file for a conic quadratic problem.
```

[comment]
The cqo1 example in OPF format.
[/comment]
[hints]
[hint NUMVAR] 6 [/hint]
[hint NUMCON] 1 [/hint]
[hint NUMANZ] 3 [/hint]
[/hints]
[variables disallow_new_variables]
x1 x2 x3 x4 x5 x6
[/variables]
[objective minimize 'obj']
x4 + x5 + x6
[/objective]
[constraints]
[con 'c1'] x1 + x2 + 2e+00 x3 = 1e+00 [/con]
[/constraints]
[bounds]
\# We let all variables default to the positive orthant
[b] 0 <= * [/b]
\# ...and change those that differ from the default

```
[b] \(\mathrm{x} 4, \mathrm{x} 5, \mathrm{x} 6\) free [/b]
\# Define quadratic cone: x 4 >= sqrt( \(\mathrm{x} 1^{\wedge} 2+\mathrm{x} 2^{\wedge} 2\) )
[cone quad 'k1'] \(x 4, \mathrm{x} 1\), x 2 [/cone]
\# Define rotated quadratic cone: \(2 \mathrm{x} 5 \mathrm{x} 6>=\mathrm{x} 3^{\wedge} 2\)
[cone rquad 'k2'] x5, x6, x3 [/cone]
[/bounds]

Mixed Integer Example milo1.opf
Consider the mixed integer problem:
\[
\begin{array}{lcl}
\operatorname{maximize} & x_{0}+0.64 x_{1} & \\
\text { subject to } & 50 x_{0}+31 x_{1} \leq 250, \\
& 3 x_{0}-2 x_{1} & \geq-4, \\
& x_{0}, x_{1} \geq 0 & \text { and integer }
\end{array}
\]

This can be implemented in OPF with the file in Listing 16.4.
Listing 16.4: Example of an OPF file for a mixed-integer linear problem.
```

[comment]
The milo1 example in OPF format
[/comment]
[hints]
[hint NUMVAR] 2 [/hint]
[hint NUMCON] 2 [/hint]
[hint NUMANZ] 4 [/hint]
[/hints]
[variables disallow_new_variables]
x1 x2
[/variables]
[objective maximize 'obj']
x1 + 6.4e-1 x2
[/objective]
[constraints]
[con 'c1'] 5e+1 x1 + 3.1e+1 x2 <= 2.5e+2 [/con]
[con 'c2'] -4 <= 3 x1 - 2 x2 [/con]
[/constraints]
[bounds]
[b] 0 <= * [/b]
[/bounds]
[integer]
x1 x2
[/integer]

```

\subsection*{16.4 The CBF Format}

This document constitutes the technical reference manual of the Conic Benchmark Format with file extension: .cbf or . CBF. It unifies linear, second-order cone (also known as conic quadratic), exponential cone, power cone and semidefinite optimization with mixed-integer variables. The format has been designed with benchmark libraries in mind, and therefore focuses on compact and easily parsable representations. The CBF format separates problem structure from the problem data.

\subsection*{16.4.1 How Instances Are Specified}

This section defines the spectrum of conic optimization problems that can be formulated in terms of the keywords of the CBF format.

In the CBF format, conic optimization problems are considered in the following form:
\[
\begin{array}{lll}
\min / \max & g^{o b j} & \\
& g_{i} \in \mathcal{K}_{i}, \quad i \in \mathcal{I}, \\
\text { s.t. } & G_{i} \in \mathcal{K}_{i}, \quad i \in \mathcal{I}^{P S D},  \tag{16.10}\\
& x_{j} \in \mathcal{K}_{j}, \quad j \in \mathcal{J}, \\
& X_{j} \in \mathcal{K}_{j}, \quad j \in \mathcal{J}^{P S D} .
\end{array}
\]
- Variables are either scalar variables, \(x_{j}\) for \(j \in \mathcal{J}\), or matrix variables, \(\bar{X}_{j}\) for \(j \in \mathcal{J}^{P S D}\). Scalar variables can also be declared as integer.
- Constraints are affine expressions of the variables, either scalar-valued \(g_{i}\) for \(i \in \mathcal{I}\), or matrixvalued \(G_{i}\) for \(i \in \mathcal{I}^{P S D}\)
\[
\begin{array}{r}
g_{i}=\sum_{j \in \mathcal{J}^{P S D}}\left\langle F_{i j}, X_{j}\right\rangle+\sum_{j \in \mathcal{J}} a_{i j} x_{j}+b_{i} \\
G_{i}=\sum_{j \in \mathcal{J}} x_{j} H_{i j}+D_{i}
\end{array}
\]
- The objective function is a scalar-valued affine expression of the variables, either to be minimized or maximized. We refer to this expression as \(g^{o b j}\)
\[
g^{o b j}=\sum_{j \in \mathcal{J}^{P S D}}\left\langle F_{j}^{o b j}, X_{j}\right\rangle+\sum_{j \in \mathcal{J}} a_{j}^{o b j} x_{j}+b^{o b j}
\]

As of version 4 of the format, CBF files can represent the following non-parametric cones \(\mathcal{K}\) :
- Free domain - A cone in the linear family defined by
\[
\left\{x \in \mathbb{R}^{n}\right\}, \text { for } n \geq 1
\]
- Positive orthant - A cone in the linear family defined by
\[
\left\{x \in \mathbb{R}^{n} \mid x_{j} \geq 0 \text { for } j=1, \ldots, n\right\}, \text { for } n \geq 1
\]
- Negative orthant - A cone in the linear family defined by
\[
\left\{x \in \mathbb{R}^{n} \mid x_{j} \leq 0 \text { for } j=1, \ldots, n\right\}, \text { for } n \geq 1
\]
- Fixpoint zero - A cone in the linear family defined by
\[
\left\{x \in \mathbb{R}^{n} \mid x_{j}=0 \text { for } j=1, \ldots, n\right\}, \text { for } n \geq 1
\]
- Quadratic cone - A cone in the second-order cone family defined by
\[
\left\{\binom{p}{x} \in \mathbb{R} \times \mathbb{R}^{n-1}, p^{2} \geq x^{T} x, p \geq 0\right\} \text {, for } n \geq 2
\]
- Rotated quadratic cone - A cone in the second-order cone family defined by
\[
\left\{\left(\begin{array}{c}
p \\
q \\
x
\end{array}\right) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n-2}, 2 p q \geq x^{T} x, p \geq 0, q \geq 0\right\} \text {, for } n \geq 3
\]
- Exponential cone - A cone in the exponential cone family defined by
\[
\operatorname{cl}\left(S_{1}\right)=S_{1} \cup S_{2}
\]
where,
\[
S_{1}=\left\{\left(\begin{array}{c}
t \\
s \\
r
\end{array}\right) \in \mathbb{R}^{3}, t \geq s e^{\frac{r}{s}}, s \geq 0\right\}
\]
and,
\[
S_{2}=\left\{\left(\begin{array}{c}
t \\
s \\
r
\end{array}\right) \in \mathbb{R}^{3}, t \geq 0, r \leq 0, s=0\right\}
\]
- Dual Exponential cone - A cone in the exponential cone family defined by
\[
\operatorname{cl}\left(S_{1}\right)=S_{1} \cup S_{2}
\]
where,
\[
S_{1}=\left\{\left(\begin{array}{c}
t \\
s \\
r
\end{array}\right) \in \mathbb{R}^{3}, \text { et } \geq(-r) e^{\frac{s}{r}},-r \geq 0\right\}
\]
and,
\[
S_{2}=\left\{\left(\begin{array}{c}
t \\
s \\
r
\end{array}\right) \in \mathbb{R}^{3}, \text { et } \geq 0, s \geq 0, r=0\right\}
\]
- Radial geometric mean cone - A cone in the power cone family defined by
\[
\left\{\binom{p}{x} \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{1},\left(\prod_{j=1}^{k} p_{j}\right)^{\frac{1}{k}} \geq|x|\right\}, \text { for } n=k+1 \geq 2
\]
- Dual radial geometric mean cone - A cone in the power cone family defined by
\[
\left\{\binom{p}{x} \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{1},\left(\prod_{j=1}^{k} k p_{j}\right)^{\frac{1}{k}} \geq|x|\right\}, \text { for } n=k+1 \geq 2
\]
and, the following parametric cones:
- Radial power cone - A cone in the power cone family defined by
\[
\left\{\binom{p}{x} \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k},\left(\prod_{j=1}^{k} p_{j}^{\alpha_{j}}\right)^{\frac{1}{\sigma}} \geq\|x\|_{2}\right\}, \text { for } n \geq k \geq 1
\]
where, \(\sigma=\sum_{j=1}^{k} \alpha_{j}\) and \(\alpha=\mathbb{R}_{++}^{k}\).
- Dual radial power cone - A cone in the power cone family defined by
\[
\left\{\binom{p}{x} \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k},\left(\prod_{j=1}^{k}\left(\frac{\sigma p_{j}}{\alpha_{j}}\right)^{\alpha_{j}}\right)^{\frac{1}{\sigma}} \geq\|x\|_{2}\right\}, \text { for } n \geq k \geq 1
\]
where, \(\sigma=\sum_{j=1}^{k} \alpha_{j}\) and \(\alpha=\mathbb{R}_{++}^{k}\).

\subsection*{16.4.2 The Structure of CBF Files}

This section defines how information is written in the CBF format, without being specific about the type of information being communicated.

All information items belong to exactly one of the three groups of information. These information groups, and the order they must appear in, are:
1. File format.
2. Problem structure.
3. Problem data.

The first group, file format, provides information on how to interpret the file. The second group, problem structure, provides the information needed to deduce the type and size of the problem instance. Finally, the third group, problem data, specifies the coefficients and constants of the problem instance.

\section*{Information items}

The format is composed as a list of information items. The first line of an information item is the KEYWORD, revealing the type of information provided. The second line - of some keywords only - is the HEADER, typically revealing the size of information that follows. The remaining lines are the BODY holding the actual information to be specified.
```

KEYWORD
BODY
KEYWORD
HEADER
BODY

```

The KEYWORD determines how each line in the HEADER and BODY is structured. Moreover, the number of lines in the BODY follows either from the KEYWORD, the HEADER, or from another information item required to precede it.

\section*{File encoding and line width restrictions}

The format is based on the US-ASCII printable character set with two extensions as listed below. Note, by definition, that none of these extensions can be misinterpreted as printable US-ASCII characters:
- A line feed marks the end of a line, carriage returns are ignored.
- Comment-lines may contain unicode characters in UTF-8 encoding.

The line width is restricted to 512 bytes, with 3 bytes reserved for the potential carriage return, line feed and null-terminator.

Integers and floating point numbers must follow the ISO C decimal string representation in the standard C locale. The format does not impose restrictions on the magnitude of, or number of significant digits in numeric data, but the use of 64 -bit integers and 64 -bit IEEE 754 floating point numbers should be sufficient to avoid loss of precision.

\section*{Comment-line and whitespace rules}

The format allows single-line comments respecting the following rule:
- Lines having first byte equal to '\#' (US-ASCII 35) are comments, and should be ignored. Comments are only allowed between information items.

Given that a line is not a comment-line, whitespace characters should be handled according to the following rules:
- Leading and trailing whitespace characters should be ignored.
- The seperator between multiple pieces of information on one line, is either one or more whitespace characters.
- Lines containing only whitespace characters are empty, and should be ignored. Empty lines are only allowed between information items.

\subsection*{16.4.3 Problem Specification}

\section*{The problem structure}

The problem structure defines the objective sense, whether it is minimization and maximization. It also defines the index sets, \(\mathcal{J}, \mathcal{J}^{P S D}, \mathcal{I}\) and \(\mathcal{I}^{P S D}\), which are all numbered from zero, \(\{0,1, \ldots\}\), and empty until explicitly constructed.
- Scalar variables are constructed in vectors restricted to a conic domain, such as \(\left(x_{0}, x_{1}\right) \in \mathbb{R}_{+}^{2}\), \(\left(x_{2}, x_{3}, x_{4}\right) \in \mathcal{Q}^{3}\), etc. In terms of the Cartesian product, this generalizes to
\[
x \in \mathcal{K}_{1}^{n_{1}} \times \mathcal{K}_{2}^{n_{2}} \times \cdots \times \mathcal{K}_{k}^{n_{k}}
\]
which in the CBF format becomes:
```

VAR
n k
K1 n1
K2 n2
K

```
where \(\sum_{i} n_{i}=n\) is the total number of scalar variables. The list of supported cones is found in Table 16.3. Integrality of scalar variables can be specified afterwards.
- PSD variables are constructed one-by-one. That is, \(X_{j} \succeq \mathbf{0}^{n_{j} \times n_{j}}\) for \(j \in \mathcal{J}^{P S D}\), constructs a matrix-valued variable of size \(n_{j} \times n_{j}\) restricted to be symmetric positive semidefinite. In the CBF format, this list of constructions becomes:
```

PSDVAR
N
n1
n2
nN

```
where \(N\) is the total number of PSD variables.
- Scalar constraints are constructed in vectors restricted to a conic domain, such as \(\left(g_{0}, g_{1}\right) \in \mathbb{R}_{+}^{2}\), \(\left(g_{2}, g_{3}, g_{4}\right) \in \mathcal{Q}^{3}\), etc. In terms of the Cartesian product, this generalizes to
\[
g \in \mathcal{K}_{1}^{m_{1}} \times \mathcal{K}_{2}^{m_{2}} \times \cdots \times \mathcal{K}_{k}^{m_{k}}
\]
which in the CBF format becomes:
```

CON
m k
K1 m1
K2 m2
..
Kk mk

```
where \(\sum_{i} m_{i}=m\) is the total number of scalar constraints. The list of supported cones is found in Table 16.3.
- PSD constraints are constructed one-by-one. That is, \(G_{i} \succeq \mathbf{0}^{m_{i} \times m_{i}}\) for \(i \in \mathcal{I}^{P S D}\), constructs a matrix-valued affine expressions of size \(m_{i} \times m_{i}\) restricted to be symmetric positive semidefinite. In the CBF format, this list of constructions becomes
```

PSDCON
M
m1
m2
..
mM

```
where \(M\) is the total number of PSD constraints.
With the objective sense, variables (with integer indications) and constraints, the definitions of the many affine expressions follow in problem data.

\section*{Problem data}

The problem data defines the coefficients and constants of the affine expressions of the problem instance. These are considered zero until explicitly defined, implying that instances with no keywords from this information group are, in fact, valid. Duplicating or conflicting information is a failure to comply with the standard. Consequently, two coefficients written to the same position in a matrix (or to transposed positions in a symmetric matrix) is an error.

The affine expressions of the objective, \(g^{o b j}\), of the scalar constraints, \(g_{i}\), and of the PSD constraints, \(G_{i}\), are defined separately. The following notation uses the standard trace inner product for matrices, \(\langle X, Y\rangle=\sum_{i, j} X_{i j} Y_{i j}\).
- The affine expression of the objective is defined as
\[
g^{o b j}=\sum_{j \in \mathcal{J}^{P S D}}\left\langle F_{j}^{o b j}, X_{j}\right\rangle+\sum_{j \in \mathcal{J}} a_{j}^{o b j} x_{j}+b^{o b j}
\]
in terms of the symmetric matrices, \(F_{j}^{o b j}\), and scalars, \(a_{j}^{o b j}\) and \(b^{o b j}\).
- The affine expressions of the scalar constraints are defined, for \(i \in \mathcal{I}\), as
\[
g_{i}=\sum_{j \in \mathcal{J}^{P S D}}\left\langle F_{i j}, X_{j}\right\rangle+\sum_{j \in \mathcal{J}} a_{i j} x_{j}+b_{i},
\]
in terms of the symmetric matrices, \(F_{i j}\), and scalars, \(a_{i j}\) and \(b_{i}\).
- The affine expressions of the PSD constraints are defined, for \(i \in \mathcal{I}^{P S D}\), as
\[
G_{i}=\sum_{j \in \mathcal{J}} x_{j} H_{i j}+D_{i},
\]
in terms of the symmetric matrices, \(H_{i j}\) and \(D_{i}\).

\section*{List of cones}

The format uses an explicit syntax for symmetric positive semidefinite cones as shown above. For scalar variables and constraints, constructed in vectors, the supported conic domains and their sizes are given as follows.

Table 16.3: Cones available in the CBF format
\begin{tabular}{|l|l|l|l|}
\hline Name & CBF keyword & Cone family & Cone size \\
\hline Free domain & F & linear & \(n \geq 1\) \\
\hline Positive orthant & L+ & linear & \(n \geq 1\) \\
\hline Negative orthant & L- & linear & \(n \geq 1\) \\
\hline Fixpoint zero & L= & linear & \(n \geq 1\) \\
\hline Quadratic cone & Q & second-order & \(n \geq 1\) \\
\hline Rotated quadratic cone & QR & second-order & \(n \geq 2\) \\
\hline Exponential cone & EXP & exponential & \(n=3\) \\
\hline Dual exponential cone & EXP* & exponential & \(n=3\) \\
\hline Radial geometric mean cone & GMEANABS & power & \(n=k+1 \geq 2\) \\
\hline Dual radial geometric mean cone & GMEANABS* & power & \(n=k+1 \geq 2\) \\
\hline Radial power cone (parametric) & POW & power & \(n \geq k \geq 1\) \\
\hline Dual radial power cone (parametric) & POW* & power & \(n \geq k \geq 1\) \\
\hline
\end{tabular}

\subsection*{16.4.4 File Format Keywords}

VER
Description: The version of the Conic Benchmark Format used to write the file.
HEADER: None
BODY: One line formatted as:

\section*{INT}

This is the version number.
Must appear exactly once in a file, as the first keyword.

\section*{POWCONES}

Description: Define a lookup table for power cone domains.
HEADER: One line formatted as:

\section*{INT INT}

This is the number of cones to be specified and the combined length of their dense parameter vectors.
BODY: A list of chunks each specifying the dense parameter vector of a power cone. CHUNKHEADER: One line formatted as:

\section*{INT}

This is the parameter vector length.
CHUNKBODY: A list of lines formatted as:

\section*{REAL}

This is the parameter vector values. The number of lines should match the number stated in the chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW.

\section*{POW*CONES}

Description: Define a lookup table for dual power cone domains.
HEADER: One line formatted as:

\section*{INT INT}

This is the number of cones to be specified and the combined length of their dense parameter vectors.
BODY: A list of chunks each specifying the dense parameter vector of a dual power cone. CHUNKHEADER: One line formatted as:
```

INT

```

This is the parameter vector length.
CHUNKBODY: A list of lines formatted as:
```

REAL

```

This is the parameter vector values. The number of lines should match the number stated in the chunk header.

The cone specified at index k (with 0-based indexing) is registered under the CBF name @k:POW*.

\section*{OBJSENSE}

Description: Define the objective sense.
HEADER: None
BODY: One line formatted as:

\section*{STR}
having MIN indicates minimize, and MAX indicates maximize. Upper-case letters are required.
Must appear exactly once in a file.

\section*{PSDVAR}

Description: Construct the PSD variables.
HEADER: One line formatted as:

\section*{INT}

This is the number of PSD variables in the problem.
BODY: A list of lines formatted as:
```

INT

```

This indicates the number of rows (equal to the number of columns) in the matrix-valued PSD variable. The number of lines should match the number stated in the header.

\section*{VAR}

Description: Construct the scalar variables.
HEADER: One line formatted as:

\section*{INT INT}

This is the number of scalar variables, followed by the number of conic domains they are restricted to.

BODY: A list of lines formatted as:

\section*{STR INT}

This indicates the cone name (see Table 16.3), and the number of scalar variables restricted to this cone. These numbers should add up to the number of scalar variables stated first in the header. The number of lines should match the second number stated in the header.

\section*{INT}

Description: Declare integer requirements on a selected subset of scalar variables.
HEADER: one line formatted as:

\section*{INT}

This is the number of integer scalar variables in the problem.
BODY: a list of lines formatted as:

\section*{INT}

This indicates the scalar variable index \(j \in \mathcal{J}\). The number of lines should match the number stated in the header.

Can only be used after the keyword VAR.

\section*{PSDCON}

Description: Construct the PSD constraints.
HEADER: One line formatted as:

\section*{INT}

This is the number of PSD constraints in the problem.
BODY: A list of lines formatted as:

\section*{INT}

This indicates the number of rows (equal to the number of columns) in the matrix-valued affine expression of the PSD constraint. The number of lines should match the number stated in the header.

Can only be used after these keywords: PSDVAR, vAR.
CON
Description: Construct the scalar constraints.
HEADER: One line formatted as:

\section*{INT INT}

This is the number of scalar constraints, followed by the number of conic domains they restrict to.
BODY: A list of lines formatted as:

\section*{STR INT}

This indicates the cone name (see Table 16.3), and the number of affine expressions restricted to this cone. These numbers should add up to the number of scalar constraints stated first in the header. The number of lines should match the second number stated in the header.

Can only be used after these keywords: PSDVAR, VAR

\section*{OBJFCOORD}

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices \(F_{j}^{o b j}\), as used in the objective.

HEADER: One line formatted as:

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

\section*{INT INT INT REAL}

This indicates the PSD variable index \(j \in \mathcal{J}^{P S D}\), the row index, the column index and the coefficient value. The number of lines should match the number stated in the header.

\section*{OBJACOORD}

Description: Input sparse coordinates (pairs) to define the scalars, \(a_{j}^{o b j}\), as used in the objective. HEADER: One line formatted as:

\section*{INT}

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

\section*{INT REAL}

This indicates the scalar variable index \(j \in \mathcal{J}\) and the coefficient value. The number of lines should match the number stated in the header.

\section*{OBJBCOORD}

Description: Input the scalar, \(b^{o b j}\), as used in the objective.
HEADER: None.
BODY: One line formatted as:

\section*{REAL}

This indicates the coefficient value.

\section*{FCOORD}

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, \(F_{i j}\), as used in the scalar constraints.

HEADER: One line formatted as:

\section*{INT}

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

\section*{INT INT INT INT REAL}

This indicates the scalar constraint index \(i \in \mathcal{I}\), the PSD variable index \(j \in \mathcal{J}^{P S D}\), the row index, the column index and the coefficient value. The number of lines should match the number stated in the header.

\section*{ACOORD}

Description: Input sparse coordinates (triplets) to define the scalars, \(a_{i j}\), as used in the scalar constraints. HEADER: One line formatted as:
```

INT

```

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

\section*{INT INT REAL}

This indicates the scalar constraint index \(i \in \mathcal{I}\), the scalar variable index \(j \in \mathcal{J}\) and the coefficient value. The number of lines should match the number stated in the header.

\section*{BCOORD}

Description: Input sparse coordinates (pairs) to define the scalars, \(b_{i}\), as used in the scalar constraints. HEADER: One line formatted as:
```

INT

```

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

\section*{INT REAL}

This indicates the scalar constraint index \(i \in \mathcal{I}\) and the coefficient value. The number of lines should match the number stated in the header.

\section*{HCOORD}

Description: Input sparse coordinates (quintuplets) to define the symmetric matrices, \(H_{i j}\), as used in the PSD constraints.

HEADER: One line formatted as:
```

INT

```

This is the number of coordinates to be specified.
BODY: A list of lines formatted as

\section*{INT INT INT INT REAL}

This indicates the PSD constraint index \(i \in \mathcal{I}^{P S D}\), the scalar variable index \(j \in \mathcal{J}\), the row index, the column index and the coefficient value. The number of lines should match the number stated in the header.

\section*{DCOORD}

Description: Input sparse coordinates (quadruplets) to define the symmetric matrices, \(D_{i}\), as used in the PSD constraints.

HEADER: One line formatted as INT

This is the number of coordinates to be specified.
BODY: A list of lines formatted as:

\section*{INT INT INT REAL}

This indicates the PSD constraint index \(i \in \mathcal{I}^{P S D}\), the row index, the column index and the coefficient value. The number of lines should match the number stated in the header.

\subsection*{16.4.5 CBF Format Examples}

\section*{Minimal Working Example}

The conic optimization problem (16.11), has three variables in a quadratic cone - first one is integer and an affine expression in domain 0 (equality constraint).
\[
\begin{array}{ll}
\operatorname{minimize} & 5.1 x_{0} \\
\text { subject to } & 6.2 x_{1}+7.3 x_{2}-8.4 \in\{0\}  \tag{16.11}\\
& x \in \mathcal{Q}^{3}, x_{0} \in \mathbb{Z}
\end{array}
\]

Its formulation in the Conic Benchmark Format begins with the version of the CBF format used, to safeguard against later revisions.
```

VER

```
4

Next follows the problem structure, consisting of the objective sense, the number and domain of variables, the indices of integer variables, and the number and domain of scalar-valued affine expressions (i.e., the equality constraint).
```

OBJSENSE
MIN
VAR
3 1
Q 3
INT
1
0
CON
1 1
L= 1

```

Finally follows the problem data, consisting of the coefficients of the objective, the coefficients of the constraints, and the constant terms of the constraints. All data is specified on a sparse coordinate form.
```

OBJACOORD
1
0.1
ACOORD
2
0 1 6.2
0 2 7.3
BCOORD
1
0-8.4

```

This concludes the example.

\section*{Mixing Linear, Second-order and Semidefinite Cones}

The conic optimization problem (16.12), has a semidefinite cone, a quadratic cone over unordered subindices, and two equality constraints.
\[
\begin{align*}
\text { minimize } & \left\langle\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\text { subject to } & \left.\left.\left.\left\langle\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], X_{1}\right\rangle+x_{1}\right\rangle+x_{1}\right\rangle+x_{0}+x_{2}=0.5 \\
& & \\
& x_{1} \geq \sqrt{x_{0}^{2}+x_{2}^{2}} \\
& X_{1} \succeq \mathbf{0}
\end{array}\right.\right.  \tag{16.12}\\
& \\
&
\end{align*}
\]

The equality constraints are easily rewritten to the conic form, \(\left(g_{0}, g_{1}\right) \in\{0\}^{2}\), by moving constants such that the right-hand-side becomes zero. The quadratic cone does not fit under the VAR keyword in this variable permutation. Instead, it takes a scalar constraint \(\left(g_{2}, g_{3}, g_{4}\right)=\left(x_{1}, x_{0}, x_{2}\right) \in \mathcal{Q}^{3}\), with scalar variables constructed as \(\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{R}^{3}\). Its formulation in the CBF format is reported in the following list
```


File written using this version of the Conic Benchmark Format:

| Version 4.

VER
4

The sense of the objective is:

| Minimize.

OBJSENSE
MIN

One PSD variable of this size:

| Three times three.

PSDVAR
1
3

Three scalar variables in this one conic domain:

| Three are free.

VAR
3 1
F 3

Five scalar constraints with affine expressions in two conic domains:

| Two are fixed to zero.

| Three are in conic quadratic domain.

CON
5 2
L=2
Q 3

Five coordinates in F^{obj}_j coefficients:

| F~{obj}[0][0,0] = 2.0

| F^{obj}[0][1,0] = 1.0

| and more...

OBJFCOORD
5

```
(continues on next page)
```

0 0 0 2.0
0 1 0 1.0
0 1 1 2.0
0 2 1 1.0
0 2 2 2.0

One coordinate in a^{obj}_j coefficients:

| a^{obj}[1] = 1.0

OBJACOORD
1
1 1.0

Nine coordinates in F_ij coefficients:

| F[0,0][0,0] = 1.0

| F[0,0][1,1] = 1.0

| and more...

FCOORD
9
0 0 0 0 1.0
0 0 1 1 1.0
0 0 2 2 1.0
1 0 0 0 1.0
1 0 1 0 1.0
10201.0
1 0 1 1 1.0
10 2 1 1.0
10 2 2 1.0

Six coordinates in a_ij coefficients:

| a[0,1] = 1.0

| a[1,0] = 1.0

| and more...

ACOORD
6
0 11.0
101.0
1 2 1.0
2 1 1.0
3 0 1.0
4 1.0

Two coordinates in b_i coefficients:

| b[0] = -1.0

| b[1] = -0.5

BCOORD
2
0 -1.0
1-0.5

```

\section*{Mixing Semidefinite Variables and Linear Matrix Inequalities}

The standard forms in semidefinite optimization are usually based either on semidefinite variables or linear matrix inequalities. In the CBF format, both forms are supported and can even be mixed as shown.
\[
\begin{align*}
\operatorname{minimize} & \left\langle\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], X_{1}\right\rangle+x_{1}+x_{2}+1  \tag{16.13}\\
\text { subject to } & \left\langle\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], X_{1}\right\rangle-x_{1}-x_{2} \quad \geq 0.0 \\
& x_{1}\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right]+x_{2}\left[\begin{array}{ll}
3 & 1 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \geq \mathbf{0} \\
& X_{1} \succeq \mathbf{0} .
\end{align*}
\]

Its formulation in the CBF format is written in what follows
```


File written using this version of the Conic Benchmark Format:

| Version 4.

VER
4

The sense of the objective is:

| Minimize.

OBJSENSE
MIN

One PSD variable of this size:

| Two times two.

PSDVAR
1
2

Two scalar variables in this one conic domain:

| Two are free.

VAR
2 1
F 2

One PSD constraint of this size:

| Two times two.

PSDCON
1
2

One scalar constraint with an affine expression in this one conic domain:

| One is greater than or equal to zero.

CON
1 1
L+ 1

Two coordinates in F^{obj}_j coefficients:

| F^{obj}[0][0,0] = 1.0

| F^{obj}[0][1,1] = 1.0

OBJFCOORD
2
0}00001.
0}11111.

Two coordinates in a^{obj}_j coefficients:

```
```


| a^{obj}[0] = 1.0

| a^{obj}[1] = 1.0

OBJACOORD
2
0 1.0
11.0

One coordinate in b^{obj} coefficient:

| b^{obj} = 1.0

OBJBCOORD
1.0

One coordinate in F_ij coefficients:

| F[0,0][1,0] = 1.0

FCOORD
1
0}0011001.

Two coordinates in a_ij coefficients:

| a[0,0] = -1.0

| a[0,1] = -1.0

ACOORD
2
0}00-1.
0 1-1.0

Four coordinates in H_ij coefficients:

| H[0,0][1,0] = 1.0

| H[0,0][1,1] = 3.0

| and more...

HCOORD
4
0}0011001.
0
0}110003.
0}1111001.

Two coordinates in D_i coefficients:

| D[0][0,0] = -1.0

| D[0][1,1] = -1.0

DCOORD
2
0 0 0 -1.0
0}1011-1.

```

\section*{The exponential cone}

The conic optimization problem (16.14), has one equality constraint, one quadratic cone constraint and an exponential cone constraint.
\[
\begin{array}{ll}
\operatorname{minimize} & x_{0}-x_{3} \\
\text { subject to } & x_{0}+2 x_{1}-x_{2} \in\{0\} \\
& \left(5.0, x_{0}, x_{1}\right) \in \mathcal{Q}^{3}  \tag{16.14}\\
& \left(x_{2}, 1.0, x_{3}\right) \in E X P .
\end{array}
\]

The nonlinear conic constraints enforce \(\sqrt{x_{0}^{2}+x_{1}^{2}} \leq 0.5\) and \(x_{3} \leq \log \left(x_{2}\right)\).
```


File written using this version of the Conic Benchmark Format:

| Version 3.

VER
3

The sense of the objective is:

| Minimize.

OBJSENSE
MIN

Four scalar variables in this one conic domain:

| Four are free.

VAR
4 1
F 4

Seven scalar constraints with affine expressions in three conic domains:

| One is fixed to zero.

| Three are in conic quadratic domain.

| Three are in exponential cone domain.

CON
7 3
L= 1
Q 3
EXP 3

Two coordinates in a^{obj}_j coefficients:

| a^{obj}[0] = 1.0

| a^{obj}[3] = -1.0

OBJACOORD
2
0 1.0
3-1.0

Seven coordinates in a_ij coefficients:

| a[0,0] = 1.0

| a[0,1] = 2.0

| and more...

ACOORD
7
0 0 1.0
0 12.0
0 2 -1.0
2 0 1.0
3 11.0
4 1.0
6 3 1.0

```
```


Two coordinates in b_i coefficients:

| b[1] = 5.0

| b[5] = 1.0

BCOORD
2
15.0
51.0

```

\section*{Parametric cones}

The problem (16.15), has three variables in a power cone with parameter \(\alpha_{1}=(1,1)\) and two power cone constraints each with parameter \(\alpha_{0}=(8,1)\).
\[
\begin{array}{ll}
\operatorname{minimize} & x_{3} \\
\text { subject to } & \left(1.0, x_{1}, x_{1}+x_{2}\right) \in P O W_{\alpha_{0}}  \tag{16.15}\\
& \left(1.0, x_{2}, x_{1}+x_{2}\right) \in P O W_{\alpha_{0}} \\
& x \in P O W_{\alpha_{1}} .
\end{array}
\]

The nonlinear conic constraints enforce \(x_{3} \leq x_{1} x_{2}\) and \(x_{1}+x_{2} \leq \min \left(x_{1}^{\frac{1}{9}}, x_{2}^{\frac{1}{9}}\right)\).
```


File written using this version of the Conic Benchmark Format:

| Version 3.

VER
3

Two power cone domains defined in a total of four parameters:

| @O:POW (specification 0) has two parameters:

| alpha[0] = 8.0.

| alpha[1] = 1.0.

| @1:POW (specification 1) has two parameters:

| alpha[0] = 1.0.

| alpha[1] = 1.0.

POWCONES
24
2
8.0
1.0
2
1.0
1.0

The sense of the objective is:

| Maximize.

OBJSENSE
MAX

Three scalar variable in this one conic domain:

| Three are in power cone domain (specification 1).

VAR
31
@1:POW 3

Six scalar constraints with affine expressions in two conic domains:

| Three are in power cone domain (specification 0).

| Three are in power cone domain (specification 0).

```
```

CON
6
@0:POW 3
@0:POW 3

One coordinate in a^{obj}_j coefficients:

| a^{obj}[2] = 1.0

OBJACOORD
1
2 1.0

Six coordinates in a_ij coefficients:

| a[1,0] = 1.0

| a[2,0] = 1.0

| and more...

ACOORD
6
1 0 1.0
2 0 1.0
2 1 1.0
4 1 1.0
5 0 1.0
511.0

Two coordinates in b_i coefficients:

| b[0] = 1.0

| b[3] = 1.0

BCOORD
2
0 1.0
31.0

```

\subsection*{16.5 The PTF Format}

The PTF format is a human-readable, natural text format that supports all linear, conic and mixedinteger features.

\subsection*{16.5.1 The overall format}

The format is indentation based, where each section is started by a head line and followed by a section body with deeper indentation that the head line. For example:
```

Header line
Body line 1
Body line 1
Body line 1

```

Section can also be nested:
```

Header line A
Body line in A
Header line A.1
Body line in A.1
Body line in A.1
Body line in A

```

The indentation of blank lines is ignored, so a subsection can contain a blank line with no indentation. The character \# defines a line comment and anything between the \# character and the end of the line is ignored.

In a PTF file, the first section must be a Task section. The order of the remaining section is arbitrary, and sections may occur multiple times or not at all.

MOSEK will ignore any top-level section it does not recognize.

\section*{Names}

In the description of the format we use following definitions for name strings:
```

NAME: PLAIN_NAME | QUOTED_NAME
PLAIN_NAME: [a-zA-Z_] [a-zA-ZO-9_-.!|]
QUOTED_NAME: "'" ([~'
\r\n] | "
" ([
rn] | "x" [0-9a-fA-F] [0-9a-fA-F]))* "'"

```

\section*{Expressions}

An expression is a sum of terms. A term is either a linear term (a coefficient and a variable name, where the coefficient can be left out if it is 1.0 ), or a matrix inner product.

An expression:
```

EXPR: EMPTY | [+-]? TERM ([+-] TERM)*
TERM: LINEAR_TERM | MATRIX_TERM

```

A linear term
LINEAR_TERM: FLOAT? NAME
A matrix term
```

MATRIX_TERM: "<" FLOAT? NAME ([+-] FLOAT? NAME)* ";" NAME ">"

```

Here the right-hand name is the name of a (semidefinite) matrix variable, and the left-hand side is a sum of symmetric matrixes. The actual matrixes are defined in a separate section.

Expressions can span multiple lines by giving subsequent lines a deeper indentation.
For example following two section are equivalent:
```


Everything on one line:

x1 + x2 + x3 + x4

Split into multiple lines:

x1
+ x2
+ x3
+ x4

```

\subsection*{16.5.2 Task section}

The first section of the file must be a Task. The text in this section is not used and may contain comments, or meta-information from the writer or about the content.

Format:
Task NAME
Anything goes here...
NAME is a the task name.

\subsection*{16.5.3 Objective section}

The Objective section defines the objective name, sense and function. The format:
```

"Objective" NAME?
("Minimize" | "Maximize") EXPR

```

For example:
```

Objective 'obj'
Minimize x1 + 0.2 x2 + < M1 ; X1 >

```

\subsection*{16.5.4 Constraints section}

The constraints section defines a series of constraints. A constraint defines a term \(A \cdot x+b \in K\). For linear constraints A is just one row, while for conic constraints it can be multiple rows. If a constraint spans multiple rows these can either be written inline separated by semi-colons, or each expression in a separete sub-section.

Simple linear constraints:
```

"Constraints"
NAME? "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]" EXPR

```

If the brackets contain two values, they are used as upper and lower bounds. It they contain one value the constraint is an equality.

For example:
```

Constraints
'c1' [0;10] x1 + x2 + x3
[0] x1 + x2 + x3

```

Constraint blocks put the expression either in a subsection or inline. The cone type (domain) is written in the brackets, and MOSEK currently supports following types:
- SOC(N) Second order cone of dimension N
- RSOC(N) Rotated second order cone of dimension \(N\)
- PSD (N) Symmetric positive semidefinite cone of dimension N. This contains \(N *(N+1) / 2\) elements.
- PEXP Primal exponential cone of dimension 3
- DEXP Dual exponential cone of dimension 3
- \(\operatorname{PPOW}(N, P)\) Primal power cone of dimension \(N\) with parameter \(P\)
- \(\operatorname{DPOW}(N, P)\) Dual power cone of dimension \(N\) with parameter \(P\)
- ZERO(N) The zero-cone of dimension \(N\).
```

"Constraints"
NAME? "[" DOMAIN "]" EXPR_LIST

```

For example:
```

Constraints
'K1' [SOC(3)] x1 + x2 ; x2 + x3 ; x3 + x1
'K2' [RSOC(3)]
x1 + x2
x2 + x3
x3 + x1

```

\subsection*{16.5.5 Variables section}

Any variable used in an expression must be defined in a variable section. The variable section defines each variable domain.
```

"Variables"
NAME "[" [-+] (FLOAT | "Inf") (";" [-+] (FLOAT | "Inf"))? "]"
NAME "[" DOMAIN "]" NAMES
For example, a linear variable

```
Variables
    x1 [0; Inf]

As with constraints, members of a conic domain can be listed either inline or in a subsection:
```

Variables
k1 [SOC(3)] x1 ; x2 ; x3
k2 [RSOC(3)]
x1
x2
x3

```

\subsection*{16.5.6 Integer section}

This section contains a list of variables that are integral. For example:
```

Integer
x1 x2 x3

```

\subsection*{16.5.7 SymmetricMatrixes section}

This section defines the symmetric matrixes used for matrix coefficients in matrix inner product terms. The section lists named matrixes, each with a size and a number of non-zeros. Only non-zeros in the lower triangular part should be defined.
```

"SymmetricMatrixes"
NAME "SYMMAT" "(" INT ")" ("(" INT "," INT "," FLOAT ")")*

```

For example:
```

SymmetricMatrixes
M1 SYMMAT(3) (0,0,1.0) (1,1,2.0) (2,1,0.5)
M2 SYMMAT(3)
(0,0,1.0)
(1,1,2.0)
(2,1,0.5)

```

\subsection*{16.5.8 Solutions section}

Each subsection defines a solution. A solution defines for each constraint and for each variable exactly one primal value and either one (for conic domains) or two (for linear domains) dual values. The values follow the same logic as in the MOSEK C API. A primal and a dual solution status defines the meaning of the values primal and dual (solution, certificate, unknown, etc.)

The format is this:
```

"Solutions"
"Solution" WHICHSOL
"ProblemStatus" PROSTA PROSTA?
"SolutionStatus" SOLSTA SOLSTA?
"Objective" FLOAT FLOAT
"Variables"
\# Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
\# Conic variable status: level, snx
NAME
"[" STATUS "]" FLOAT FLOAT?
...
"Constraints"
\# Linear variable status: level, slx, sux
NAME "[" STATUS "]" FLOAT (FLOAT FLOAT)?
\# Conic variable status: level, snx
NAME
"[" STATUS "]" FLOAT FLOAT?

```

Following values for WHICHSOL are supported:
- interior Interior solution, the result of an interior-point solver.
- basic Basic solution, as produced by a simplex solver.
- integer Integer solution, the solution to a mixed-integer problem. This does not define a dual solution.

Following values for PROSTA are supported:
- unknown The problem status is unknown
- feasible The problem has been proven feasible
- infeasible The problem has been proven infeasible
- illposed The problem has been proved to be ill posed
- infeasible_or_unbounded The problem is infeasible or unbounded

Following values for SOLSTA are supported:
- unknown The solution status is unknown
- feasible The solution is feasible
- optimal The solution is optimal
- infeas_cert The solution is a certificate of infeasibility
- illposed_cert The solution is a certificate of illposedness

Following values for STATUS are supported:
- unknown The value is unknown
- super_basic The value is super basic
- at_lower The value is basic and at its lower bound
- at_upper The value is basic and at its upper bound
- fixed The value is basic fixed
- infinite The value is at infinity

\subsection*{16.5.9 Examples}

\section*{Linear example lo1.ptf}
```

Task ''
\# Written by MOSEK v10.0.13
\# problemtype: Linear Problem
\# number of linear variables: 4
\# number of linear constraints: 3
\# number of old-style A nonzeros: 9
Objective obj
Maximize + 3 x1 + x2 + 5 x3 + x4
Constraints
c1 [3e+1] + 3 x1 + x2 + 2 x3
c2 [1.5e+1;+inf] + 2 x1 + x2 + 3 x3 + x4
c3 [-inf;2.5e+1] + 2 x2 + 3 x4
Variables
x1 [0;+inf]
x2 [0;1e+1]
x3 [0;+inf]
x4 [0;+inf]

```

Conic example cqo1.ptf
```

Task ''
\# Written by MOSEK v10.0.17
\# problemtype: Conic Problem
\# number of linear variables: 6
\# number of linear constraints: 1
\# number of old-style cones: O
\# number of positive semidefinite variables: 0
\# number of positive semidefinite matrixes: 0
\# number of affine conic constraints: 2
\# number of disjunctive constraints: 0
\# number scalar affine expressions/nonzeros : 6/6
\# number of old-style A nonzeros: 3
Objective obj
Minimize + x4 + x5 + x6
Constraints
c1 [1] + x1 + x2 + 2 x3
k1 [QUAD(3)]
@ac1: + x4
@ac2: + x1
@ac3: + x2
k2 [RQUAD (3)]
@ac4: + x5
@ac5: + x6
@ac6: + x3
Variables

```
```

x4
x1 [0;+inf]
x2 [0;+inf]
x5
x6
x3 [0;+inf]

```

Disjunctive example djc1.ptf
```

Task djc1
Objective ''
Minimize + 2 'x[0]' + 'x[1]' + 3 'x[2]' + 'x[3]'
Constraints
@c0 [-10;+inf] + 'x[0]' + 'x[1]' + 'x[2]' + 'x[3]'
@DO [OR]
[AND]
[NEGATIVE(1)]
+ 'x[0]' - 2 'x[1]' + 1
[ZERO(2)]
+ 'x[2]'
+ 'x[3]'
[AND]
[NEGATIVE(1)]
+ 'x[2]' - 3 'x[3]' + 2
[ZERO(2)]
+ 'x[0]'
+ 'x[1]'
@D1 [OR]
[ZERO(1)]
+ 'x[0]' - 2.5
[ZERO(1)]
+ 'x[1]' - 2.5
[ZERO(1)]
+ 'x[2]' - 2.5
[ZERO(1)]
+ 'x[3]' - 2.5
Variables
'x[0]'
'x[1]'
'x[2]'
'x[3]'

```

\subsection*{16.6 The Task Format}

The Task format is MOSEK's native binary format. It contains a complete image of a MOSEK task, i.e.
- Problem data: Linear, conic, semidefinite and quadratic data
- Problem item names: Variable names, constraints names, cone names etc.
- Parameter settings
- Solutions

There are a few things to be aware of:
- Status of a solution read from a file will always be unknown.
- Parameter settings in a task file always override any parameters set on the command line or in a parameter file.

The format is based on the \(T A R\) (USTar) file format. This means that the individual pieces of data in a .task file can be examined by unpacking it as a \(T A R\) file. Please note that the inverse may not work: Creating a file using \(T A R\) will most probably not create a valid MOSEK Task file since the order of the entries is important.

\subsection*{16.7 The JSON Format}

MOSEK provides the possibility to read/write problems and solutions in JSON format. The official JSON website http://www.json.org provides plenty of information along with the format definition. JSON is an industry standard for data exchange and JSON files can be easily written and read in most programming languages using dedicated libraries.

MOSEK uses two JSON-based formats:
- JTASK, for storing problem instances together with solutions and parameters. The JTASK format contains the same information as a native MOSEK task task format, that is a very close representation of the internal data storage in the task object.
You can write a JTASK file specifying the extension .jtask. When the parameter Iparam:: WRITE_JSON_INDENTATION is set the JTASK file will be indented to slightly improve readability.
- JSOL, for storing solutions and information items.

You can write a JSOL solution file using Task.write_json_sol. When the parameter Iparam: : WRITE_JSON_INDENTATION is set the JSOL file will be indented to slightly improve readability.

You can read a JSOL solution into an existing task file using Task.read_json_sol. Only the Task/solutions section of the data will be taken into consideration.

\subsection*{16.7.1 JTASK Specification}

The JTASK is a dictionary containing the following sections. All sections are optional and can be omitted if irrelevant for the problem.
- \$schema: JSON schema.
- Task/name: The name of the task (string).
- Task/INFO: Information about problem data dimensions and similar. These are treated as hints when reading the file.
- numvar: number of variables (int32).
- numcon: number of constraints (int32).
- numcone: number of cones (int32, deprecated).
- numbarvar: number of symmetric matrix variables (int32).
- numanz: number of nonzeros in A (int64).
- numsymmat: number of matrices in the symmetric matrix storage E (int64).
- numafe: number of affine expressions in AFE storage (int64).
- numfnz: number of nonzeros in F (int64).
- numacc: number of affine conic constraints (ACCs) (int64).
- numdjc: number of disjunctive constraints (DJCs) (int64).
- numdom: number of domains (int64).
- mosekver: MOSEK version (list(int32)).
- Task/data: Numerical and structural data of the problem.
- var: Information about variables. All fields present must have the same length as bk. All or none of bk, bl, and bu must appear.
* name: Variable names (list(string)).
* bk: Bound keys (list(string)).
* bl: Lower bounds (list(double)).
* bu: Upper bounds (list(double)).
* type: Variable types (list(string)).
- con: Information about linear constraints. All fields present must have the same length as bk. All or none of bk, bl, and bu must appear.
* name: Constraint names (list(string)).
* bk: Bound keys (list(string)).
* bl: Lower bounds (list(double)).
* bu: Upper bounds (list(double)).
- barvar: Information about symmetric matrix variables. All fields present must have the same length as dim.
* name: Barvar names (list(string)).
* dim: Dimensions (list(int32)).
- objective: Information about the objective.
* name: Objective name (string).
* sense: Objective sense (string).
* c: The linear part \(c\) of the objective as a sparse vector. Both arrays must have the same length.
- subj: indices of nonzeros (list(int32)).
- val: values of nonzeros (list(double)).
* cfix: Constant term in the objective (double).
* Q: The quadratic part \(Q^{o}\) of the objective as a sparse matrix, only lower-triangular part included. All arrays must have the same length.
- subi: row indices of nonzeros (list(int32)).
- subj: column indices of nonzeros (list(int32)). - val: values of nonzeros (list(double)).
* barc: The semidefinite part \(\bar{C}\) of the objective (list). Each element of the list is a list describing one entry \(\bar{C}_{j}\) using three fields:
- index \(j\) (int32).
- weights of the matrices from the storage \(E\) forming \(\bar{C}_{j}\) (list(double)).
- indices of the matrices from the storage \(E\) forming \(\bar{C}_{j}\) (list(int64)).
- A: The linear constraint matrix \(A\) as a sparse matrix. All arrays must have the same length.
* subi: row indices of nonzeros (list(int32)).
* subj: column indices of nonzeros (list(int32)).
* val: values of nonzeros (list(double)).
- bara: The semidefinite part \(\bar{A}\) of the constraints (list). Each element of the list is a list describing one entry \(\bar{A}_{i j}\) using four fields:
* index \(i\) (int32).
* index \(j\) (int32).
* weights of the matrices from the storage \(E\) forming \(\bar{A}_{i j}\) (list(double)).
* indices of the matrices from the storage \(E\) forming \(\bar{A}_{i j}\) (list(int64)).
- AFE: The affine expression storage.
* numafe: number of rows in the storage (int64).
* F: The matrix \(F\) as a sparse matrix. All arrays must have the same length.
- subi: row indices of nonzeros (list(int64)).
- subj: column indices of nonzeros (list(int32)).
- val: values of nonzeros (list(double)).
* g: The vector \(g\) of constant terms as a sparse vector. Both arrays must have the same length.
- subi: indices of nonzeros (list(int64)).
- val: values of nonzeros (list(double)).
* barf: The semidefinite part \(\bar{F}\) of the expressions in AFE storage (list). Each element of the list is a list describing one entry \(\bar{F}_{i j}\) using four fields:
- index \(i\) (int64).
- index \(j\) (int32).
- weights of the matrices from the storage \(E\) forming \(\bar{F}_{i j}\) (list(double)).
- indices of the matrices from the storage \(E\) forming \(\bar{F}_{i j}\) (list(int64)).
- domains: Information about domains. All fields present must have the same length as type.
* name: Domain names (list(string)).
* type: Description of the type of each domain (list). Each element of the list is a list describing one domain using at least one field:
- domain type (string).
- (except pexp, dexp) dimension (int64).
- (only ppow, dpow) weights (list(double)).
- ACC: Information about affine conic constraints (ACC). All fields present must have the same length as domain.
* name: ACC names (list(string)).
* domain: Domains (list(int64)).
* afeidx: AFE indices, grouped by ACC (list(list(int64))).
* b: constant vectors \(b\), grouped by ACC (list(list(double))).
- DJC: Information about disjunctive constraints (DJC). All fields present must have the same length as termsize.
* name: DJC names (list(string)).
* termsize: Term sizes, grouped by DJC (list(list(int64))).
* domain: Domains, grouped by DJC (list(list(int64))).
* afeidx: AFE indices, grouped by DJC (list(list(int64))).
* b: constant vectors \(b\), grouped by DJC (list(list(double))).
- MatrixStore: The symmetric matrix storage \(E\) (list). Each element of the list is a list describing one entry \(E\) using four fields in sparse matrix format, lower-triangular part only:
* dimension (int32).
* row indices of nonzeros (list(int32)).
* column indices of nonzeros (list(int32)).
* values of nonzeros (list(double)).
- Q: The quadratic part \(Q^{c}\) of the constraints (list). Each element of the list is a list describing one entry \(Q_{i}^{c}\) using four fields in sparse matrix format, lower-triangular part only:
* the row index \(i\) (int32).
* row indices of nonzeros (list(int32)).
* column indices of nonzeros (list(int32)).
* values of nonzeros (list(double)).
- qcone (deprecated). The description of cones. All fields present must have the same length as type.
* name: Cone names (list(string)).
* type: Cone types (list(string)).
* par: Additional cone parameters (list(double)).
* members: Members, grouped by cone (list(list(int32))).
- Task/solutions: Solutions. This section can contain up to three subsections called:
- interior
- basic
- integer
corresponding to the three solution types in MOSEK. Each of these sections has the same structure:
- prosta: problem status (string).
- solsta: solution status (string).
- xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name (list(double)).
- skx, skc, skn: status keys (list(string)).
- doty: the dual \(\dot{y}\) solution, grouped by ACC (list(list(double))).
- barx, bars: the primal/dual semidefinite solution, grouped by matrix variable (list(list(double))).
- Task/parameters: Parameters.
- iparam: Integer parameters (dictionary). A dictionary with entries of the form name:value, where name is a shortened parameter name (without leading MSK_IPAR_) and value is either an integer or string if the parameter takes values from an enum.
- dparam: Double parameters (dictionary). A dictionary with entries of the form name:value, where name is a shortened parameter name (without leading MSK_DPAR_) and value is a double.
- sparam: String parameters (dictionary). A dictionary with entries of the form name:value, where name is a shortened parameter name (without leading MSK_SPAR_) and value is a string. Note that this section is allowed but MOSEK ignores it both when writing and reading JTASK files.

\subsection*{16.7.2 JSOL Specification}

The JSOL is a dictionary containing the following sections. All sections are optional and can be omitted if irrelevant for the problem.
- \$schema: JSON schema.
- Task/name: The name of the task (string).
- Task/solutions: Solutions. This section can contain up to three subsections called:
- interior
- basic
- integer
corresponding to the three solution types in MOSEK. Each of these section has the same structure:
- prosta: problem status (string).
- solsta: solution status (string).
- xx, xc, y, slc, suc, slx, sux, snx: one for each component of the solution of the same name (list(double)).
- skx, skc, skn: status keys (list(string)).
- doty: the dual \(\dot{y}\) solution, grouped by ACC (list(list(double))).
- barx, bars: the primal/dual semidefinite solution, grouped by matrix variable (list(list(double))).
- Task/information: Information items from the optimizer.
- int32: int32 information items (dictionary). A dictionary with entries of the form name: value.
- int64: int64 information items (dictionary). A dictionary with entries of the form name: value.
- double: double information items (dictionary). A dictionary with entries of the form name: value.

\subsection*{16.7.3 A jtask example}

Listing 16.5: A formatted jtask file for a simple portfolio optimization problem.
```

{
"\$schema":"http://mosek.com/json/schema\#",
"Task/name":"Markowitz portfolio with market impact",
"Task/INFO":{"numvar":7,"numcon":1,"numcone":0,"numbarvar":0,"numanz":6,"numsymmat
\hookrightarrow"0,"numafe":13,"numfnz":12,"numacc":4,"numdjc":0,"numdom":3,"mosekver":[10,0,0,3]},
"Task/data":{
"var":{
"name":["1.0","x[0]","x[1]","x[2] ","t[0] ","t[1]","t[2]"],
"bk": ["fx", "lo","lo","lo","fr","fr","fr"],
"bl":[1,0.0,0.0,0.0,-1e+30,-1e+30,-1e+30],
"bu":[1,1e+30,1e+30,1e+30,1e+30,1e+30,1e+30],
"type":["cont","cont","cont","cont","cont","cont","cont"]
},
"con":{
"name":["budget[]"],
"bk":["fx"],
"bl":[1],
"bu":[1]
},
"objective":{
"sense":"max",
"name":"obj",
"c":{
"subj":[1,2,3],
"val":[0.1073,0.0737,0.0627]
},
"cfix":0.0
},
"A":{
"subi":[0,0,0,0,0,0],
"subj":[1,2,3,4,5,6],
"val":[1,1,1,0.01,0.01,0.01]
},
"AFE":{
"numafe":13,
"F":{
"subi":[1,1,1,2,2,3,4,6,7,9,10,12],
"subj":[1,2,3,2,3,3,4,1,5,2,6,3],
"val":[0.166673333200005,0.0232190712557243,0.0012599496030238,0.
->102863378954911,-0.00222873156550421,0.0338148677744977,1,1,1,1,1,1]
},
"g":{
"subi":[0,5,8,11],
"val":[0.035,1,1,1]

```
```

 }
 },
 "domains":{
 "type":[["r",0],
 ["quad",4],
 ["ррош",3,[0.6666666666666666,0.33333333333333337]]]
 },
 "ACC":{
 "name": ["risk[]", "tz[0] ", "tz[1] ", "tz[2] "],
 "domain":[1,2,2,2],
 "afeidx":[[0,1,2,3],
 [4,5,6],
 [7,8,9],
 [10,11, 12]]
 }
 },
 "Task/solutions":{
 "interior":{
 "prosta":"unknown",
 "solsta":"unknown",
 "skx":["fix","supbas","supbas","supbas","supbas","supbas","supbas"],
 "skc":["fix"],
 "xx":[1,0.10331580274282556,0.11673185566457132,0.7724326587076371,0.
 @33208600335718846,0.03988270849469869,0.6788769587942524],
"xc":[1],
"slx":[0.0,-5.585840467641202e-10,-8.945844685006369e-10,-7.815248786428623e-
->11,0.0,0.0,0.0],
"sux":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"snx":[0.0,0.0,0.0,0.0,0.0,0.0,0.0],
"slc":[0.0],
"suc":[-0.046725814048521205],
"y":[0.046725814048521205],
"doty":[[-0.6062603164682975,0.3620818321879349,0.17817754087278295,0.
\hookrightarrow4524390346223723],
[-4.6725842015519993e-4,-7.708781121860897e-6,2.24800624747081e-4],
[-4.6725842015519993e-4,-9.268264309496919e-6,2.390390600079771e-4],
[-4.6725842015519993e-4,-1.5854982159992136e-4,6.159249331148646e-4]]
}
},
"Task/parameters":{
"iparam":{
"LICENSE_DEBUG":"ON",
"MIO_SEED":422
},
"dparam":{
"MIO_MAX_TIME":100
},
"sparam":{
}
}
}

```

\subsection*{16.8 The Solution File Format}

MOSEK can output solutions to a text file:
- basis solution file (extension .bas) if the problem is optimized using the simplex optimizer or basis identification is performed,
- interior solution file (extension .sol) if a problem is optimized using the interior-point optimizer and no basis identification is required,
- integer solution file (extension .int) if the problem is solved with the mixed-integer optimizer.

All solution files have the format:
```

NAME : <problem name>
PROBLEM STATUS : <status of the problem>
SOLUTION STATUS : <status of the solution>
OBJECTIVE NAME : <name of the objective function>
PRIMAL OBJECTIVE : <primal objective value corresponding to the solution>
DUAL OBJECTIVE : <dual objective value corresponding to the solution>
CONSTRAINTS
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>
AFFINE CONIC CONSTRAINTS
INDEX NAME I ACTIVITY DUAL
? <name> <a value> <a value> <a value>
VARIABLES
INDEX NAME AT ACTIVITY LOWER LIMIT UPPER LIMIT DUAL LOWER DUAL UPPER
? <name> ?? <a value> <a value> <a value> <a value> <a value>
[<a value>]
SYMMETRIC MATRIX VARIABLES
INDEX NAME I J PRIMAL DUAL
? <name> <a value> <a value> <a value> <a value>

```

The fields ?, ?? and <> will be filled with problem and solution specific information as described below. The solution contains sections corresponding to parts of the input. Empty sections may be omitted and fields in [] are optional, depending on what type of problem is solved. The notation below follows the MOSEK naming convention for parts of the solution as defined in the problem specifications in Sec. 12.
- HEADER

In this section, first the name of the problem is listed and afterwards the problem and solution status are shown. Next the primal and dual objective values are displayed.
- CONSTRAINTS
- INDEX: A sequential index assigned to the constraint by MOSEK
- NAME: The name of the constraint assigned by the user or autogenerated.
- AT: The status key bkc of the constraint as in Table 16.4.
- ACTIVITY: the activity xc of the constraint expression.
- LOWER LIMIT: the lower bound blc of the constraint.
- UPPER LIMIT: the upper bound buc of the constraint.
- DUAL LOWER: the dual multiplier slc corresponding to the lower limit on the constraint.
- DUAL UPPER: the dual multiplier suc corresponding to the upper limit on the constraint.
- AFFINE CONIC CONSTRAINTS
- INDEX: A sequential index assigned to the affine expressions by MOSEK
- NAME: The name of the affine conic constraint assigned by the user or autogenerated.
- I: The sequential index of the affine expression in the affine conic constraint.
- ACTIVITY: the activity of the I-th affine expression in the affine conic constraint.
- DUAL: the dual multiplier doty for the I-th entry in the affine conic constraint.
- VARIABLES
- INDEX: A sequential index assigned to the variable by MOSEK
- NAME: The name of the variable assigned by the user or autogenerated.
- AT: The status key bkx of the variable as in Table 16.4.
- ACTIVITY: the value xx of the variable.
- LOWER LIMIT: the lower bound blx of the variable.
- UPPER LIMIT: the upper bound bux of the variable.
- DUAL LOWER: the dual multiplier slx corresponding to the lower limit on the variable.
- DUAL UPPER: the dual multiplier sux corresponding to the upper limit on the variable.
- CONIC DUAL: the dual multiplier skx corresponding to a conic variable (deprecated).
- SYMMETRIC MATRIX VARIABLES
- INDEX: A sequential index assigned to each symmetric matrix entry by MOSEK
- NAME: The name of the symmetric matrix variable assigned by the user or autogenerated.
- I: The row index in the symmetric matrix variable.
- J: The column index in the symmetric matrix variable.
- PRIMAL: the value of barx for the (I, J)-th entry in the symmetric matrix variable.
- DUAL: the dual multiplier bars for the (I, J)-th entry in the symmetric matrix variable.

Table 16.4: Status keys.
\begin{tabular}{|l|l|}
\hline Status key & Interpretation \\
\hline UN & Unknown status \\
\hline BS & Is basic \\
\hline SB & Is superbasic \\
\hline LL & Is at the lower limit (bound) \\
\hline UL & Is at the upper limit (bound) \\
\hline EQ & Lower limit is identical to upper limit \\
\hline\(* *\) & Is infeasible i.e. the lower limit is greater than the upper limit. \\
\hline
\end{tabular}

\section*{Example.}

Below is an example of a solution file.
Listing 16.6: An example of . sol file.
```

NAME :
PROBLEM STATUS : PRIMAL_AND_DUAL_FEASIBLE
SOLUTION STATUS : OPTIMAL
OBJECTIVE NAME : OBJ
PRIMAL OBJECTIVE : 0.70571049347734
DUAL OBJECTIVE : 0.70571048919757
CONSTRAINTS

```
(continued from previous page)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline INDEX & NAME & AT & ACTIVITY & & LOWER LIMIT & UPPER & LIM \\
\hline & DUAL LOWER & & DUAL UPPER & & & & \\
\hline \multicolumn{8}{|l|}{AFFINE CONIC CONSTRAINTS} \\
\hline INDEX & NAME & I & ACTIVITY & & DUAL & & \\
\hline 0 & A1 & 0 & 1.000000 & 0009656 & 0.54 & 21296644 & \\
\hline 1 & A1 & 1 & 0.500000 & 00152223 & 0.32 & 55246225 & \\
\hline 2 & A2 & 0 & 0.254399 & 22724695 & 0.45 & 7870329 & \\
\hline 3 & A2 & 1 & 0.179887 & 41850378 & -0.3 & 455246178 & \\
\hline 4 & A2 & 2 & 0.179887 & 41850378 & -0.3 & 455246178 & \\
\hline \multicolumn{8}{|l|}{VARIABLES} \\
\hline INDEX & NAME & AT & ACTIVITY & & LOWER LIMIT & UPPER & LIMIT \(\sqcup\) \\
\hline \(\hookrightarrow\) & DUAL LOWER & & DUAL UPPER & & & & \\
\hline 0 & X1 & SB & 0.25439922724695 & & NONE & NONE & \(\sqcup\) \\
\hline \(\hookrightarrow\) & 0 & & 0 & & & & \\
\hline 1 & X2 & SB & 0.17988741850378 & & NONE & NONE & \(\sqcup\) \\
\hline \(\hookrightarrow\) & 0 & & 0 & & & & \\
\hline 2 & X3 & SB & 0.17988741850378 & & NONE & NONE & \(\sqcup\) \\
\hline \(\hookrightarrow\) & 0 & & 0 & & & & \\
\hline \multicolumn{8}{|l|}{SYMMETRIC MATRIX VARIABLES} \\
\hline INDEX & NAME & I & J & PRIMAL & & DUAL & \\
\hline 0 & BARX1 & 0 & 0 & 0.21725 & 733689874 & 1.133337 & 72337141 \\
\hline 1 & BARX1 & 1 & 0 & -0.2599 & 7257078534 & 0 . & \\
\hline \multicolumn{8}{|l|}{\(\hookrightarrow 67809544651396\)} \\
\hline 2 & BARX1 & 2 & 0 & 0.21725 & 733648507 & -0. & \\
\hline \multicolumn{8}{|l|}{\(\hookrightarrow 3219045527104\)} \\
\hline 3 & BARX1 & 1 & 1 & 0.31108 & 610088839 & 1.133337 & 72332693 \\
\hline 4 & BARX1 & 2 & 1 & -0.2599 & 7257078534 & 0 . & \\
\hline \multicolumn{8}{|l|}{\(\hookrightarrow 67809544651435\)} \\
\hline 5 & BARX1 & 2 & 2 & 0.21725 & 733689874 & 1.133337 & 72337145 \\
\hline 6 & BARX2 & 0 & 0 & 4.83622 & \(72828127 e-10\) & 0 . & \\
\hline \multicolumn{8}{|l|}{\(\hookrightarrow 54475821339698\)} \\
\hline 7 & BARX2 & 1 & 0 & 0 & & 0 & \\
\hline 8 & BARX2 & 1 & 1 & 4.83622 & \(72828127 e-10\) & 0 . & \\
\hline \multicolumn{8}{|l|}{\(\hookrightarrow 54475821339698\)} \\
\hline
\end{tabular}

\section*{Chapter 17}

\section*{List of examples}

List of examples shipped in the distribution of Optimizer API for Rust:
Table 17.1: List of distributed examples
\begin{tabular}{|c|c|}
\hline File & Description \\
\hline acc1.rs & A simple problem with one affine conic constraint (ACC) \\
\hline acc2.rs & A simple problem with two affine conic constraints (ACC) \\
\hline blas_lapack.rs & Demonstrates the MOSEK interface to BLAS/LAPACK linear algebra routines \\
\hline callback.rs & An example of data/progress callback \\
\hline ceol.rs & A simple conic exponential problem \\
\hline concurrent1.rs & Implementation of a concurrent optimizer for linear and mixed-integer problems \\
\hline cqo1.rs & A simple conic quadratic problem \\
\hline djc1.rs & A simple problem with disjunctive constraints (DJC) \\
\hline feasrepairex1. rs & A simple example of how to repair an infeasible problem \\
\hline gp1.rs & A simple geometric program (GP) in conic form \\
\hline helloworld.rs & A Hello World example \\
\hline lo1.rs & A simple linear problem \\
\hline lo2.rs & A simple linear problem \\
\hline logistic.rs & Implements logistic regression and simple log-sum-exp (CEO) \\
\hline mico1.rs & A simple mixed-integer conic problem \\
\hline milo1.rs & A simple mixed-integer linear problem \\
\hline mioinitsol.rs & A simple mixed-integer linear problem with an initial guess \\
\hline \[
\begin{aligned}
& \text { opt_server_async } \\
& \text { rs }
\end{aligned}
\] & Uses MOSEK OptServer to solve an optimization problem asynchronously \\
\hline \[
\begin{aligned}
& \text { opt_server_sync. } \\
& \text { rs }
\end{aligned}
\] & Uses MOSEK OptServer to solve an optimization problem synchronously \\
\hline parallel.rs & Demonstrates parallel optimization using a batch method in MOSEK \\
\hline parameters.rs & Shows how to set optimizer parameters and read information items \\
\hline pinfeas.rs & Shows how to obtain and analyze a primal infeasibility certificate \\
\hline portfolio_1_basi rs & Portfolio optimization - basic Markowitz model \\
\hline \[
\begin{aligned}
& \text { portfolio_2_fron } \\
& \text { rs }
\end{aligned}
\] & Perrtfolio optimization - efficient frontier \\
\hline portfolio_3_impac
rs & \(\mathbb{\mathbb { W } . o r t f o l i o ~ o p t i m i z a t i o n ~ - ~ m a r k e t ~ i m p a c t ~ c o s t s ~}\) \\
\hline \[
\begin{aligned}
& \text { portfolio_4_trans } \\
& \text { rs }
\end{aligned}
\] & dostfolio optimization - transaction costs \\
\hline \[
\begin{aligned}
& \text { portfolio_5_card } \\
& \text { rs }
\end{aligned}
\] & Portfolio optimization - cardinality constraints \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { portfolio_6_factoł.ortfolio optimization - factor model } \\
& \text { rs }
\end{aligned}
\]} \\
\hline
\end{tabular}

Table 17.1 - continued from previous page
\begin{tabular}{|l|l|}
\hline File & Description \\
\hline pow1.rs & A simple power cone problem \\
\hline qcqo1.rs & A simple quadratically constrained quadratic problem \\
\hline qo1.rs & A simple quadratic problem \\
\hline \begin{tabular}{l} 
reoptimization. \\
rs
\end{tabular} & Demonstrate how to modify and re-optimize a linear problem \\
\hline response.rs & Demonstrates proper response handling \\
\hline sdo1.rs & A simple semidefinite problem with one matrix variable and a quadratic cone \\
\hline sdo2.rs & A simple semidefinite problem with two matrix variables \\
\hline sdo_lmi.rs & A simple semidefinite problem with an LMI using the SVEC domain. \\
\hline sensitivity.rs & Sensitivity analysis performed on a small linear problem \\
\hline simple.rs & A simple I/O example: read problem from a file, solve and write solutions \\
\hline \begin{tabular}{l} 
solutionquality \\
rs
\end{tabular} & Demonstrates how to examine the quality of a solution \\
\hline solvebasis.rs & Demonstrates solving a linear system with the basis matrix \\
\hline solvelinear.rs & Demonstrates solving a general linear system \\
\hline \begin{tabular}{l} 
sparsecholesky. \\
rs
\end{tabular} & Shows how to find a Cholesky factorization of a sparse matrix \\
\hline
\end{tabular}

Additional examples can be found on the MOSEK website and in other MOSEK publications.

\section*{Chapter 18}

\section*{Interface changes}

The section shows interface-specific changes to the MOSEK Optimizer API for Rust in version 10.2 compared to version 9. See the release notes for general changes and new features of the MOSEK Optimization Suite.

\subsection*{18.1 Important changes compared to version 9}
- Parameters. Users who set parameters to tune the performance and numerical properties of the solver (termination criteria, tolerances, solving primal or dual, presolve etc.) are recommended to reevaluate such tuning. It may be that other, or default, parameter settings will be more beneficial in the current version. The hints in Sec. 8 may be useful for some cases.
- Multithreading. In the interior-point optimizer it is posible to set the number of threads with Iparam: : NUM_THREADS before each optimization, and not just once per process. The parameter MSK_IPAR_INTPNT_MULTI_THREAD and the function Env.setupthreads are no longer relevant and were removed.
- Sparse Cholesky. In the function Env.compute_sparse_cholesky the argument previously indicating whether to use multiple threads or not is now an integer denoting the number of threads to use, with 0 meaning that MOSEK makes the choice.
- Solve with basis. The function Task.solve_with_basis changed interface: it separates the input and output number of nonzeros.
- OptServer. The arguments used in remote calls from the MOSEK API change from (server, port) to (addr, accesstoken), where addr is the full URL such as http://server:port or https://server:port. See the documentation of the relevant functions.
- MIO initial solution. In order for the mixed-integer solver to utilize a partial integer solution the parameter Iparam: :MIO_CONSTRUCT_SOL must be set. See Sec. 6.8.2 for details. In version 9 this action happened by default.
- Conic constraints. The interface introduces affine conic constraints (ACC) as a way of writing directly
\[
F x+g \in \mathcal{D}
\]
where \(\mathcal{D}\) is a conic domain, without having to introduce a slack variable \(F x+g-y=0, y \in \mathcal{D}\). See Sec. 6.2 for a tutorial. The current interface through variable cones is still supported but deprecated.

\subsection*{18.2 Changes compared to version 9}

\subsection*{18.2.1 Functions compared to version 9}

\section*{Added}
- Env. expirylicenses
- Env.optimize_batch
- Env.reset_expiry_licenses
- Task. append_acc
- Task. append_accs
- Task. append_acc_seq
- Task. append_accs_seq
- Task. append_afes
- Task. append_djcs
- Task. append_dual_exp_cone_domain
- Task.append_dual_geo_mean_cone_domain
- Task.append_dual_power_cone_domain
- Task.append_primal_exp_cone_domain
- Task.append_primal_geo_mean_cone_domain
- Task. append_primal_power_cone_domain
- Task. append_quadratic_cone_domain
- Task. append_r_domain
- Task.append_rminus_domain
- Task.append_rplus_domain
- Task.append_r_quadratic_cone_domain
- Task. append_rzero_domain
- Task.append_svec_psd_cone_domain
- Task.empty_afe_barf_row
- Task.empty_afe_barf_row_list
- Task. empty_afe_f_col
- Task.empty_afe_f_col_list
- Task. empty_afe_f_row
- Task.empty_afe_f_row_list
- Task. evaluate_acc
- Task. evaluate_accs
- Task.generate_acc_names
- Task.generate_barvar_names
- Task.generate_djc_names
- Task.get_acc_afe_idx_list
- Task.get_acc_b
- Task.get_acc_barf_block_triplet
- Task.get_acc_barf_num_block_triplets
- Task.get_acc_domain
- Task.get_acc_dot_y
- Task.get_acc_dot_y_s
- Task.get_acc_f_numnz
- Task.get_acc_f_trip
- Task.get_acc_g_vector
- Task.get_acc_n
- Task.get_acc_name
- Task.get_acc_name_len
- Task.get_acc_n_tot
- Task.get_accs
- Task.get_afe_barf_block_triplet
- Task.get_afe_barf_num_block_triplets
- Task.get_afe_barf_num_row_entries
- Task.get_afe_barf_row
- Task.get_afe_barf_row_info
- Task.get_afe_f_num_nz
- Task.get_afe_f_row
- Task.get_afe_f_row_num_nz
- Task.get_afe_f_trip
- Task.get_afe_g
- Task.get_afe_g_slice
- Task.get_a_trip
- Task.get_djc_afe_idx_list
- Task.get_djc_b
- Task.get_djc_domain_idx_list
- Task.get_djc_name
- Task.get_djc_name_len
- Task.get_djc_num_afe
- Task.get_djc_num_afe_tot
- Task.get_djc_num_domain
- Task.get_djc_num_domain_tot
- Task.get_djc_num_term
- Task.get_djc_num_term_tot
- Task.get_djcs
- Task.get_djc_term_size_list
- Task.get_domain_n
- Task.get_domain_name
- Task.get_domain_name_len
- Task.get_domain_type
- Task.get_dviol_acc
- Task.get_num_acc
- Task.get_num_afe
- Task.get_num_djc
- Task.get_num_domain
- Task.get_power_domain_alpha
- Task.get_power_domain_info
- Task.get_pviol_acc
- Task.get_pviol_djc
- Task.get_solution_info_new
- Task.get_solution_new
- Task.infeasibility_report
- Task.put_acc
- Task.put_acc_b
- Task.put_acc_b_j
- Task.put_acc_dot_y
- Task.put_acc_list
- Task.put_acc_name
- Task.put_afe_barf_block_triplet
- Task.put_afe_barf_entry
- Task.put_afe_barf_entry_list
- Task.put_afe_barf_row
- Task.put_afe_f_col
- Task.put_afe_f_entry
- Task.put_afe_f_entry_list
- Task.put_afe_f_row
- Task.put_afe_f_row_list
- Task.put_afe_g
- Task.put_afe_g_list
- Task.put_afe_g_slice
- Task.put_djc
- Task.put_djc_name
- Task.put_djc_slice
- Task.put_domain_name
- Task.put_max_num_acc
- Task.put_max_num_afe
- Task.put_max_num_djc
- Task.put_max_num_domain
- Task.put_solution_new
- Task.read_b_solution
- Task.read_json_sol
- Task.read_solution_file
- Task.write_b_solution
- Task.write_solution_file

\section*{Removed}
- Env.makeenvalloc
- Env.setupthreads
- Task.callbackcodetostr
- Task.strdupdbgtask
- Task.strduptask

\subsection*{18.2.2 Parameters compared to version 9}

Added
- Dparam::MIO_DJC_MAX_BIGM
- Dparam::OPTIMIZER_MAX_TICKS
- Dparam: :PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATION
- Iparam::MIO_CONSTRUCT_SOL
- Iparam::MIO_CUT_LIPRO
- Iparam::MIO_DATA_PERMUTATION_METHOD
- Iparam::MIO_DUAL_RAY_ANALYSIS_LEVEL
- Iparam: : MIO_MAX_NUM_RESTARTS
- Iparam::MIO_MEMORY_EMPHASIS_LEVEL
- Iparam::MIO_MIN_REL
- Iparam: :MIO_NUMERICAL_EMPHASIS_LEVEL
- Iparam: :MIO_PRESOLVE_AGGREGATOR_USE
- Iparam: :MIO_QCQO_REFORMULATION_METHOD
- Iparam::MIO_SYMMETRY_LEVEL
- Iparam::MIO_VAR_SELECTION
- Iparam::NG
- Iparam: :PRESOLVE_LINDEP_NEW
- Iparam::PTF_WRITE_PARAMETERS
- Iparam::PTF_WRITE_SOLUTIONS
- Iparam: :REMOTE_USE_COMPRESSION
- Iparam: :SIM_DETECT_PWL
- Iparam::WRITE_JSON_INDENTATION
- Sparam: : REMOTE_OPTSERVER_HOST
- Sparam::REMOTE_TLS_CERT
- Sparam::REMOTE_TLS_CERT_PATH

Removed
- iparam.check_convexity
- iparam.intpnt_multi_thread
- iparam.log_check_convexity
- iparam.read_lp_drop_new_vars_in_bou
- iparam.read_lp_quoted_names
- iparam.write_lp_quoted_names
- iparam.write_lp_strict_format
- iparam.write_lp_terms_per_line
- iparam.write_precision
- sparam.remote_access_token
- sparam.stat_file_name

\subsection*{18.2.3 Constants compared to version 9}

Added
- Callbackcode: :BEGIN_SOLVE_ROOT_RELAX
- Callbackcode: :END_SOLVE_ROOT_RELAX
- Callbackcode: :RESTART_MIO
- Callbackcode: :UPDATE_SIMPLEX
- Dinfitem: : ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_DENSITY
- Dinfitem: :MIO_CLIQUE_SELECTION_TIME
- Dinfitem: :MIO_CMIR_SELECTION_TIME
- Dinfitem: :MIO_GMI_SELECTION_TIME
- Dinfitem: :MIO_IMPLIED_BOUND_SELECTION_TIME
- Dinfitem: :MIO_IMPLIED_BOUND_SEPARATION_TIME
- Dinfitem: :MIO_INITIAL_FEASIBLE_SOLUTION_OBJ
- Dinfitem: :MIO_KNAPSACK_COVER_SELECTION_TIME
- Dinfitem: :MIO_LIPRO_SELECTION_TIME
- Dinfitem: :MIO_LIPRO_SEPARATION_TIME
- Dinfitem: :MIO_ROOT_CUT_SELECTION_TIME
- Dinfitem: :MIO_ROOT_CUT_SEPARATION_TIME
- Dinfitem: :MIO_ROOT_TIME
- Dinfitem: :MIO_SYMMETRY_DETECTION_TIME
- Dinfitem: :MIO_SYMMETRY_FACTOR
- Dinfitem: :OPTIMIZER_TICKS
- Dinfitem: : PRESOLVE_TOTAL_PRIMAL_PERTURBATION
- Dinfitem: :READ_DATA_TIME
- Dinfitem: :REMOTE_TIME
- Dinfitem: :SOL_ITG_PVIOLACC
- Dinfitem: :SOL_ITG_PVIOLDJC
- Dinfitem: :SOL_ITR_DVIOLACC
- Dinfitem: :SOL_ITR_PVIOLACC
- Dinfitem: :WRITE_DATA_TIME
- Iinfitem: :MIO_INITIAL_FEASIBLE_SOLUTION
- Iinfitem: :MIO_NUM_ACTIVE_ROOT_CUTS
- Iinfitem: :MIO_NUM_RESTARTS
- Iinfitem::MIO_NUM_ROOT_CUT_ROUNDS
- Iinfitem::MIO_NUM_SELECTED_CLIQUE_CUTS
- Iinfitem::MIO_NUM_SELECTED_CMIR_CUTS
- Iinfitem::MIO_NUM_SELECTED_GOMORY_CUTS
- Iinfitem::MIO_NUM_SELECTED_IMPLIED_BOUND_CUTS
- Iinfitem::MIO_NUM_SELECTED_KNAPSACK_COVER_CUTS
- Iinfitem::MIO_NUM_SELECTED_LIPRO_CUTS
- Iinfitem::MIO_NUM_SEPARATED_CLIQUE_CUTS
- Iinfitem::MIO_NUM_SEPARATED_CMIR_CUTS
- Iinfitem::MIO_NUM_SEPARATED_GOMORY_CUTS
- Iinfitem::MIO_NUM_SEPARATED_IMPLIED_BOUND_CUTS
- Iinfitem::MIO_NUM_SEPARATED_KNAPSACK_COVER_CUTS
- Iinfitem::MIO_NUM_SEPARATED_LIPRO_CUTS
- Iinfitem: :MIO_NUM_SOLVED_NODES
- Iinfitem::MIO_NUMDJC
- Iinfitem: :MIO_PRESOLVED_NUMDJC
- Iinfitem::MIO_TOTAL_NUM_SELECTED_CUTS
- Iinfitem::MIO_TOTAL_NUM_SEPARATED_CUTS
- Iinfitem::PRESOLVE_NUM_PRIMAL_PERTURBATIONS
- Liinfitem::ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_COLUMNS
- Liinfitem::ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_NZ
- Liinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_ROWS
- Liinfitem::MIO_NUM_DUAL_ILLPOSED_CER
- Liinfitem::MIO_NUM_PRIM_ILLPOSED_CER
- Liinfitem: :RD_NUMACC
- Liinfitem::RD_NUMDJC
- Liinfitem::SIMPLEX_ITER

\section*{Removed}
- constant.callbackcode.begin_full_convexity_check
- constant.callbackcode.end_full_convexity_check
- constant.callbackcode.im_full_convexity_check
- constant.dinfitem.mio_implied_bound_time
- constant.dinfitem.mio_root_cutgen_time
- constant.dinfitem.rd_time
- constant.iinfitem.mio_num_clique_cuts
- constant.iinfitem.mio_num_cmir_cuts
- constant.iinfitem.mio_num_gomory_cuts
- constant.iinfitem.mio_num_implied_bound_cuts
- constant.iinfitem.mio_num_knapsack_cover_cuts
- constant.iinfitem.mio_total_num_cuts
- constant.scalingtype.aggressive
- constant.scalingtype.moderate
- constant.startpointtype.satisfy_bounds
18.2.4 Response Codes compared to version 9

Added
- Rescode: :ERR_ACC_AFE_DOMAIN_MISMATCH
- Rescode: :ERR_ACC_INVALID_ENTRY_INDEX
- Rescode: :ERR_ACC_INVALID_INDEX
- Rescode: :ERR_AFE_INVALID_INDEX
- Rescode: :ERR_ARGUMENT_IS_TOO_SMALL
- Rescode: :ERR_AXIS_NAME_SPECIFICATION
- Rescode: :ERR_CBF_DUPLICATE_PSDCON
- Rescode: :ERR_CBF_EXPECTED_A_KEYWORD
- Rescode: :ERR_CBF_INVALID_DIMENSION_OF_PSDCON
- Rescode: :ERR_CBF_INVALID_NUM_ACOORD
- Rescode: :ERR_CBF_INVALID_NUM_BCOORD
- Rescode: :ERR_CBF_INVALID_NUM_DCOORD
- Rescode: :ERR_CBF_INVALID_NUM_FCOORD
- Rescode: :ERR_CBF_INVALID_NUM_HCOORD
- Rescode: :ERR_CBF_INVALID_NUM_OBJACOORD
- Rescode: :ERR_CBF_INVALID_NUM_OBJFCOORD
- Rescode: :ERR_CBF_INVALID_NUM_PSDCON
- Rescode: :ERR_CBF_INVALID_PSDCON_BLOCK_INDEX
- Rescode::ERR_CBF_INVALID_PSDCON_INDEX
- Rescode: :ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX
- Rescode: :ERR_CBF_UNSUPPORTED_CHANGE
- Rescode: :ERR_DIMENSION_SPECIFICATION
- Rescode: :ERR_DJC_AFE_DOMAIN_MISMATCH
- Rescode::ERR_DJC_DOMAIN_TERMSIZE_MISMATCH
- Rescode::ERR_DJC_INVALID_INDEX
- Rescode::ERR_DJC_INVALID_TERM_SIZE
- Rescode::ERR_DJC_TOTAL_NUM_TERMS_MISMATCH
- Rescode::ERR_DJC_UNSUPPORTED_DOMAIN_TYPE
- Rescode::ERR_DOMAIN_DIMENSION
- Rescode::ERR_DOMAIN_DIMENSION_PSD
- Rescode::ERR_DOMAIN_INVALID_INDEX
- Rescode::ERR_DOMAIN_POWER_INVALID_ALPHA
- Rescode::ERR_DOMAIN_POWER_NEGATIVE_ALPHA
- Rescode::ERR_DOMAIN_POWER_NLEFT
- Rescode::ERR_DUPLICATE_DJC_NAMES
- Rescode::ERR_DUPLICATE_DOMAIN_NAMES
- Rescode::ERR_DUPLICATE_FIJ
- Rescode::ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRIX
- Rescode::ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST
- Rescode::ERR_HUGE_FIJ
- Rescode::ERR_INDEX_IS_NOT_UNIQUE
- Rescode::ERR_INF_IN_DOUBLE_DATA
- Rescode::ERR_INV_DINF
- Rescode::ERR_INV_IINF
- Rescode::ERR_INV_LIINF
- Rescode::ERR_INV_RESCODE
- Rescode::ERR_INVALID_B
- Rescode::ERR_INVALID_CFIX
- Rescode::ERR_INVALID_FIJ
- Rescode::ERR_INVALID_FILE_FORMAT_FOR_AFFINE_CONIC_CONSTRAINTS
- Rescode::ERR_INVALID_FILE_FORMAT_FOR_DISJUNCTIVE_CONSTRAINTS
- Rescode::ERR_INVALID_FILE_FORMAT_FOR_QUADRATIC_TERMS
- Rescode::ERR_INVALID_G
- Rescode::ERR_LICENSE_OLD_SERVER_VERSION
- Rescode::ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND
- Rescode::ERR_LP_DUPLICATE_SECTION
- Rescode::ERR_LP_EXPECTED_CONSTRAINT_RELATION
- Rescode::ERR_LP_EXPECTED_NUMBER
- Rescode::ERR_LP_EXPECTED_OBJECTIVE
- Rescode::ERR_LP_INDICATOR_VAR
- Rescode::ERR_MISMATCHING_DIMENSION
- Rescode::ERR_MPS_INVALID_BOUND_KEY
- Rescode::ERR_MPS_INVALID_CON_KEY
- Rescode::ERR_MPS_INVALID_INDICATOR_CONSTRAINT
- Rescode::ERR_MPS_INVALID_INDICATOR_QUADRATIC_CONSTRAINT
- Rescode::ERR_MPS_INVALID_INDICATOR_VALUE
- Rescode::ERR_MPS_INVALID_INDICATOR_VARIABLE
- Rescode::ERR_MPS_INVALID_KEY
- Rescode::ERR_MPS_INVALID_SEC_NAME
- Rescode::ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYPE
- Rescode::ERR_NO_DOTY
- Rescode::ERR_NOT_POWER_DOMAIN
- Rescode::ERR_OPF_DUAL_INTEGER_SOLUTION
- Rescode::ERR_OPF_DUPLICATE_BOUND
- Rescode::ERR_OPF_DUPLICATE_CONE_ENTRY
- Rescode::ERR_OPF_DUPLICATE_CONSTRAINT_NAME
- Rescode::ERR_OPF_INCORRECT_TAG_PARAM
- Rescode::ERR_OPF_INVALID_CONE_TYPE
- Rescode::ERR_OPF_INVALID_TAG
- Rescode::ERR_OPF_MISMATCHED_TAG
- Rescode::ERR_OPF_SYNTAX
- Rescode::ERR_OPF_TOO_LARGE
- Rescode::ERR_PTF_INCOMPATIBILITY
- Rescode::ERR_PTF_INCONSISTENCY
- Rescode::ERR_PTF_UNDEFINED_ITEM
- Rescode::ERR_READ_GZIP
- Rescode::ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTED
- Rescode::ERR_READ_ZSTD
- Rescode::ERR_SERVER_ACCESS_TOKEN
- Rescode::ERR_SERVER_ADDRESS
- Rescode::ERR_SERVER_CERTIFICATE
- Rescode::ERR_SERVER_TLS_CLIENT
- Rescode::ERR_SPARSITY_SPECIFICATION
- Rescode::ERR_UNALLOWED_WHICHSOL
- Rescode::TRM_LOST_RACE
- Rescode::WRN_INVALID_MPS_NAME
- Rescode::WRN_INVALID_MPS_OBJ_NAME
- Rescode::WRN_LARGE_FIJ
- Rescode::WRN_MODIFIED_DOUBLE_PARAMETER
- Rescode::WRN_NO_INFEASIBILITY_REPORT_WHEN_MATRIX_VARIABLES
- Rescode::WRN_PRESOLVE_PRIMAL_PERTUBATIONS
- Rescode::WRN_WRITE_LP_DUPLICATE_CON_NAMES
- Rescode::WRN_WRITE_LP_DUPLICATE_VAR_NAMES
- Rescode::WRN_WRITE_LP_INVALID_CON_NAMES
- Rescode::WRN_WRITE_LP_INVALID_VAR_NAMES

\section*{Removed}
- rescode.err_lp_dup_slack_name
- rescode.err_lp_format
- rescode.err_lp_free_constraint
- rescode.err_lp_incompatible
- rescode.err_lp_invalid_con_name
- rescode.err_lp_write_conic_problem
- rescode.err_lp_write_geco_problem
- rescode.err_mps_inv_bound_key
- rescode.err_mps_inv_con_key
- rescode.err_mps_inv_sec_name
- rescode.err_opf_format
- rescode.err_opf_new_variable
- rescode.err_read_lp_nonexisting_name
- rescode.err_write_lp_format
- rescode.err_write_lp_non_unique_name
- rescode.wrn_exp_cones_with_variables_fixed_at_zero
- rescode.wrn_pow_cones_with_root_fixed_at_zero
- rescode.wrn_quad_cones_with_root_fixed_at_zero
- rescode.wrn_rquad_cones_with_root_fixed_at_zero

\section*{Bibliography}
[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Math. Programming, 71(2):221-245, 1995.
[AGMeszarosX96] E. D. Andersen, J. Gondzio, Cs. Mészáros, and X. Xu. Implementation of interior point methods for large scale linear programming. In T. Terlaky, editor, Interior-point methods of mathematical programming, pages 189-252. Kluwer Academic Publishers, 1996.
[ART03] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Programming, February 2003.
[AY96] E. D. Andersen and Y. Ye. Combining interior-point and pivoting algorithms. Management Sci., 42(12):1719-1731, December 1996.
[And09] Erling D. Andersen. The homogeneous and self-dual model and algorithm for linear optimization. Technical Report TR-1-2009, MOSEK ApS, 2009. URL: http://docs.mosek.com/ whitepapers/homolo.pdf.
[And13] Erling D. Andersen. On formulating quadratic functions in optimization models. Technical Report TR-1-2013, MOSEK ApS, 2013. Last revised 23-feb-2016. URL: http://docs.mosek. com/whitepapers/qmodel.pdf.
[BKVH07] S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi. A Tutorial on Geometric Programming. Optimization and Engineering, 8(1):67-127, 2007. Available at http://www.stanford.edu/ \(\backslash\) protect \(\backslash\) unhbox \(\backslash\) voidb@x \(\backslash\) penalty \(\backslash @ M \backslash\) boyd/gp_tutorial.html.
[Chvatal83] V. Chvátal. Linear programming. W.H. Freeman and Company, 1983.
[CCornuejolsZ14] M. Conforti, G. Cornu/'ejols, and G. Zambelli. Integer programming. Springer, 2014.
[GK00] Richard C. Grinold and Ronald N. Kahn. Active portfolio management. McGraw-Hill, New York, 2 edition, 2000.
[Naz87] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press, New York, 1987.
[RTV97] C. Roos, T. Terlaky, and J. -Ph. Vial. Theory and algorithms for linear optimization: an interior point approach. John Wiley and Sons, New York, 1997.
[Ste98] G. W. Stewart. Matrix Algorithms. Volume 1: Basic decompositions. SIAM, 1998.
[Wal00] S. W. Wallace. Decision making under uncertainty: is sensitivity of any use. Oper. Res., 48(1):20-25, January 2000.
[Wol98] L. A. Wolsey. Integer programming. John Wiley and Sons, 1998.

\section*{Symbol Index}

\section*{Classes}

Env, 234
Env.task, 247
Env.syrk, 246
Env.sym_nam_to_value, 246
Env.syevd, 245
Env.syeig, 245
Env.sparse_triangular_solve_dense, 244
Env.reset_expiry_licenses, 244
Env.put_license_wait, 243
Env.put_license_path, 243
Env.put_license_debug, 243
Env.put_license_code, 243
Env.potrf, 242
Env.optimize_batch, 242
Env.link_file_to_stream, 241
Env.license_cleanup, 241
Env.is_infinity, 241
Env.get_version, 241
Env.get_response_class, 240
Env.get_code_desc, 240
Env.get_build_info, 240
Env.gemv, 239
Env.gemm, 238
Env.expirylicenses, 238
Env.Env, 234
Env.echo_intro, 238
Env.dot, 237
Env.compute_sparse_cholesky, 236
Env.check_version, 235
Env.check_out_license, 235
Env.check_in_license, 235
Env.check_in_all, 234
Env.axpy, 234
Task, 247
Task.write_task, 384
Task.write_solution_file, 384
Task.write_solution, 384
Task.write_param_file, 383
Task.write_json_sol, 383
Task.write_data_stream, 383
Task.write_data, 382
Task.write_b_solution, 382
Task.without_callbacks, 382
Task.with_callbacks, 382
Task.which_param, 381
Task.update_solution_info, 381
Task.unlink_func_from_stream, 381

Task.toconic, 381
Task.Task, 247
Task.str_to_sk, 380
Task.str_to_cone_type, 380
Task.solve_with_basis, 379
Task.solution_summary, 379
Task.solution_def, 379
Task.set_defaults, 379
Task.sensitivity_report, 378
Task.resize_task, 378
Task.remove_vars, 378
Task.remove_cons, 377
Task.remove_cones, 377
Task.remove_barvars, 377
Task.read_task, 377
Task.read_summary, 376
Task.read_solution_file, 376
Task.read_solution, 376
Task.read_ptf_string, 376
Task.read_param_file, 375
Task.read_opf_string, 375
Task.read_lp_string, 375
Task.read_json_string, 375
Task.read_json_sol, 375
Task.read_data_format, 374
Task.read_data, 374
Task.read_b_solution, 374
Task.put_y_slice, 373
Task.put_y, 373
Task.put_xx_slice, 373
Task.put_xx, 373
Task.put_xc_slice, 372
Task.put_xc, 372
Task.put_var_type_list, 372
Task.put_var_type, 371
Task.put_var_solution_j, 371
Task.put_var_name, 371
Task.put_var_bound_slice_const, 370
Task.put_var_bound_slice, 370
Task.put_var_bound_list_const, 370
Task.put_var_bound_list, 369
Task.put_var_bound, 369
Task.put_task_name, 369
Task.put_sux_slice, 368
Task.put_sux, 368
Task.put_suc_slice, 368
Task.put_suc, 367
Task.put_str_param, 367
Task.put_stream_callback, 367

Task.put_solution_y_i, 367
Task.put_solution_new, 366
Task.put_solution, 365
Task.put_snx_slice, 365
Task.put_snx, 365
Task.put_slx_slice, 364
Task.put_slx, 364
Task.put_slc_slice, 364
Task.put_slc, 363
Task.put_skx_slice, 363
Task.put_skx, 363
Task.put_skc_slice, 362
Task.put_skc, 362
Task.put_q_obj_i_j, 362
Task.put_q_obj, 361
Task.put_q_con_k, 361
Task.put_q_con, 360
Task.put_param, 360
Task.put_optserver_host, 360
Task.put_obj_sense, 360
Task.put_obj_name, 359
Task.put_na_str_param, 359
Task.put_na_int_param, 359
Task.put_na_dou_param, 359
Task.put_max_num_var, 358
Task.put_max_num_q_nz, 358
Task.put_max_num_domain, 358
Task.put_max_num_djc, 357
Task.put_max_num_cone, 357
Task.put_max_num_con, 357
Task.put_max_num_barvar, 356
Task.put_max_num_a_nz, 355
Task.put_max_num_afe, 356
Task.put_max_num_acc, 356
Task.put_int_param, 355
Task.put_dou_param, 355
Task.put_domain_name, 355
Task.put_djc_slice, 354
Task.put_djc_name, 354
Task.put_djc, 353
Task.put_c_slice, 349
Task.put_con_solution_i, 352
Task.put_con_name, 352
Task.put_cone_name, 353
Task.put_cone, 353
Task.put_con_bound_slice_const, 351
Task.put_con_bound_slice, 351
Task.put_con_bound_list_const, 351
Task.put_con_bound_list, 350
Task.put_con_bound, 350
Task.put_c_list, 349
Task.put_c_j, 348
Task.put_cfix, 350
Task.put_callback, 350
Task.put_barx_j, 348
Task.put_barvar_name, 348
Task.put_bars_j, 348
Task.put_barc_j, 347

Task.put_barc_block_triplet, 347
Task.put_bara_row_list, 346
Task.put_bara_ij_list, 346
Task.put_bara_ij, 345
Task.put_bara_block_triplet, 345
Task.put_a_truncate_tol, 337
Task.put_a_row_slice, 337
Task.put_a_row_list, 336
Task.put_a_row, 336
Task.put_aij_list, 345
Task.put_aij, 344
Task.put_afe_g_slice, 344
Task.put_afe_g_list, 344
Task.put_afe_g, 343
Task.put_afe_f_row_list, 343
Task.put_afe_f_row, 343
Task.put_afe_f_entry_list, 342
Task.put_afe_f_entry, 342
Task.put_afe_f_col, 342
Task.put_afe_barf_row, 341
Task.put_afe_barf_entry_list, 340
Task.put_afe_barf_entry, 340
Task.put_afe_barf_block_triplet, 339
Task.put_a_col_slice, 336
Task.put_a_col_list, 335
Task.put_a_col, 335
Task.put_acc_name, 339
Task.put_acc_list, 339
Task.put_acc_dot_y, 339
Task.put_acc_b_j, 338
Task.put_acc_b, 338
Task.put_acc, 338
Task.print_param, 335
Task.primal_sensitivity, 334
Task.primal_repair, 333
Task.optimizer_summary, 333
Task.optimize_rmt, 332
Task.optimize, 332
Task.one_solution_summary, 332
Task.link_file_to_stream, 332
Task.is_str_par_name, 331
Task.is_int_par_name, 331
Task.is_dou_par_name, 331
Task.input_data, 330
Task.init_basis_solve, 330
Task.infeasibility_report, 329
Task.get_y_slice, 329
Task.get_y, 329
Task.get_xx_slice, 328
Task.get_xx, 328
Task.get_xc_slice, 328
Task.get_xc, 328
Task.get_var_type_list, 327
Task.get_var_type, 327
Task.get_var_name_len, 327
Task.get_var_name_index, 326
Task.get_var_name, 326
Task.get_var_bound_slice, 326

Task.get_var_bound, 325
Task.get_task_name_len, 325
Task.get_task_name, 325
Task.get_sym_mat_info, 324
Task.get_symb_con, 325
Task.get_sux_slice, 324
Task.get_sux, 324
Task.get_suc_slice, 323
Task.get_suc, 323
Task.get_str_param_len, 323
Task.get_str_param, 323
Task.get_sparse_sym_mat, 322
Task.get_solution_slice, 322
Task.get_solution_new, 321
Task.get_solution_info_new, 320
Task.get_solution_info, 319
Task.get_solution, 317
Task.get_sol_sta, 317
Task.get_snx_slice, 317
Task.get_snx, 317
Task.get_slx_slice, 316
Task.get_slx, 316
Task.get_slc_slice, 316
Task.get_slc, 315
Task.get_skx_slice, 315
Task.get_skx, 315
Task.get_skn, 315
Task.get_skc_slice, 314
Task.get_skc, 314
Task.get_reduced_costs, 314
Task.get_q_obj_i_j, 313
Task.get_q_obj, 313
Task.get_q_con_k, 313
Task.get_pviol_var, 312
Task.get_pviol_djc, 312
Task.get_pviol_cones, 311
Task.get_pviol_con, 311
Task.get_pviol_barvar, 310
Task.get_pviol_acc, 310
Task.get_pro_sta, 310
Task.get_prob_type, 310
Task.get_primal_solution_norms, 309
Task.get_primal_obj, 309
Task.get_power_domain_info, 309
Task.get_power_domain_alpha, 308
Task.get_param_name, 308
Task.get_param_max, 308
Task.get_obj_sense, 308
Task.get_obj_name_len, 308
Task.get_obj_name, 307
Task.get_num_var, 307
Task.get_num_sym_mat, 307
Task.get_num_q_obj_nz, 307
Task.get_num_q_con_k_nz, 307
Task.get_num_param, 306
Task.get_num_int_var, 306
Task.get_num_domain, 306
Task.get_num_djc, 306

Task.get_num_cone_mem, 305
Task.get_num_cone, 305
Task.get_num_con, 305
Task.get_num_barvar, 305
Task.get_num_barc_nz, 305
Task.get_num_barc_block_triplets, 304
Task.get_num_bara_nz, 304
Task.get_num_bara_block_triplets, 304
Task.get_num_a_nz_64, 303
Task.get_num_a_nz, 303
Task.get_num_afe, 304
Task.get_num_acc, 304
Task.get_na_str_param, 303
Task.get_na_int_param, 303
Task.get_na_int_inf, 302
Task.get_na_dou_param, 302
Task.get_na_dou_inf, 302
Task.get_mem_usage, 302
Task.get_max_num_var, 301
Task.get_max_num_q_nz, 301
Task.get_max_num_cone, 301
Task.get_max_num_con, 301
Task.get_max_num_barvar, 300
Task.get_max_num_a_nz, 300
Task.get_max_name_len, 300
Task.get_lint_inf, 300
Task.get_len_barvar_j, 299
Task.get_int_param, 299
Task.get_int_inf, 299
Task.get_inf_name, 299
Task.get_inf_max, 298
Task.get_inf_index, 298
Task.get_dviol_var, 298
Task.get_dviol_cones, 297
Task.get_dviol_con, 297
Task.get_dviol_barvar, 296
Task.get_dviol_acc, 296
Task.get_dual_solution_norms, 295
Task.get_dual_obj, 295
Task.get_dou_param, 295
Task.get_dou_inf, 295
Task.get_domain_type, 294
Task.get_domain_name_len, 294
Task.get_domain_name, 294
Task.get_domain_n, 294
Task.get_djc_term_size_list, 293
Task.get_djcs, 293
Task.get_djc_num_term_tot, 293
Task.get_djc_num_term, 292
Task.get_djc_num_domain_tot, 292
Task.get_djc_num_domain, 292
Task.get_djc_num_afe_tot, 292
Task.get_djc_num_afe, 292
Task.get_djc_name_len, 291
Task.get_djc_name, 291
Task.get_djc_domain_idx_list, 291
Task.get_djc_b, 291
Task.get_djc_afe_idx_list, 290

Task.get_dim_barvar_j, 290
Task.get_c_slice, 286
Task.get_con_name_len, 288
Task.get_con_name_index, 288
Task.get_con_name, 287
Task.get_cone_name_len, 290
Task.get_cone_name_index, 289
Task.get_cone_name, 289
Task.get_cone_info, 289
Task.get_cone, 288
Task.get_con_bound_slice, 287
Task.get_con_bound, 287
Task.get_c_list, 286
Task.get_c_j, 286
Task.get_cfix, 287
Task.get_c, 285
Task.get_barx_slice, 285
Task.get_barx_j, 285
Task.get_barvar_name_len, 284
Task.get_barvar_name_index, 284
Task.get_barvar_name, 284
Task.get_bars_slice, 283
Task.get_bars_j, 283
Task.get_barc_sparsity, 283
Task.get_barc_idx_j, 283
Task.get_barc_idx_info, 282
Task.get_barc_idx, 282
Task.get_barc_block_triplet, 282
Task.get_bara_sparsity, 281
Task.get_bara_idx_info, 281
Task.get_bara_idx_i_j, 280
Task.get_bara_idx, 280
Task.get_bara_block_triplet, 280
Task.get_a_truncate_tol, 271
Task.get_a_trip, 271
Task.get_a_row_slice_trip, 271
Task.get_a_row_slice_num_nz, 270
Task.get_a_row_slice, 270
Task.get_a_row_num_nz, 270
Task.get_a_row, 269
Task.get_a_piece_num_nz, 269
Task.get_aij, 279
Task.get_afe_g_slice, 279
Task.get_afe_g, 279
Task.get_afe_f_trip, 278
Task.get_afe_f_row_num_nz, 278
Task.get_afe_f_row, 278
Task.get_afe_f_num_nz, 278
Task.get_afe_barf_row_info, 277
Task.get_afe_barf_row, 277
Task.get_afe_barf_num_row_entries, 276
Task.get_afe_barf_num_block_triplets, 276
Task.get_afe_barf_block_triplet, 276
Task.get_a_col_slice_trip, 269
Task.get_a_col_slice_num_nz, 268
Task.get_a_col_slice, 268
Task.get_a_col_num_nz, 268
Task.get_a_col, 267

Task.get_accs, 275
Task.get_acc_n_tot, 275
Task.get_acc_name_len, 275
Task.get_acc_name, 275
Task.get_acc_n, 274
Task.get_acc_g_vector, 274
Task.get_acc_f_trip, 274
Task.get_acc_f_numnz, 274
Task.get_acc_dot_y_s, 273
Task.get_acc_dot_y, 273
Task.get_acc_domain, 273
Task.get_acc_barf_num_block_triplets, 273
Task.get_acc_barf_block_triplet, 272
Task.get_acc_b, 272
Task.get_acc_afe_idx_list, 272
Task.generate_var_names, 267
Task.generate_djc_names, 266
Task.generate_con_names, 266
Task.generate_cone_names, 266
Task.generate_barvar_names, 265
Task.generate_acc_names, 265
Task.evaluate_accs, 265
Task.evaluate_acc, 264
Task.empty_afe_f_row_list, 264
Task.empty_afe_f_row, 264
Task.empty_afe_f_col_list, 264
Task.empty_afe_f_col, 264
Task.empty_afe_barf_row_list, 263
Task.empty_afe_barf_row, 263
Task.dual_sensitivity, 263
Task.delete_solution, 262
Task.commit_changes, 262
Task.clone, 262
Task.clear_stream_callback, 262
Task.clear_callback, 262
Task.chg_var_bound, 261
Task.chg_con_bound, 261
Task.check_mem, 260
Task.basis_cond, 260
Task.async_stop, 260
Task.async_poll, 259
Task.async_optimize, 259
Task.async_get_result, 258
Task.append_vars, 258
Task.append_svec_psd_cone_domain, 258
Task. append_sparse_sym_mat_list, 257
Task.append_sparse_sym_mat, 257
Task.append_rzero_domain, 256
Task.append_r_quadratic_cone_domain, 256
Task. append_rplus_domain, 256
Task.append_rminus_domain, 256
Task.append_r_domain, 255
Task.append_quadratic_cone_domain, 255
Task.append_primal_power_cone_domain, 255
Task.append_primal_geo_mean_cone_domain, 254
Task.append_primal_exp_cone_domain, 254
Task.append_dual_power_cone_domain, 254

Task.append_dual_geo_mean_cone_domain, 253
Task.append_dual_exp_cone_domain, 253
Task.append_djcs, 253
Task.append_cons, 253
Task.append_cones_seq, 252
Task.append_cone_seq, 252
Task.append_cone, 251
Task.append_barvars, 251
Task.append_afes, 250
Task.append_accs_seq, 250
Task.append_acc_seq, 249
Task.append_accs, 250
Task.append_acc, 248
Task.analyze_solution, 248
Task.analyze_problem, 248
Task.analyze_names, 248

\section*{Enumerations}

Basindtype, 492
Basindtype::RESERVERED, 492
Basindtype::NO_ERROR, 492
Basindtype: :NEVER, 492
Basindtype::IF_FEASIBLE, 492
Basindtype: :ALWAYS, 492
Boundkey, 492
Boundkey::UP, 492
Boundkey::RA, 492
Boundkey::LO, 492
Boundkey::FX, 492
Boundkey::FR, 492
Branchdir, 514
Branchdir::UP, 514
Branchdir::ROOT_LP, 514
Branchdir::PSEUDOCOST, 514
Branchdir::NEAR, 514
Branchdir::GUIDED, 514
Branchdir::FREE, 514
Branchdir::FAR, 514
Branchdir::DOWN, 514
Callbackcode, 494
Callbackcode::WRITE_OPF, 499
Callbackcode::UPDATE_SIMPLEX, 499
Callbackcode::UPDATE_PRIMAL_SIMPLEX_BI, 498
Callbackcode::UPDATE_PRIMAL_SIMPLEX, 498
Callbackcode: :UPDATE_PRIMAL_BI, 498
Callbackcode: :UPDATE_PRESOLVE, 498
Callbackcode: :UPDATE_DUAL_SIMPLEX_BI, 498
Callbackcode::UPDATE_DUAL_SIMPLEX, 498
Callbackcode: :UPDATE_DUAL_BI, 498
Callbackcode::SOLVING_REMOTE, 498
Callbackcode: :RESTART_MIO, 498
Callbackcode: :READ_OPF_SECTION, 498
Callbackcode::READ_OPF, 498
Callbackcode::PRIMAL_SIMPLEX, 498
Callbackcode: :NEW_INT_MIO, 498
Callbackcode::INTPNT, 498
Callbackcode::IM_SIMPLEX_BI, 498
Callbackcode::IM_SIMPLEX, 498

Callbackcode::IM_ROOT_CUTGEN, 498
Callbackcode::IM_READ, 498
Callbackcode::IM_QO_REFORMULATE, 498
Callbackcode::IM_PRIMAL_SIMPLEX, 497
Callbackcode::IM_PRIMAL_SENSIVITY, 497
Callbackcode::IM_PRIMAL_BI, 497
Callbackcode::IM_PRESOLVE, 497
Callbackcode::IM_ORDER, 497
Callbackcode::IM_MIO_PRIMAL_SIMPLEX, 497
Callbackcode::IM_MIO_INTPNT, 497
Callbackcode::IM_MIO_DUAL_SIMPLEX, 497
Callbackcode::IM_MIO, 497
Callbackcode::IM_LU, 497
Callbackcode::IM_LICENSE_WAIT, 497
Callbackcode::IM_INTPNT, 497
Callbackcode::IM_DUAL_SIMPLEX, 497
Callbackcode::IM_DUAL_SENSIVITY, 497
Callbackcode::IM_DUAL_BI, 497
Callbackcode::IM_CONIC, 497
Callbackcode::IM_BI, 497
Callbackcode::END_WRITE, 497
Callbackcode::END_TO_CONIC, 497
Callbackcode: :END_SOLVE_ROOT_RELAX, 496
Callbackcode::END_SIMPLEX_BI, 496
Callbackcode::END_SIMPLEX, 496
Callbackcode::END_ROOT_CUTGEN, 496
Callbackcode: :END_READ, 496
Callbackcode: :END_QCQO_REFORMULATE, 496
Callbackcode: :END_PRIMAL_SIMPLEX_BI, 496
Callbackcode::END_PRIMAL_SIMPLEX, 496
Callbackcode::END_PRIMAL_SETUP_BI, 496
Callbackcode::END_PRIMAL_SENSITIVITY, 496
Callbackcode::END_PRIMAL_REPAIR, 496
Callbackcode::END_PRIMAL_BI, 496
Callbackcode: :END_PRESOLVE, 496
Callbackcode: :END_OPTIMIZER, 496
Callbackcode::END_MIO, 496
Callbackcode: :END_LICENSE_WAIT, 496
Callbackcode::END_INTPNT, 496
Callbackcode::END_INFEAS_ANA, 496
Callbackcode: :END_DUAL_SIMPLEX_BI, 496
Callbackcode: :END_DUAL_SIMPLEX, 496
Callbackcode::END_DUAL_SETUP_BI, 496
Callbackcode: :END_DUAL_SENSITIVITY, 495
Callbackcode::END_DUAL_BI, 495
Callbackcode::END_CONIC, 495
Callbackcode::END_BI, 495
Callbackcode::DUAL_SIMPLEX, 495
Callbackcode: :CONIC, 495
Callbackcode::BEGIN_WRITE, 495
Callbackcode::BEGIN_TO_CONIC, 495
Callbackcode: :BEGIN_SOLVE_ROOT_RELAX, 495
Callbackcode::BEGIN_SIMPLEX_BI, 495
Callbackcode: :BEGIN_SIMPLEX, 495
Callbackcode::BEGIN_ROOT_CUTGEN, 495
Callbackcode::BEGIN_READ, 495
Callbackcode: :BEGIN_QCQO_REFORMULATE, 495
Callbackcode: :BEGIN_PRIMAL_SIMPLEX_BI, 495

Callbackcode::BEGIN_PRIMAL_SIMPLEX, 495
Callbackcode::BEGIN_PRIMAL_SETUP_BI, 495
Callbackcode::BEGIN_PRIMAL_SENSITIVITY, 495
Callbackcode: :BEGIN_PRIMAL_REPAIR, 495
Callbackcode::BEGIN_PRIMAL_BI, 495
Callbackcode::BEGIN_PRESOLVE, 495
Callbackcode: :BEGIN_OPTIMIZER, 494
Callbackcode::BEGIN_MIO, 494
Callbackcode::BEGIN_LICENSE_WAIT, 494
Callbackcode::BEGIN_INTPNT, 494
Callbackcode::BEGIN_INFEAS_ANA, 494
Callbackcode: :BEGIN_DUAL_SIMPLEX_BI, 494
Callbackcode::BEGIN_DUAL_SIMPLEX, 494
Callbackcode::BEGIN_DUAL_SETUP_BI, 494
Callbackcode::BEGIN_DUAL_SENSITIVITY, 494
Callbackcode::BEGIN_DUAL_BI, 494
Callbackcode::BEGIN_CONIC, 494
Callbackcode::BEGIN_BI, 494
Compresstype, 499
Compresstype::ZSTD, 499
Compresstype: :NONE, 499
Compresstype: :GZIP, 499
Compresstype::FREE, 499
Conetype, 499
Conetype::ZERO, 499
Conetype::RQUAD, 499
Conetype: :QUAD, 499
Conetype::PPOW, 499
Conetype::PEXP, 499
Conetype::DPOW, 499
Conetype: :DEXP, 499
Dataformat, 500
Dataformat::TASK, 500
Dataformat::PTF, 500
Dataformat::OP, 500
Dataformat::MPS, 500
Dataformat::LP, 500
Dataformat: : JSON_TASK, 500
Dataformat::FREE_MPS, 500
Dataformat::EXTENSION, 500
Dataformat::CB, 500
Dinfitem, 501
Dinfitem: :WRITE_DATA_TIME, 507
Dinfitem::TO_CONIC_TIME, 507
Dinfitem::SOL_ITR_PVIOLVAR, 506
Dinfitem::SOL_ITR_PVIOLCONES, 506
Dinfitem::SOL_ITR_PVIOLCON, 506
Dinfitem::SOL_ITR_PVIOLBARVAR, 506
Dinfitem::SOL_ITR_PVIOLACC, 506
Dinfitem::SOL_ITR_PRIMAL_OBJ, 506
Dinfitem::SOL_ITR_NRM_Y, 506
Dinfitem::SOL_ITR_NRM_XX, 506
Dinfitem::SOL_ITR_NRM_XC, 506
Dinfitem::SOL_ITR_NRM_SUX, 506
Dinfitem::SOL_ITR_NRM_SUC, 506
Dinfitem::SOL_ITR_NRM_SNX, 506
Dinfitem::SOL_ITR_NRM_SLX, 506
Dinfitem::SOL_ITR_NRM_SLC, 506

Dinfitem::SOL_ITR_NRM_BARX, 506
Dinfitem::SOL_ITR_NRM_BARS, 506
Dinfitem::SOL_ITR_DVIOLVAR, 506
Dinfitem::SOL_ITR_DVIOLCONES, 506
Dinfitem::SOL_ITR_DVIOLCON, 506
Dinfitem::SOL_ITR_DVIOLBARVAR, 505
Dinfitem::SOL_ITR_DVIOLACC, 505
Dinfitem::SOL_ITR_DUAL_OBJ, 505
Dinfitem::SOL_ITG_PVIOLVAR, 505
Dinfitem::SOL_ITG_PVIOLITG, 505
Dinfitem::SOL_ITG_PVIOLDJC, 505
Dinfitem::SOL_ITG_PVIOLCONES, 505
Dinfitem::SOL_ITG_PVIOLCON, 505
Dinfitem::SOL_ITG_PVIOLBARVAR, 505
Dinfitem::SOL_ITG_PVIOLACC, 505
Dinfitem::SOL_ITG_PRIMAL_OBJ, 505
Dinfitem::SOL_ITG_NRM_XX, 505
Dinfitem::SOL_ITG_NRM_XC, 505
Dinfitem::SOL_ITG_NRM_BARX, 505
Dinfitem::SOL_BAS_PVIOLVAR, 505
Dinfitem::SOL_BAS_PVIOLCON, 505
Dinfitem::SOL_BAS_PRIMAL_OBJ, 505
Dinfitem::SOL_BAS_NRM_Y, 504
Dinfitem::SOL_BAS_NRM_XX, 504
Dinfitem::SOL_BAS_NRM_XC, 504
Dinfitem::SOL_BAS_NRM_SUX, 504
Dinfitem::SOL_BAS_NRM_SUC, 504
Dinfitem::SOL_BAS_NRM_SLX, 504
Dinfitem::SOL_BAS_NRM_SLC, 504
Dinfitem::SOL_BAS_NRM_BARX, 504
Dinfitem::SOL_BAS_DVIOLVAR, 504
Dinfitem::SOL_BAS_DVIOLCON, 504
Dinfitem::SOL_BAS_DUAL_OBJ, 504
Dinfitem::SIM_TIME, 504
Dinfitem::SIM_PRIMAL_TIME, 504
Dinfitem::SIM_OBJ, 504
Dinfitem::SIM_FEAS, 504
Dinfitem::SIM_DUAL_TIME, 504
Dinfitem::REMOTE_TIME, 504
Dinfitem::READ_DATA_TIME, 504
Dinfitem::QCQO_REFORMULATE_WORST_CHOLESKY_DIAG_SCALING, 504
Dinfitem: :QCQO_REFORMULATE_WORST_CHOLESKY_COLUMN_SCALING 504
Dinfitem::QCQO_REFORMULATE_TIME, 504
Dinfitem::QCQO_REFORMULATE_MAX_PERTURBATION, 503
Dinfitem: :PRIMAL_REPAIR_PENALTY_OBJ, 503
Dinfitem::PRESOLVE_TOTAL_PRIMAL_PERTURBATION, 503
Dinfitem::PRESOLVE_TIME, 503
Dinfitem: :PRESOLVE_LINDEP_TIME, 503
Dinfitem::PRESOLVE_ELI_TIME, 503
Dinfitem::OPTIMIZER_TIME, 503
Dinfitem::OPTIMIZER_TICKS, 503
Dinfitem::MIO_USER_OBJ_CUT, 503
Dinfitem::MIO_TIME, 503
Dinfitem::MIO_SYMMETRY_FACTOR, 503

Dinfitem::MIO_SYMMETRY_DETECTION_TIME, 503
Dinfitem::MIO_ROOT_TIME, 503
Dinfitem::MIO_ROOT_PRESOLVE_TIME, 503
Dinfitem::MIO_ROOT_OPTIMIZER_TIME, 503
Dinfitem::MIO_ROOT_CUT_SEPARATION_TIME, 503
Dinfitem::MIO_ROOT_CUT_SELECTION_TIME, 503
Dinfitem::MIO_PROBING_TIME, 503
Dinfitem::MIO_OBJ_REL_GAP, 503
Dinfitem::MIO_OBJ_INT, 502
Dinfitem::MIO_OBJ_BOUND, 502
Dinfitem: :MIO_OBJ_ABS_GAP, 502
Dinfitem::MIO_LIPRO_SEPARATION_TIME, 502
Dinfitem::MIO_LIPRO_SELECTION_TIME, 502

Domaintype::PRIMAL_EXP_CONE, 500
Domaintype::DUAL_POWER_CONE, 500
Domaintype: :DUAL_GEO_MEAN_CONE, 500
Domaintype::DUAL_EXP_CONE, 500
Dparam, 397
Feature, 507
Feature::PTS, 507
Feature::PTON, 507
Iinfitem, 508
Iinfitem::STO_NUM_A_REALLOC, 513
Iinfitem::SOL_ITR_SOLSTA, 513
Iinfitem::SOL_ITR_PROSTA, 513
Iinfitem::SOL_ITG_SOLSTA, 513
Dinfitem::MIO_KNAPSACK_COVER_SEPARATION_TIMEIinfitem::SOL_ITG_PROSTA, 513 502 Iinfitem::SOL_BAS_SOLSTA, 513
Dinfitem::MIO_KNAPSACK_COVER_SELECTION_TIME, Iinfitem::SOL_BAS_PROSTA, 513 502 Iinfitem::SIM_SOLVE_DUAL, 513
Dinfitem::MIO_INITIAL_FEASIBLE_SOLUTION_OBJ, Iinfitem::SIM_PRIMAL_ITER, 513 502 Iinfitem::SIM_PRIMAL_INF_ITER, 513
Dinfitem::MIO_IMPLIED_BOUND_SEPARATION_TIME, Iinfitem::SIM_PRIMAL_HOTSTART_LU, 513 502 Iinfitem::SIM_PRIMAL_HOTSTART, 513
Dinfitem::MIO_IMPLIED_BOUND_SELECTION_TIME, Iinfitem::SIM_PRIMAL_DEG_ITER, 513 502
Dinfitem::MIO_GMI_SEPARATION_TIME, 502
Dinfitem::MIO_GMI_SELECTION_TIME, 502
Dinfitem::MIO_DUAL_BOUND_AFTER_PRESOLVE, 502
Dinfitem::MIO_CONSTRUCT_SOLUTION_OBJ, 502
Dinfitem::MIO_CMIR_SEPARATION_TIME, 502
Dinfitem::MIO_CMIR_SELECTION_TIME, 502
Dinfitem::MIO_CLIQUE_SEPARATION_TIME, 502
Dinfitem::MIO_CLIQUE_SELECTION_TIME, 502
Dinfitem::INTPNT_TIME, 502
Dinfitem::INTPNT_PRIMAL_OBJ, 501
Dinfitem::INTPNT_PRIMAL_FEAS, 501
Dinfitem::INTPNT_ORDER_TIME, 501
Dinfitem::INTPNT_OPT_STATUS, 501
Dinfitem::INTPNT_FACTOR_NUM_FLOPS, 501
Dinfitem::INTPNT_DUAL_OBJ, 501
Dinfitem::INTPNT_DUAL_FEAS, 501
Dinfitem::BI_TIME, 501
Dinfitem::BI_PRIMAL_TIME, 501
Dinfitem::BI_DUAL_TIME, 501
Dinfitem::BI_CLEAN_TIME, 501
Dinfitem::BI_CLEAN_PRIMAL_TIME, 501
Dinfitem::BI_CLEAN_DUAL_TIME, 501
Dinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIXn\#EItsinYMIO_RELGAP_SATISFIED, 512 501
Domaintype, 499
Domaintype::SVEC_PSD_CONE, 500
Domaintype::RZERO, 499
Domaintype: :RQUADRATIC_CONE, 499
Domaintype::RPLUS, 499
Domaintype: :RMINUS, 499
Domaintype::R, 499
Domaintype::QUADRATIC_CONE, 499
Domaintype: :PRIMAL_POWER_CONE, 500
Domaintype: :PRIMAL_GEO_MEAN_CONE, 500

Iinfitem::SIM_NUMVAR, 513
Iinfitem::SIM_NUMCON, 513
Iinfitem::SIM_DUAL_ITER, 513
Iinfitem::SIM_DUAL_INF_ITER, 513
Iinfitem::SIM_DUAL_HOTSTART_LU, 512
Iinfitem::SIM_DUAL_HOTSTART, 512
Iinfitem::SIM_DUAL_DEG_ITER, 512
Iinfitem: :RD_PROTYPE, 512
Iinfitem::RD_NUMVAR, 512
Iinfitem: :RD_NUMQ, 512
Iinfitem::RD_NUMINTVAR, 512
Iinfitem::RD_NUMCONE, 512
Iinfitem: :RD_NUMCON, 512
Iinfitem::RD_NUMBARVAR, 512
Iinfitem: :PURIFY_PRIMAL_SUCCESS, 512
Iinfitem: :PURIFY_DUAL_SUCCESS, 512
Iinfitem::PRESOLVE_NUM_PRIMAL_PERTURBATIONS, 512
Iinfitem: :OPTIMIZE_RESPONSE, 512
Iinfitem::OPT_NUMVAR, 512
Iinfitem::OPT_NUMCON, 512
Iinfitem::MIO_USER_OBJ_CUT, 512
Iinfitem: :MIO_TOTAL_NUM_SEPARATED_CUTS, 512
Iinfitem: :MIO_TOTAL_NUM_SELECTED_CUTS, 512
Iinfitem::MIO_PRESOLVED_NUMVAR, 512
Iinfitem::MIO_PRESOLVED_NUMRQCONES, 512
Iinfitem: :MIO_PRESOLVED_NUMQCONES, 512
Iinfitem::MIO_PRESOLVED_NUMPPOWCONES, 511
Iinfitem::MIO_PRESOLVED_NUMPEXPCONES, 511
Iinfitem: :MIO_PRESOLVED_NUMINTCONEVAR, 511
Iinfitem::MIO_PRESOLVED_NUMINT, 511
Iinfitem: :MIO_PRESOLVED_NUMDPOWCONES, 511
Iinfitem::MIO_PRESOLVED_NUMDJC, 511
Iinfitem: :MIO_PRESOLVED_NUMDEXPCONES, 511
Iinfitem::MIO_PRESOLVED_NUMCONTCONEVAR, 511

Iinfitem: :MIO_PRESOLVED_NUMCONT, 511
Iinfitem::MIO_PRESOLVED_NUMCONEVAR, 511
Iinfitem::MIO_PRESOLVED_NUMCONE, 511
Iinfitem::MIO_PRESOLVED_NUMCON, 511
Iinfitem: :MIO_PRESOLVED_NUMBINCONEVAR, 511
Iinfitem::MIO_PRESOLVED_NUMBIN, 511
Iinfitem: :MIO_OBJ_BOUND_DEFINED, 511
Iinfitem::MIO_NUMVAR, 511
Iinfitem::MIO_NUMRQCONES, 511
Iinfitem::MIO_NUMQCONES, 511
Iinfitem::MIO_NUMPPOWCONES, 511
Iinfitem::MIO_NUMPEXPCONES, 511
Iinfitem: :MIO_NUMINTCONEVAR, 511
Iinfitem::MIO_NUMINT, 510
Iinfitem::MIO_NUMDPOWCONES, 510
Iinfitem::MIO_NUMDJC, 510
Iinfitem::MIO_NUMDEXPCONES, 510
Iinfitem::MIO_NUMCONTCONEVAR, 510
Iinfitem::MIO_NUMCONT, 510
Iinfitem: :MIO_NUMCONEVAR, 510
Iinfitem::MIO_NUMCONE, 510
Iinfitem::MIO_NUMCON, 510
Iinfitem::MIO_NUMBINCONEVAR, 510
Iinfitem::MIO_NUMBIN, 510
Iinfitem::MIO_NUM_SOLVED_NODES, 510
Iinfitem::MIO_NUM_SOLVED_NODES, 510 \(\quad\) Intpnthotstart::PRIMAL, 494
Iinfitem::MIO_NUM_SEPARATED_KNAPSACK_COVER_CUTSpnthotstart::DUAL, 494 \(510 \quad\) Iomode, 513
Iinfitem::MIO_NUM_SEPARATED_IMPLIED_BOUND_CUT®mode: :WRITE, 514 510 Iomode::READWRITE, 514
Iinfitem::MIO_NUM_SEPARATED_GOMORY_CUTS, Iomode::READ, 514 510
Iinfitem: :MIO_NUM_SEPARATED_CMIR_CUTS, 510
Iinfitem: :MIO_NUM_SEPARATED_CLIQUE_CUTS, 510
Iinfitem::MIO_NUM_SELECTED_LIPRO_CUTS, 510
Iinfitem: :MIO_NUM_SELECTED_KNAPSACK_COVER_CUTS,infitem: :RD_NUMANZ, 508
```

510
Liinfitem: :RD_NUMACC, 508

```

Iinfitem::MIO_NUM_SELECTED_IMPLIED_BOUND_CUTS,iinfitem: :MIO_SIMPLEX_ITER, 507 510 Liinfitem::MIO_PRESOLVED_ANZ, 507
Iinfitem::MIO_NUM_SELECTED_GOMORY_CUTS, 510 Liinfitem::MIO_NUM_PRIM_ILLPOSED_CER, 507
Iinfitem::MIO_NUM_SELECTED_CMIR_CUTS, 509 Liinfitem::MIO_NUM_DUAL_ILLPOSED_CER, 507
Iinfitem::MIO_NUM_SELECTED_CLIQUE_CUTS, 509 Liinfitem::MIO_INTPNT_ITER, 507
Iinfitem::MIO_NUM_ROOT_CUT_ROUNDS, 509 Liinfitem::MIO_ANZ, 507
Iinfitem::MIO_NUM_RESTARTS, 509
Iinfitem::MIO_NUM_REPEATED_PRESOLVE, 509
Iinfitem::MIO_NUM_RELAX, 509
Iinfitem: :MIO_NUM_INT_SOLUTIONS, 509
Iinfitem::MIO_NUM_BRANCH, 509
Iinfitem::MIO_NUM_ACTIVE_ROOT_CUTS, 509
Iinfitem::MIO_NUM_ACTIVE_NODES, 509
Iinfitem::MIO_NODE_DEPTH, 509
Iinfitem: :MIO_INITIAL_FEASIBLE_SOLUTION, 509
Iinfitem::MIO_CONSTRUCT_SOLUTION, 509
Iinfitem::MIO_CLIQUE_TABLE_SIZE, 509
Iinfitem::MIO_ABSGAP_SATISFIED, 509
Iinfitem::INTPNT_SOLVE_DUAL, 509

Iinfitem: :INTPNT_NUM_THREADS, 509
Iinfitem: :INTPNT_ITER, 509
Iinfitem::INTPNT_FACTOR_DIM_DENSE, 509
Iinfitem::ANA_PRO_NUM_VAR_UP, 508
Iinfitem::ANA_PRO_NUM_VAR_RA, 508
Iinfitem::ANA_PRO_NUM_VAR_LO, 508
Iinfitem::ANA_PRO_NUM_VAR_INT, 508
Iinfitem::ANA_PRO_NUM_VAR_FR, 508
Iinfitem::ANA_PRO_NUM_VAR_EQ, 508
Iinfitem: :ANA_PRO_NUM_VAR_CONT, 508
Iinfitem: :ANA_PRO_NUM_VAR_BIN, 508
Iinfitem::ANA_PRO_NUM_VAR, 508
Iinfitem: :ANA_PRO_NUM_CON_UP, 508
Iinfitem::ANA_PRO_NUM_CON_RA, 508
Iinfitem::ANA_PRO_NUM_CON_LO, 508
Iinfitem: :ANA_PRO_NUM_CON_FR, 508
Iinfitem::ANA_PRO_NUM_CON_EQ, 508
Iinfitem: :ANA_PRO_NUM_CON, 508
Inftype, 513
Inftype::LINT_TYPE, 513
Inftype::INT_TYPE, 513
Inftype::DOU_TYPE, 513
Intpnthotstart, 493
Intpnthotstart::PRIMAL_DUAL, 494

Iparam, 413
Liinfitem, 507
Liinfitem: :SIMPLEX_ITER, 508
Liinfitem: :RD_NUMQNZ, 508
Liinfitem::RD_NUMDJC, 508

Liinfitem::INTPNT_FACTOR_NUM_NZ, 507
Liinfitem: :BI_PRIMAL_ITER, 507
Liinfitem:: BI_DUAL_ITER, 507
Liinfitem: :BI_CLEAN_PRIMAL_ITER, 507
Liinfitem: :BI_CLEAN_PRIMAL_DEG_ITER, 507
Liinfitem: :BI_CLEAN_DUAL_ITER, 507
Liinfitem: :BI_CLEAN_DUAL_DEG_ITER, 507
Liinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_ROWS 507
Liinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_NZ, 507
Liinfitem: :ANA_PRO_SCALARIZED_CONSTRAINT_MATRIX_NUM_COLU 507
Mark, 492

Mark: :UP, 492
Mark::LO, 492
Miocontsoltype, 515
Miocontsoltype::ROOT, 515
Miocontsoltype::NONE, 515
Miocontsoltype::ITG_REL, 515
Miocontsoltype::ITG, 515
Miodatapermmethod, 514
Miodatapermmethod::RANDOM, 514
Miodatapermmethod::NONE, 514
Miodatapermmethod: :CYCLIC_SHIFT, 514
Miomode, 515
Miomode::SATISFIED, 515
Miomode::IGNORED, 515
Mionodeseltype, 515
Mionodeseltype::PSEUDO, 515
Mionodeseltype::FREE, 515
Mionodeseltype::FIRST, 515
Mionodeseltype::BEST, 515
Miovarseltype, 515
Miovarseltype::STRONG, 515
Miovarseltype:: PSEUDOCOST, 515
Miovarseltype::FREE, 515
Miqcqoreformmethod, 514
Miqcqoreformmethod:: RELAX_SDP, 514
Miqcqoreformmethod::NONE, 514
Miqcqoreformmethod::LINEARIZATION, 514
Miqcqoreformmethod::FREE, 514
Miqcqoreformmethod::EIGEN_VAL_METHOD, 514
Miqcqoreformmethod::DIAG_SDP, 514
Mpsformat, 515
Mpsformat::STRICT, 515
Mpsformat::RELAXED, 515
Mpsformat::FREE, 515
Mpsformat::CPLEX, 516
Nametype, 500
Nametype::MPS, 500
Nametype::LP, 500
Nametype: :GEN, 500
Objsense, 516
Objsense::MINIMIZE, 516
Objsense::MAXIMIZE, 516
Onoffkey, 516
Onoffkey::ON, 516
Onoffkey::OFF, 516
Optimizertype, 516
Optimizertype::PRIMAL_SIMPLEX, 516
Optimizertype::MIXED_INT, 516
Optimizertype::INTPNT, 516
Optimizertype::FREE_SIMPLEX, 516
Optimizertype::FREE, 516
Optimizertype::DUAL_SIMPLEX, 516
Optimizertype::CONIC, 516
Orderingtype, 516
Orderingtype: :TRY_GRAPHPAR, 516
Orderingtype: :NONE, 516
Orderingtype: :FREE, 516
Orderingtype::FORCE_GRAPHPAR, 516

Orderingtype::EXPERIMENTAL, 516
Orderingtype::APPMINLOC, 516
Parametertype, 517
Parametertype::STR_TYPE, 517
Parametertype::INVALID_TYPE, 517
Parametertype::INT_TYPE, 517
Parametertype::DOU_TYPE, 517
Presolvemode, 517
Presolvemode::0N, 517
Presolvemode::OFF, 517
Presolvemode: :FREE, 517
Problemitem, 517
Problemitem::VAR, 517
Problemitem::CONE, 517
Problemitem: CON, 517
Problemtype, 517
Problemtype::QO, 517
Problemtype::QCQO, 517
Problemtype::MIXED, 517
Problemtype::LO, 517
Problemtype: CONIC, 517
Prosta, 517
Prosta: :UNKNOWN, 517
Prosta: :PRIM_INFEAS_OR_UNBOUNDED, 518
Prosta::PRIM_INFEAS, 518
Prosta::PRIM_FEAS, 517
Prosta::PRIM_AND_DUAL_INFEAS, 518
Prosta::PRIM_AND_DUAL_FEAS, 517
Prosta::ILL_POSED, 518
Prosta::DUAL_INFEAS, 518
Prosta::DUAL_FEAS, 518
Purify, 494
Purify::PRIMAL_DUAL, 494
Purify::PRIMAL, 494
Purify: :NONE, 494
Purify: :DUAL, 494
Purify::AUTO, 494
Rescode, 469
Rescodetype, 518
Rescodetype::WRN, 518
Rescodetype::UNK, 518
Rescodetype::TRM, 518
Rescodetype::OK, 518
Rescodetype::ERR, 518
Scalingmethod, 518
Scalingmethod::POW2, 518
Scalingmethod::FREE, 518
Scalingtype, 518
Scalingtype: :NONE, 518
Scalingtype::FREE, 518
Sensitivitytype, 518
Sensitivitytype::BASIS, 519
Simdegen, 492
Simdegen: :NONE, 492
Simdegen: :MODERATE, 493
Simdegen: :MINIMUM, 493
Simdegen: :FREE, 492
Simdegen: :AGGRESSIVE, 492

Simdupvec, 493
Simdupvec::ON, 493
Simdupvec::OFF, 493
Simdupvec::FREE, 493
Simhotstart, 493
Simhotstart::STATUS_KEYS, 493
Simhotstart:: NONE, 493
Simhotstart::FREE, 493
Simreform, 493
Simreform::ON, 493
Simreform::OFF, 493
Simreform: :FREE, 493
Simreform::AGGRESSIVE, 493
Simseltype, 519
Simseltype::SE, 519
Simseltype::PARTIAL, 519
Simseltype::FULL, 519
Simseltype::FREE, 519
Simseltype::DEVEX, 519
Simseltype::ASE, 519
Solformat, 501
Solformat::TASK, 501
Solformat::JSON_TASK, 501
Solformat::EXTENSION, 501
Solformat::B, 501
Solitem, 519
Solitem::Y, 519
Solitem: :XX, 519
Solitem: :XC, 519
Solitem: :SUX, 519
Solitem::SUC, 519
Solitem::SNX, 519
Solitem: :SLX, 519
Solitem: :SLC, 519
Solsta, 519
Solsta: :UNKNOWN, 519
Solsta::PRIM_INFEAS_CER, 520
Solsta: :PRIM_ILLPOSED_CER, 520
Solsta::PRIM_FEAS, 519
Solsta: :PRIM_AND_DUAL_FEAS, 520
Solsta::OPTIMAL, 519
Solsta::INTEGER_OPTIMAL, 520
Solsta::DUAL_INFEAS_CER, 520
Solsta::DUAL_ILLPOSED_CER, 520
Solsta::DUAL_FEAS, 519
Soltype, 520
Soltype::ITR, 520
Soltype::ITG, 520
Soltype::BAS, 520
Solveform, 520
Solveform: :PRIMAL, 520
Solveform: :FREE, 520
Solveform::DUAL, 520
Sparam, 463
Stakey, 520
Stakey: :UPR, 520
Stakey::UNK, 520
Stakey::SUPBAS, 520

Stakey: :LOW, 520
Stakey: :INF, 520
Stakey: :FIX, 520
Stakey::BAS, 520
Startpointtype, 520
Startpointtype::GUESS, 521
Startpointtype::FREE, 521
Startpointtype: :CONSTANT, 521
Streamtype, 521
Streamtype: :WRN, 521
Streamtype::MSG, 521
Streamtype::LOG, 521
Streamtype::ERR, 521
Symmattype, 500
Symmattype::SPARSE, 500
Transpose, 493
Transpose::YES, 493
Transpose::NO, 493
Uplo, 493
Uplo::UP, 493
Uplo::LO, 493
Value, 521
Value::MAX_STR_LEN, 521
Value::LICENSE_BUFFER_LENGTH, 521
Variabletype, 521
Variabletype::TYPE_INT, 521
Variabletype::TYPE_CONT, 521
Xmlwriteroutputtype, 518
Xmlwriteroutputtype::ROW, 518
Xmlwriteroutputtype::COL, 518

\section*{Parameters}

Double parameters, 397
Dparam::ANA_SOL_INFEAS_TOL, 397
Dparam::BASIS_REL_TOL_S, 397
Dparam::BASIS_TOL_S, 397
Dparam::BASIS_TOL_X, 397
Dparam::CHECK_CONVEXITY_REL_TOL, 398
Dparam::DATA_SYM_MAT_TOL, 398
Dparam::DATA_SYM_MAT_TOL_HUGE, 398
Dparam::DATA_SYM_MAT_TOL_LARGE, 398
Dparam::DATA_TOL_AIJ_HUGE, 399
Dparam::DATA_TOL_AIJ_LARGE, 399
Dparam::DATA_TOL_BOUND_INF, 399
Dparam::DATA_TOL_BOUND_WRN, 399
Dparam::DATA_TOL_C_HUGE, 400
Dparam::DATA_TOL_CJ_LARGE, 400
Dparam::DATA_TOL_QIJ, 400
Dparam::DATA_TOL_X, 400
Dparam::INTPNT_CO_TOL_DFEAS, 401
Dparam: : INTPNT_CO_TOL_INFEAS, 401
Dparam: :INTPNT_CO_TOL_MU_RED, 401
Dparam::INTPNT_CO_TOL_NEAR_REL, 401
Dparam: :INTPNT_CO_TOL_PFEAS, 402
Dparam: :INTPNT_CO_TOL_REL_GAP, 402
Dparam: :INTPNT_QO_TOL_DFEAS, 402
Dparam: :INTPNT_QO_TOL_INFEAS, 402
Dparam: :INTPNT_QO_TOL_MU_RED, 403

Dparam: :INTPNT_QO_TOL_NEAR_REL, 403
Dparam: :INTPNT_QO_TOL_PFEAS, 403
Dparam::INTPNT_QO_TOL_REL_GAP, 404
Dparam::INTPNT_TOL_DFEAS, 404
Dparam::INTPNT_TOL_DSAFE, 404
Dparam: :INTPNT_TOL_INFEAS, 404
Dparam::INTPNT_TOL_MU_RED, 405
Dparam::INTPNT_TOL_PATH, 405
Dparam:: INTPNT_TOL_PFEAS, 405
Dparam::INTPNT_TOL_PSAFE, 405
Dparam: :INTPNT_TOL_REL_GAP, 406
Dparam::INTPNT_TOL_REL_STEP, 406
Dparam: :INTPNT_TOL_STEP_SIZE, 406
Dparam::LOWER_OBJ_CUT, 406
Dparam::LOWER_OBJ_CUT_FINITE_TRH, 407
Dparam: :MIO_DJC_MAX_BIGM, 407
Dparam:: MIO_MAX_TIME, 407
Dparam: :MIO_REL_GAP_CONST, 408
Dparam: :MIO_TOL_ABS_GAP, 408
Dparam::MIO_TOL_ABS_RELAX_INT, 408
Dparam: :MIO_TOL_FEAS, 408
Dparam: :MIO_TOL_REL_DUAL_BOUND_IMPROVEMENT,
409
Dparam: :MIO_TOL_REL_GAP, 409
Dparam::OPTIMIZER_MAX_TICKS, 409
Dparam::OPTIMIZER_MAX_TIME, 409
Dparam::PRESOLVE_TOL_ABS_LINDEP, 410
Dparam: :PRESOLVE_TOL_AIJ, 410
Dparam::PRESOLVE_TOL_PRIMAL_INFEAS_PERTURBATIQ\&ram::LOG_LOCAL_INFO, 425
410
Dparam::PRESOLVE_TOL_REL_LINDEP, 410
Dparam::PRESOLVE_TOL_S, 411
Dparam: :PRESOLVE_TOL_X, 411
Dparam: :QCQO_REFORMULATE_REL_DROP_TOL, 411
Dparam::SEMIDEFINITE_TOL_APPROX, 411
Dparam::SIM_LU_TOL_REL_PIV, 412
Dparam::SIMPLEX_ABS_TOL_PIV, 412
Dparam::UPPER_OBJ_CUT, 412
Dparam: :UPPER_OBJ_CUT_FINITE_TRH, 412
Integer parameters, 413
Iparam: :ANA_SOL_BASIS, 413
Iparam: :ANA_SOL_PRINT_VIOLATED, 413
Iparam: :AUTO_SORT_A_BEFORE_OPT, 413
Iparam: :AUTO_UPDATE_SOL_INFO, 414
Iparam: :BASIS_SOLVE_USE_PLUS_ONE, 414
Iparam::BI_CLEAN_OPTIMIZER, 414
Iparam::BI_IGNORE_MAX_ITER, 414
Iparam: :BI_IGNORE_NUM_ERROR, 415
Iparam: : BI_MAX_ITERATIONS, 415
Iparam::CACHE_LICENSE, 415
Iparam: :COMPRESS_STATFILE, 416
Iparam: :INFEAS_GENERIC_NAMES, 416
Iparam: :INFEAS_PREFER_PRIMAL, 416
Iparam: :INFEAS_REPORT_AUTO, 416
Iparam: :INFEAS_REPORT_LEVEL, 416
Iparam: :INTPNT_BASIS, 417
Iparam: :INTPNT_DIFF_STEP, 417
Iparam: :INTPNT_HOTSTART, 417

Iparam: :INTPNT_MAX_ITERATIONS, 418
Iparam: : INTPNT_MAX_NUM_COR, 418
Iparam: : INTPNT_MAX_NUM_REFINEMENT_STEPS, 418
Iparam: :INTPNT_OFF_COL_TRH, 418
Iparam: :INTPNT_ORDER_GP_NUM_SEEDS, 419
Iparam::INTPNT_ORDER_METHOD, 419
Iparam::INTPNT_PURIFY, 419
Iparam: :INTPNT_REGULARIZATION_USE, 419
Iparam::INTPNT_SCALING, 420
Iparam: :INTPNT_SOLVE_FORM, 420
Iparam::INTPNT_STARTING_POINT, 420
Iparam::LICENSE_DEBUG, 420
Iparam::LICENSE_PAUSE_TIME, 421
Iparam: :LICENSE_SUPPRESS_EXPIRE_WRNS, 421
Iparam::LICENSE_TRH_EXPIRY_WRN, 421
Iparam::LICENSE_WAIT, 421
Iparam::LOG, 422
Iparam::LOG_ANA_PRO, 422
Iparam::LOG_BI, 422
Iparam::LOG_BI_FREQ, 423
Iparam::LOG_CUT_SECOND_OPT, 423
Iparam::LOG_EXPAND, 423
Iparam::LOG_FEAS_REPAIR, 423
Iparam::LOG_FILE, 424
Iparam::LOG_INCLUDE_SUMMARY, 424
Iparam::LOG_INFEAS_ANA, 424
Iparam::LOG_INTPNT, 424
Iparam::LOG_MIO, 425
Iparam::LOG_MIO_FREQ, 425
Iparam::LOG_ORDER, 426
Iparam::LOG_PRESOLVE, 426
Iparam::LOG_RESPONSE, 426
Iparam::LOG_SENSITIVITY, 426
Iparam::LOG_SENSITIVITY_OPT, 427
Iparam::LOG_SIM, 427
Iparam::LOG_SIM_FREQ, 427
Iparam::LOG_SIM_MINOR, 427
Iparam::LOG_STORAGE, 428
Iparam: :MAX_NUM_WARNINGS, 428
Iparam::MIO_BRANCH_DIR, 428
Iparam: :MIO_CONIC_OUTER_APPROXIMATION, 428
Iparam: :MIO_CONSTRUCT_SOL, 429
Iparam: :MIO_CUT_CLIQUE, 429
Iparam: :MIO_CUT_CMIR, 429
Iparam: :MIO_CUT_GMI, 429
Iparam: :MIO_CUT_IMPLIED_BOUND, 430
Iparam: :MIO_CUT_KNAPSACK_COVER, 430
Iparam::MIO_CUT_LIPRO, 430
Iparam::MIO_CUT_SELECTION_LEVEL, 430
Iparam::MIO_DATA_PERMUTATION_METHOD, 431
Iparam::MIO_DUAL_RAY_ANALYSIS_LEVEL, 431
Iparam: :MIO_FEASPUMP_LEVEL, 431
Iparam: :MIO_HEURISTIC_LEVEL, 432
Iparam: :MIO_MAX_NUM_BRANCHES, 432
Iparam: :MIO_MAX_NUM_RELAXS, 432
Iparam: :MIO_MAX_NUM_RESTARTS, 433

Iparam: :MIO_MAX_NUM_ROOT_CUT_ROUNDS, 433
Iparam::MIO_MAX_NUM_SOLUTIONS, 433
Iparam: :MIO_MEMORY_EMPHASIS_LEVEL, 433
Iparam::MIO_MIN_REL, 434
Iparam::MIO_MODE, 434
Iparam: :MIO_NODE_OPTIMIZER, 434
Iparam::MIO_NODE_SELECTION, 434
Iparam: :MIO_NUMERICAL_EMPHASIS_LEVEL, 435
Iparam: :MIO_PERSPECTIVE_REFORMULATE, 435
Iparam: :MIO_PRESOLVE_AGGREGATOR_USE, 435
Iparam: :MIO_PROBING_LEVEL, 436
Iparam: :MIO_PROPAGATE_OBJECTIVE_CONSTRAINT, 436
Iparam::MIO_QCQO_REFORMULATION_METHOD, 436
Iparam::MIO_RINS_MAX_NODES, 436
Iparam::MIO_ROOT_OPTIMIZER, 437
Iparam: :MIO_ROOT_REPEAT_PRESOLVE_LEVEL, 437
Iparam::MIO_SEED, 437
Iparam::MIO_SYMMETRY_LEVEL, 438
Iparam: :MIO_VAR_SELECTION, 438
Iparam::MIO_VB_DETECTION_LEVEL, 438
Iparam::MT_SPINCOUNT, 439
Iparam: :NG, 439
Iparam: :NUM_THREADS, 439
Iparam::OPF_WRITE_HEADER, 439
Iparam::OPF_WRITE_HINTS, 439
Iparam: :OPF_WRITE_LINE_LENGTH, 440
Iparam: :OPF_WRITE_PARAMETERS, 440
Iparam: :OPF_WRITE_PROBLEM, 440
Iparam::OPF_WRITE_SOL_BAS, 440
Iparam::OPF_WRITE_SOL_ITG, 441
Iparam: :OPF_WRITE_SOL_ITR, 441
Iparam: :OPF_WRITE_SOLUTIONS, 441
Iparam::OPTIMIZER, 441
Iparam: :PARAM_READ_CASE_NAME, 442
Iparam: :PARAM_READ_IGN_ERROR, 442
Iparam: :PRESOLVE_ELIMINATOR_MAX_FILL, 442
Iparam: :PRESOLVE_ELIMINATOR_MAX_NUM_TRIES, 442
Iparam: :PRESOLVE_LEVEL, 443
Iparam: :PRESOLVE_LINDEP_ABS_WORK_TRH, 443
Iparam::PRESOLVE_LINDEP_NEW, 443
Iparam: :PRESOLVE_LINDEP_REL_WORK_TRH, 443
Iparam: :PRESOLVE_LINDEP_USE, 444
Iparam: :PRESOLVE_MAX_NUM_PASS, 444
Iparam: :PRESOLVE_MAX_NUM_REDUCTIONS, 444
Iparam: :PRESOLVE_USE, 445
Iparam: :PRIMAL_REPAIR_OPTIMIZER, 445
Iparam::PTF_WRITE_PARAMETERS, 445
Iparam: :PTF_WRITE_SOLUTIONS, 445
Iparam: :PTF_WRITE_TRANSFORM, 446
Iparam::READ_DEBUG, 446
Iparam: :READ_KEEP_FREE_CON, 446
Iparam: :READ_MPS_FORMAT, 446
Iparam::READ_MPS_WIDTH, 447
Iparam: :READ_TASK_IGNORE_PARAM, 447
Iparam: :REMOTE_USE_COMPRESSION, 447
Iparam: :REMOVE_UNUSED_SOLUTIONS, 447

Iparam: :SENSITIVITY_ALL, 448
Iparam::SENSITIVITY_OPTIMIZER, 448
Iparam: :SENSITIVITY_TYPE, 448
Iparam::SIM_BASIS_FACTOR_USE, 448
Iparam::SIM_DEGEN, 449
Iparam::SIM_DETECT_PWL, 449
Iparam::SIM_DUAL_CRASH, 449
Iparam::SIM_DUAL_PHASEONE_METHOD, 449
Iparam::SIM_DUAL_RESTRICT_SELECTION, 450
Iparam::SIM_DUAL_SELECTION, 450
Iparam: :SIM_EXPLOIT_DUPVEC, 450
Iparam::SIM_HOTSTART, 450
Iparam::SIM_HOTSTART_LU, 451
Iparam::SIM_MAX_ITERATIONS, 451
Iparam::SIM_MAX_NUM_SETBACKS, 451
Iparam::SIM_NON_SINGULAR, 451
Iparam::SIM_PRIMAL_CRASH, 452
Iparam::SIM_PRIMAL_PHASEONE_METHOD, 452
Iparam::SIM_PRIMAL_RESTRICT_SELECTION, 452
Iparam::SIM_PRIMAL_SELECTION, 453
Iparam: :SIM_REFACTOR_FREQ, 453
Iparam: :SIM_REFORMULATION, 453
Iparam::SIM_SAVE_LU, 453
Iparam::SIM_SCALING, 454
Iparam::SIM_SCALING_METHOD, 454
Iparam::SIM_SEED, 454
Iparam::SIM_SOLVE_FORM, 454
Iparam::SIM_STABILITY_PRIORITY, 455
Iparam::SIM_SWITCH_OPTIMIZER, 455
Iparam::SOL_FILTER_KEEP_BASIC, 455
Iparam: :SOL_FILTER_KEEP_RANGED, 455
Iparam: :SOL_READ_NAME_WIDTH, 456
Iparam::SOL_READ_WIDTH, 456
Iparam: :SOLUTION_CALLBACK, 456
Iparam::TIMING_LEVEL, 456
Iparam: :WRITE_BAS_CONSTRAINTS, 457
Iparam::WRITE_BAS_HEAD, 457
Iparam: :WRITE_BAS_VARIABLES, 457
Iparam: :WRITE_COMPRESSION, 457
Iparam: :WRITE_DATA_PARAM, 458
Iparam::WRITE_FREE_CON, 458
Iparam: :WRITE_GENERIC_NAMES, 458
Iparam: :WRITE_GENERIC_NAMES_IO, 458
Iparam: :WRITE_IGNORE_INCOMPATIBLE_ITEMS, 459
Iparam: :WRITE_INT_CONSTRAINTS, 459
Iparam::WRITE_INT_HEAD, 459
Iparam: :WRITE_INT_VARIABLES, 459
Iparam::WRITE_JSON_INDENTATION, 460
Iparam: :WRITE_LP_FULL_OBJ, 460
Iparam::WRITE_LP_LINE_WIDTH, 460
Iparam: :WRITE_MPS_FORMAT, 460
Iparam::WRITE_MPS_INT, 461
Iparam::WRITE_SOL_BARVARIABLES, 461
Iparam: :WRITE_SOL_CONSTRAINTS, 461
Iparam::WRITE_SOL_HEAD, 461
Iparam::WRITE_SOL_IGNORE_INVALID_NAMES, 462
Iparam::WRITE_SOL_VARIABLES, 462

Iparam::WRITE_TASK_INC_SOL, 462
Iparam::WRITE_XML_MODE, 462
String parameters, 463
Sparam: :BAS_SOL_FILE_NAME, 463
Sparam::DATA_FILE_NAME, 463
Sparam::DEBUG_FILE_NAME, 463
Sparam::INT_SOL_FILE_NAME, 463
Sparam::ITR_SOL_FILE_NAME, 464
Sparam::MIO_DEBUG_STRING, 464
Sparam::PARAM_COMMENT_SIGN, 464
Sparam::PARAM_READ_FILE_NAME, 464
Sparam::PARAM_WRITE_FILE_NAME, 465
Sparam: :READ_MPS_BOU_NAME, 465
Sparam::READ_MPS_OBJ_NAME, 465
Sparam::READ_MPS_RAN_NAME, 465
Sparam: :READ_MPS_RHS_NAME, 465
Sparam: :REMOTE_OPTSERVER_HOST, 466
Sparam: :REMOTE_TLS_CERT, 466
Sparam: :REMOTE_TLS_CERT_PATH, 466
Sparam::SENSITIVITY_FILE_NAME, 466
Sparam::SENSITIVITY_RES_FILE_NAME, 466
Sparam: :SOL_FILTER_XC_LOW, 467
Sparam::SOL_FILTER_XC_UPR, 467
Sparam::SOL_FILTER_XX_LOW, 467
Sparam: :SOL_FILTER_XX_UPR, 467
Sparam::STAT_KEY, 468
Sparam: :STAT_NAME, 468
Sparam::WRITE_LP_GEN_VAR_NAME, 468

\section*{Response codes}

Termination, 469
Rescode::OK, 469
Rescode::TRM_INTERNAL, 469
Rescode::TRM_INTERNAL_STOP, 469
Rescode::TRM_LOST_RACE, 469
Rescode::TRM_MAX_ITERATIONS, 469
Rescode: :TRM_MAX_NUM_SETBACKS, 469
Rescode::TRM_MAX_TIME, 469
Rescode: :TRM_MIO_NUM_BRANCHES, 469
Rescode::TRM_MIO_NUM_RELAXS, 469
Rescode::TRM_NUM_MAX_NUM_INT_SOLUTIONS, 469
Rescode::TRM_NUMERICAL_PROBLEM, 469
Rescode::TRM_OBJECTIVE_RANGE, 469
Rescode::TRM_STALL, 469
Rescode::TRM_USER_CALLBACK, 469
Warnings, 470
Rescode: :WRN_ANA_ALMOST_INT_BOUNDS, 472
Rescode: :WRN_ANA_C_ZERO, 472
Rescode: :WRN_ANA_CLOSE_BOUNDS, 472
Rescode::WRN_ANA_EMPTY_COLS, 472
Rescode: :WRN_ANA_LARGE_BOUNDS, 472
Rescode::WRN_DROPPED_NZ_QOBJ, 470
Rescode::WRN_DUPLICATE_BARVARIABLE_NAMES, 472
Rescode: :WRN_DUPLICATE_CONE_NAMES, 472
Rescode: :WRN_DUPLICATE_CONSTRAINT_NAMES, 471
Rescode: :WRN_DUPLICATE_VARIABLE_NAMES, 471

Rescode::WRN_ELIMINATOR_SPACE, 471
Rescode: :WRN_EMPTY_NAME, 471
Rescode::WRN_IGNORE_INTEGER, 470
Rescode: :WRN_INCOMPLETE_LINEAR_DEPENDENCY_CHECK, 471
Rescode::WRN_INVALID_MPS_NAME, 471
Rescode::WRN_INVALID_MPS_OBJ_NAME, 471
Rescode::WRN_LARGE_AIJ, 470
Rescode::WRN_LARGE_BOUND, 470
Rescode::WRN_LARGE_CJ, 470
Rescode: :WRN_LARGE_CON_FX, 470
Rescode::WRN_LARGE_FIJ, 472
Rescode: :WRN_LARGE_LO_BOUND, 470
Rescode::WRN_LARGE_UP_BOUND, 470
Rescode::WRN_LICENSE_EXPIRE, 471
Rescode: :WRN_LICENSE_FEATURE_EXPIRE, 471
Rescode: :WRN_LICENSE_SERVER, 471
Rescode::WRN_LP_DROP_VARIABLE, 470
Rescode: :WRN_LP_OLD_QUAD_FORMAT, 470
Rescode: :WRN_MIO_INFEASIBLE_FINAL, 470
Rescode::WRN_MODIFIED_DOUBLE_PARAMETER, 472
Rescode: :WRN_MPS_SPLIT_BOU_VECTOR, 470
Rescode::WRN_MPS_SPLIT_RAN_VECTOR, 470
Rescode::WRN_MPS_SPLIT_RHS_VECTOR, 470
Rescode: :WRN_NAME_MAX_LEN, 470
Rescode::WRN_NO_DUALIZER, 472
Rescode: :WRN_NO_GLOBAL_OPTIMIZER, 470
Rescode : :WRN_NO_INFEASIBILITY_REPORT_WHEN_MATRIX_VARIABL 472
Rescode: :WRN_NZ_IN_UPR_TRI, 470
Rescode::WRN_OPEN_PARAM_FILE, 470
Rescode::WRN_PARAM_IGNORED_CMIO, 471
Rescode: :WRN_PARAM_NAME_DOU, 471
Rescode: :WRN_PARAM_NAME_INT, 471
Rescode: :WRN_PARAM_NAME_STR, 471
Rescode: :WRN_PARAM_STR_VALUE, 471
Rescode::WRN_PRESOLVE_OUTOFSPACE, 471
Rescode: :WRN_PRESOLVE_PRIMAL_PERTUBATIONS, 471
Rescode::WRN_SOL_FILE_IGNORED_CON, 470
Rescode: :WRN_SOL_FILE_IGNORED_VAR, 470
Rescode: :WRN_SOL_FILTER, 470
Rescode::WRN_SPAR_MAX_LEN, 470
Rescode::WRN_SYM_MAT_LARGE, 472
Rescode: :WRN_TOO_FEW_BASIS_VARS, 470
Rescode: :WRN_TOO_MANY_BASIS_VARS, 471
Rescode: :WRN_UNDEF_SOL_FILE_NAME, 470
Rescode::WRN_USING_GENERIC_NAMES, 471
Rescode::WRN_WRITE_CHANGED_NAMES, 471
Rescode: :WRN_WRITE_DISCARDED_CFIX, 471
Rescode: :WRN_WRITE_LP_DUPLICATE_CON_NAMES, 472
Rescode: :WRN_WRITE_LP_DUPLICATE_VAR_NAMES, 472
Rescode: :WRN_WRITE_LP_INVALID_CON_NAMES, 472
Rescode: :WRN_WRITE_LP_INVALID_VAR_NAMES, 472

Rescode::WRN_ZERO_AIJ, 470
Rescode: :WRN_ZEROS_IN_SPARSE_COL, 471
Rescode::WRN_ZEROS_IN_SPARSE_ROW, 471
Errors, 472
Rescode: :ERR_ACC_AFE_DOMAIN_MISMATCH, 491
Rescode::ERR_ACC_INVALID_ENTRY_INDEX, 491
Rescode: :ERR_ACC_INVALID_INDEX, 491
Rescode::ERR_AD_INVALID_CODELIST, 486
Rescode::ERR_AFE_INVALID_INDEX, 491
Rescode::ERR_API_ARRAY_TOD_SMALL, 485
Rescode: :ERR_API_CB_CONNECT, 485
Rescode::ERR_API_FATAL_ERROR, 485
Rescode::ERR_API_INTERNAL, 485
Rescode: :ERR_APPENDING_TOO_BIG_CONE, 482
Rescode: :ERR_ARG_IS_TOO_LARGE, 479
Rescode: :ERR_ARG_IS_TOO_SMALL, 479
Rescode: :ERR_ARGUMENT_DIMENSION, 478
Rescode: :ERR_ARGUMENT_IS_TOO_LARGE, 487
Rescode: :ERR_ARGUMENT_IS_TOD_SMALL, 487
Rescode::ERR_ARGUMENT_LENNEQ, 478
Rescode::ERR_ARGUMENT_PERM_ARRAY, 481
Rescode::ERR_ARGUMENT_TYPE, 478
Rescode::ERR_AXIS_NAME_SPECIFICATION, 475
Rescode::ERR_BAR_VAR_DIM, 486
Rescode::ERR_BASIS, 480
Rescode: :ERR_BASIS_FACTOR, 484
Rescode: :ERR_BASIS_SINGULAR, 484
Rescode::ERR_BLANK_NAME, 475
Rescode: :ERR_CBF_DUPLICATE_ACOORD, 488
Rescode::ERR_CBF_DUPLICATE_BCOORD, 488
Rescode: :ERR_CBF_DUPLICATE_CON, 488
Rescode::ERR_CBF_DUPLICATE_INT, 488
Rescode::ERR_CBF_DUPLICATE_OBJ, 488
Rescode::ERR_CBF_DUPLICATE_OBJACOORD, 488
Rescode: :ERR_CBF_DUPLICATE_POW_CONES, 489
Rescode: :ERR_CBF_DUPLICATE_POW_STAR_CONES, 489
Rescode: :ERR_CBF_DUPLICATE_PSDCON, 489
Rescode: :ERR_CBF_DUPLICATE_PSDVAR, 489
Rescode::ERR_CBF_DUPLICATE_VAR, 488
Rescode::ERR_CBF_EXPECTED_A_KEYWORD, 489
Rescode::ERR_CBF_INVALID_CON_TYPE, 488
Rescode::ERR_CBF_INVALID_DIMENSION_OF_CONES, Rescode: :ERR_CONE_OVERLAP_APPEND, 482
489 Rescode::ERR_CONE_PARAMETER, 482
Rescode::ERR_CBF_INVALID_DIMENSION_OF_PSDCONRescode: :ERR_CONE_REP_VAR, 481
490
Rescode: :ERR_CBF_INVALID_DOMAIN_DIMENSION, 488
Rescode: :ERR_CBF_INVALID_EXP_DIMENSION, 489
Rescode::ERR_CBF_INVALID_INT_INDEX, 488
Rescode: :ERR_CBF_INVALID_NUM_ACOORD, 489
Rescode: :ERR_CBF_INVALID_NUM_BCOORD, 489
Rescode: :ERR_CBF_INVALID_NUM_DCOORD, 489
Rescode: :ERR_CBF_INVALID_NUM_FCOORD, 489
Rescode: :ERR_CBF_INVALID_NUM_HCOORD, 489
Rescode::ERR_CBF_INVALID_NUM_OBJACOORD, 489
Rescode: :ERR_CBF_INVALID_NUM_OBJFCOORD, 489
Rescode: :ERR_CBF_INVALID_NUM_PSDCON, 489

Rescode::ERR_CBF_INVALID_NUMBER_OF_CONES, 489
Rescode: :ERR_CBF_INVALID_POWER, 489
Rescode::ERR_CBF_INVALID_POWER_CONE_INDEX, 489
Rescode::ERR_CBF_INVALID_POWER_STAR_CONE_INDEX, 489
Rescode::ERR_CBF_INVALID_PSDCON_BLOCK_INDEX, 490
Rescode: :ERR_CBF_INVALID_PSDCON_INDEX, 490
Rescode::ERR_CBF_INVALID_PSDCON_VARIABLE_INDEX, 490
Rescode::ERR_CBF_INVALID_PSDVAR_DIMENSION, 489
Rescode: :ERR_CBF_INVALID_VAR_TYPE, 488
Rescode::ERR_CBF_NO_VARIABLES, 488
Rescode: :ERR_CBF_NO_VERSION_SPECIFIED, 488
Rescode::ERR_CBF_OBJ_SENSE, 488
Rescode: :ERR_CBF_PARSE, 488
Rescode: :ERR_CBF_POWER_CONE_IS_TOO_LONG, 489
Rescode: :ERR_CBF_POWER_CONE_MISMATCH, 489
Rescode::ERR_CBF_POWER_STAR_CONE_MISMATCH, 489
Rescode::ERR_CBF_SYNTAX, 488
Rescode: :ERR_CBF_TOO_FEW_CONSTRAINTS, 488
Rescode: :ERR_CBF_TOO_FEW_INTS, 488
Rescode: :ERR_CBF_TOO_FEW_PSDVAR, 489
Rescode::ERR_CBF_TOO_FEW_VARIABLES, 488
Rescode: :ERR_CBF_TOO_MANY_CONSTRAINTS, 488
Rescode: :ERR_CBF_TOO_MANY_INTS, 488
Rescode: :ERR_CBF_TOO_MANY_VARIABLES, 488
Rescode: :ERR_CBF_UNHANDLED_POWER_CONE_TYPE, 489
Rescode: :ERR_CBF_UNHANDLED_POWER_STAR_CONE_TYPE, 489
Rescode::ERR_CBF_UNSUPPORTED, 488
Rescode: :ERR_CBF_UNSUPPORTED_CHANGE, 490
Rescode: :ERR_CON_Q_NOT_NSD, 481
Rescode::ERR_CON_Q_NOT_PSD, 481
Rescode::ERR_CONE_INDEX, 481
Rescode::ERR_CONE_OVERLAP, 481

Rescode : :ERR_CONE_PARAMETER, 482
Rescode: :ERR_CONE_REP_VAR, 481
Rescode: :ERR_CONE_SIZE, 481
Rescode: :ERR_CONE_TYPE, 482
Rescode::ERR_CONE_TYPE_STR, 482
Rescode: :ERR_DATA_FILE_EXT, 474
Rescode::ERR_DIMENSION_SPECIFICATION, 475
Rescode: :ERR_DJC_AFE_DOMAIN_MISMATCH, 491
Rescode::ERR_DJC_DOMAIN_TERMSIZE_MISMATCH, 491
Rescode::ERR_DJC_INVALID_INDEX, 491
Rescode::ERR_DJC_INVALID_TERM_SIZE, 491
Rescode: :ERR_DJC_TOTAL_NUM_TERMS_MISMATCH, 491

Rescode::ERR_DJC_UNSUPPORTED_DOMAIN_TYPE, 491
Rescode::ERR_DOMAIN_DIMENSION, 491
Rescode::ERR_DOMAIN_DIMENSION_PSD, 491
Rescode::ERR_DOMAIN_INVALID_INDEX, 491
Rescode::ERR_DOMAIN_POWER_INVALID_ALPHA, 491
Rescode: :ERR_DOMAIN_POWER_NEGATIVE_ALPHA, 491
Rescode::ERR_DOMAIN_POWER_NLEFT, 491
Rescode: :ERR_DUP_NAME, 475
Rescode: :ERR_DUPLICATE_AIJ, 482
Rescode::ERR_DUPLICATE_BARVARIABLE_NAMES, 487
Rescode: :ERR_DUPLICATE_CONE_NAMES, 487
Rescode::ERR_DUPLICATE_CONSTRAINT_NAMES, 487
Rescode: :ERR_DUPLICATE_DJC_NAMES, 487
Rescode: :ERR_DUPLICATE_DOMAIN_NAMES, 487
Rescode::ERR_DUPLICATE_FIJ, 490
Rescode: :ERR_DUPLICATE_INDEX_IN_A_SPARSE_MATRモX.code : :ERR_INV_MARKJ, 484
490 Rescode::ERR_INV_NAME_ITEM, 481
Rescode::ERR_DUPLICATE_INDEX_IN_AFEIDX_LIST, Rescode::ERR_INV_NUMI, 485
490
Rescode: :ERR_DUPLICATE_VARIABLE_NAMES, 487
Rescode: :ERR_END_OF_FILE, 474
Rescode::ERR_FACTOR, 484
Rescode: :ERR_FEASREPAIR_CANNOT_RELAX, 484
Rescode::ERR_FEASREPAIR_INCONSISTENT_BOUND, 484
Rescode::ERR_FEASREPAIR_SOLVING_RELAXED, 484
Rescode::ERR_FILE_LICENSE, 473
Rescode::ERR_FILE_OPEN, 474
Rescode: :ERR_FILE_READ, 474
Rescode::ERR_FILE_WRITE, 474
Rescode: :ERR_FINAL_SOLUTION, 483
Rescode: :ERR_FIRST, 484
Rescode: :ERR_FIRSTI, 481
Rescode: :ERR_FIRSTJ, 481
Rescode::ERR_FIXED_BOUND_VALUES, 483
Rescode::ERR_FLEXLM, 473
Rescode::ERR_FORMAT_STRING, 475
Rescode: :ERR_GLOBAL_INV_CONIC_PROBLEM, 483
Rescode::ERR_HUGE_AIJ, 482
Rescode: :ERR_HUGE_C, 482
Rescode::ERR_HUGE_FIJ, 491
Rescode::ERR_IDENTICAL_TASKS, 486
Rescode::ERR_IN_ARGUMENT, 478
Rescode::ERR_INDEX, 479
Rescode: :ERR_INDEX_ARR_IS_TOO_LARGE, 479
Rescode::ERR_INDEX_ARR_IS_TOO_SMALL, 479
Rescode: :ERR_INDEX_IS_NOT_UNIQUE, 478
Rescode::ERR_INDEX_IS_TOO_LARGE, 478
Rescode::ERR_INDEX_IS_TOO_SMALL, 478
Rescode::ERR_INF_DOU_INDEX, 479
Rescode::ERR_INF_DOU_NAME, 479
Rescode::ERR_INF_IN_DOUBLE_DATA, 483

Rescode::ERR_INF_INT_INDEX, 479
Rescode::ERR_INF_INT_NAME, 479
Rescode::ERR_INF_LINT_INDEX, 479
Rescode: :ERR_INF_LINT_NAME, 479
Rescode: :ERR_INF_TYPE, 479
Rescode: :ERR_INFEAS_UNDEFINED, 486
Rescode::ERR_INFINITE_BOUND, 482
Rescode: :ERR_INT64_TO_INT32_CAST, 486
Rescode::ERR_INTERNAL, 485
Rescode::ERR_INTERNAL_TEST_FAILED, 486
Rescode::ERR_INV_APTRE, 480
Rescode::ERR_INV_BK, 480
Rescode::ERR_INV_BKC, 480
Rescode::ERR_INV_BKX, 480
Rescode: :ERR_INV_CONE_TYPE, 480
Rescode::ERR_INV_CONE_TYPE_STR, 480
Rescode: :ERR_INV_DINF, 480
Rescode: :ERR_INV_IINF, 480
Rescode: :ERR_INV_LIINF, 480
Rescode::ERR_INV_MARKI, 484

Rescode: :ERR_INV_NUMJ, 485
Rescode::ERR_INV_OPTIMIZER, 483
Rescode::ERR_INV_PROBLEM, 483
Rescode: :ERR_INV_QCON_SUBI, 482
Rescode: :ERR_INV_QCON_SUBJ, 482
Rescode: :ERR_INV_QCON_SUBK, 482
Rescode::ERR_INV_QCON_VAL, 482
Rescode: :ERR_INV_QOBJ_SUBI, 482
Rescode::ERR_INV_QOBJ_SUBJ, 482
Rescode::ERR_INV_QOBJ_VAL, 482
Rescode::ERR_INV_RESCODE, 480
Rescode::ERR_INV_SK, 480
Rescode: :ERR_INV_SK_STR, 480
Rescode::ERR_INV_SKC, 480
Rescode: :ERR_INV_SKN, 480
Rescode::ERR_INV_SKX, 480
Rescode: :ERR_INV_VAR_TYPE, 480
Rescode::ERR_INVALID_AIJ, 483
Rescode: :ERR_INVALID_AMPL_STUB, 486
Rescode::ERR_INVALID_B, 491
Rescode::ERR_INVALID_BARVAR_NAME, 475
Rescode: :ERR_INVALID_CFIX, 483
Rescode::ERR_INVALID_CJ, 483
Rescode: :ERR_INVALID_COMPRESSION, 484
Rescode: :ERR_INVALID_CON_NAME, 475
Rescode: :ERR_INVALID_CONE_NAME, 475
Rescode::ERR_INVALID_FIJ, 491
Rescode : :ERR_INVALID_FILE_FORMAT_FOR_AFFINE_CONIC_CONSTR 487
Rescode::ERR_INVALID_FILE_FORMAT_FOR_CFIX, 486
Rescode: :ERR_INVALID_FILE_FORMAT_FOR_CONES, 486
Rescode : :ERR_INVALID_FILE_FORMAT_FOR_DISJUNCTIVE_CONSTRA 487
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Rescode: :ERR_INVALID_FILE_FORMAT_FOR_FREE_COR®ERAd\&TSERR_LICENSE_MAX, 473} \\
\hline \multicolumn{2}{|l|}{Rescode: :ERR_INVALID_FILE_FORMAT_FOR_NONLINERR,scode: :ERR_LICENSE_NO_SERVER_LINE, 473} \\
\hline 487 & Rescode: :ERR_LICENSE_NO_SERVER_SUPPORT, 473 \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Rescode: :ERR_INVALID_FILE_FORMAT_FOR_RANGED_Ressmeninegr_License_SERVER, 473} \\
\hline 486 & Rescode: :ERR_LICENSE_SERVER_VERSION, 473 \\
\hline \multicolumn{2}{|l|}{Rescode: :ERR_INVALID_FILE_FORMAT_FOR_SYM_MATRescode: :ERR_LICENSE_VERSION, 472} \\
\hline 486 & Rescode: :ERR_LINK_FILE_DLL, 474 \\
\hline Rescode: :ERR_INVALID_FILE_NAME, 474 & Rescode: :ERR_LIVING_TASKS, 474 \\
\hline Rescode::ERR_INVALID_FORMAT_TYPE, 481 & Rescode::ERR_LOWER_BOUND_IS_A_NAN, 482 \\
\hline Rescode: :ERR_INVALID_G, 491 & Rescode: :ERR_LP_AMBIGUOUS_CONSTRAINT_BOUND, \\
\hline Rescode::ERR_INVALID_IDX, 479 & 477 \\
\hline Rescode: :ERR_INVALID_IOMODE, 484 & Rescode::ERR_LP_DUPLICATE_SECTION, 477 \\
\hline Rescode::ERR_INVALID_MAX_NUM, 480 & Rescode::ERR_LP_EMPTY, 477 \\
\hline Rescode::ERR_INVALID_NAME_IN_SOL_FILE, 477 & Rescode: :ERR_LP_EXPECTED_CONSTRAINT_RELATION, \\
\hline Rescode: :ERR_INVALID_OBJ_NAME, 475 & 477 \\
\hline Rescode: :ERR_INVALID_OBJECTIVE_SENSE, 483 & Rescode: :ERR_LP_EXPECTED_NUMBER, 477 \\
\hline Rescode::ERR_INVALID_PROBLEM_TYPE, 487 & Rescode: :ERR_LP_EXPECTED_OBJECTIVE, 477 \\
\hline Rescode: :ERR_INVALID_SOL_FILE_NAME, 474 & Rescode: :ERR_LP_FILE_FORMAT, 477 \\
\hline Rescode: :ERR_INVALID_STREAM, 474 & Rescode::ERR_LP_INDICATOR_VAR, 477 \\
\hline Rescode: :ERR_INVALID_SURPLUS, 481 & Rescode::ERR_LP_INVALID_VAR_NAME, 477 \\
\hline Rescode: :ERR_INVALID_SYM_MAT_DIM, 486 & Rescode::ERR_LU_MAX_NUM_TRIES, 485 \\
\hline Rescode: :ERR_INVALID_TASK, 474 & Rescode: :ERR_MAX_LEN_IS_TOO_SMALL, 481 \\
\hline Rescode: :ERR_INVALID_UTF8, 485 & Rescode: :ERR_MAXNUMBARVAR, 479 \\
\hline Rescode: :ERR_INVALID_VAR_NAME, 475 & Rescode: :ERR_MAXNUMCON, 479 \\
\hline Rescode: :ERR_INVALID_WCHAR, 485 & Rescode: :ERR_MAXNUMCONE, 482 \\
\hline Rescode: :ERR_INVALID_WHICHSOL, 479 & Rescode: :ERR_MAXNUMQNZ, 479 \\
\hline Rescode::ERR_JSON_DATA, 478 & Rescode: :ERR_MAXNUMVAR, 479 \\
\hline Rescode: :ERR_JSON_FORMAT, 478 & Rescode: :ERR_MIO_INTERNAL, 487 \\
\hline Rescode: :ERR_JSON_MISSING_DATA, 478 & Rescode: :ERR_MIO_INVALID_NODE_OPTIMIZER, \\
\hline Rescode: :ERR_JSON_NUMBER_OVERFLOW, 478 & 490 \\
\hline Rescode: :ERR_JSON_STRING, 478 & Rescode: :ERR_MIO_INVALID_ROOT_OPTIMIZER, \\
\hline Rescode: :ERR_JSON_SYNTAX, 478 & 490 \\
\hline Rescode: :ERR_LAST, 484 & Rescode::ERR_MIO_NO_OPTIMIZER, 483 \\
\hline Rescode: :ERR_LASTI, 481 & Rescode::ERR_MISMATCHING_DIMENSION, 475 \\
\hline Rescode: :ERR_LASTJ, 481 & Rescode::ERR_MISSING_LICENSE_FILE, 473 \\
\hline Rescode: :ERR_LAU_ARG_K, 487 & Rescode: :ERR_MIXED_CONIC_AND_NL, 483 \\
\hline Rescode: :ERR_LAU_ARG_M, 487 & Rescode: :ERR_MPS_CONE_OVERLAP, 476 \\
\hline Rescode: :ERR_LAU_ARG_N, 487 & Rescode: :ERR_MPS_CONE_REPEAT, 476 \\
\hline Rescode: :ERR_LAU_ARG_TRANS, 488 & Rescode: :ERR_MPS_CONE_TYPE, 476 \\
\hline Rescode: :ERR_LAU_ARG_TRANSA, 487 & Rescode: :ERR_MPS_DUPLICATE_Q_ELEMENT, 476 \\
\hline Rescode: :ERR_LAU_ARG_TRANSB, 487 & Rescode: :ERR_MPS_FILE, 475 \\
\hline Rescode: :ERR_LAU_ARG_UPLO, 487 & Rescode::ERR_MPS_INV_FIELD, 475 \\
\hline \multicolumn{2}{|l|}{Rescode: :ERR_LAU_INVALID_LOWER_TRIANGULAR_MARREX.ode : :ERR_MPS_INV_MARKER, 475} \\
\hline 487 & Rescode::ERR_MPS_INV_SEC_ORDER, 476 \\
\hline \multicolumn{2}{|l|}{Rescode: :ERR_LAU_INVALID_SPARSE_SYMMETRIC_MARREXK.ode: :ERR_MPS_INVALID_BOUND_KEY, 476} \\
\hline 488 & Rescode::ERR_MPS_INVALID_CON_KEY, 475 \\
\hline Rescode::ERR_LAU_NOT_POSITIVE_DEFINITE, 487 & Rescode: :ERR_MPS_INVALID_INDICATOR_CONSTRAINT, \\
\hline Rescode: :ERR_LAU_SINGULAR_MATRIX, 487 & 476 \\
\hline Rescode: :ERR_LAU_UNKNOWN, 487 & Rescode: :ERR_MPS_INVALID_INDICATOR_QUADRATIC_CONSTRAINT, \\
\hline Rescode: :ERR_LICENSE, 472 & 476 \\
\hline Rescode: :ERR_LICENSE_CANNOT_ALLOCATE, 473 & Rescode: :ERR_MPS_INVALID_INDICATOR_VALUE, \\
\hline Rescode::ERR_LICENSE_CANNOT_CONNECT, 473 & 476 \\
\hline Rescode: :ERR_LICENSE_EXPIRED, 472 & Rescode: :ERR_MPS_INVALID_INDICATOR_VARIABLE, \\
\hline Rescode: :ERR_LICENSE_FEATURE, 473 & 476 \\
\hline Rescode::ERR_LICENSE_INVALID_HOSTID, 473 & Rescode: :ERR_MPS_INVALID_KEY, 476 \\
\hline
\end{tabular}

Rescode::ERR_MPS_INVALID_OBJ_NAME, 476
Rescode::ERR_MPS_INVALID_OBJSENSE, 476
Rescode::ERR_MPS_INVALID_SEC_NAME, 476
Rescode::ERR_MPS_MUL_CON_NAME, 476
Rescode::ERR_MPS_MUL_CSEC, 476
Rescode: :ERR_MPS_MUL_QOBJ, 476
Rescode::ERR_MPS_MUL_QSEC, 476
Rescode::ERR_MPS_NO_OBJECTIVE, 476
Rescode: :ERR_MPS_NON_SYMMETRIC_Q, 476
Rescode::ERR_MPS_NULL_CON_NAME, 475
Rescode: :ERR_MPS_NULL_VAR_NAME, 475
Rescode: :ERR_MPS_SPLITTED_VAR, 476
Rescode::ERR_MPS_TAB_IN_FIELD2, 476
Rescode::ERR_MPS_TAB_IN_FIELD3, 476
Rescode::ERR_MPS_TAB_IN_FIELD5, 476
Rescode: :ERR_MPS_UNDEF_CON_NAME, 475
Rescode: :ERR_MPS_UNDEF_VAR_NAME, 475
Rescode::ERR_MPS_WRITE_CPLEX_INVALID_CONE_TYREscode: :ERR_PARAM_NAME_DOU, 478

\section*{490}

Rescode::ERR_MUL_A_ELEMENT, 480
Rescode::ERR_NAME_IS_NULL, 484
Rescode: :ERR_NAME_MAX_LEN, 484
Rescode::ERR_NAN_IN_BLC, 483
Rescode::ERR_NAN_IN_BLX, 483
Rescode::ERR_NAN_IN_BUC, 483
Rescode::ERR_NAN_IN_BUX, 483
Rescode::ERR_NAN_IN_C, 483
Rescode::ERR_NAN_IN_DOUBLE_DATA, 483
Rescode::ERR_NEGATIVE_APPEND, 484
Rescode::ERR_NEGATIVE_SURPLUS, 484
Rescode::ERR_NEWER_DLL, 474
Rescode: :ERR_NO_BARS_FOR_SOLUTION, 486
Rescode: :ERR_NO_BARX_FOR_SOLUTION, 486
Rescode::ERR_NO_BASIS_SOL, 484
Rescode::ERR_NO_DOTY, 492
Rescode::ERR_NO_DUAL_FOR_ITG_SOL, 485
Rescode: :ERR_NO_DUAL_INFEAS_CER, 484
Rescode: :ERR_NO_INIT_ENV, 474
Rescode::ERR_NO_OPTIMIZER_VAR_TYPE, 483
Rescode: :ERR_NO_PRIMAL_INFEAS_CER, 484
Rescode::ERR_NO_SNX_FOR_BAS_SOL, 485
Rescode: :ERR_NO_SOLUTION_IN_CALLBACK, 484
Rescode: :ERR_NON_UNIQUE_ARRAY, 487
Rescode::ERR_NONCONVEX, 481
Rescode: :ERR_NONLINEAR_EQUALITY, 481
Rescode: :ERR_NONLINEAR_RANGED, 481
Rescode: :ERR_NOT_POWER_DOMAIN, 491
Rescode: :ERR_NULL_ENV, 474
Rescode: :ERR_NULL_POINTER, 474
Rescode::ERR_NULL_TASK, 474
Rescode::ERR_NUM_ARGUMENTS, 478
Rescode::ERR_NUMCONLIM, 480
Rescode::ERR_NUMVARLIM, 480
Rescode::ERR_OBJ_Q_NOT_NSD, 481
Rescode::ERR_OBJ_Q_NOT_PSD, 481
Rescode::ERR_OBJECTIVE_RANGE, 480
Rescode::ERR_OLDER_DLL, 474
Rescode::ERR_OPF_DUAL_INTEGER_SOLUTION, 477

Rescode::ERR_OPF_DUPLICATE_BOUND, 477
Rescode: :ERR_OPF_DUPLICATE_CONE_ENTRY, 477
Rescode::ERR_OPF_DUPLICATE_CONSTRAINT_NAME, 477
Rescode: :ERR_OPF_INCORRECT_TAG_PARAM, 477
Rescode::ERR_OPF_INVALID_CONE_TYPE, 477
Rescode::ERR_OPF_INVALID_TAG, 477
Rescode::ERR_OPF_MISMATCHED_TAG, 477
Rescode: :ERR_OPF_PREMATURE_EOF, 477
Rescode: :ERR_OPF_SYNTAX, 476
Rescode: :ERR_OPF_TOO_LARGE, 477
Rescode: :ERR_OPTIMIZER_LICENSE, 473
Rescode: :ERR_OVERFLOW, 484
Rescode::ERR_PARAM_INDEX, 478
Rescode: :ERR_PARAM_IS_TOO_LARGE, 478
Rescode::ERR_PARAM_IS_TOO_SMALL, 478
Rescode::ERR_PARAM_NAME, 478
Rescode::ERR_PARAM_NAME_INT, 478
Rescode: :ERR_PARAM_NAME_STR, 478
Rescode::ERR_PARAM_TYPE, 479
Rescode: :ERR_PARAM_VALUE_STR, 479
Rescode::ERR_PLATFORM_NOT_LICENSED, 473
Rescode::ERR_POSTSOLVE, 484
Rescode: :ERR_PRO_ITEM, 481
Rescode: :ERR_PROB_LICENSE, 473
Rescode: :ERR_PTF_FORMAT, 478
Rescode::ERR_PTF_INCOMPATIBILITY, 478
Rescode::ERR_PTF_INCONSISTENCY, 478
Rescode: :ERR_PTF_UNDEFINED_ITEM, 478
Rescode: :ERR_QCON_SUBI_TOO_LARGE, 482
Rescode::ERR_QCON_SUBI_TOO_SMALL, 482
Rescode::ERR_QCON_UPPER_TRIANGLE, 482
Rescode::ERR_QOBJ_UPPER_TRIANGLE, 482
Rescode::ERR_READ_FORMAT, 475
Rescode::ERR_READ_GZIP, 475
Rescode::ERR_READ_LP_DELAYED_ROWS_NOT_SUPPORTED, 477
Rescode::ERR_READ_LP_MISSING_END_TAG, 477
Rescode::ERR_READ_ZSTD, 475
Rescode::ERR_REMOVE_CONE_VARIABLE, 482
Rescode: :ERR_REPAIR_INVALID_PROBLEM, 484
Rescode: :ERR_REPAIR_OPTIMIZATION_FAILED, 484
Rescode::ERR_SEN_BOUND_INVALID_LO, 485
Rescode: :ERR_SEN_BOUND_INVALID_UP, 485
Rescode::ERR_SEN_FORMAT, 485
Rescode::ERR_SEN_INDEX_INVALID, 485
Rescode::ERR_SEN_INDEX_RANGE, 485
Rescode: :ERR_SEN_INVALID_REGEXP, 485
Rescode: :ERR_SEN_NUMERICAL, 485
Rescode: :ERR_SEN_SOLUTION_STATUS, 485
Rescode: :ERR_SEN_UNDEF_NAME, 485
Rescode: :ERR_SEN_UNHANDLED_PROBLEM_TYPE, 485
Rescode::ERR_SERVER_ACCESS_TOKEN, 490
Rescode: :ERR_SERVER_ADDRESS, 490
Rescode: :ERR_SERVER_CERTIFICATE, 490

Rescode::ERR_SERVER_CONNECT, 490
Rescode: :ERR_SERVER_PROBLEM_SIZE, 490
Rescode::ERR_SERVER_PROTOCOL, 490
Rescode::ERR_SERVER_STATUS, 490
Rescode::ERR_SERVER_TLS_CLIENT, 490
Rescode: :ERR_SERVER_TOKEN, 490
Rescode: :ERR_SHAPE_IS_TOO_LARGE, 478
Rescode::ERR_SIZE_LICENSE, 473
Rescode: :ERR_SIZE_LICENSE_CON, 473
Rescode::ERR_SIZE_LICENSE_INTVAR, 473
Rescode::ERR_SIZE_LICENSE_NUMCORES, 486
Rescode: :ERR_SIZE_LICENSE_VAR, 473
Rescode::ERR_SLICE_SIZE, 484
Rescode: :ERR_SOL_FILE_INVALID_NUMBER, 482
Rescode::ERR_SOLITEM, 479
Rescode::ERR_SOLVER_PROBTYPE, 480
Rescode::ERR_SPACE, 474
Rescode::ERR_SPACE_LEAKING, 475
Rescode: :ERR_SPACE_NO_INFO, 475
Rescode::ERR_SPARSITY_SPECIFICATION, 475
Rescode::ERR_SYM_MAT_DUPLICATE, 486
Rescode::ERR_SYM_MAT_HUGE, 483
Rescode::ERR_SYM_MAT_INVALID, 483
Rescode::ERR_SYM_MAT_INVALID_COL_INDEX, 486
Rescode: :ERR_SYM_MAT_INVALID_ROW_INDEX, 486
Rescode::ERR_SYM_MAT_INVALID_VALUE, 486
Rescode::ERR_SYM_MAT_NOT_LOWER_TRINGULAR, 486
Rescode::ERR_TASK_INCOMPATIBLE, 485
Rescode::ERR_TASK_INVALID, 485
Rescode::ERR_TASK_WRITE, 485
Rescode: :ERR_THREAD_COND_INIT, 474
Rescode::ERR_THREAD_CREATE, 474
Rescode::ERR_THREAD_MUTEX_INIT, 474
Rescode::ERR_THREAD_MUTEX_LOCK, 474
Rescode::ERR_THREAD_MUTEX_UNLOCK, 474
Rescode: :ERR_TOCONIC_CONSTR_NOT_CONIC, 490
Rescode: :ERR_TOCONIC_CONSTR_Q_NOT_PSD, 490
Rescode::ERR_TOCONIC_CONSTRAINT_FX, 490
Rescode::ERR_TOCONIC_CONSTRAINT_RA, 490
Rescode: :ERR_TOCONIC_OBJECTIVE_NOT_PSD, 490
Rescode::ERR_TOO_SMALL_A_TRUNCATION_VALUE, 483
Rescode: :ERR_TOO_SMALL_MAX_NUM_NZ, 479
Rescode: :ERR_TOO_SMALL_MAXNUMANZ, 480
Rescode: :ERR_UNALLOWED_WHICHSOL, 480
Rescode: :ERR_UNB_STEP_SIZE, 486
Rescode: :ERR_UNDEF_SOLUTION, 491
Rescode::ERR_UNDEFINED_OBJECTIVE_SENSE, 483
Rescode::ERR_UNHANDLED_SOLUTION_STATUS, 487
Rescode: :ERR_UNKNOWN, 474
Rescode::ERR_UPPER_BOUND_IS_A_NAN, 482
Rescode::ERR_UPPER_TRIANGLE, 487
Rescode::ERR_WHICHITEM_NOT_ALLOWED, 479
Rescode::ERR_WHICHSOL, 479
Rescode: :ERR_WRITE_MPS_INVALID_NAME, 477
Rescode: :ERR_WRITE_OPF_INVALID_VAR_NAME, 477

Rescode::ERR_WRITING_FILE, 477
Rescode::ERR_XML_INVALID_PROBLEM_TYPE, 486
Rescode::ERR_Y_IS_UNDEFINED, 483

\section*{Index}

\section*{A}

ACC, 22
affine conic constraints, 22
analysis
infeasibility, 206
asset, see portfolio optimization attaching
streams, 19

\section*{B}
basic
solution, 88
basis identification, 117, 186
basis type
sensitivity analysis, 212
big-M, 202
BLAS, 124
bound
constraint, 16, 170, 173, 177
linear optimization, 16
variable, 16, 170, 173, 177
Branch-and-Bound, 195

\section*{C}
callback, 97
cardinality constraints, 158
CBF format, 550
ceo1
example, 39
certificate, 89
dual, 172, 175
infeasibility, 83
infeasible, 83
primal, 172, 175
Cholesky factorization, 126, 143
column ordered
matrix format, 221
complementarity, 171, 175
concurrent optimizer, 166
cone
dual, 174
dual exponential, 39
exponential, 39
power, 35
quadratic, 31
rotated quadratic, 31
semidefinite, 46
conic exponential optimization, 39
conic optimization, \(22,31,35,39,173\)
interior-point, 190
mixed-integer, 201
termination criteria, 192
conic problem
example, 32, 36, 39
conic quadratic optimization, 31
constraint
bound, 16, 170, 173, 177
linear optimization, 16
matrix, 16, 170, 173, 177
quadratic, 178
constraint programming, 62
correlation matrix, 134
covariance matrix, see correlation matrix cqo1
example, 32
cuts, 199
cutting planes, 199
D
defining
objective, 19
determinism, 129
disjunction, 62
disjunctive constraint, 202
disjunctive constraints, 62
DJC, 62
domain, 521
dual
certificate, 172,175
cone, 174
feasible, 171
infeasible, 171, 172, 175
problem, 171, 174, 178
solution, 90
variable, 171, 174
duality
conic, 174
linear, 171
semidefinite, 178
dualizer, 182
E
efficient frontier, 139
eliminator, 182
error
optimization, 88
errors, 91
example
ceo1, 39
conic problem, 32, 36, 39
cqo1, 32
lo1, 19
pow1, 36
qo1, 70
quadratic objective, 70
exceptions, 91
exponential cone, 39

\section*{F}
factor model, 143
feasibility
integer feasibility, 197
feasible
dual, 171
primal, 170, 184, 191
problem, 170
format, 94
CBF, 550
json, 575
LP, 525
MPS, 529
OPF, 541
PTF, 568
sol, 581
task, 574
full
vector format, 220
G
geometric programming, 42
GP, 42

\section*{H}
heuristic, 198
hot-start, 188
I
I/O, 94
infeasibility, 89, 172, 175
analysis, 206
linear optimization, 172
repair, 206
semidefinite, 178
infeasibility certificate, 83
infeasible
dual, 171, 172, 175
primal, 170, 172, 175, 184, 191
problem, 170, 172, 178
information item, 96, 97
installation, 9
requirements, 9
troubleshooting, 9
integer
solution, 88
variable, 57
integer feasibility, 197
feasibility, 197
integer optimization, 57, 62
initial solution, 60
parameter, 58
interior-point
conic optimization, 190
linear optimization, 184
logging, 187, 193
optimizer, 184, 190
solution, 88
termination criteria, 185, 192

J
json format, 575

\section*{L}

LAPACK, 124
license, 131
linear
objective, 19
linear constraint matrix, 16
linear dependency, 182
linear optimization, 16, 170
bound, 16
constraint, 16
infeasibility, 172
interior-point, 184
objective, 16
simplex, 188
termination criteria, 185, 188
variable, 16
linearity interval, 211
101
example, 19
log-sum-exp, 162
logging, 93
interior-point, 187, 193
mixed-integer optimizer, 200
optimizer, 187, 189, 193
simplex, 189
logistic regression, 162
LP format, 525
M
machine learning
logistic regression, 162
market impact cost, 148
Markowitz model, 134
matrix
constraint, 16, 170, 173, 177
semidefinite, 46
symmetric, 46
matrix format
column ordered, 221
row ordered, 221
triplets, 221
memory management, 129
MI (QC) QO, 202

MICO, 201
MIP, see integer optimization
mixed-integer, see integer
conic optimization, 201
optimizer, 194
presolve, 198
quadratic, 202
mixed-integer optimization, see integer optimization, 194
mixed-integer optimizer
logging, 200
modeling
design, 11
MPS format, 529
free, 540

\section*{N}
numerical issues
presolve, 182
scaling, 183
simplex, 189

\section*{0}
objective, \(170,173,177\)
defining, 19
linear, 19
linear optimization, 16
OPF format, 541
optimal
solution, 89
optimality gap, 196
optimization
conic, 22, 173
conic quadratic, 173
error, 88
integer, 62
linear, 16, 170
semidefinite, 176
optimizer
concurrent, 166
conic, 22
determinism, 129
interior-point, 184, 190
interrupt, 97
logging, 187, 189, 193
mixed-integer, 62, 194
parallel, 81
selection, 182, 183
simplex, 188
termination, 196

\section*{P}
parallel optimization, 81, 166
parallelization, 129
parameter, 95
integer optimization, 58
simplex, 189
Pareto optimality, 134
```

portfolio optimization, 133
cardinality constraints, 158
efficient frontier, 139
factor model, }14
market impact cost, 148
Markowitz model, 134
Pareto optimality,134
slippage cost,148
transaction cost, 154
positive semidefinite, 70
pow1
example, 36
power cone, 35
power cone optimization, 35
presolve, 181
eliminator, }18
linear dependency check, }18
mixed-integer, 198
numerical issues, 182
primal
certificate, 172, 175
feasible, 170, 184, 191
infeasible, 170, 172, 175, 184, 191
problem, 171, 174, 178
solution, 90, 170
primal heuristics,198
primal-dual
problem, 184, }19
solution, 171
problem
dual, 171, 174, 178
feasible, 170
infeasible, 170, 172, 178
load, 95
primal, 171, 174, 178
primal-dual, 184, 190
save, }9
status, }8
unbounded, 172, 176
PTF format, 568
Q
qo1
example, 70
quadratic
constraint, 178
mixed-integer, 202
quadratic cone, 31
quadratic objective
example, 70
quadratic optimization, 178
R
regression
logistic, 162
relaxation, }19
repair
infeasibility, 206

```
response code, 91
rotated quadratic cone, 31
row ordered
matrix format, 221

\section*{S}
scaling, 183
semidefinite
cone, 46
infeasibility, 178
matrix, 46
variable, 46
semidefinite optimization, 46, 176
sensitivity analysis, 210
basis type, 212
shadow price, 211
simplex
linear optimization, 188
logging, 189
numerical issues, 189
optimizer, 188
parameter, 189
termination criteria, 188
slippage cost, 148
sol format, 581
solution
basic, 88
dual, 90
file format, 581
integer, 88
interior-point, 88
optimal, 89
primal, 90, 170
primal-dual, 171
retrieve, 88
status, 19, 89
solving linear system, 121
sparse
vector format, 221
sparse vector, 221
status
problem, 88
solution, 19, 89
streams
attaching, 19
symmetric
matrix, 46
T
task format, 574
termination, 88
optimizer, 196
termination criteria, 97, 196
conic optimization, 192
interior-point, 185, 192
linear optimization, 185, 188
simplex, 188
tolerance, 186, 193
thread, 129
time limit, 97
tolerance
termination criteria, 186, 193
transaction cost, 154
triplets
matrix format, 221
troubleshooting installation, 9

\section*{U}
unbounded
problem, 172, 176
user callback, see callback
V
valid inequalities, 199
variable, 170, 173, 177
bound, 16, 170, 173, 177
dual, 171, 174
integer, 57
linear optimization, 16
semidefinite, 46
vector format
full, 220
sparse, 221```

