##
#  Copyright : Copyright (c) MOSEK ApS, Denmark. All rights reserved.
#
#  File :      cqo1.py
#
#  Purpose :   Demonstrates how to solve small conic quadratic
#              optimization problem using the MOSEK Python API.
##
import sys
import mosek

# Since the actual value of Infinity is ignores, we define it solely
# for symbolic purposes:
inf = 0.0

# Define a stream printer to grab output from MOSEK
def streamprinter(text):
    sys.stdout.write(text)
    sys.stdout.flush()


def main():
    # Create a task
    with mosek.Task() as task:
        # Attach a printer to the task
        task.set_Stream(mosek.streamtype.log, streamprinter)

        bkc = [mosek.boundkey.fx]
        blc = [1.0]
        buc = [1.0]

        c = [0.0, 0.0, 0.0,
             1.0, 1.0, 1.0]
        bkx = [mosek.boundkey.lo, mosek.boundkey.lo, mosek.boundkey.lo,
               mosek.boundkey.fr, mosek.boundkey.fr, mosek.boundkey.fr]
        blx = [0.0, 0.0, 0.0,
               -inf, -inf, -inf]
        bux = [inf, inf, inf,
               inf, inf, inf]

        asub = [[0], [0], [0]]
        aval = [[1.0], [1.0], [2.0]]

        numvar = len(bkx)
        numcon = len(bkc)
        NUMANZ = 4

        # Append 'numcon' empty constraints.
        # The constraints will initially have no bounds.
        task.appendcons(numcon)

        #Append 'numvar' variables.
        # The variables will initially be fixed at zero (x=0).
        task.appendvars(numvar)

        for j in range(numvar):
            # Set the linear term c_j in the objective.
            task.putcj(j, c[j])
            # Set the bounds on variable j
            # blx[j] <= x_j <= bux[j]
            task.putvarbound(j, bkx[j], blx[j], bux[j])

        for j in range(len(aval)):
            # Input column j of A
            task.putacol(j,                  # Variable (column) index.
                         # Row index of non-zeros in column j.
                         asub[j],
                         aval[j])            # Non-zero Values of column j.

        for i in range(numcon):
            task.putconbound(i, bkc[i], blc[i], buc[i])

        # Input the affine conic constraints
        # Create a matrix F such that F * x = [x(3),x(0),x(1),x(4),x(5),x(2)] 
        task.appendafes(6)
        task.putafefentrylist(range(6),                      # Rows
                              [3, 0, 1, 4, 5, 2],            # Columns 
                              [1.0] * 6)

        # Quadratic cone (x(3),x(0),x(1)) \in QUAD_3 
        quadcone  = task.appendquadraticconedomain(3)
        task.appendacc(quadcone,                # Domain 
                       [0, 1, 2],               # Rows from F
                       None)                    # Unused

        # Rotated quadratic cone (x(4),x(5),x(2)) \in RQUAD_3 
        rquadcone = task.appendrquadraticconedomain(3);
        task.appendacc(rquadcone,               # Domain 
                       [3, 4, 5],               # Rows from F 
                       None)                    # Unused 

        # Input the objective sense (minimize/maximize)
        task.putobjsense(mosek.objsense.minimize)

        # Optimize the task
        task.optimize()
        # Print a summary containing information
        # about the solution for debugging purposes
        task.solutionsummary(mosek.streamtype.msg)
        prosta = task.getprosta(mosek.soltype.itr)
        solsta = task.getsolsta(mosek.soltype.itr)

        # Output a solution
        xx = task.getxx(mosek.soltype.itr)

        if solsta == mosek.solsta.optimal:
            print("Optimal solution: %s" % xx)
        elif solsta == mosek.solsta.dual_infeas_cer:
            print("Primal or dual infeasibility.\n")
        elif solsta == mosek.solsta.prim_infeas_cer:
            print("Primal or dual infeasibility.\n")
        elif mosek.solsta.unknown:
            print("Unknown solution status")
        else:
            print("Other solution status")


# call the main function
try:
    main()
except mosek.MosekException as e:
    print("ERROR: %s" % str(e.errno))
    print("\t%s" % e.msg)
    sys.exit(1)
except:
    import traceback
    traceback.print_exc()
    sys.exit(1)
