15.3 Functions in alphabetical order¶
- MSK_analyzenames¶
MSKrescodee (MSKAPI MSK_analyzenames) ( MSKtask_t task, MSKstreamtypee whichstream, MSKnametypee nametype)
The function analyzes the names and issues an error if a name is invalid.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichstream
(MSKstreamtypee
) – Index of the stream. (input)nametype
(MSKnametypee
) – The type of names e.g. valid in MPS or LP files. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_analyzeproblem¶
MSKrescodee (MSKAPI MSK_analyzeproblem) ( MSKtask_t task, MSKstreamtypee whichstream)
The function analyzes the data of a task and writes out a report.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichstream
(MSKstreamtypee
) – Index of the stream. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_analyzesolution¶
MSKrescodee (MSKAPI MSK_analyzesolution) ( MSKtask_t task, MSKstreamtypee whichstream, MSKsoltypee whichsol)
Print information related to the quality of the solution and other solution statistics.
By default this function prints information about the largest infeasibilites in the solution, the primal (and possibly dual) objective value and the solution status.
Following parameters can be used to configure the printed statistics:
MSK_IPAR_ANA_SOL_BASIS
enables or disables printing of statistics specific to the basis solution (condition number, number of basic variables etc.). Default is on.MSK_IPAR_ANA_SOL_PRINT_VIOLATED
enables or disables listing names of all constraints (both primal and dual) which are violated by the solution. Default is off.MSK_DPAR_ANA_SOL_INFEAS_TOL
is the tolerance defining when a constraint is considered violated. If a constraint is violated more than this, it will be listed in the summary.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichstream
(MSKstreamtypee
) – Index of the stream. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendacc¶
MSKrescodee (MSKAPI MSK_appendacc) ( MSKtask_t task, MSKint64t domidx, MSKint64t numafeidx, const MSKint64t * afeidxlist, const MSKrealt * b)
Appends an affine conic constraint to the task. The affine constraint has the form a sequence of affine expressions belongs to a domain.
The domain index is specified with
domidx
and should refer to a domain previously appended with one of theappend...domain
functions.The length of the affine expression list
afeidxlist
must be equal to the dimension \(n\) of the domain. The elements ofafeidxlist
are indexes to the store of affine expressions, i.e. the affine expressions appearing in the affine conic constraint are:\[F_{\mathrm{afeidxlist}[k],:}x + g_{\mathrm{afeidxlist}[k]} \quad \mathrm{for}\ k=0,\ldots,n-1.\]If an optional vector
b
of the same length asafeidxlist
is specified then the expressions appearing in the affine constraint will instead be taken as:\[F_{\mathrm{afeidxlist}[k],:}x + g_{\mathrm{afeidxlist}[k]} - b_k \quad \mathrm{for}\ k=0,\ldots,n-1.\]- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidx
(MSKint64t
) – Domain index. (input)numafeidx
(MSKint64t
) – Number of affine expressions in the affine expression list (must equal the dimension of the domain). (input)afeidxlist
(MSKint64t
*
) – List of affine expression indexes. (input)b
(MSKrealt
*
) – The vector of constant terms added to affine expressions. Optional, can be NULL. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendaccs¶
MSKrescodee (MSKAPI MSK_appendaccs) ( MSKtask_t task, MSKint64t numaccs, const MSKint64t * domidxs, MSKint64t numafeidx, const MSKint64t * afeidxlist, const MSKrealt * b)
Appends
numaccs
affine conic constraint to the task. Each single affine conic constraint should be specified as inMSK_appendacc
and the input of this function should contain the concatenation of all these descriptions.In particular, the length of
afeidxlist
must equal the sum of dimensions of domains indexed indomainsidxs
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)numaccs
(MSKint64t
) – The number of affine conic constraints to append. (input)domidxs
(MSKint64t
*
) – Domain indices. (input)numafeidx
(MSKint64t
) – Number of affine expressions in the affine expression list (must equal the sum of dimensions of the domains). (input)afeidxlist
(MSKint64t
*
) – List of affine expression indexes. (input)b
(MSKrealt
*
) – The vector of constant terms added to affine expressions. Optional, can be NULL. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendaccseq¶
MSKrescodee (MSKAPI MSK_appendaccseq) ( MSKtask_t task, MSKint64t domidx, MSKint64t numafeidx, MSKint64t afeidxfirst, const MSKrealt * b)
Appends an affine conic constraint to the task, as in
MSK_appendacc
. The function assumes the affine expressions forming the constraint are sequential. The affine constraint has the form a sequence of affine expressions belongs to a domain.The domain index is specified with
domidx
and should refer to a domain previously appended with one of theappend...domain
functions.The number of affine expressions should be equal to the dimension \(n\) of the domain. The affine expressions forming the affine constraint are arranged sequentially in a contiguous block of the affine expression store starting from position
afeidxfirst
. That is, the affine expressions appearing in the affine conic constraint are:\[F_{\mathrm{afeidxfirst}+k,:}x + g_{\mathrm{afeidxfirst}+k} \quad \mathrm{for}\ k=0,\ldots,n-1.\]If an optional vector
b
of lengthnumafeidx
is specified then the expressions appearing in the affine constraint will instead be taken as\[F_{\mathrm{afeidxfirst}+k,:}x + g_{\mathrm{afeidxfirst}+k} - b_k \quad \mathrm{for}\ k=0,\ldots,n-1.\]- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidx
(MSKint64t
) – Domain index. (input)numafeidx
(MSKint64t
) – Number of affine expressions in the affine expression list (must equal the dimension of the domain). (input)afeidxfirst
(MSKint64t
) – Index of the first affine expression. (input)b
(MSKrealt
*
) – The vector of constant terms added to affine expressions. Optional, can be NULL. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendaccsseq¶
MSKrescodee (MSKAPI MSK_appendaccsseq) ( MSKtask_t task, MSKint64t numaccs, const MSKint64t * domidxs, MSKint64t numafeidx, MSKint64t afeidxfirst, const MSKrealt * b)
Appends
numaccs
affine conic constraint to the task. It is the block variant ofMSK_appendaccs
, that is it assumes that the affine expressions appearing in the affine conic constraints are sequential in the affine expression store, starting from positionafeidxfirst
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)numaccs
(MSKint64t
) – The number of affine conic constraints to append. (input)domidxs
(MSKint64t
*
) – Domain indices. (input)numafeidx
(MSKint64t
) – Number of affine expressions in the affine expression list (must equal the sum of dimensions of the domains). (input)afeidxfirst
(MSKint64t
) – Index of the first affine expression. (input)b
(MSKrealt
*
) – The vector of constant terms added to affine expressions. Optional, can be NULL. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendafes¶
MSKrescodee (MSKAPI MSK_appendafes) ( MSKtask_t task, MSKint64t num)
Appends a number of empty affine expressions to the task.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendbarvars¶
MSKrescodee (MSKAPI MSK_appendbarvars) ( MSKtask_t task, MSKint32t num, const MSKint32t * dim)
Appends positive semidefinite matrix variables of dimensions given by
dim
to the problem.- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendcone Deprecated¶
MSKrescodee (MSKAPI MSK_appendcone) ( MSKtask_t task, MSKconetypee ct, MSKrealt conepar, MSKint32t nummem, const MSKint32t * submem)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
Appends a new conic constraint to the problem. Hence, add a constraint
\[\hat{x} \in \K\]to the problem, where \(\K\) is a convex cone. \(\hat{x}\) is a subset of the variables which will be specified by the argument
submem
. Cone type is specified byct
.Define
\[\hat{x} = x_{\mathtt{submem}[0]},\ldots,x_{\mathtt{submem}[\mathtt{nummem}-1]}.\]Depending on the value of
ct
this function appends one of the constraints:Quadratic cone (
MSK_CT_QUAD
, requires \(\mathtt{nummem}\geq 1\)):\[\hat{x}_0 \geq \sqrt{\sum_{i=1}^{i<\mathtt{nummem}} \hat{x}_i^2}\]Rotated quadratic cone (
MSK_CT_RQUAD
, requires \(\mathtt{nummem}\geq 2\)):\[2 \hat{x}_0 \hat{x}_1 \geq \sum_{i=2}^{i<\mathtt{nummem}} \hat{x}^2_i, \quad \hat{x}_{0}, \hat{x}_1 \geq 0\]Primal exponential cone (
MSK_CT_PEXP
, requires \(\mathtt{nummem}=3\)):\[\hat{x}_0 \geq \hat{x}_1\exp(\hat{x}_2/\hat{x}_1), \quad \hat{x}_0,\hat{x}_1 \geq 0\]Primal power cone (
MSK_CT_PPOW
, requires \(\mathtt{nummem}\geq 2\)):\[\hat{x}_0^\alpha \hat{x}_1^{1-\alpha} \geq \sqrt{\sum_{i=2}^{i<\mathtt{nummem}} \hat{x}^2_i}, \quad \hat{x}_{0}, \hat{x}_1 \geq 0\]where \(\alpha\) is the cone parameter specified by
conepar
.Dual exponential cone (
MSK_CT_DEXP
, requires \(\mathtt{nummem}=3\)):\[\hat{x}_0 \geq -\hat{x}_2 e^{-1}\exp(\hat{x}_1/\hat{x}_2), \quad \hat{x}_2\leq 0,\hat{x}_0 \geq 0\]Dual power cone (
MSK_CT_DPOW
, requires \(\mathtt{nummem}\geq 2\)):\[\left(\frac{\hat{x}_0}{\alpha}\right)^\alpha \left(\frac{\hat{x}_1}{1-\alpha}\right)^{1-\alpha} \geq \sqrt{\sum_{i=2}^{i<\mathtt{nummem}} \hat{x}^2_i}, \quad \hat{x}_{0}, \hat{x}_1 \geq 0\]where \(\alpha\) is the cone parameter specified by
conepar
.Zero cone (
MSK_CT_ZERO
):\[\hat{x}_i = 0 \ \textrm{for all}\ i\]
Please note that the sets of variables appearing in different conic constraints must be disjoint.
For an explained code example see Sec. 6.3 (Conic Quadratic Optimization), Sec. 6.5 (Conic Exponential Optimization) or Sec. 6.4 (Power Cone Optimization).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)ct
(MSKconetypee
) – Specifies the type of the cone. (input)conepar
(MSKrealt
) – For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0. (input)nummem
(MSKint32t
) – Number of member variables in the cone. (input)submem
(MSKint32t
*
) – Variable subscripts of the members in the cone. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendconeseq Deprecated¶
MSKrescodee (MSKAPI MSK_appendconeseq) ( MSKtask_t task, MSKconetypee ct, MSKrealt conepar, MSKint32t nummem, MSKint32t j)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
Appends a new conic constraint to the problem, as in
MSK_appendcone
. The function assumes the members of cone are sequential where the first member has indexj
and the lastj+nummem-1
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)ct
(MSKconetypee
) – Specifies the type of the cone. (input)conepar
(MSKrealt
) – For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0. (input)nummem
(MSKint32t
) – Number of member variables in the cone. (input)j
(MSKint32t
) – Index of the first variable in the conic constraint. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendconesseq Deprecated¶
MSKrescodee (MSKAPI MSK_appendconesseq) ( MSKtask_t task, MSKint32t num, const MSKconetypee * ct, const MSKrealt * conepar, const MSKint32t * nummem, MSKint32t j)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
Appends a number of conic constraints to the problem, as in
MSK_appendcone
. The \(k\)th cone is assumed to be of dimensionnummem[k]
. Moreover, it is assumed that the first variable of the first cone has index \(j\) and starting from there the sequentially following variables belong to the first cone, then to the second cone and so on.- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint32t
) – Number of cones to be added. (input)ct
(MSKconetypee
*
) – Specifies the type of the cone. (input)conepar
(MSKrealt
*
) – For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0. (input)nummem
(MSKint32t
*
) – Numbers of member variables in the cones. (input)j
(MSKint32t
) – Index of the first variable in the first cone to be appended. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendcons¶
MSKrescodee (MSKAPI MSK_appendcons) ( MSKtask_t task, MSKint32t num)
Appends a number of constraints to the model. Appended constraints will be declared free. Please note that MOSEK will automatically expand the problem dimension to accommodate the additional constraints.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appenddjcs¶
MSKrescodee (MSKAPI MSK_appenddjcs) ( MSKtask_t task, MSKint64t num)
Appends a number of empty disjunctive constraints to the task.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appenddualexpconedomain¶
MSKrescodee (MSKAPI MSK_appenddualexpconedomain) ( MSKtask_t task, MSKint64t * domidx)
Appends the dual exponential cone \(\left\{ x\in \real^3 ~:~ x_0 \geq -x_2 e^{-1} e^{x_1/x_2},\ x_0> 0,\ x_2< 0 \right\}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appenddualgeomeanconedomain¶
MSKrescodee (MSKAPI MSK_appenddualgeomeanconedomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the dual geometric mean cone \(\left\{ x\in \real^n ~:~ (n-1) \left(\prod_{i=0}^{n-2} x_i\right)^{1/(n-1)} \geq |x_{n-1}|,\ x_0,\ldots,x_{n-2}\geq 0 \right\}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimmension of the domain. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appenddualpowerconedomain¶
MSKrescodee (MSKAPI MSK_appenddualpowerconedomain) ( MSKtask_t task, MSKint64t n, MSKint64t nleft, const MSKrealt * alpha, MSKint64t * domidx)
Appends the dual power cone domain of dimension \(n\), with \(n_\ell\) variables appearing on the left-hand side, where \(n_\ell\) is the length of \(\alpha\), and with a homogenous sequence of exponents \(\alpha_0,\ldots,\alpha_{n_\ell-1}\).
Formally, let \(s = \sum_i \alpha_i\) and \(\beta_i = \alpha_i / s\), so that \(\sum_i \beta_i=1\). Then the dual power cone is defined as follows:
\[\left\{ x\in \real^n ~:~ \prod_{i=0}^{n_\ell-1} \left(\frac{x_i}{\beta_i}\right)^{\beta_i} \geq \sqrt{\sum_{j=n_\ell}^{n-1}x_j^2},\ x_0\ldots,x_{n_\ell-1}\geq 0 \right\}\]- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimension of the domain. (input)nleft
(MSKint64t
) – Number of variables on the left hand side. (input)alpha
(MSKrealt
*
) – The sequence proportional to exponents. Must be positive. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendprimalexpconedomain¶
MSKrescodee (MSKAPI MSK_appendprimalexpconedomain) ( MSKtask_t task, MSKint64t * domidx)
Appends the primal exponential cone \(\left\{ x\in \real^3 ~:~ x_0 \geq x_1 e^{x_2/x_1},\ x_0,x_1> 0 \right\}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendprimalgeomeanconedomain¶
MSKrescodee (MSKAPI MSK_appendprimalgeomeanconedomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the primal geometric mean cone \(\left\{ x\in \real^n ~:~ \left(\prod_{i=0}^{n-2} x_i\right)^{1/(n-1)} \geq |x_{n-1}|,\ x_0\ldots,x_{n-2}\geq 0 \right\}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimmension of the domain. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendprimalpowerconedomain¶
MSKrescodee (MSKAPI MSK_appendprimalpowerconedomain) ( MSKtask_t task, MSKint64t n, MSKint64t nleft, const MSKrealt * alpha, MSKint64t * domidx)
Appends the primal power cone domain of dimension \(n\), with \(n_\ell\) variables appearing on the left-hand side, where \(n_\ell\) is the length of \(\alpha\), and with a homogenous sequence of exponents \(\alpha_0,\ldots,\alpha_{n_\ell-1}\).
Formally, let \(s = \sum_i \alpha_i\) and \(\beta_i = \alpha_i / s\), so that \(\sum_i \beta_i=1\). Then the primal power cone is defined as follows:
\[\left\{ x\in \real^n ~:~ \prod_{i=0}^{n_\ell-1} x_i^{\beta_i} \geq \sqrt{\sum_{j=n_\ell}^{n-1}x_j^2},\ x_0\ldots,x_{n_\ell-1}\geq 0 \right\}\]- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimension of the domain. (input)nleft
(MSKint64t
) – Number of variables on the left hand side. (input)alpha
(MSKrealt
*
) – The sequence proportional to exponents. Must be positive. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendquadraticconedomain¶
MSKrescodee (MSKAPI MSK_appendquadraticconedomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the \(n\)-dimensional quadratic cone \(\left\{x\in\real^n~:~x_0 \geq \sqrt{\sum_{i=1}^{n-1} x_i^2}\right\}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimmension of the domain. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendrdomain¶
MSKrescodee (MSKAPI MSK_appendrdomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the \(n\)-dimensional real space \(\{ x \in \real^n \}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimmension of the domain. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendrminusdomain¶
MSKrescodee (MSKAPI MSK_appendrminusdomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the \(n\)-dimensional negative orthant \(\{ x \in \real^n: \, x \leq 0 \}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimmension of the domain. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendrplusdomain¶
MSKrescodee (MSKAPI MSK_appendrplusdomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the \(n\)-dimensional positive orthant \(\{ x \in \real^n: \, x \geq 0 \}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimmension of the domain. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendrquadraticconedomain¶
MSKrescodee (MSKAPI MSK_appendrquadraticconedomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the \(n\)-dimensional rotated quadratic cone \(\left\{x\in\real^n~:~2 x_0 x_1 \geq \sum_{i=2}^{n-1} x_i^2,\ x_0,x_1\geq 0\right\}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimmension of the domain. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendrzerodomain¶
MSKrescodee (MSKAPI MSK_appendrzerodomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the zero in \(n\)-dimensional real space \(\{ x \in \real^n: \, x = 0 \}\) to the list of domains.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimmension of the domain. (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendsparsesymmat¶
MSKrescodee (MSKAPI MSK_appendsparsesymmat) ( MSKtask_t task, MSKint32t dim, MSKint64t nz, const MSKint32t * subi, const MSKint32t * subj, const MSKrealt * valij, MSKint64t * idx)
MOSEK maintains a storage of symmetric data matrices that is used to build \(\barC\) and \(\barA\). The storage can be thought of as a vector of symmetric matrices denoted \(E\). Hence, \(E_i\) is a symmetric matrix of certain dimension.
This function appends a general sparse symmetric matrix on triplet form to the vector \(E\) of symmetric matrices. The vectors
subi
,subj
, andvalij
contains the row subscripts, column subscripts and values of each element in the symmetric matrix to be appended. Since the matrix that is appended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are not allowed.Observe the function reports the index (position) of the appended matrix in \(E\). This index should be used for later references to the appended matrix.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)dim
(MSKint32t
) – Dimension of the symmetric matrix that is appended. (input)nz
(MSKint64t
) – Number of triplets. (input)subi
(MSKint32t
*
) – Row subscript in the triplets. (input)subj
(MSKint32t
*
) – Column subscripts in the triplets. (input)valij
(MSKrealt
*
) – Values of each triplet. (input)idx
(MSKint64t
by reference) – Unique index assigned to the inputted matrix that can be used for later reference. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendsparsesymmatlist¶
MSKrescodee (MSKAPI MSK_appendsparsesymmatlist) ( MSKtask_t task, MSKint32t num, const MSKint32t * dims, const MSKint64t * nz, const MSKint32t * subi, const MSKint32t * subj, const MSKrealt * valij, MSKint64t * idx)
MOSEK maintains a storage of symmetric data matrices that is used to build \(\barC\) and \(\barA\). The storage can be thought of as a vector of symmetric matrices denoted \(E\). Hence, \(E_i\) is a symmetric matrix of certain dimension.
This function appends general sparse symmetric matrixes on triplet form to the vector \(E\) of symmetric matrices. The vectors
subi
,subj
, andvalij
contains the row subscripts, column subscripts and values of each element in the symmetric matrix to be appended. Since the matrix that is appended is symmetric, only the lower triangular part should be specified. Moreover, duplicates are not allowed.Observe the function reports the index (position) of the appended matrix in \(E\). This index should be used for later references to the appended matrix.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint32t
) – Number of matrixes to append. (input)dims
(MSKint32t
*
) – Dimensions of the symmetric matrixes. (input)nz
(MSKint64t
*
) – Number of nonzeros for each matrix. (input)subi
(MSKint32t
*
) – Row subscript in the triplets. (input)subj
(MSKint32t
*
) – Column subscripts in the triplets. (input)valij
(MSKrealt
*
) – Values of each triplet. (input)idx
(MSKint64t
*
) – Unique index assigned to the inputted matrix that can be used for later reference. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendsvecpsdconedomain¶
MSKrescodee (MSKAPI MSK_appendsvecpsdconedomain) ( MSKtask_t task, MSKint64t n, MSKint64t * domidx)
Appends the domain consisting of vectors of length \(n=d(d+1)/2\) defined as follows
\[\{(x_1,\ldots,x_{d(d+1)/2})\in \real^n~:~ \mathrm{sMat}(x)\in\PSD^d\} = \{\mathrm{sVec}(X)~:~X\in\PSD^d\},\]where
\[\mathrm{sVec}(X) = (X_{11},\sqrt{2}X_{21},\ldots,\sqrt{2}X_{d1},X_{22},\sqrt{2}X_{32},\ldots,X_{dd}),\]and
\[\begin{split}\mathrm{sMat}(x) = \left[\begin{array}{cccc}x_1 & x_2/\sqrt{2} & \cdots & x_{d}/\sqrt{2} \\ x_2/\sqrt{2} & x_{d+1} & \cdots & x_{2d-1}/\sqrt{2} \\ \cdots & \cdots & \cdots & \cdots \\ x_{d}/\sqrt{2} & x_{2d-1}/\sqrt{2} & \cdots & x_{d(d+1)/2}\end{array}\right].\end{split}\]In other words, the domain consists of vectorizations of the lower-triangular part of a positive semidefinite matrix, with the non-diagonal elements additionally rescaled.
This domain is a self-dual cone.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
) – Dimension of the domain, must be of the form \(d(d+1)/2\). (input)domidx
(MSKint64t
by reference) – Index of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_appendvars¶
MSKrescodee (MSKAPI MSK_appendvars) ( MSKtask_t task, MSKint32t num)
Appends a number of variables to the model. Appended variables will be fixed at zero. Please note that MOSEK will automatically expand the problem dimension to accommodate the additional variables.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_asyncgetresult¶
MSKrescodee (MSKAPI MSK_asyncgetresult) ( MSKtask_t task, const char * address, const char * accesstoken, const char * token, MSKbooleant * respavailable, MSKrescodee * resp, MSKrescodee * trm)
Request a solution from a remote job identified by the argument
token
. For other arguments seeMSK_asyncoptimize
. If the solution is available it will be retrieved and loaded into the local task.- Parameters
task
(MSKtask_t
) – An optimization task. (input)address
(char
*
) – Address of the OptServer. (input)accesstoken
(char
*
) – Access token. (input)token
(char
*
) – The task token. (input)respavailable
(MSKbooleant
by reference) – Indicates if a remote response is available. If this is not true,resp
andtrm
should be ignored. (output)resp
(MSKrescodee
by reference) – Is the response code from the remote solver. (output)trm
(MSKrescodee
by reference) – Is eitherMSK_RES_OK
or a termination response code. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_asyncoptimize¶
MSKrescodee (MSKAPI MSK_asyncoptimize) ( MSKtask_t task, const char * address, const char * accesstoken, char * token)
Offload the optimization task to an instance of OptServer specified by
addr
, which should be a valid URL, for examplehttp://server:port
orhttps://server:port
. The call will exit immediately.If the server requires authentication, the authentication token can be passed in the
accesstoken
argument.If the server requires encryption, the keys can be passed using one of the solver parameters
MSK_SPAR_REMOTE_TLS_CERT
orMSK_SPAR_REMOTE_TLS_CERT_PATH
.The function returns a token which should be used in future calls to identify the task.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)address
(char
*
) – Address of the OptServer. (input)accesstoken
(char
*
) – Access token. (input)token
(char
*
) – Returns the task token. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_asyncpoll¶
MSKrescodee (MSKAPI MSK_asyncpoll) ( MSKtask_t task, const char * address, const char * accesstoken, const char * token, MSKbooleant * respavailable, MSKrescodee * resp, MSKrescodee * trm)
Requests information about the status of the remote job identified by the argument
token
. For other arguments seeMSK_asyncoptimize
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)address
(char
*
) – Address of the OptServer. (input)accesstoken
(char
*
) – Access token. (input)token
(char
*
) – The task token. (input)respavailable
(MSKbooleant
by reference) – Indicates if a remote response is available. If this is not true,resp
andtrm
should be ignored. (output)resp
(MSKrescodee
by reference) – Is the response code from the remote solver. (output)trm
(MSKrescodee
by reference) – Is eitherMSK_RES_OK
or a termination response code. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_asyncstop¶
MSKrescodee (MSKAPI MSK_asyncstop) ( MSKtask_t task, const char * address, const char * accesstoken, const char * token)
Request that the remote job identified by
token
is terminated. For other arguments seeMSK_asyncoptimize
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)address
(char
*
) – Address of the OptServer. (input)accesstoken
(char
*
) – Access token. (input)token
(char
*
) – The task token. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_axpy¶
MSKrescodee (MSKAPI MSK_axpy) ( MSKenv_t env, MSKint32t n, MSKrealt alpha, const MSKrealt * x, MSKrealt * y)
Adds \(\alpha x\) to \(y\), i.e. performs the update
\[y := \alpha x + y.\]Note that the result is stored overwriting \(y\). It must not overlap with the other input arrays.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_basiscond¶
MSKrescodee (MSKAPI MSK_basiscond) ( MSKtask_t task, MSKrealt * nrmbasis, MSKrealt * nrminvbasis)
If a basic solution is available and it defines a nonsingular basis, then this function computes the 1-norm estimate of the basis matrix and a 1-norm estimate for the inverse of the basis matrix. The 1-norm estimates are computed using the method outlined in [Ste98], pp. 388-391.
By definition the 1-norm condition number of a matrix \(B\) is defined as
\[\kappa_1(B) := \|B\|_1 \|B^{-1}\|_1.\]Moreover, the larger the condition number is the harder it is to solve linear equation systems involving \(B\). Given estimates for \(\|B\|_1\) and \(\|B^{-1}\|_1\) it is also possible to estimate \(\kappa_1(B)\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)nrmbasis
(MSKrealt
by reference) – An estimate for the 1-norm of the basis. (output)nrminvbasis
(MSKrealt
by reference) – An estimate for the 1-norm of the inverse of the basis. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_bktostr¶
MSKrescodee (MSKAPI MSK_bktostr) ( MSKtask_t task, MSKboundkeye bk, char * str)
Obtains an identifier string corresponding to a bound key.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)bk
(MSKboundkeye
) – Bound key. (input)str
(char
*
) – String corresponding to the bound key codebk
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_callbackcodetostr¶
MSKrescodee (MSKAPI MSK_callbackcodetostr) ( MSKcallbackcodee code, char * callbackcodestr)
Obtains the string representation of a callback code.
- Parameters
code
(MSKcallbackcodee
) – A callback code. (input)callbackcodestr
(char
*
) – String corresponding to the callback code. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_callocdbgenv¶
void * (MSKAPI MSK_callocdbgenv) ( MSKenv_t env, const size_t number, const size_t size, const char * file, const unsigned line)
Debug version of
MSK_callocenv
.- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)number
(size_t
) – Number of elements. (input)size
(size_t
) – Size of each individual element. (input)file
(char
*
) – File from which the function is called. (input)line
(unsigned
) – Line in the file from which the function is called. (input)
- Return
(
void
*
) – A pointer to the memory allocated through the environment.- Groups
- MSK_callocdbgtask¶
void * (MSKAPI MSK_callocdbgtask) ( MSKtask_t task, const size_t number, const size_t size, const char * file, const unsigned line)
Debug version of
MSK_calloctask
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)number
(size_t
) – Number of elements. (input)size
(size_t
) – Size of each individual element. (input)file
(char
*
) – File from which the function is called. (input)line
(unsigned
) – Line in the file from which the function is called. (input)
- Return
(
void
*
) – A pointer to the memory allocated through the task.- Groups
- MSK_callocenv¶
void * (MSKAPI MSK_callocenv) ( MSKenv_t env, const size_t number, const size_t size)
Equivalent to
calloc
i.e. allocate space for an array of lengthnumber
where each element is of sizesize
.- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)number
(size_t
) – Number of elements. (input)size
(size_t
) – Size of each individual element. (input)
- Return
(
void
*
) – A pointer to the memory allocated through the environment.- Groups
- MSK_calloctask¶
void * (MSKAPI MSK_calloctask) ( MSKtask_t task, const size_t number, const size_t size)
Equivalent to
calloc
i.e. allocate space for an array of lengthnumber
where each element is of sizesize
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)number
(size_t
) – Number of elements. (input)size
(size_t
) – Size of each individual element. (input)
- Return
(
void
*
) – A pointer to the memory allocated through the task.- Groups
- MSK_checkinall¶
MSKrescodee (MSKAPI MSK_checkinall) ( MSKenv_t env)
Check in all unused license features to the license token server.
- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_checkinlicense¶
MSKrescodee (MSKAPI MSK_checkinlicense) ( MSKenv_t env, MSKfeaturee feature)
Check in a license feature to the license server. By default all licenses consumed by functions using a single environment are kept checked out for the lifetime of the MOSEK environment. This function checks in a given license feature back to the license server immediately.
If the given license feature is not checked out at all, or it is in use by a call to
MSK_optimize
, calling this function has no effect.Please note that returning a license to the license server incurs a small overhead, so frequent calls to this function should be avoided.
- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)feature
(MSKfeaturee
) – Feature to check in to the license system. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_checkmemenv¶
MSKrescodee (MSKAPI MSK_checkmemenv) ( MSKenv_t env, const char * file, MSKint32t line)
Checks the memory allocated by the environment.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_checkmemtask¶
MSKrescodee (MSKAPI MSK_checkmemtask) ( MSKtask_t task, const char * file, MSKint32t line)
Checks the memory allocated by the task.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_checkoutlicense¶
MSKrescodee (MSKAPI MSK_checkoutlicense) ( MSKenv_t env, MSKfeaturee feature)
Checks out a license feature from the license server. Normally the required license features will be automatically checked out the first time they are needed by the function
MSK_optimize
. This function can be used to check out one or more features ahead of time.The feature will remain checked out until the environment is deleted or the function
MSK_checkinlicense
is called.If a given feature is already checked out when this function is called, the call has no effect.
- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)feature
(MSKfeaturee
) – Feature to check out from the license system. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_checkversion¶
MSKrescodee (MSKAPI MSK_checkversion) ( MSKenv_t env, MSKint32t major, MSKint32t minor, MSKint32t revision)
Compares the version of the MOSEK DLL with a specified version. Returns
MSK_RES_OK
if the versions match and one ofMSK_RES_ERR_NEWER_DLL
,MSK_RES_ERR_OLDER_DLL
otherwise.
- MSK_chgconbound¶
MSKrescodee (MSKAPI MSK_chgconbound) ( MSKtask_t task, MSKint32t i, MSKint32t lower, MSKint32t finite, MSKrealt value)
Changes a bound for one constraint.
If
lower
is non-zero, then the lower bound is changed as follows:\[\begin{split}\mbox{new lower bound} = \left\{ \begin{array}{ll} - \infty, & \mathtt{finite}=0, \\ \mathtt{value} & \mbox{otherwise}. \end{array} \right.\end{split}\]Otherwise if
lower
is zero, then\[\begin{split}\mbox{new upper bound} = \left\{ \begin{array}{ll} \infty, & \mathtt{finite}=0, \\ \mathtt{value} & \mbox{otherwise}. \end{array} \right.\end{split}\]Please note that this function automatically updates the bound key for the bound, in particular, if the lower and upper bounds are identical, the bound key is changed to
fixed
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the constraint for which the bounds should be changed. (input)lower
(MSKint32t
) – If non-zero, then the lower bound is changed, otherwise the upper bound is changed. (input)finite
(MSKint32t
) – If non-zero, thenvalue
is assumed to be finite. (input)value
(MSKrealt
) – New value for the bound. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - bounds, Problem data - constraints, Problem data - linear part
- MSK_chgvarbound¶
MSKrescodee (MSKAPI MSK_chgvarbound) ( MSKtask_t task, MSKint32t j, MSKint32t lower, MSKint32t finite, MSKrealt value)
Changes a bound for one variable.
If
lower
is non-zero, then the lower bound is changed as follows:\[\begin{split}\mbox{new lower bound} = \left\{ \begin{array}{ll} - \infty, & \mathtt{finite}=0, \\ \mathtt{value} & \mbox{otherwise}. \end{array} \right.\end{split}\]Otherwise if
lower
is zero, then\[\begin{split}\mbox{new upper bound} = \left\{ \begin{array}{ll} \infty, & \mathtt{finite}=0, \\ \mathtt{value} & \mbox{otherwise}. \end{array} \right.\end{split}\]Please note that this function automatically updates the bound key for the bound, in particular, if the lower and upper bounds are identical, the bound key is changed to
fixed
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)j
(MSKint32t
) – Index of the variable for which the bounds should be changed. (input)lower
(MSKint32t
) – If non-zero, then the lower bound is changed, otherwise the upper bound is changed. (input)finite
(MSKint32t
) – If non-zero, thenvalue
is assumed to be finite. (input)value
(MSKrealt
) – New value for the bound. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - bounds, Problem data - variables, Problem data - linear part
- MSK_clonetask¶
MSKrescodee (MSKAPI MSK_clonetask) ( MSKtask_t task, MSKtask_t * clonedtask)
Creates a clone of an existing task copying all problem data and parameter settings to a new task. Callback functions are not copied.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)clonedtask
(MSKtask_t
by reference) – The cloned task. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_commitchanges¶
MSKrescodee (MSKAPI MSK_commitchanges) ( MSKtask_t task)
Commits all cached problem changes to the task. It is usually not necessary to call this function explicitly since changes will be committed automatically when required.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_computesparsecholesky¶
MSKrescodee (MSKAPI MSK_computesparsecholesky) ( MSKenv_t env, MSKint32t numthreads, MSKint32t ordermethod, MSKrealt tolsingular, MSKint32t n, const MSKint32t * anzc, const MSKint64t * aptrc, const MSKint32t * asubc, const MSKrealt * avalc, MSKint32t ** perm, MSKrealt ** diag, MSKint32t ** lnzc, MSKint64t ** lptrc, MSKint64t * lensubnval, MSKint32t ** lsubc, MSKrealt ** lvalc)
The function computes a Cholesky factorization of a sparse positive semidefinite matrix. Sparsity is exploited during the computations to reduce the amount of space and work required. Both the input and output matrices are represented using the sparse format.
To be precise, given a symmetric matrix \(A \in \real^{n\times n}\) the function computes a nonsingular lower triangular matrix \(L\), a diagonal matrix \(D\) and a permutation matrix \(P\) such that
\[LL^T - D = P A P^T.\]If
ordermethod
is zero then reordering heuristics are not employed and \(P\) is the identity.If a pivot during the computation of the Cholesky factorization is less than
\[-\rho\cdot\max((PAP^T)_{jj},1.0)\]then the matrix is declared negative semidefinite. On the hand if a pivot is smaller than
\[\rho\cdot\max((PAP^T)_{jj},1.0),\]then \(D_{jj}\) is increased from zero to
\[\rho\cdot\max((PAP^T)_{jj},1.0).\]Therefore, if \(A\) is sufficiently positive definite then \(D\) will be the zero matrix. Here \(\rho\) is set equal to value of
tolsingular
.The function allocates memory for the output arrays. It must be freed by the user with
MSK_freeenv
.- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)numthreads
(MSKint32t
) – The number threads that can be used to do the computation. 0 means the code makes the choice. NOTE: API change in version 10: in versions up to 9 the argument in this position indicated whether to use multithreading or not. (input)ordermethod
(MSKint32t
) – If nonzero, then a sparsity preserving ordering will be employed. (input)tolsingular
(MSKrealt
) – A positive parameter controlling when a pivot is declared zero. (input)n
(MSKint32t
) – Specifies the order of \(A\). (input)anzc
(MSKint32t
*
) –anzc[j]
is the number of nonzeros in the \(j\)-th column of \(A\). (input)aptrc
(MSKint64t
*
) –aptrc[j]
is a pointer to the first element in column \(j\) of \(A\). (input)asubc
(MSKint32t
*
) – Row indexes for each column stored in increasing order. (input)avalc
(MSKrealt
*
) – The value corresponding to row indexed stored inasubc
. (input)perm
(MSKint32t
*
by reference) – Permutation array used to specify the permutation matrix \(P\) computed by the function. (output)diag
(MSKrealt
*
by reference) – The diagonal elements of matrix \(D\). (output)lnzc
(MSKint32t
*
by reference) –lnzc[j]
is the number of non zero elements in column \(j\) of \(L\). (output)lptrc
(MSKint64t
*
by reference) –lptrc[j]
is a pointer to the first row index and value in column \(j\) of \(L\). (output)lensubnval
(MSKint64t
by reference) – Number of elements inlsubc
andlvalc
. (output)lsubc
(MSKint32t
*
by reference) – Row indexes for each column stored in increasing order. (output)lvalc
(MSKrealt
*
by reference) – The values corresponding to row indexed stored inlsubc
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_conetypetostr Deprecated¶
MSKrescodee (MSKAPI MSK_conetypetostr) ( MSKtask_t task, MSKconetypee ct, char * str)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
Obtains the cone string identifier corresponding to a cone type.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)ct
(MSKconetypee
) – Specifies the type of the cone. (input)str
(char
*
) – String corresponding to the cone type codect
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_deleteenv¶
MSKrescodee (MSKAPI MSK_deleteenv) ( MSKenv_t * env)
Deletes a MOSEK environment and all the data associated with it.
Before calling this function it is a good idea to call the function
MSK_unlinkfuncfromenvstream
for each stream that has had a function linked to it.- Parameters
env
(MSKenv_t
by reference) – The MOSEK environment. (input/output)- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_deletesolution¶
MSKrescodee (MSKAPI MSK_deletesolution) ( MSKtask_t task, MSKsoltypee whichsol)
Undefine a solution and free the memory it uses.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_deletetask¶
MSKrescodee (MSKAPI MSK_deletetask) ( MSKtask_t * task)
Deletes a task.
- Parameters
task
(MSKtask_t
by reference) – An optimization task. (input/output)- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_dot¶
MSKrescodee (MSKAPI MSK_dot) ( MSKenv_t env, MSKint32t n, const MSKrealt * x, const MSKrealt * y, MSKrealt * xty)
Computes the inner product of two vectors \(x,y\) of length \(n\geq 0\), i.e
\[x\cdot y= \sum_{i=1}^n x_i y_i.\]Note that if \(n=0\), then the result of the operation is 0.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_dualsensitivity¶
MSKrescodee (MSKAPI MSK_dualsensitivity) ( MSKtask_t task, MSKint32t numj, const MSKint32t * subj, MSKrealt * leftpricej, MSKrealt * rightpricej, MSKrealt * leftrangej, MSKrealt * rightrangej)
Calculates sensitivity information for objective coefficients. The indexes of the coefficients to analyze are
\[\{\mathtt{subj}[i] ~|~ i = 0,\ldots,\mathtt{numj}-1\}\]The type of sensitivity analysis to perform (basis or optimal partition) is controlled by the parameter
MSK_IPAR_SENSITIVITY_TYPE
.For an example, please see Section Example: Sensitivity Analysis.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numj
(MSKint32t
) – Number of coefficients to be analyzed. Length ofsubj
. (input)subj
(MSKint32t
*
) – Indexes of objective coefficients to analyze. (input)leftpricej
(MSKrealt
*
) – \(\mathtt{leftpricej}[j]\) is the left shadow price for the coefficient with index \(\mathtt{subj[j]}\). (output)rightpricej
(MSKrealt
*
) – \(\mathtt{rightpricej}[j]\) is the right shadow price for the coefficient with index \(\mathtt{subj[j]}\). (output)leftrangej
(MSKrealt
*
) – \(\mathtt{leftrangej}[j]\) is the left range \(\beta_1\) for the coefficient with index \(\mathtt{subj[j]}\). (output)rightrangej
(MSKrealt
*
) – \(\mathtt{rightrangej}[j]\) is the right range \(\beta_2\) for the coefficient with index \(\mathtt{subj[j]}\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_echoenv¶
MSKrescodee (MSKAPIVA MSK_echoenv) ( MSKenv_t env, MSKstreamtypee whichstream, const char * format, ...)
Prints a formatted message to the environment stream.
- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)whichstream
(MSKstreamtypee
) – Index of the stream. (input)format
(char
*
) – Is a valid C format string which matches the arguments in...
. (input)varnumarg
(...
) – A variable argument list. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_echointro¶
MSKrescodee (MSKAPI MSK_echointro) ( MSKenv_t env, MSKint32t longver)
Prints an intro to message stream.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_echotask¶
MSKrescodee (MSKAPIVA MSK_echotask) ( MSKtask_t task, MSKstreamtypee whichstream, const char * format, ...)
Prints a formatted string to a task stream.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichstream
(MSKstreamtypee
) – Index of the stream. (input)format
(char
*
) – Is a valid C format string which matches the arguments in...
. (input)varnumarg
(...
) – Additional arguments (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_emptyafebarfrow¶
MSKrescodee (MSKAPI MSK_emptyafebarfrow) ( MSKtask_t task, MSKint64t afeidx)
Clears a row in \(\barF\) i.e. sets \(\barF_{\mathrm{afeidx},*} = 0\).
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine expressions, Problem data - semidefinite
- MSK_emptyafebarfrowlist¶
MSKrescodee (MSKAPI MSK_emptyafebarfrowlist) ( MSKtask_t task, MSKint64t numafeidx, const MSKint64t * afeidxlist)
Clears a number of rows in \(\barF\) i.e. sets \(\barF_{i,*} = 0\) for all indices \(i\) in
afeidxlist
.- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine expressions, Problem data - semidefinite
- MSK_emptyafefcol¶
MSKrescodee (MSKAPI MSK_emptyafefcol) ( MSKtask_t task, MSKint32t varidx)
Clears one column in the affine constraint matrix \(F\), that is sets \(F_{*,\mathrm{varidx}}=0\).
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_emptyafefcollist¶
MSKrescodee (MSKAPI MSK_emptyafefcollist) ( MSKtask_t task, MSKint64t numvaridx, const MSKint32t * varidx)
Clears a number of columns in \(F\) i.e. sets \(F_{*,j} = 0\) for all indices \(j\) in
varidx
.- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_emptyafefrow¶
MSKrescodee (MSKAPI MSK_emptyafefrow) ( MSKtask_t task, MSKint64t afeidx)
Clears one row in the affine constraint matrix \(F\), that is sets \(F_{\mathrm{afeidx},*}=0\).
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_emptyafefrowlist¶
MSKrescodee (MSKAPI MSK_emptyafefrowlist) ( MSKtask_t task, MSKint64t numafeidx, const MSKint64t * afeidx)
Clears a number of rows in \(F\) i.e. sets \(F_{i,*} = 0\) for all indices \(i\) in
afeidx
.- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_evaluateacc¶
MSKrescodee (MSKAPI MSK_evaluateacc) ( MSKtask_t task, MSKsoltypee whichsol, MSKint64t accidx, MSKrealt * activity)
Evaluates the activity of an affine conic constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)accidx
(MSKint64t
) – The index of the affine conic constraint. (input)activity
(MSKrealt
*
) – The activity of the affine conic constraint. The array should have length equal to the dimension of the constraint. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_evaluateaccs¶
MSKrescodee (MSKAPI MSK_evaluateaccs) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * activity)
Evaluates the activities of all affine conic constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)activity
(MSKrealt
*
) – The activity of affine conic constraints. The array should have length equal to the sum of dimensions of all affine conic constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_expirylicenses¶
MSKrescodee (MSKAPI MSK_expirylicenses) ( MSKenv_t env, MSKint64t * expiry)
Reports when the first license feature expires. It reports the number of days to the expiry of the first feature of all the features that were ever checked out from the start of the process, or from the last call to
MSK_resetexpirylicenses
, until now.- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)expiry
(MSKint64t
by reference) – If nonnegative, then it is the minimum number days to expiry of any feature that has been checked out. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_freedbgenv¶
void (MSKAPI MSK_freedbgenv) ( MSKenv_t env, void * buffer, const char * file, const unsigned line)
Frees space allocated by MOSEK. Debug version of
MSK_freeenv
.- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)buffer
(void
*
) – A pointer. (input/output)file
(char
*
) – File from which the function is called. (input)line
(unsigned
) – Line in the file from which the function is called. (input)
- Return
(
void
)- Groups
- MSK_freedbgtask¶
void (MSKAPI MSK_freedbgtask) ( MSKtask_t task, void * buffer, const char * file, const unsigned line)
Frees space allocated by MOSEK. Debug version of
MSK_freetask
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)buffer
(void
*
) – A pointer. (input/output)file
(char
*
) – File from which the function is called. (input)line
(unsigned
) – Line in the file from which the function is called. (input)
- Return
(
void
)- Groups
- MSK_freeenv¶
void (MSKAPI MSK_freeenv) ( MSKenv_t env, void * buffer)
Frees space allocated by a MOSEK function. Must not be applied to the MOSEK environment and task.
- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)buffer
(void
*
) – A pointer. (input/output)
- Return
(
void
)- Groups
- MSK_freetask¶
void (MSKAPI MSK_freetask) ( MSKtask_t task, void * buffer)
Frees space allocated by a MOSEK function. Must not be applied to the MOSEK environment and task.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)buffer
(void
*
) – A pointer. (input/output)
- Return
(
void
)- Groups
- MSK_gemm¶
MSKrescodee (MSKAPI MSK_gemm) ( MSKenv_t env, MSKtransposee transa, MSKtransposee transb, MSKint32t m, MSKint32t n, MSKint32t k, MSKrealt alpha, const MSKrealt * a, const MSKrealt * b, MSKrealt beta, MSKrealt * c)
Performs a matrix multiplication plus addition of dense matrices. Given \(A\), \(B\) and \(C\) of compatible dimensions, this function computes
\[C:= \alpha op(A)op(B) + \beta C\]where \(\alpha,\beta\) are two scalar values. The function \(op(X)\) denotes \(X\) if transX is
MSK_TRANSPOSE_NO
, or \(X^T\) if set toMSK_TRANSPOSE_YES
. The matrix \(C\) has \(m\) rows and \(n\) columns, and the other matrices must have compatible dimensions.The result of this operation is stored in \(C\). It must not overlap with the other input arrays.
- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)transa
(MSKtransposee
) – Indicates whether the matrix \(A\) must be transposed. (input)transb
(MSKtransposee
) – Indicates whether the matrix \(B\) must be transposed. (input)m
(MSKint32t
) – Indicates the number of rows of matrix \(C\). (input)n
(MSKint32t
) – Indicates the number of columns of matrix \(C\). (input)k
(MSKint32t
) – Specifies the common dimension along which \(op(A)\) and \(op(B)\) are multiplied. For example, if neither \(A\) nor \(B\) are transposed, then this is the number of columns in \(A\) and also the number of rows in \(B\). (input)alpha
(MSKrealt
) – A scalar value multiplying the result of the matrix multiplication. (input)a
(MSKrealt
*
) – The pointer to the array storing matrix \(A\) in a column-major format. (input)b
(MSKrealt
*
) – The pointer to the array storing matrix \(B\) in a column-major format. (input)beta
(MSKrealt
) – A scalar value that multiplies \(C\). (input)c
(MSKrealt
*
) – The pointer to the array storing matrix \(C\) in a column-major format. (input/output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_gemv¶
MSKrescodee (MSKAPI MSK_gemv) ( MSKenv_t env, MSKtransposee transa, MSKint32t m, MSKint32t n, MSKrealt alpha, const MSKrealt * a, const MSKrealt * x, MSKrealt beta, MSKrealt * y)
Computes the multiplication of a scaled dense matrix times a dense vector, plus a scaled dense vector. Precisely, if
trans
isMSK_TRANSPOSE_NO
then the update is\[y := \alpha A x + \beta y,\]and if
trans
isMSK_TRANSPOSE_YES
then\[y := \alpha A^T x + \beta y,\]where \(\alpha,\beta\) are scalar values and \(A\) is a matrix with \(m\) rows and \(n\) columns.
Note that the result is stored overwriting \(y\). It must not overlap with the other input arrays.
- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)transa
(MSKtransposee
) – Indicates whether the matrix \(A\) must be transposed. (input)m
(MSKint32t
) – Specifies the number of rows of the matrix \(A\). (input)n
(MSKint32t
) – Specifies the number of columns of the matrix \(A\). (input)alpha
(MSKrealt
) – A scalar value multiplying the matrix \(A\). (input)a
(MSKrealt
*
) – A pointer to the array storing matrix \(A\) in a column-major format. (input)x
(MSKrealt
*
) – A pointer to the array storing the vector \(x\). (input)beta
(MSKrealt
) – A scalar value multiplying the vector \(y\). (input)y
(MSKrealt
*
) – A pointer to the array storing the vector \(y\). (input/output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_generateaccnames¶
MSKrescodee (MSKAPI MSK_generateaccnames) ( MSKtask_t task, MSKint64t num, const MSKint64t * sub, const char * fmt, MSKint32t ndims, const MSKint32t * dims, const MSKint64t * sp, MSKint32t numnamedaxis, const MSKint32t * namedaxisidxs, MSKint64t numnames, const char ** names)
Internal.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint64t
) – Number of variable indexes. (input)sub
(MSKint64t
*
) – Indexes of the affine conic constraints. (input)fmt
(char
*
) – The variable name formatting string. (input)ndims
(MSKint32t
) – Number of dimensions in the shape. (input)dims
(MSKint32t
*
) – Dimensions in the shape. (input)sp
(MSKint64t
*
) – Items that should be named. (input)numnamedaxis
(MSKint32t
) – Number of named axes (input)namedaxisidxs
(MSKint32t
*
) – List if named index axes (input)numnames
(MSKint64t
) – Total number of names. (input)names
(char
*
*
) – All axis names. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_generatebarvarnames¶
MSKrescodee (MSKAPI MSK_generatebarvarnames) ( MSKtask_t task, MSKint32t num, const MSKint32t * subj, const char * fmt, MSKint32t ndims, const MSKint32t * dims, const MSKint64t * sp, MSKint32t numnamedaxis, const MSKint32t * namedaxisidxs, MSKint64t numnames, const char ** names)
Generates systematic names for variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint32t
) – Number of variable indexes. (input)subj
(MSKint32t
*
) – Indexes of the variables. (input)fmt
(char
*
) – The variable name formatting string. (input)ndims
(MSKint32t
) – Number of dimensions in the shape. (input)dims
(MSKint32t
*
) – Dimensions in the shape. (input)sp
(MSKint64t
*
) – Items that should be named. (input)numnamedaxis
(MSKint32t
) – Number of named axes (input)namedaxisidxs
(MSKint32t
*
) – List if named index axes (input)numnames
(MSKint64t
) – Total number of names. (input)names
(char
*
*
) – All axis names. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_generateconenames Deprecated¶
MSKrescodee (MSKAPI MSK_generateconenames) ( MSKtask_t task, MSKint32t num, const MSKint32t * subk, const char * fmt, MSKint32t ndims, const MSKint32t * dims, const MSKint64t * sp, MSKint32t numnamedaxis, const MSKint32t * namedaxisidxs, MSKint64t numnames, const char ** names)
Internal, deprecated.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint32t
) – Number of cone indexes. (input)subk
(MSKint32t
*
) – Indexes of the cone. (input)fmt
(char
*
) – The cone name formatting string. (input)ndims
(MSKint32t
) – Number of dimensions in the shape. (input)dims
(MSKint32t
*
) – Dimensions in the shape. (input)sp
(MSKint64t
*
) – Items that should be named. (input)numnamedaxis
(MSKint32t
) – Number of named axes (input)namedaxisidxs
(MSKint32t
*
) – List if named index axes (input)numnames
(MSKint64t
) – Total number of names. (input)names
(char
*
*
) – All axis names. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_generateconnames¶
MSKrescodee (MSKAPI MSK_generateconnames) ( MSKtask_t task, MSKint32t num, const MSKint32t * subi, const char * fmt, MSKint32t ndims, const MSKint32t * dims, const MSKint64t * sp, MSKint32t numnamedaxis, const MSKint32t * namedaxisidxs, MSKint64t numnames, const char ** names)
Generates systematic names for constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint32t
) – Number of constraint indexes. (input)subi
(MSKint32t
*
) – Indexes of the constraints. (input)fmt
(char
*
) – The constraint name formatting string. (input)ndims
(MSKint32t
) – Number of dimensions in the shape. (input)dims
(MSKint32t
*
) – Dimensions in the shape. (input)sp
(MSKint64t
*
) – Items that should be named. (input)numnamedaxis
(MSKint32t
) – Number of named axes (input)namedaxisidxs
(MSKint32t
*
) – List if named index axes (input)numnames
(MSKint64t
) – Total number of names. (input)names
(char
*
*
) – All axis names. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - constraints, Problem data - linear part
- MSK_generatedjcnames¶
MSKrescodee (MSKAPI MSK_generatedjcnames) ( MSKtask_t task, MSKint64t num, const MSKint64t * sub, const char * fmt, MSKint32t ndims, const MSKint32t * dims, const MSKint64t * sp, MSKint32t numnamedaxis, const MSKint32t * namedaxisidxs, MSKint64t numnames, const char ** names)
Internal.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint64t
) – Number of variable indexes. (input)sub
(MSKint64t
*
) – Indexes of the disjunctive constraints. (input)fmt
(char
*
) – The variable name formatting string. (input)ndims
(MSKint32t
) – Number of dimensions in the shape. (input)dims
(MSKint32t
*
) – Dimensions in the shape. (input)sp
(MSKint64t
*
) – Items that should be named. (input)numnamedaxis
(MSKint32t
) – Number of named axes (input)namedaxisidxs
(MSKint32t
*
) – List if named index axes (input)numnames
(MSKint64t
) – Total number of names. (input)names
(char
*
*
) – All axis names. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_generatevarnames¶
MSKrescodee (MSKAPI MSK_generatevarnames) ( MSKtask_t task, MSKint32t num, const MSKint32t * subj, const char * fmt, MSKint32t ndims, const MSKint32t * dims, const MSKint64t * sp, MSKint32t numnamedaxis, const MSKint32t * namedaxisidxs, MSKint64t numnames, const char ** names)
Generates systematic names for variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint32t
) – Number of variable indexes. (input)subj
(MSKint32t
*
) – Indexes of the variables. (input)fmt
(char
*
) – The variable name formatting string. (input)ndims
(MSKint32t
) – Number of dimensions in the shape. (input)dims
(MSKint32t
*
) – Dimensions in the shape. (input)sp
(MSKint64t
*
) – Items that should be named. (input)numnamedaxis
(MSKint32t
) – Number of named axes (input)namedaxisidxs
(MSKint32t
*
) – List if named index axes (input)numnames
(MSKint64t
) – Total number of names. (input)names
(char
*
*
) – All axis names. (input)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getaccafeidxlist¶
MSKrescodee (MSKAPI MSK_getaccafeidxlist) ( MSKtask_t task, MSKint64t accidx, MSKint64t * afeidxlist)
Obtains the list of affine expressions appearing in the affine conic constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getaccb¶
MSKrescodee (MSKAPI MSK_getaccb) ( MSKtask_t task, MSKint64t accidx, MSKrealt * b)
Obtains the additional constant term vector appearing in the affine conic constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getaccbarfblocktriplet¶
MSKrescodee (MSKAPI MSK_getaccbarfblocktriplet) ( MSKtask_t task, MSKint64t maxnumtrip, MSKint64t * numtrip, MSKint64t * acc_afe, MSKint32t * bar_var, MSKint32t * blk_row, MSKint32t * blk_col, MSKrealt * blk_val)
Obtains \(\barF\), implied by the ACCs, in block triplet form. If the AFEs passed to the ACCs were out of order, then this function can be used to obtain the barF as seen by the ACCs.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumtrip
(MSKint64t
) –acc_afe
,bar_var
,blk_row
,blk_col
andblk_val
must benumtrip
long. (input)numtrip
(MSKint64t
by reference) – Number of elements in the block triplet form. (output)acc_afe
(MSKint64t
*
) – Index of the AFE within the concatenated list of AFEs in ACCs. (output)bar_var
(MSKint32t
*
) – Symmetric matrix variable index. (output)blk_row
(MSKint32t
*
) – Block row index. (output)blk_col
(MSKint32t
*
) – Block column index. (output)blk_val
(MSKrealt
*
) – The numerical value associated with each block triplet. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine expressions, Problem data - semidefinite
- MSK_getaccbarfnumblocktriplets¶
MSKrescodee (MSKAPI MSK_getaccbarfnumblocktriplets) ( MSKtask_t task, MSKint64t * numtrip)
Obtains an upper bound on the number of elements in the block triplet form of \(\barF\), as used within the ACCs.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numtrip
(MSKint64t
by reference) – An upper bound on the number of elements in the block triplet form of \(\barF.\), as used within the ACCs. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - semidefinite, Problem data - affine conic constraints, Inspecting the task
- MSK_getaccdomain¶
MSKrescodee (MSKAPI MSK_getaccdomain) ( MSKtask_t task, MSKint64t accidx, MSKint64t * domidx)
Obtains the domain appearing in the affine conic constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)accidx
(MSKint64t
) – The index of the affine conic constraint. (input)domidx
(MSKint64t
by reference) – The index of domain in the affine conic constraint. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getaccdoty¶
MSKrescodee (MSKAPI MSK_getaccdoty) ( MSKtask_t task, MSKsoltypee whichsol, MSKint64t accidx, MSKrealt * doty)
Obtains the \(\dot{y}\) vector for a solution (the dual values of an affine conic constraint).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)accidx
(MSKint64t
) – The index of the affine conic constraint. (input)doty
(MSKrealt
*
) – The dual values for this affine conic constraint. The array should have length equal to the dimension of the constraint. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getaccdotys¶
MSKrescodee (MSKAPI MSK_getaccdotys) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * doty)
Obtains the \(\dot{y}\) vector for a solution (the dual values of all affine conic constraint).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)doty
(MSKrealt
*
) – The dual values of affine conic constraints. The array should have length equal to the sum of dimensions of all affine conic constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getaccfnumnz¶
MSKrescodee (MSKAPI MSK_getaccfnumnz) ( MSKtask_t task, MSKint64t * accfnnz)
If the AFEs are not added sequentially to the ACCs, then the present function gives the number of nonzero elements in the F matrix that would be implied by the ordering of AFEs within ACCs.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)accfnnz
(MSKint64t
by reference) – Number of non-zeros in \(F\) implied by ACCs. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getaccftrip¶
MSKrescodee (MSKAPI MSK_getaccftrip) ( MSKtask_t task, MSKint64t * frow, MSKint32t * fcol, MSKrealt * fval)
Obtains the \(F\) (that would be implied by the ordering of the AFEs within the ACCs) in triplet format.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getaccgvector¶
MSKrescodee (MSKAPI MSK_getaccgvector) ( MSKtask_t task, MSKrealt * g)
If the AFEs are passed out of sequence to the ACCs, then this function can be used to obtain the vector \(g\) of constant terms used within the ACCs.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Inspecting the task, Problem data - affine conic constraints
- MSK_getaccn¶
MSKrescodee (MSKAPI MSK_getaccn) ( MSKtask_t task, MSKint64t accidx, MSKint64t * n)
Obtains the dimension of the affine conic constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)accidx
(MSKint64t
) – The index of the affine conic constraint. (input)n
(MSKint64t
by reference) – The dimension of the affine conic constraint (equal to the dimension of its domain). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getaccname¶
MSKrescodee (MSKAPI MSK_getaccname) ( MSKtask_t task, MSKint64t accidx, MSKint32t sizename, char * name)
Obtains the name of an affine conic constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - affine conic constraints, Inspecting the task
- MSK_getaccnamelen¶
MSKrescodee (MSKAPI MSK_getaccnamelen) ( MSKtask_t task, MSKint64t accidx, MSKint32t * len)
Obtains the length of the name of an affine conic constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)accidx
(MSKint64t
) – Index of an affine conic constraint. (input)len
(MSKint32t
by reference) – Returns the length of the indicated name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - affine conic constraints, Inspecting the task
- MSK_getaccntot¶
MSKrescodee (MSKAPI MSK_getaccntot) ( MSKtask_t task, MSKint64t * n)
Obtains the total dimension of all affine conic constraints (the sum of all their dimensions).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)n
(MSKint64t
by reference) – The total dimension of all affine conic constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getaccs¶
MSKrescodee (MSKAPI MSK_getaccs) ( MSKtask_t task, MSKint64t * domidxlist, MSKint64t * afeidxlist, MSKrealt * b)
Obtains full data of all affine conic constraints. The output array
domainidxlist
must have at least length determined byMSK_getnumacc
. The output arraysafeidxlist
andb
must have at least length determined byMSK_getaccntot
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidxlist
(MSKint64t
*
) – The list of domains appearing in all affine conic constraints. (output)afeidxlist
(MSKint64t
*
) – The concatenation of index lists of affine expressions appearing in all affine conic constraints. (output)b
(MSKrealt
*
) – The concatenation of vectors b appearing in all affine conic constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getacol¶
MSKrescodee (MSKAPI MSK_getacol) ( MSKtask_t task, MSKint32t j, MSKint32t * nzj, MSKint32t * subj, MSKrealt * valj)
Obtains one column of \(A\) in a sparse format.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)j
(MSKint32t
) – Index of the column. (input)nzj
(MSKint32t
by reference) – Number of non-zeros in the column obtained. (output)subj
(MSKint32t
*
) – Row indices of the non-zeros in the column obtained. (output)valj
(MSKrealt
*
) – Numerical values in the column obtained. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getacolnumnz¶
MSKrescodee (MSKAPI MSK_getacolnumnz) ( MSKtask_t task, MSKint32t i, MSKint32t * nzj)
Obtains the number of non-zero elements in one column of \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the column. (input)nzj
(MSKint32t
by reference) – Number of non-zeros in the \(j\)-th column of \(A\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getacolslice¶
MSKrescodee (MSKAPI MSK_getacolslice) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint32t maxnumnz, MSKint32t * ptrb, MSKint32t * ptre, MSKint32t * sub, MSKrealt * val)
Obtains a sequence of columns from \(A\) in sparse format.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first column in the sequence. (input)last
(MSKint32t
) – Index of the last column in the sequence plus one. (input)maxnumnz
(MSKint32t
) – Denotes the length of the arrayssub
andval
. (input)ptrb
(MSKint32t
*
) –ptrb[t]
is an index pointing to the first element in the \(t\)-th column obtained. (output)ptre
(MSKint32t
*
) –ptre[t]
is an index pointing to the last element plus one in the \(t\)-th column obtained. (output)sub
(MSKint32t
*
) – Contains the row subscripts. (output)val
(MSKrealt
*
) – Contains the coefficient values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getacolslice64¶
MSKrescodee (MSKAPI MSK_getacolslice64) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint64t maxnumnz, MSKint64t * ptrb, MSKint64t * ptre, MSKint32t * sub, MSKrealt * val)
Obtains a sequence of columns from \(A\) in sparse format.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first column in the sequence. (input)last
(MSKint32t
) – Index of the last column in the sequence plus one. (input)maxnumnz
(MSKint64t
) – Denotes the length of the arrayssub
andval
. (input)ptrb
(MSKint64t
*
) –ptrb[t]
is an index pointing to the first element in the \(t\)-th column obtained. (output)ptre
(MSKint64t
*
) –ptre[t]
is an index pointing to the last element plus one in the \(t\)-th column obtained. (output)sub
(MSKint32t
*
) – Contains the row subscripts. (output)val
(MSKrealt
*
) – Contains the coefficient values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getacolslicenumnz¶
MSKrescodee (MSKAPI MSK_getacolslicenumnz) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint32t * numnz)
Obtains the number of non-zeros in a slice of columns of \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first column in the sequence. (input)last
(MSKint32t
) – Index of the last column plus one in the sequence. (input)numnz
(MSKint32t
by reference) – Number of non-zeros in the slice. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getacolslicenumnz64¶
MSKrescodee (MSKAPI MSK_getacolslicenumnz64) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint64t * numnz)
Obtains the number of non-zeros in a slice of columns of \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first column in the sequence. (input)last
(MSKint32t
) – Index of the last column plus one in the sequence. (input)numnz
(MSKint64t
by reference) – Number of non-zeros in the slice. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getacolslicetrip¶
MSKrescodee (MSKAPI MSK_getacolslicetrip) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint64t maxnumnz, MSKint32t * subi, MSKint32t * subj, MSKrealt * val)
Obtains a sequence of columns from \(A\) in sparse triplet format. The function returns the content of all columns whose index
j
satisfiesfirst <= j < last
. The triplets corresponding to nonzero entries are stored in the arrayssubi
,subj
andval
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first column in the sequence. (input)last
(MSKint32t
) – Index of the last column in the sequence plus one. (input)maxnumnz
(MSKint64t
) – Denotes the length of the arrayssubi
,subj
, andval
. (input)subi
(MSKint32t
*
) – Constraint subscripts. (output)subj
(MSKint32t
*
) – Column subscripts. (output)val
(MSKrealt
*
) – Values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getafebarfblocktriplet¶
MSKrescodee (MSKAPI MSK_getafebarfblocktriplet) ( MSKtask_t task, MSKint64t maxnumtrip, MSKint64t * numtrip, MSKint64t * afeidx, MSKint32t * barvaridx, MSKint32t * subk, MSKint32t * subl, MSKrealt * valkl)
Obtains \(\barF\) in block triplet form.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumtrip
(MSKint64t
) –afeidx
,barvaridx
,subk
,subl
andvalkl
must bemaxnumtrip
long. (input)numtrip
(MSKint64t
by reference) – Number of elements in the block triplet form. (output)afeidx
(MSKint64t
*
) – Constraint index. (output)barvaridx
(MSKint32t
*
) – Symmetric matrix variable index. (output)subk
(MSKint32t
*
) – Block row index. (output)subl
(MSKint32t
*
) – Block column index. (output)valkl
(MSKrealt
*
) – The numerical value associated with each block triplet. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine expressions, Problem data - semidefinite
- MSK_getafebarfnumblocktriplets¶
MSKrescodee (MSKAPI MSK_getafebarfnumblocktriplets) ( MSKtask_t task, MSKint64t * numtrip)
Obtains an upper bound on the number of elements in the block triplet form of \(\barF\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numtrip
(MSKint64t
by reference) – An upper bound on the number of elements in the block triplet form of \(\barF.\) (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getafebarfnumrowentries¶
MSKrescodee (MSKAPI MSK_getafebarfnumrowentries) ( MSKtask_t task, MSKint64t afeidx, MSKint32t * numentr)
Obtains the number of nonzero entries in one row of \(\barF\), that is the number of \(j\) such that \(\barF_{\mathrm{afeidx},j}\) is not the zero matrix.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)afeidx
(MSKint64t
) – Row index of \(\barF\). (input)numentr
(MSKint32t
by reference) – Number of nonzero entries in a row of \(\barF\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine expressions, Problem data - semidefinite, Inspecting the task
- MSK_getafebarfrow¶
MSKrescodee (MSKAPI MSK_getafebarfrow) ( MSKtask_t task, MSKint64t afeidx, MSKint32t * barvaridx, MSKint64t * ptrterm, MSKint64t * numterm, MSKint64t * termidx, MSKrealt * termweight)
Obtains all nonzero entries in one row \(\barF_{\mathrm{afeidx},*}\) of \(\barF\). For every \(k\) there is a nonzero entry \(\barF_{\mathrm{afeidx}, \mathrm{barvaridx}[k]}\), which is represented as a weighted sum of \(\mathrm{numterm}[k]\) terms. The indices in the matrix store \(E\) and their weights for the \(k\)-th entry appear in the arrays
termidx
andtermweight
in positions\[\mathrm{ptrterm}[k],\ldots,\mathrm{ptrterm}[k]+\mathrm{numterm}[k]-1.\]The arrays should be long enough to accommodate the data; their required lengths can be obtained with
MSK_getafebarfrowinfo
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)afeidx
(MSKint64t
) – Row index of \(\barF\). (input)barvaridx
(MSKint32t
*
) – Semidefinite variable indices of nonzero entries in the row of \(\barF\). (output)ptrterm
(MSKint64t
*
) – Pointers to the start of each entry’s description. (output)numterm
(MSKint64t
*
) – Number of terms in the weighted sum representation of each entry. (output)termidx
(MSKint64t
*
) – Indices of semidefinite matrices from the matrix store \(E\). (output)termweight
(MSKrealt
*
) – Weights appearing in the weighted sum representations of all entries. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine expressions, Problem data - semidefinite, Inspecting the task
- MSK_getafebarfrowinfo¶
MSKrescodee (MSKAPI MSK_getafebarfrowinfo) ( MSKtask_t task, MSKint64t afeidx, MSKint32t * numentr, MSKint64t * numterm)
Obtains information about one row of \(\barF\): the number of nonzero entries, that is the number of \(j\) such that \(\barF_{\mathrm{afeidx},j}\) is not the zero matrix, as well as the total number of terms in the representations of all these entries as weighted sums of matrices from \(E\). This information provides the data sizes required for a call to
MSK_getafebarfrow
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)afeidx
(MSKint64t
) – Row index of \(\barF\). (input)numentr
(MSKint32t
by reference) – Number of nonzero entries in a row of \(\barF\). (output)numterm
(MSKint64t
by reference) – Number of terms in the weighted sums representation of the row of \(\barF\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine expressions, Problem data - semidefinite, Inspecting the task
- MSK_getafefnumnz¶
MSKrescodee (MSKAPI MSK_getafefnumnz) ( MSKtask_t task, MSKint64t * numnz)
Obtains the total number of nonzeros in \(F\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numnz
(MSKint64t
by reference) – Number of non-zeros in \(F\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getafefrow¶
MSKrescodee (MSKAPI MSK_getafefrow) ( MSKtask_t task, MSKint64t afeidx, MSKint32t * numnz, MSKint32t * varidx, MSKrealt * val)
Obtains one row of \(F\) in sparse format.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)afeidx
(MSKint64t
) – Index of a row in \(F\). (input)numnz
(MSKint32t
by reference) – Number of non-zeros in the row obtained. (output)varidx
(MSKint32t
*
) – Column indices of the non-zeros in the row obtained. (output)val
(MSKrealt
*
) – Values of the non-zeros in the row obtained. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getafefrownumnz¶
MSKrescodee (MSKAPI MSK_getafefrownumnz) ( MSKtask_t task, MSKint64t afeidx, MSKint32t * numnz)
Obtains the number of nonzeros in one row of \(F\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)afeidx
(MSKint64t
) – Index of a row in \(F\). (input)numnz
(MSKint32t
by reference) – Number of non-zeros in rowafeidx
of \(F\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getafeftrip¶
MSKrescodee (MSKAPI MSK_getafeftrip) ( MSKtask_t task, MSKint64t * afeidx, MSKint32t * varidx, MSKrealt * val)
Obtains the \(F\) in triplet format.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getafeg¶
MSKrescodee (MSKAPI MSK_getafeg) ( MSKtask_t task, MSKint64t afeidx, MSKrealt * g)
Obtains a single coefficient in \(g\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)afeidx
(MSKint64t
) – Index of an element in \(g\). (input)g
(MSKrealt
by reference) – The value of \(g_{\mathrm{afeidx}}\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getafegslice¶
MSKrescodee (MSKAPI MSK_getafegslice) ( MSKtask_t task, MSKint64t first, MSKint64t last, MSKrealt * g)
Obtains a sequence of elements from the vector \(g\) of constant terms in the affine expressions list.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getaij¶
MSKrescodee (MSKAPI MSK_getaij) ( MSKtask_t task, MSKint32t i, MSKint32t j, MSKrealt * aij)
Obtains a single coefficient in \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Row index of the coefficient to be returned. (input)j
(MSKint32t
) – Column index of the coefficient to be returned. (input)aij
(MSKrealt
by reference) – The required coefficient \(a_{i,j}\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getapiecenumnz¶
MSKrescodee (MSKAPI MSK_getapiecenumnz) ( MSKtask_t task, MSKint32t firsti, MSKint32t lasti, MSKint32t firstj, MSKint32t lastj, MSKint32t * numnz)
Obtains the number non-zeros in a rectangular piece of \(A\), i.e. the number of elements in the set
\[\{ (i,j)~:~ a_{i,j} \neq 0,~ \mathtt{firsti} \leq i \leq \mathtt{lasti}-1, ~\mathtt{firstj} \leq j \leq \mathtt{lastj}-1\}\]This function is not an efficient way to obtain the number of non-zeros in one row or column. In that case use the function
MSK_getarownumnz
orMSK_getacolnumnz
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)firsti
(MSKint32t
) – Index of the first row in the rectangular piece. (input)lasti
(MSKint32t
) – Index of the last row plus one in the rectangular piece. (input)firstj
(MSKint32t
) – Index of the first column in the rectangular piece. (input)lastj
(MSKint32t
) – Index of the last column plus one in the rectangular piece. (input)numnz
(MSKint32t
by reference) – Number of non-zero \(A\) elements in the rectangular piece. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getarow¶
MSKrescodee (MSKAPI MSK_getarow) ( MSKtask_t task, MSKint32t i, MSKint32t * nzi, MSKint32t * subi, MSKrealt * vali)
Obtains one row of \(A\) in a sparse format.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the row. (input)nzi
(MSKint32t
by reference) – Number of non-zeros in the row obtained. (output)subi
(MSKint32t
*
) – Column indices of the non-zeros in the row obtained. (output)vali
(MSKrealt
*
) – Numerical values of the row obtained. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getarownumnz¶
MSKrescodee (MSKAPI MSK_getarownumnz) ( MSKtask_t task, MSKint32t i, MSKint32t * nzi)
Obtains the number of non-zero elements in one row of \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the row. (input)nzi
(MSKint32t
by reference) – Number of non-zeros in the \(i\)-th row of \(A\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getarowslice¶
MSKrescodee (MSKAPI MSK_getarowslice) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint32t maxnumnz, MSKint32t * ptrb, MSKint32t * ptre, MSKint32t * sub, MSKrealt * val)
Obtains a sequence of rows from \(A\) in sparse format.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first row in the sequence. (input)last
(MSKint32t
) – Index of the last row in the sequence plus one. (input)maxnumnz
(MSKint32t
) – Denotes the length of the arrayssub
andval
. (input)ptrb
(MSKint32t
*
) –ptrb[t]
is an index pointing to the first element in the \(t\)-th row obtained. (output)ptre
(MSKint32t
*
) –ptre[t]
is an index pointing to the last element plus one in the \(t\)-th row obtained. (output)sub
(MSKint32t
*
) – Contains the column subscripts. (output)val
(MSKrealt
*
) – Contains the coefficient values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getarowslice64¶
MSKrescodee (MSKAPI MSK_getarowslice64) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint64t maxnumnz, MSKint64t * ptrb, MSKint64t * ptre, MSKint32t * sub, MSKrealt * val)
Obtains a sequence of rows from \(A\) in sparse format.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first row in the sequence. (input)last
(MSKint32t
) – Index of the last row in the sequence plus one. (input)maxnumnz
(MSKint64t
) – Denotes the length of the arrayssub
andval
. (input)ptrb
(MSKint64t
*
) –ptrb[t]
is an index pointing to the first element in the \(t\)-th row obtained. (output)ptre
(MSKint64t
*
) –ptre[t]
is an index pointing to the last element plus one in the \(t\)-th row obtained. (output)sub
(MSKint32t
*
) – Contains the column subscripts. (output)val
(MSKrealt
*
) – Contains the coefficient values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getarowslicenumnz¶
MSKrescodee (MSKAPI MSK_getarowslicenumnz) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint32t * numnz)
Obtains the number of non-zeros in a slice of rows of \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first row in the sequence. (input)last
(MSKint32t
) – Index of the last row plus one in the sequence. (input)numnz
(MSKint32t
by reference) – Number of non-zeros in the slice. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getarowslicenumnz64¶
MSKrescodee (MSKAPI MSK_getarowslicenumnz64) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint64t * numnz)
Obtains the number of non-zeros in a slice of rows of \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first row in the sequence. (input)last
(MSKint32t
) – Index of the last row plus one in the sequence. (input)numnz
(MSKint64t
by reference) – Number of non-zeros in the slice. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getarowslicetrip¶
MSKrescodee (MSKAPI MSK_getarowslicetrip) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKint64t maxnumnz, MSKint32t * subi, MSKint32t * subj, MSKrealt * val)
Obtains a sequence of rows from \(A\) in sparse triplet format. The function returns the content of all rows whose index
i
satisfiesfirst <= i < last
. The triplets corresponding to nonzero entries are stored in the arrayssubi
,subj
andval
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – Index of the first row in the sequence. (input)last
(MSKint32t
) – Index of the last row in the sequence plus one. (input)maxnumnz
(MSKint64t
) – Denotes the length of the arrayssubi
,subj
, andval
. (input)subi
(MSKint32t
*
) – Constraint subscripts. (output)subj
(MSKint32t
*
) – Column subscripts. (output)val
(MSKrealt
*
) – Values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getatrip¶
MSKrescodee (MSKAPI MSK_getatrip) ( MSKtask_t task, MSKint64t maxnumnz, MSKint32t * subi, MSKint32t * subj, MSKrealt * val)
Obtains \(A\) in sparse triplet format. The triplets corresponding to nonzero entries are stored in the arrays
subi
,subj
andval
.- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getatruncatetol¶
MSKrescodee (MSKAPI MSK_getatruncatetol) ( MSKtask_t task, MSKrealt * tolzero)
Obtains the tolerance value set with
MSK_putatruncatetol
.- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarablocktriplet¶
MSKrescodee (MSKAPI MSK_getbarablocktriplet) ( MSKtask_t task, MSKint64t maxnum, MSKint64t * num, MSKint32t * subi, MSKint32t * subj, MSKint32t * subk, MSKint32t * subl, MSKrealt * valijkl)
Obtains \(\barA\) in block triplet form.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnum
(MSKint64t
) –subi
,subj
,subk
,subl
andvalijkl
must bemaxnum
long. (input)num
(MSKint64t
by reference) – Number of elements in the block triplet form. (output)subi
(MSKint32t
*
) – Constraint index. (output)subj
(MSKint32t
*
) – Symmetric matrix variable index. (output)subk
(MSKint32t
*
) – Block row index. (output)subl
(MSKint32t
*
) – Block column index. (output)valijkl
(MSKrealt
*
) – The numerical value associated with each block triplet. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbaraidx¶
MSKrescodee (MSKAPI MSK_getbaraidx) ( MSKtask_t task, MSKint64t idx, MSKint64t maxnum, MSKint32t * i, MSKint32t * j, MSKint64t * num, MSKint64t * sub, MSKrealt * weights)
Obtains information about an element in \(\barA\). Since \(\barA\) is a sparse matrix of symmetric matrices, only the nonzero elements in \(\barA\) are stored in order to save space. Now \(\barA\) is stored vectorized i.e. as one long vector. This function makes it possible to obtain information such as the row index and the column index of a particular element of the vectorized form of \(\barA\).
Please observe if one element of \(\barA\) is inputted multiple times then it may be stored several times in vectorized form. In that case the element with the highest index is the one that is used.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)idx
(MSKint64t
) – Position of the element in the vectorized form. (input)maxnum
(MSKint64t
) –sub
andweights
must be at leastmaxnum
long. (input)i
(MSKint32t
by reference) – Row index of the element at positionidx
. (output)j
(MSKint32t
by reference) – Column index of the element at positionidx
. (output)num
(MSKint64t
by reference) – Number of terms in weighted sum that forms the element. (output)sub
(MSKint64t
*
) – A list indexes of the elements from symmetric matrix storage that appear in the weighted sum. (output)weights
(MSKrealt
*
) – The weights associated with each term in the weighted sum. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbaraidxij¶
MSKrescodee (MSKAPI MSK_getbaraidxij) ( MSKtask_t task, MSKint64t idx, MSKint32t * i, MSKint32t * j)
Obtains information about an element in \(\barA\). Since \(\barA\) is a sparse matrix of symmetric matrices, only the nonzero elements in \(\barA\) are stored in order to save space. Now \(\barA\) is stored vectorized i.e. as one long vector. This function makes it possible to obtain information such as the row index and the column index of a particular element of the vectorized form of \(\barA\).
Please note that if one element of \(\barA\) is inputted multiple times then it may be stored several times in vectorized form. In that case the element with the highest index is the one that is used.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)idx
(MSKint64t
) – Position of the element in the vectorized form. (input)i
(MSKint32t
by reference) – Row index of the element at positionidx
. (output)j
(MSKint32t
by reference) – Column index of the element at positionidx
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbaraidxinfo¶
MSKrescodee (MSKAPI MSK_getbaraidxinfo) ( MSKtask_t task, MSKint64t idx, MSKint64t * num)
Each nonzero element in \(\barA_{ij}\) is formed as a weighted sum of symmetric matrices. Using this function the number of terms in the weighted sum can be obtained. See description of
MSK_appendsparsesymmat
for details about the weighted sum.- Parameters
task
(MSKtask_t
) – An optimization task. (input)idx
(MSKint64t
) – The internal position of the element for which information should be obtained. (input)num
(MSKint64t
by reference) – Number of terms in the weighted sum that form the specified element in \(\barA\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarasparsity¶
MSKrescodee (MSKAPI MSK_getbarasparsity) ( MSKtask_t task, MSKint64t maxnumnz, MSKint64t * numnz, MSKint64t * idxij)
The matrix \(\barA\) is assumed to be a sparse matrix of symmetric matrices. This implies that many of the elements in \(\barA\) are likely to be zero matrices. Therefore, in order to save space, only nonzero elements in \(\barA\) are stored on vectorized form. This function is used to obtain the sparsity pattern of \(\barA\) and the position of each nonzero element in the vectorized form of \(\barA\). From the index detailed information about each nonzero \(\barA_{i,j}\) can be obtained using
MSK_getbaraidxinfo
andMSK_getbaraidx
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumnz
(MSKint64t
) – The arrayidxij
must be at leastmaxnumnz
long. (input)numnz
(MSKint64t
by reference) – Number of nonzero elements in \(\barA\). (output)idxij
(MSKint64t
*
) – Position of each nonzero element in the vectorized form of \(\barA\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarcblocktriplet¶
MSKrescodee (MSKAPI MSK_getbarcblocktriplet) ( MSKtask_t task, MSKint64t maxnum, MSKint64t * num, MSKint32t * subj, MSKint32t * subk, MSKint32t * subl, MSKrealt * valjkl)
Obtains \(\barC\) in block triplet form.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnum
(MSKint64t
) –subj
,subk
,subl
andvaljkl
must bemaxnum
long. (input)num
(MSKint64t
by reference) – Number of elements in the block triplet form. (output)subj
(MSKint32t
*
) – Symmetric matrix variable index. (output)subk
(MSKint32t
*
) – Block row index. (output)subl
(MSKint32t
*
) – Block column index. (output)valjkl
(MSKrealt
*
) – The numerical value associated with each block triplet. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarcidx¶
MSKrescodee (MSKAPI MSK_getbarcidx) ( MSKtask_t task, MSKint64t idx, MSKint64t maxnum, MSKint32t * j, MSKint64t * num, MSKint64t * sub, MSKrealt * weights)
Obtains information about an element in \(\barC\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)idx
(MSKint64t
) – Index of the element for which information should be obtained. (input)maxnum
(MSKint64t
) –sub
andweights
must be at leastmaxnum
long. (input)j
(MSKint32t
by reference) – Row index in \(\barC\). (output)num
(MSKint64t
by reference) – Number of terms in the weighted sum. (output)sub
(MSKint64t
*
) – Elements appearing the weighted sum. (output)weights
(MSKrealt
*
) – Weights of terms in the weighted sum. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarcidxinfo¶
MSKrescodee (MSKAPI MSK_getbarcidxinfo) ( MSKtask_t task, MSKint64t idx, MSKint64t * num)
Obtains the number of terms in the weighted sum that forms a particular element in \(\barC\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)idx
(MSKint64t
) – Index of the element for which information should be obtained. The value is an index of a symmetric sparse variable. (input)num
(MSKint64t
by reference) – Number of terms that appear in the weighted sum that forms the requested element. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarcidxj¶
MSKrescodee (MSKAPI MSK_getbarcidxj) ( MSKtask_t task, MSKint64t idx, MSKint32t * j)
Obtains the row index of an element in \(\barC\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)idx
(MSKint64t
) – Index of the element for which information should be obtained. (input)j
(MSKint32t
by reference) – Row index in \(\barC\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarcsparsity¶
MSKrescodee (MSKAPI MSK_getbarcsparsity) ( MSKtask_t task, MSKint64t maxnumnz, MSKint64t * numnz, MSKint64t * idxj)
Internally only the nonzero elements of \(\barC\) are stored in a vector. This function is used to obtain the nonzero elements of \(\barC\) and their indexes in the internal vector representation (in
idx
). From the index detailed information about each nonzero \(\barC_j\) can be obtained usingMSK_getbarcidxinfo
andMSK_getbarcidx
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumnz
(MSKint64t
) –idxj
must be at leastmaxnumnz
long. (input)numnz
(MSKint64t
by reference) – Number of nonzero elements in \(\barC\). (output)idxj
(MSKint64t
*
) – Internal positions of the nonzeros elements in \(\barC\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarsj¶
MSKrescodee (MSKAPI MSK_getbarsj) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t j, MSKrealt * barsj)
Obtains the dual solution for a semidefinite variable. Only the lower triangular part of \(\barS_j\) is returned because the matrix by construction is symmetric. The format is that the columns are stored sequentially in the natural order.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)j
(MSKint32t
) – Index of the semidefinite variable. (input)barsj
(MSKrealt
*
) – Value of \(\barS_j\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarsslice¶
MSKrescodee (MSKAPI MSK_getbarsslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKint64t slicesize, MSKrealt * barsslice)
Obtains the dual solution for a sequence of semidefinite variables. The format is that matrices are stored sequentially, and in each matrix the columns are stored as in
MSK_getbarsj
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – Index of the first semidefinite variable in the slice. (input)last
(MSKint32t
) – Index of the last semidefinite variable in the slice plus one. (input)slicesize
(MSKint64t
) – Denotes the length of the arraybarsslice
. (input)barsslice
(MSKrealt
*
) – Dual solution values of symmetric matrix variables in the slice, stored sequentially. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarvarname¶
MSKrescodee (MSKAPI MSK_getbarvarname) ( MSKtask_t task, MSKint32t i, MSKint32t sizename, char * name)
Obtains the name of a semidefinite variable.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarvarnameindex¶
MSKrescodee (MSKAPI MSK_getbarvarnameindex) ( MSKtask_t task, const char * somename, MSKint32t * asgn, MSKint32t * index)
Obtains the index of semidefinite variable from its name.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)somename
(char
*
) – The name of the variable. (input)asgn
(MSKint32t
by reference) – Non-zero if the namesomename
is assigned to some semidefinite variable. (output)index
(MSKint32t
by reference) – The index of a semidefinite variable with the namesomename
(if one exists). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarvarnamelen¶
MSKrescodee (MSKAPI MSK_getbarvarnamelen) ( MSKtask_t task, MSKint32t i, MSKint32t * len)
Obtains the length of the name of a semidefinite variable.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the variable. (input)len
(MSKint32t
by reference) – Returns the length of the indicated name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarxj¶
MSKrescodee (MSKAPI MSK_getbarxj) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t j, MSKrealt * barxj)
Obtains the primal solution for a semidefinite variable. Only the lower triangular part of \(\barX_j\) is returned because the matrix by construction is symmetric. The format is that the columns are stored sequentially in the natural order.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)j
(MSKint32t
) – Index of the semidefinite variable. (input)barxj
(MSKrealt
*
) – Value of \(\barX_j\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbarxslice¶
MSKrescodee (MSKAPI MSK_getbarxslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKint64t slicesize, MSKrealt * barxslice)
Obtains the primal solution for a sequence of semidefinite variables. The format is that matrices are stored sequentially, and in each matrix the columns are stored as in
MSK_getbarxj
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – Index of the first semidefinite variable in the slice. (input)last
(MSKint32t
) – Index of the last semidefinite variable in the slice plus one. (input)slicesize
(MSKint64t
) – Denotes the length of the arraybarxslice
. (input)barxslice
(MSKrealt
*
) – Solution values of symmetric matrix variables in the slice, stored sequentially. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getbuildinfo¶
MSKrescodee (MSKAPI MSK_getbuildinfo) ( char * buildstate, char * builddate)
Obtains build information.
- Parameters
buildstate
(char
*
) – State of binaries, i.e. a debug, release candidate or final release. (output)builddate
(char
*
) – Date when the binaries were built. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getc¶
MSKrescodee (MSKAPI MSK_getc) ( MSKtask_t task, MSKrealt * c)
Obtains all objective coefficients \(c\).
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - linear part, Inspecting the task, Problem data - variables
- MSK_getcallbackfunc¶
MSKrescodee (MSKAPI MSK_getcallbackfunc) ( MSKtask_t task, MSKcallbackfunc * func, MSKuserhandle_t * handle)
Obtains the current user-defined callback function and associated user handle.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)func
(MSKcallbackfunc
by reference) – Get the user-defined progress callback functionMSKcallbackfunc
associated withtask
. Iffunc
is identical to NULL, then no callback function is associated with thetask
. (output)handle
(MSKuserhandle_t
by reference) – The user-defined pointer associated with the user-defined callback function. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getcfix¶
MSKrescodee (MSKAPI MSK_getcfix) ( MSKtask_t task, MSKrealt * cfix)
Obtains the fixed term in the objective.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)cfix
(MSKrealt
by reference) – Fixed term in the objective. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getcj¶
MSKrescodee (MSKAPI MSK_getcj) ( MSKtask_t task, MSKint32t j, MSKrealt * cj)
Obtains one coefficient of \(c\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)j
(MSKint32t
) – Index of the variable for which the \(c\) coefficient should be obtained. (input)cj
(MSKrealt
by reference) – The value of \(c_j\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - linear part, Inspecting the task, Problem data - variables
- MSK_getclist¶
MSKrescodee (MSKAPI MSK_getclist) ( MSKtask_t task, MSKint32t num, const MSKint32t * subj, MSKrealt * c)
Obtains a sequence of elements in \(c\).
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getcodedesc¶
MSKrescodee (MSKAPI MSK_getcodedesc) ( MSKrescodee code, char * symname, char * str)
Obtains a short description of the meaning of the response code given by
code
.- Parameters
code
(MSKrescodee
) – A valid MOSEK response code. (input)symname
(char
*
) – Symbolic name corresponding tocode
. (output)str
(char
*
) – Obtains a short description of a response code. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getconbound¶
MSKrescodee (MSKAPI MSK_getconbound) ( MSKtask_t task, MSKint32t i, MSKboundkeye * bk, MSKrealt * bl, MSKrealt * bu)
Obtains bound information for one constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the constraint for which the bound information should be obtained. (input)bk
(MSKboundkeye
by reference) – Bound keys. (output)bl
(MSKrealt
by reference) – Values for lower bounds. (output)bu
(MSKrealt
by reference) – Values for upper bounds. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data - constraints
- MSK_getconboundslice¶
MSKrescodee (MSKAPI MSK_getconboundslice) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKboundkeye * bk, MSKrealt * bl, MSKrealt * bu)
Obtains bounds information for a slice of the constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)bk
(MSKboundkeye
*
) – Bound keys. (output)bl
(MSKrealt
*
) – Values for lower bounds. (output)bu
(MSKrealt
*
) – Values for upper bounds. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data - constraints
- MSK_getcone Deprecated¶
MSKrescodee (MSKAPI MSK_getcone) ( MSKtask_t task, MSKint32t k, MSKconetypee * ct, MSKrealt * conepar, MSKint32t * nummem, MSKint32t * submem)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)k
(MSKint32t
) – Index of the cone. (input)ct
(MSKconetypee
by reference) – Specifies the type of the cone. (output)conepar
(MSKrealt
by reference) – For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0. (output)nummem
(MSKint32t
by reference) – Number of member variables in the cone. (output)submem
(MSKint32t
*
) – Variable subscripts of the members in the cone. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getconeinfo Deprecated¶
MSKrescodee (MSKAPI MSK_getconeinfo) ( MSKtask_t task, MSKint32t k, MSKconetypee * ct, MSKrealt * conepar, MSKint32t * nummem)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)k
(MSKint32t
) – Index of the cone. (input)ct
(MSKconetypee
by reference) – Specifies the type of the cone. (output)conepar
(MSKrealt
by reference) – For the power cone it denotes the exponent alpha. For other cone types it is unused and can be set to 0. (output)nummem
(MSKint32t
by reference) – Number of member variables in the cone. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getconename Deprecated¶
MSKrescodee (MSKAPI MSK_getconename) ( MSKtask_t task, MSKint32t i, MSKint32t sizename, char * name)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - cones (deprecated), Inspecting the task
- MSK_getconenameindex Deprecated¶
MSKrescodee (MSKAPI MSK_getconenameindex) ( MSKtask_t task, const char * somename, MSKint32t * asgn, MSKint32t * index)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
Checks whether the name
somename
has been assigned to any cone. If it has been assigned to a cone, then the index of the cone is reported.- Parameters
task
(MSKtask_t
) – An optimization task. (input)somename
(char
*
) – The name which should be checked. (input)asgn
(MSKint32t
by reference) – Is non-zero if the namesomename
is assigned to some cone. (output)index
(MSKint32t
by reference) – If the namesomename
is assigned to some cone, thenindex
is the index of the cone. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - cones (deprecated), Inspecting the task
- MSK_getconenamelen Deprecated¶
MSKrescodee (MSKAPI MSK_getconenamelen) ( MSKtask_t task, MSKint32t i, MSKint32t * len)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the cone. (input)len
(MSKint32t
by reference) – Returns the length of the indicated name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - cones (deprecated), Inspecting the task
- MSK_getconname¶
MSKrescodee (MSKAPI MSK_getconname) ( MSKtask_t task, MSKint32t i, MSKint32t sizename, char * name)
Obtains the name of a constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - linear part, Problem data - constraints, Inspecting the task
- MSK_getconnameindex¶
MSKrescodee (MSKAPI MSK_getconnameindex) ( MSKtask_t task, const char * somename, MSKint32t * asgn, MSKint32t * index)
Checks whether the name
somename
has been assigned to any constraint. If so, the index of the constraint is reported.- Parameters
task
(MSKtask_t
) – An optimization task. (input)somename
(char
*
) – The name which should be checked. (input)asgn
(MSKint32t
by reference) – Is non-zero if the namesomename
is assigned to some constraint. (output)index
(MSKint32t
by reference) – If the namesomename
is assigned to a constraint, thenindex
is the index of the constraint. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - linear part, Problem data - constraints, Inspecting the task
- MSK_getconnamelen¶
MSKrescodee (MSKAPI MSK_getconnamelen) ( MSKtask_t task, MSKint32t i, MSKint32t * len)
Obtains the length of the name of a constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the constraint. (input)len
(MSKint32t
by reference) – Returns the length of the indicated name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - linear part, Problem data - constraints, Inspecting the task
- MSK_getcslice¶
MSKrescodee (MSKAPI MSK_getcslice) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKrealt * c)
Obtains a sequence of elements in \(c\).
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdimbarvarj¶
MSKrescodee (MSKAPI MSK_getdimbarvarj) ( MSKtask_t task, MSKint32t j, MSKint32t * dimbarvarj)
Obtains the dimension of a symmetric matrix variable.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)j
(MSKint32t
) – Index of the semidefinite variable whose dimension is requested. (input)dimbarvarj
(MSKint32t
by reference) – The dimension of the \(j\)-th semidefinite variable. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcafeidxlist¶
MSKrescodee (MSKAPI MSK_getdjcafeidxlist) ( MSKtask_t task, MSKint64t djcidx, MSKint64t * afeidxlist)
Obtains the list of affine expression indexes in a disjunctive constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcb¶
MSKrescodee (MSKAPI MSK_getdjcb) ( MSKtask_t task, MSKint64t djcidx, MSKrealt * b)
Obtains the optional constant term vector of a disjunctive constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcdomainidxlist¶
MSKrescodee (MSKAPI MSK_getdjcdomainidxlist) ( MSKtask_t task, MSKint64t djcidx, MSKint64t * domidxlist)
Obtains the list of domain indexes in a disjunctive constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcname¶
MSKrescodee (MSKAPI MSK_getdjcname) ( MSKtask_t task, MSKint64t djcidx, MSKint32t sizename, char * name)
Obtains the name of a disjunctive constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - disjunctive constraints, Inspecting the task
- MSK_getdjcnamelen¶
MSKrescodee (MSKAPI MSK_getdjcnamelen) ( MSKtask_t task, MSKint64t djcidx, MSKint32t * len)
Obtains the length of the name of a disjunctive constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)djcidx
(MSKint64t
) – Index of a disjunctive constraint. (input)len
(MSKint32t
by reference) – Returns the length of the indicated name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - disjunctive constraints, Inspecting the task
- MSK_getdjcnumafe¶
MSKrescodee (MSKAPI MSK_getdjcnumafe) ( MSKtask_t task, MSKint64t djcidx, MSKint64t * numafe)
Obtains the number of affine expressions in the disjunctive constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)djcidx
(MSKint64t
) – Index of the disjunctive constraint. (input)numafe
(MSKint64t
by reference) – Number of affine expressions in the disjunctive constraint. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcnumafetot¶
MSKrescodee (MSKAPI MSK_getdjcnumafetot) ( MSKtask_t task, MSKint64t * numafetot)
Obtains the total number of affine expressions in all disjunctive constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numafetot
(MSKint64t
by reference) – Number of affine expressions in all disjunctive constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcnumdomain¶
MSKrescodee (MSKAPI MSK_getdjcnumdomain) ( MSKtask_t task, MSKint64t djcidx, MSKint64t * numdomain)
Obtains the number of domains in the disjunctive constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)djcidx
(MSKint64t
) – Index of the disjunctive constraint. (input)numdomain
(MSKint64t
by reference) – Number of domains in the disjunctive constraint. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcnumdomaintot¶
MSKrescodee (MSKAPI MSK_getdjcnumdomaintot) ( MSKtask_t task, MSKint64t * numdomaintot)
Obtains the total number of domains in all disjunctive constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numdomaintot
(MSKint64t
by reference) – Number of domains in all disjunctive constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcnumterm¶
MSKrescodee (MSKAPI MSK_getdjcnumterm) ( MSKtask_t task, MSKint64t djcidx, MSKint64t * numterm)
Obtains the number terms in the disjunctive constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)djcidx
(MSKint64t
) – Index of the disjunctive constraint. (input)numterm
(MSKint64t
by reference) – Number of terms in the disjunctive constraint. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcnumtermtot¶
MSKrescodee (MSKAPI MSK_getdjcnumtermtot) ( MSKtask_t task, MSKint64t * numtermtot)
Obtains the total number of terms in all disjunctive constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numtermtot
(MSKint64t
by reference) – Total number of terms in all disjunctive constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjcs¶
MSKrescodee (MSKAPI MSK_getdjcs) ( MSKtask_t task, MSKint64t * domidxlist, MSKint64t * afeidxlist, MSKrealt * b, MSKint64t * termsizelist, MSKint64t * numterms)
Obtains full data of all disjunctive constraints. The output arrays must have minimal lengths determined by the following methods:
domainidxlist
byMSK_getdjcnumdomaintot
,afeidxlist
andb
byMSK_getdjcnumafetot
,termsizelist
byMSK_getdjcnumtermtot
andnumterms
byMSK_getnumdomain
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidxlist
(MSKint64t
*
) – The concatenation of index lists of domains appearing in all disjunctive constraints. (output)afeidxlist
(MSKint64t
*
) – The concatenation of index lists of affine expressions appearing in all disjunctive constraints. (output)b
(MSKrealt
*
) – The concatenation of vectors b appearing in all disjunctive constraints. (output)termsizelist
(MSKint64t
*
) – The concatenation of lists of term sizes appearing in all disjunctive constraints. (output)numterms
(MSKint64t
*
) – The number of terms in each of the disjunctive constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdjctermsizelist¶
MSKrescodee (MSKAPI MSK_getdjctermsizelist) ( MSKtask_t task, MSKint64t djcidx, MSKint64t * termsizelist)
Obtains the list of term sizes in a disjunctive constraint.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdomainn¶
MSKrescodee (MSKAPI MSK_getdomainn) ( MSKtask_t task, MSKint64t domidx, MSKint64t * n)
Obtains the dimension of the domain.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidx
(MSKint64t
) – Index of the domain. (input)n
(MSKint64t
by reference) – Dimension of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdomainname¶
MSKrescodee (MSKAPI MSK_getdomainname) ( MSKtask_t task, MSKint64t domidx, MSKint32t sizename, char * name)
Obtains the name of a domain.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdomainnamelen¶
MSKrescodee (MSKAPI MSK_getdomainnamelen) ( MSKtask_t task, MSKint64t domidx, MSKint32t * len)
Obtains the length of the name of a domain.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidx
(MSKint64t
) – Index of a domain. (input)len
(MSKint32t
by reference) – Returns the length of the indicated name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdomaintype¶
MSKrescodee (MSKAPI MSK_getdomaintype) ( MSKtask_t task, MSKint64t domidx, MSKdomaintypee * domtype)
Returns the type of the domain.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidx
(MSKint64t
) – Index of the domain. (input)domtype
(MSKdomaintypee
by reference) – The type of the domain. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdouinf¶
MSKrescodee (MSKAPI MSK_getdouinf) ( MSKtask_t task, MSKdinfiteme whichdinf, MSKrealt * dvalue)
Obtains a double information item from the task information database.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichdinf
(MSKdinfiteme
) – Specifies a double information item. (input)dvalue
(MSKrealt
by reference) – The value of the required double information item. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdouparam¶
MSKrescodee (MSKAPI MSK_getdouparam) ( MSKtask_t task, MSKdparame param, MSKrealt * parvalue)
Obtains the value of a double parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)param
(MSKdparame
) – Which parameter. (input)parvalue
(MSKrealt
by reference) – Parameter value. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdualobj¶
MSKrescodee (MSKAPI MSK_getdualobj) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * dualobj)
Computes the dual objective value associated with the solution. Note that if the solution is a primal infeasibility certificate, then the fixed term in the objective value is not included.
Moreover, since there is no dual solution associated with an integer solution, an error will be reported if the dual objective value is requested for the integer solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)dualobj
(MSKrealt
by reference) – Objective value corresponding to the dual solution. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdualsolutionnorms¶
MSKrescodee (MSKAPI MSK_getdualsolutionnorms) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * nrmy, MSKrealt * nrmslc, MSKrealt * nrmsuc, MSKrealt * nrmslx, MSKrealt * nrmsux, MSKrealt * nrmsnx, MSKrealt * nrmbars)
Compute norms of the dual solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)nrmy
(MSKrealt
by reference) – The norm of the \(y\) vector. (output)nrmslc
(MSKrealt
by reference) – The norm of the \(s_l^c\) vector. (output)nrmsuc
(MSKrealt
by reference) – The norm of the \(s_u^c\) vector. (output)nrmslx
(MSKrealt
by reference) – The norm of the \(s_l^x\) vector. (output)nrmsux
(MSKrealt
by reference) – The norm of the \(s_u^x\) vector. (output)nrmsnx
(MSKrealt
by reference) – The norm of the \(s_n^x\) vector. (output)nrmbars
(MSKrealt
by reference) – The norm of the \(\barS\) vector. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdviolacc¶
MSKrescodee (MSKAPI MSK_getdviolacc) ( MSKtask_t task, MSKsoltypee whichsol, MSKint64t numaccidx, const MSKint64t * accidxlist, MSKrealt * viol)
Let \((s_n^x)^*\) be the value of variable \((s_n^x)\) for the specified solution. For simplicity let us assume that \(s_n^x\) is a member of a quadratic cone, then the violation is computed as follows
\[\begin{split}\left\{ \begin{array}{ll} \max(0,(\|s_n^x\|_{2:n}^*-(s_n^x)_1^*) / \sqrt{2}, & (s_n^x)^* \geq -\|(s_n^x)_{2:n}^*\|, \\ \|(s_n^x)^*\|, & \mbox{otherwise.} \end{array} \right.\end{split}\]Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)numaccidx
(MSKint64t
) – Length ofsub
andviol
. (input)accidxlist
(MSKint64t
*
) – An array of indexes of conic constraints. (input)viol
(MSKrealt
*
) –viol[k]
is the violation of the dual solution associated with the conic constraintsub[k]
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdviolbarvar¶
MSKrescodee (MSKAPI MSK_getdviolbarvar) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t num, const MSKint32t * sub, MSKrealt * viol)
Let \((\barS_j)^*\) be the value of variable \(\barS_j\) for the specified solution. Then the dual violation of the solution associated with variable \(\barS_j\) is given by
\[\max(-\lambda_{\min}(\barS_j),\ 0.0).\]Both when the solution is a certificate of primal infeasibility and when it is dual feasible solution the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)num
(MSKint32t
) – Length ofsub
andviol
. (input)sub
(MSKint32t
*
) – An array of indexes of \(\barX\) variables. (input)viol
(MSKrealt
*
) –viol[k]
is the violation of the solution for the constraint \(\barS_{\mathtt{sub}[k]} \in \PSD\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdviolcon¶
MSKrescodee (MSKAPI MSK_getdviolcon) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t num, const MSKint32t * sub, MSKrealt * viol)
The violation of the dual solution associated with the \(i\)-th constraint is computed as follows
\[\max( \rho( (s_l^c)_i^*,(b_l^c)_i ),\ \rho( (s_u^c)_i^*, -(b_u^c)_i ),\ |-y_i+(s_l^c)_i^*-(s_u^c)_i^*| )\]where
\[\begin{split}\rho(x,l) = \left\{ \begin{array}{ll} -x, & l > -\infty , \\ |x|, & \mbox{otherwise}.\\ \end{array} \right.\end{split}\]Both when the solution is a certificate of primal infeasibility or it is a dual feasible solution the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)num
(MSKint32t
) – Length ofsub
andviol
. (input)sub
(MSKint32t
*
) – An array of indexes of constraints. (input)viol
(MSKrealt
*
) –viol[k]
is the violation of dual solution associated with the constraintsub[k]
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdviolcones Deprecated¶
MSKrescodee (MSKAPI MSK_getdviolcones) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t num, const MSKint32t * sub, MSKrealt * viol)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
Let \((s_n^x)^*\) be the value of variable \((s_n^x)\) for the specified solution. For simplicity let us assume that \(s_n^x\) is a member of a quadratic cone, then the violation is computed as follows
\[\begin{split}\left\{ \begin{array}{ll} \max(0,(\|s_n^x\|_{2:n}^*-(s_n^x)_1^*) / \sqrt{2}, & (s_n^x)^* \geq -\|(s_n^x)_{2:n}^*\|, \\ \|(s_n^x)^*\|, & \mbox{otherwise.} \end{array} \right.\end{split}\]Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)num
(MSKint32t
) – Length ofsub
andviol
. (input)sub
(MSKint32t
*
) – An array of indexes of conic constraints. (input)viol
(MSKrealt
*
) –viol[k]
is the violation of the dual solution associated with the conic constraintsub[k]
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getdviolvar¶
MSKrescodee (MSKAPI MSK_getdviolvar) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t num, const MSKint32t * sub, MSKrealt * viol)
The violation of the dual solution associated with the \(j\)-th variable is computed as follows
\[\max \left(\rho((s_l^x)_j^*,(b_l^x)_j),\ \rho((s_u^x)_j^*,-(b_u^x)_j),\ |\sum_{i=\idxbeg}^{\idxend{numcon}} a_{ij} y_i+(s_l^x)_j^*-(s_u^x)_j^* - \tau c_j| \right)\]where
\[\begin{split}\rho(x,l) = \left\{ \begin{array}{ll} -x, & l > -\infty , \\ |x|, & \mbox{otherwise} \end{array} \right.\end{split}\]and \(\tau=0\) if the solution is a certificate of primal infeasibility and \(\tau=1\) otherwise. The formula for computing the violation is only shown for the linear case but is generalized appropriately for the more general problems. Both when the solution is a certificate of primal infeasibility or when it is a dual feasible solution the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)num
(MSKint32t
) – Length ofsub
andviol
. (input)sub
(MSKint32t
*
) – An array of indexes of \(x\) variables. (input)viol
(MSKrealt
*
) –viol[k]
is the violation of dual solution associated with the variablesub[k]
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getenv¶
MSKrescodee (MSKAPI MSK_getenv) ( MSKtask_t task, MSKenv_t * env)
Obtains the environment used to create the task.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)env
(MSKenv_t
by reference) – The MOSEK environment. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getinfeasiblesubproblem¶
MSKrescodee (MSKAPI MSK_getinfeasiblesubproblem) ( MSKtask_t task, MSKsoltypee whichsol, MSKtask_t * inftask)
Given the solution is a certificate of primal or dual infeasibility then a primal or dual infeasible subproblem is obtained respectively. The subproblem tends to be much smaller than the original problem and hence it is easier to locate the infeasibility inspecting the subproblem than the original problem.
For the procedure to be useful it is important to assign meaningful names to constraints, variables etc. in the original task because those names will be duplicated in the subproblem.
The function is only applicable to linear and conic quadratic optimization problems.
For more information see Sec. 8.3 (Debugging infeasibility) and Sec. 14.2 (Automatic Repair of Infeasible Problems).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Which solution to use when determining the infeasible subproblem. (input)inftask
(MSKtask_t
by reference) – A new task containing the infeasible subproblem. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getinfindex¶
MSKrescodee (MSKAPI MSK_getinfindex) ( MSKtask_t task, MSKinftypee inftype, const char * infname, MSKint32t * infindex)
Obtains the index of a named information item.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)inftype
(MSKinftypee
) – Type of the information item. (input)infname
(char
*
) – Name of the information item. (input)infindex
(MSKint32t
by reference) – The item index. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getinfmax¶
MSKrescodee (MSKAPI MSK_getinfmax) ( MSKtask_t task, MSKinftypee inftype, MSKint32t * infmax)
Obtains the maximum index of an information item of a given type
inftype
plus 1.- Parameters
task
(MSKtask_t
) – An optimization task. (input)inftype
(MSKinftypee
) – Type of the information item. (input)infmax
(MSKint32t
*
) – The maximum index (plus 1) requested. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getinfname¶
MSKrescodee (MSKAPI MSK_getinfname) ( MSKtask_t task, MSKinftypee inftype, MSKint32t whichinf, char * infname)
Obtains the name of an information item.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)inftype
(MSKinftypee
) – Type of the information item. (input)whichinf
(MSKint32t
) – An information item. (input)infname
(char
*
) – Name of the information item. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getintinf¶
MSKrescodee (MSKAPI MSK_getintinf) ( MSKtask_t task, MSKiinfiteme whichiinf, MSKint32t * ivalue)
Obtains an integer information item from the task information database.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichiinf
(MSKiinfiteme
) – Specifies an integer information item. (input)ivalue
(MSKint32t
by reference) – The value of the required integer information item. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getintparam¶
MSKrescodee (MSKAPI MSK_getintparam) ( MSKtask_t task, MSKiparame param, MSKint32t * parvalue)
Obtains the value of an integer parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)param
(MSKiparame
) – Which parameter. (input)parvalue
(MSKint32t
by reference) – Parameter value. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getlasterror¶
MSKrescodee (MSKAPI MSK_getlasterror) ( MSKtask_t task, MSKrescodee * lastrescode, MSKint32t sizelastmsg, MSKint32t * lastmsglen, char * lastmsg)
Obtains the last response code and corresponding message reported in MOSEK.
If there is no previous error, warning or termination code for this task,
lastrescode
returnsMSK_RES_OK
andlastmsg
returns an empty string, otherwise the last response code different fromMSK_RES_OK
and the corresponding message are returned.- Parameters
task
(MSKtask_t
) – An optimization task. (input)lastrescode
(MSKrescodee
by reference) – Returns the last error code reported in the task. (output)sizelastmsg
(MSKint32t
) – The length of thelastmsg
buffer. (input)lastmsglen
(MSKint32t
by reference) – Returns the length of the last error message reported in the task. (output)lastmsg
(char
*
) – Returns the last error message reported in the task. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getlasterror64¶
MSKrescodee (MSKAPI MSK_getlasterror64) ( MSKtask_t task, MSKrescodee * lastrescode, MSKint64t sizelastmsg, MSKint64t * lastmsglen, char * lastmsg)
Obtains the last response code and corresponding message reported in MOSEK.
If there is no previous error, warning or termination code for this task,
lastrescode
returnsMSK_RES_OK
andlastmsg
returns an empty string, otherwise the last response code different fromMSK_RES_OK
and the corresponding message are returned.- Parameters
task
(MSKtask_t
) – An optimization task. (input)lastrescode
(MSKrescodee
by reference) – Returns the last error code reported in the task. (output)sizelastmsg
(MSKint64t
) – The length of thelastmsg
buffer. (input)lastmsglen
(MSKint64t
by reference) – Returns the length of the last error message reported in the task. (output)lastmsg
(char
*
) – Returns the last error message reported in the task. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getlenbarvarj¶
MSKrescodee (MSKAPI MSK_getlenbarvarj) ( MSKtask_t task, MSKint32t j, MSKint64t * lenbarvarj)
Obtains the length of the \(j\)-th semidefinite variable i.e. the number of elements in the lower triangular part.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)j
(MSKint32t
) – Index of the semidefinite variable whose length if requested. (input)lenbarvarj
(MSKint64t
by reference) – Number of scalar elements in the lower triangular part of the semidefinite variable. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getlintinf¶
MSKrescodee (MSKAPI MSK_getlintinf) ( MSKtask_t task, MSKliinfiteme whichliinf, MSKint64t * ivalue)
Obtains a long integer information item from the task information database.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichliinf
(MSKliinfiteme
) – Specifies a long information item. (input)ivalue
(MSKint64t
by reference) – The value of the required long integer information item. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getmaxnamelen¶
MSKrescodee (MSKAPI MSK_getmaxnamelen) ( MSKtask_t task, MSKint32t * maxlen)
Obtains the maximum length (not including terminating zero character) of any objective, constraint, variable, domain or cone name.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxlen
(MSKint32t
by reference) – The maximum length of any name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getmaxnumanz¶
MSKrescodee (MSKAPI MSK_getmaxnumanz) ( MSKtask_t task, MSKint32t * maxnumanz)
Obtains number of preallocated non-zeros in \(A\). When this number of non-zeros is reached MOSEK will automatically allocate more space for \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumanz
(MSKint32t
by reference) – Number of preallocated non-zero linear matrix elements. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getmaxnumanz64¶
MSKrescodee (MSKAPI MSK_getmaxnumanz64) ( MSKtask_t task, MSKint64t * maxnumanz)
Obtains number of preallocated non-zeros in \(A\). When this number of non-zeros is reached MOSEK will automatically allocate more space for \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumanz
(MSKint64t
by reference) – Number of preallocated non-zero linear matrix elements. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getmaxnumbarvar¶
MSKrescodee (MSKAPI MSK_getmaxnumbarvar) ( MSKtask_t task, MSKint32t * maxnumbarvar)
Obtains maximum number of symmetric matrix variables for which space is currently preallocated.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumbarvar
(MSKint32t
by reference) – Maximum number of symmetric matrix variables for which space is currently preallocated. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getmaxnumcon¶
MSKrescodee (MSKAPI MSK_getmaxnumcon) ( MSKtask_t task, MSKint32t * maxnumcon)
Obtains the number of preallocated constraints in the optimization task. When this number of constraints is reached MOSEK will automatically allocate more space for constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumcon
(MSKint32t
by reference) – Number of preallocated constraints in the optimization task. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Inspecting the task, Problem data - linear part, Problem data - constraints
- MSK_getmaxnumcone Deprecated¶
MSKrescodee (MSKAPI MSK_getmaxnumcone) ( MSKtask_t task, MSKint32t * maxnumcone)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
Obtains the number of preallocated cones in the optimization task. When this number of cones is reached MOSEK will automatically allocate space for more cones.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumcone
(MSKint32t
by reference) – Number of preallocated conic constraints in the optimization task. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getmaxnumqnz¶
MSKrescodee (MSKAPI MSK_getmaxnumqnz) ( MSKtask_t task, MSKint32t * maxnumqnz)
Obtains the number of preallocated non-zeros for \(Q\) (both objective and constraints). When this number of non-zeros is reached MOSEK will automatically allocate more space for \(Q\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumqnz
(MSKint32t
by reference) – Number of non-zero elements preallocated in quadratic coefficient matrices. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getmaxnumqnz64¶
MSKrescodee (MSKAPI MSK_getmaxnumqnz64) ( MSKtask_t task, MSKint64t * maxnumqnz)
Obtains the number of preallocated non-zeros for \(Q\) (both objective and constraints). When this number of non-zeros is reached MOSEK will automatically allocate more space for \(Q\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumqnz
(MSKint64t
by reference) – Number of non-zero elements preallocated in quadratic coefficient matrices. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getmaxnumvar¶
MSKrescodee (MSKAPI MSK_getmaxnumvar) ( MSKtask_t task, MSKint32t * maxnumvar)
Obtains the number of preallocated variables in the optimization task. When this number of variables is reached MOSEK will automatically allocate more space for variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumvar
(MSKint32t
by reference) – Number of preallocated variables in the optimization task. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Inspecting the task, Problem data - linear part, Problem data - variables
- MSK_getmemusagetask¶
MSKrescodee (MSKAPI MSK_getmemusagetask) ( MSKtask_t task, MSKint64t * meminuse, MSKint64t * maxmemuse)
Obtains information about the amount of memory used by a task.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)meminuse
(MSKint64t
by reference) – Amount of memory currently used by thetask
. (output)maxmemuse
(MSKint64t
by reference) – Maximum amount of memory used by thetask
until now. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnadouinf¶
MSKrescodee (MSKAPI MSK_getnadouinf) ( MSKtask_t task, const char * infitemname, MSKrealt * dvalue)
Obtains a named double information item from task information database.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)infitemname
(char
*
) – The name of a double information item. (input)dvalue
(MSKrealt
by reference) – The value of the required double information item. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnadouparam¶
MSKrescodee (MSKAPI MSK_getnadouparam) ( MSKtask_t task, const char * paramname, MSKrealt * parvalue)
Obtains the value of a named double parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)paramname
(char
*
) – Name of a parameter. (input)parvalue
(MSKrealt
by reference) – Parameter value. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnaintinf¶
MSKrescodee (MSKAPI MSK_getnaintinf) ( MSKtask_t task, const char * infitemname, MSKint32t * ivalue)
Obtains a named integer information item from the task information database.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)infitemname
(char
*
) – The name of an integer information item. (input)ivalue
(MSKint32t
by reference) – The value of the required integer information item. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnaintparam¶
MSKrescodee (MSKAPI MSK_getnaintparam) ( MSKtask_t task, const char * paramname, MSKint32t * parvalue)
Obtains the value of a named integer parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)paramname
(char
*
) – Name of a parameter. (input)parvalue
(MSKint32t
by reference) – Parameter value. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnastrparam¶
MSKrescodee (MSKAPI MSK_getnastrparam) ( MSKtask_t task, const char * paramname, MSKint32t sizeparamname, MSKint32t * len, char * parvalue)
Obtains the value of a named string parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)paramname
(char
*
) – Name of a parameter. (input)sizeparamname
(MSKint32t
) – Size of the name bufferparvalue
. (input)len
(MSKint32t
by reference) – Length of the string inparvalue
. (output)parvalue
(char
*
) – Parameter value. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnastrparamal¶
MSKrescodee (MSKAPI MSK_getnastrparamal) ( MSKtask_t task, const char * paramname, MSKint32t numaddchr, char ** value)
Obtains the value of a named string parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)paramname
(char
*
) – Name of a parameter. (input)numaddchr
(MSKint32t
) – Number of additional characters for which room is left invalue
. (input)value
(char
*
by reference) – Parameter value. MOSEK will allocate this char buffer of size equal to the actual length of the string parameter plusnumaddchr
. This memory must be freed byMSK_freetask
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumacc¶
MSKrescodee (MSKAPI MSK_getnumacc) ( MSKtask_t task, MSKint64t * num)
Obtains the number of affine conic constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint64t
by reference) – The number of affine conic constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - affine conic constraints, Inspecting the task
- MSK_getnumafe¶
MSKrescodee (MSKAPI MSK_getnumafe) ( MSKtask_t task, MSKint64t * numafe)
Obtains the number of affine expressions.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numafe
(MSKint64t
by reference) – Number of affine expressions. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumanz¶
MSKrescodee (MSKAPI MSK_getnumanz) ( MSKtask_t task, MSKint32t * numanz)
Obtains the number of non-zeros in \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numanz
(MSKint32t
by reference) – Number of non-zero elements in the linear constraint matrix. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumanz64¶
MSKrescodee (MSKAPI MSK_getnumanz64) ( MSKtask_t task, MSKint64t * numanz)
Obtains the number of non-zeros in \(A\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numanz
(MSKint64t
by reference) – Number of non-zero elements in the linear constraint matrix. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumbarablocktriplets¶
MSKrescodee (MSKAPI MSK_getnumbarablocktriplets) ( MSKtask_t task, MSKint64t * num)
Obtains an upper bound on the number of elements in the block triplet form of \(\barA\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint64t
by reference) – An upper bound on the number of elements in the block triplet form of \(\barA.\) (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumbaranz¶
MSKrescodee (MSKAPI MSK_getnumbaranz) ( MSKtask_t task, MSKint64t * nz)
Get the number of nonzero elements in \(\barA\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)nz
(MSKint64t
by reference) – The number of nonzero block elements in \(\barA\) i.e. the number of \(\barA_{ij}\) elements that are nonzero. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumbarcblocktriplets¶
MSKrescodee (MSKAPI MSK_getnumbarcblocktriplets) ( MSKtask_t task, MSKint64t * num)
Obtains an upper bound on the number of elements in the block triplet form of \(\barC\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint64t
by reference) – An upper bound on the number of elements in the block triplet form of \(\barC.\) (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumbarcnz¶
MSKrescodee (MSKAPI MSK_getnumbarcnz) ( MSKtask_t task, MSKint64t * nz)
Obtains the number of nonzero elements in \(\barC\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)nz
(MSKint64t
by reference) – The number of nonzeros in \(\barC\) i.e. the number of elements \(\barC_j\) that are nonzero. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumbarvar¶
MSKrescodee (MSKAPI MSK_getnumbarvar) ( MSKtask_t task, MSKint32t * numbarvar)
Obtains the number of semidefinite variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numbarvar
(MSKint32t
by reference) – Number of semidefinite variables in the problem. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumcon¶
MSKrescodee (MSKAPI MSK_getnumcon) ( MSKtask_t task, MSKint32t * numcon)
Obtains the number of constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numcon
(MSKint32t
by reference) – Number of constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - linear part, Problem data - constraints, Inspecting the task
- MSK_getnumcone Deprecated¶
MSKrescodee (MSKAPI MSK_getnumcone) ( MSKtask_t task, MSKint32t * numcone)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numcone
(MSKint32t
by reference) – Number of conic constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumconemem Deprecated¶
MSKrescodee (MSKAPI MSK_getnumconemem) ( MSKtask_t task, MSKint32t k, MSKint32t * nummem)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)k
(MSKint32t
) – Index of the cone. (input)nummem
(MSKint32t
by reference) – Number of member variables in the cone. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumdjc¶
MSKrescodee (MSKAPI MSK_getnumdjc) ( MSKtask_t task, MSKint64t * num)
Obtains the number of disjunctive constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint64t
by reference) – The number of disjunctive constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumdomain¶
MSKrescodee (MSKAPI MSK_getnumdomain) ( MSKtask_t task, MSKint64t * numdomain)
Obtain the number of domains defined.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numdomain
(MSKint64t
by reference) – Number of domains in the task. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumintvar¶
MSKrescodee (MSKAPI MSK_getnumintvar) ( MSKtask_t task, MSKint32t * numintvar)
Obtains the number of integer-constrained variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numintvar
(MSKint32t
by reference) – Number of integer variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumparam¶
MSKrescodee (MSKAPI MSK_getnumparam) ( MSKtask_t task, MSKparametertypee partype, MSKint32t * numparam)
Obtains the number of parameters of a given type.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)partype
(MSKparametertypee
) – Parameter type. (input)numparam
(MSKint32t
by reference) – The number of parameters of typepartype
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumqconknz¶
MSKrescodee (MSKAPI MSK_getnumqconknz) ( MSKtask_t task, MSKint32t k, MSKint32t * numqcnz)
Obtains the number of non-zero quadratic terms in a constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)k
(MSKint32t
) – Index of the constraint for which the number of non-zero quadratic terms should be obtained. (input)numqcnz
(MSKint32t
by reference) – Number of quadratic terms. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Inspecting the task, Problem data - constraints, Problem data - quadratic part
- MSK_getnumqconknz64¶
MSKrescodee (MSKAPI MSK_getnumqconknz64) ( MSKtask_t task, MSKint32t k, MSKint64t * numqcnz)
Obtains the number of non-zero quadratic terms in a constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)k
(MSKint32t
) – Index of the constraint for which the number quadratic terms should be obtained. (input)numqcnz
(MSKint64t
by reference) – Number of quadratic terms. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Inspecting the task, Problem data - constraints, Problem data - quadratic part
- MSK_getnumqobjnz¶
MSKrescodee (MSKAPI MSK_getnumqobjnz) ( MSKtask_t task, MSKint32t * numqonz)
Obtains the number of non-zero quadratic terms in the objective.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numqonz
(MSKint32t
by reference) – Number of non-zero elements in the quadratic objective terms. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumqobjnz64¶
MSKrescodee (MSKAPI MSK_getnumqobjnz64) ( MSKtask_t task, MSKint64t * numqonz)
Obtains the number of non-zero quadratic terms in the objective.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numqonz
(MSKint64t
by reference) – Number of non-zero elements in the quadratic objective terms. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumsymmat¶
MSKrescodee (MSKAPI MSK_getnumsymmat) ( MSKtask_t task, MSKint64t * num)
Obtains the number of symmetric matrices stored in the vector \(E\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint64t
by reference) – The number of symmetric sparse matrices. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getnumvar¶
MSKrescodee (MSKAPI MSK_getnumvar) ( MSKtask_t task, MSKint32t * numvar)
Obtains the number of variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)numvar
(MSKint32t
by reference) – Number of variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getobjname¶
MSKrescodee (MSKAPI MSK_getobjname) ( MSKtask_t task, MSKint32t sizeobjname, char * objname)
Obtains the name assigned to the objective function.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getobjnamelen¶
MSKrescodee (MSKAPI MSK_getobjnamelen) ( MSKtask_t task, MSKint32t * len)
Obtains the length of the name assigned to the objective function.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)len
(MSKint32t
by reference) – Assigned the length of the objective name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getobjsense¶
MSKrescodee (MSKAPI MSK_getobjsense) ( MSKtask_t task, MSKobjsensee * sense)
Gets the objective sense of the task.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)sense
(MSKobjsensee
by reference) – The returned objective sense. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getparammax¶
MSKrescodee (MSKAPI MSK_getparammax) ( MSKtask_t task, MSKparametertypee partype, MSKint32t * parammax)
Obtains the maximum index of a parameter of type
partype
plus 1.- Parameters
task
(MSKtask_t
) – An optimization task. (input)partype
(MSKparametertypee
) – Parameter type. (input)parammax
(MSKint32t
by reference) – The maximum index (plus 1) of the given parameter type. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getparamname¶
MSKrescodee (MSKAPI MSK_getparamname) ( MSKtask_t task, MSKparametertypee partype, MSKint32t param, char * parname)
Obtains the name for a parameter
param
of typepartype
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)partype
(MSKparametertypee
) – Parameter type. (input)param
(MSKint32t
) – Which parameter. (input)parname
(char
*
) – Parameter name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getpowerdomainalpha¶
MSKrescodee (MSKAPI MSK_getpowerdomainalpha) ( MSKtask_t task, MSKint64t domidx, MSKrealt * alpha)
Obtains the exponent vector \(\alpha\) of a primal or dual power cone domain.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getpowerdomaininfo¶
MSKrescodee (MSKAPI MSK_getpowerdomaininfo) ( MSKtask_t task, MSKint64t domidx, MSKint64t * n, MSKint64t * nleft)
Obtains structural information about a primal or dual power cone domain.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)domidx
(MSKint64t
) – Index of the domain. (input)n
(MSKint64t
by reference) – Dimension of the domain. (output)nleft
(MSKint64t
by reference) – Number of variables on the left hand side. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getprimalobj¶
MSKrescodee (MSKAPI MSK_getprimalobj) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * primalobj)
Computes the primal objective value for the desired solution. Note that if the solution is an infeasibility certificate, then the fixed term in the objective is not included.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)primalobj
(MSKrealt
by reference) – Objective value corresponding to the primal solution. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getprimalsolutionnorms¶
MSKrescodee (MSKAPI MSK_getprimalsolutionnorms) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * nrmxc, MSKrealt * nrmxx, MSKrealt * nrmbarx)
Compute norms of the primal solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)nrmxc
(MSKrealt
by reference) – The norm of the \(x^c\) vector. (output)nrmxx
(MSKrealt
by reference) – The norm of the \(x\) vector. (output)nrmbarx
(MSKrealt
by reference) – The norm of the \(\barX\) vector. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getprobtype¶
MSKrescodee (MSKAPI MSK_getprobtype) ( MSKtask_t task, MSKproblemtypee * probtype)
Obtains the problem type.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)probtype
(MSKproblemtypee
by reference) – The problem type. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getprosta¶
MSKrescodee (MSKAPI MSK_getprosta) ( MSKtask_t task, MSKsoltypee whichsol, MSKprostae * problemsta)
Obtains the problem status.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)problemsta
(MSKprostae
by reference) – Problem status. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getpviolacc¶
MSKrescodee (MSKAPI MSK_getpviolacc) ( MSKtask_t task, MSKsoltypee whichsol, MSKint64t numaccidx, const MSKint64t * accidxlist, MSKrealt * viol)
Computes the primal solution violation for a set of affine conic constraints. Let \(x^*\) be the value of the variable \(x\) for the specified solution. For simplicity let us assume that \(x\) is a member of a quadratic cone, then the violation is computed as follows
\[\begin{split}\left\{ \begin{array}{ll} \max(0,\|x_{2:n}\|-x_1) / \sqrt{2}, & x_1 \geq -\|x_{2:n}\|, \\ \|x\|, & \mbox{otherwise.} \end{array} \right.\end{split}\]Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)numaccidx
(MSKint64t
) – Length ofsub
andviol
. (input)accidxlist
(MSKint64t
*
) – An array of indexes of conic constraints. (input)viol
(MSKrealt
*
) –viol[k]
is the violation of the solution associated with the affine conic constraint numberaccidxlist[k]
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getpviolbarvar¶
MSKrescodee (MSKAPI MSK_getpviolbarvar) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t num, const MSKint32t * sub, MSKrealt * viol)
Computes the primal solution violation for a set of semidefinite variables. Let \((\barX_j)^*\) be the value of the variable \(\barX_j\) for the specified solution. Then the primal violation of the solution associated with variable \(\barX_j\) is given by
\[\max(-\lambda_{\min}(\barX_j),\ 0.0).\]Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)num
(MSKint32t
) – Length ofsub
andviol
. (input)sub
(MSKint32t
*
) – An array of indexes of \(\barX\) variables. (input)viol
(MSKrealt
*
) –viol[k]
is how much the solution violates the constraint \(\barX_{\mathtt{sub}[k]} \in \PSD\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getpviolcon¶
MSKrescodee (MSKAPI MSK_getpviolcon) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t num, const MSKint32t * sub, MSKrealt * viol)
Computes the primal solution violation for a set of constraints. The primal violation of the solution associated with the \(i\)-th constraint is given by
\[\max(\tau l_i^c - (x_i^c)^*,\ (x_i^c)^* - \tau u_i^c),\ |\sum_{j=\idxbeg}^{\idxend{numvar}} a_{ij} x_j^* - x_i^c|)\]where \(\tau=0\) if the solution is a certificate of dual infeasibility and \(\tau=1\) otherwise. Both when the solution is a certificate of dual infeasibility and when it is primal feasible the violation should be small. The above formula applies for the linear case but is appropriately generalized in other cases.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)num
(MSKint32t
) – Length ofsub
andviol
. (input)sub
(MSKint32t
*
) – An array of indexes of constraints. (input)viol
(MSKrealt
*
) –viol[k]
is the violation associated with the solution for the constraintsub[k]
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getpviolcones Deprecated¶
MSKrescodee (MSKAPI MSK_getpviolcones) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t num, const MSKint32t * sub, MSKrealt * viol)
NOTE: This interface to conic optimization is deprecated and will be removed in a future major release. Conic problems should be specified using the affine conic constraints interface (ACC), see Sec. 6.2 (From Linear to Conic Optimization) for details.
Computes the primal solution violation for a set of conic constraints. Let \(x^*\) be the value of the variable \(x\) for the specified solution. For simplicity let us assume that \(x\) is a member of a quadratic cone, then the violation is computed as follows
\[\begin{split}\left\{ \begin{array}{ll} \max(0,\|x_{2:n}\|-x_1) / \sqrt{2}, & x_1 \geq -\|x_{2:n}\|, \\ \|x\|, & \mbox{otherwise.} \end{array} \right.\end{split}\]Both when the solution is a certificate of dual infeasibility or when it is primal feasible the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)num
(MSKint32t
) – Length ofsub
andviol
. (input)sub
(MSKint32t
*
) – An array of indexes of conic constraints. (input)viol
(MSKrealt
*
) –viol[k]
is the violation of the solution associated with the conic constraint numbersub[k]
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getpvioldjc¶
MSKrescodee (MSKAPI MSK_getpvioldjc) ( MSKtask_t task, MSKsoltypee whichsol, MSKint64t numdjcidx, const MSKint64t * djcidxlist, MSKrealt * viol)
Computes the primal solution violation for a set of disjunctive constraints. For a single DJC the violation is defined as
\[\mathrm{viol}\left(\bigvee_{i=1}^t \bigwedge_{j=1}^{s_i} T_{i,j}\right) = \min_{i=1,\ldots,t}\left(\max_{j=1,\ldots,s_j}(\mathrm{viol}(T_{i,j}))\right)\]where the violation of each simple term \(T_{i,j}\) is defined as for an ordinary linear constraint.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)numdjcidx
(MSKint64t
) – Length ofsub
andviol
. (input)djcidxlist
(MSKint64t
*
) – An array of indexes of disjunctive constraints. (input)viol
(MSKrealt
*
) –viol[k]
is the violation of the solution associated with the disjunctive constraint numberdjcidxlist[k]
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getpviolvar¶
MSKrescodee (MSKAPI MSK_getpviolvar) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t num, const MSKint32t * sub, MSKrealt * viol)
Computes the primal solution violation associated to a set of variables. Let \(x_j^*\) be the value of \(x_j\) for the specified solution. Then the primal violation of the solution associated with variable \(x_j\) is given by
\[\max( \tau l_j^x - x_j^*,\ x_j^* - \tau u_j^x,\ 0).\]where \(\tau=0\) if the solution is a certificate of dual infeasibility and \(\tau=1\) otherwise. Both when the solution is a certificate of dual infeasibility and when it is primal feasible the violation should be small.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)num
(MSKint32t
) – Length ofsub
andviol
. (input)sub
(MSKint32t
*
) – An array of indexes of \(x\) variables. (input)viol
(MSKrealt
*
) –viol[k]
is the violation associated with the solution for the variable \(x_\mathtt{sub[k]}\). (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getqconk¶
MSKrescodee (MSKAPI MSK_getqconk) ( MSKtask_t task, MSKint32t k, MSKint32t maxnumqcnz, MSKint32t * numqcnz, MSKint32t * qcsubi, MSKint32t * qcsubj, MSKrealt * qcval)
Obtains all the quadratic terms in a constraint. The quadratic terms are stored sequentially in
qcsubi
,qcsubj
, andqcval
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)k
(MSKint32t
) – Which constraint. (input)maxnumqcnz
(MSKint32t
) – Length of the arraysqcsubi
,qcsubj
, andqcval
. (input)numqcnz
(MSKint32t
by reference) – Number of quadratic terms. (output)qcsubi
(MSKint32t
*
) – Row subscripts for quadratic constraint matrix. (output)qcsubj
(MSKint32t
*
) – Column subscripts for quadratic constraint matrix. (output)qcval
(MSKrealt
*
) – Quadratic constraint coefficient values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Inspecting the task, Problem data - quadratic part, Problem data - constraints
- MSK_getqconk64¶
MSKrescodee (MSKAPI MSK_getqconk64) ( MSKtask_t task, MSKint32t k, MSKint64t maxnumqcnz, MSKint64t * numqcnz, MSKint32t * qcsubi, MSKint32t * qcsubj, MSKrealt * qcval)
Obtains all the quadratic terms in a constraint. The quadratic terms are stored sequentially in
qcsubi
,qcsubj
, andqcval
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)k
(MSKint32t
) – Which constraint. (input)maxnumqcnz
(MSKint64t
) – Length of the arraysqcsubi
,qcsubj
, andqcval
. (input)numqcnz
(MSKint64t
by reference) – Number of quadratic terms. (output)qcsubi
(MSKint32t
*
) – Row subscripts for quadratic constraint matrix. (output)qcsubj
(MSKint32t
*
) – Column subscripts for quadratic constraint matrix. (output)qcval
(MSKrealt
*
) – Quadratic constraint coefficient values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Inspecting the task, Problem data - quadratic part, Problem data - constraints
- MSK_getqobj¶
MSKrescodee (MSKAPI MSK_getqobj) ( MSKtask_t task, MSKint32t maxnumqonz, MSKint32t * numqonz, MSKint32t * qosubi, MSKint32t * qosubj, MSKrealt * qoval)
Obtains the quadratic terms in the objective. The required quadratic terms are stored sequentially in
qosubi
,qosubj
, andqoval
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumqonz
(MSKint32t
) – The length of the arraysqosubi
,qosubj
, andqoval
. (input)numqonz
(MSKint32t
by reference) – Number of non-zero elements in the quadratic objective terms. (output)qosubi
(MSKint32t
*
) – Row subscripts for quadratic objective coefficients. (output)qosubj
(MSKint32t
*
) – Column subscripts for quadratic objective coefficients. (output)qoval
(MSKrealt
*
) – Quadratic objective coefficient values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getqobj64¶
MSKrescodee (MSKAPI MSK_getqobj64) ( MSKtask_t task, MSKint64t maxnumqonz, MSKint64t * numqonz, MSKint32t * qosubi, MSKint32t * qosubj, MSKrealt * qoval)
Obtains the quadratic terms in the objective. The required quadratic terms are stored sequentially in
qosubi
,qosubj
, andqoval
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)maxnumqonz
(MSKint64t
) – The length of the arraysqosubi
,qosubj
, andqoval
. (input)numqonz
(MSKint64t
by reference) – Number of non-zero elements in the quadratic objective terms. (output)qosubi
(MSKint32t
*
) – Row subscripts for quadratic objective coefficients. (output)qosubj
(MSKint32t
*
) – Column subscripts for quadratic objective coefficients. (output)qoval
(MSKrealt
*
) – Quadratic objective coefficient values. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getqobjij¶
MSKrescodee (MSKAPI MSK_getqobjij) ( MSKtask_t task, MSKint32t i, MSKint32t j, MSKrealt * qoij)
Obtains one coefficient \(q_{ij}^o\) in the quadratic term of the objective.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Row index of the coefficient. (input)j
(MSKint32t
) – Column index of coefficient. (input)qoij
(MSKrealt
by reference) – The required coefficient. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getreducedcosts¶
MSKrescodee (MSKAPI MSK_getreducedcosts) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * redcosts)
Computes the reduced costs for a slice of variables and returns them in the array
redcosts
i.e.(15.2)¶\[\mathtt{redcosts}[j-\mathtt{first}] = (s_l^x)_j-(s_u^x)_j, ~j=\mathtt{first},\ldots,\mathtt{last}-1\]- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – The index of the first variable in the sequence. (input)last
(MSKint32t
) – The index of the last variable in the sequence plus 1. (input)redcosts
(MSKrealt
*
) – The reduced costs for the required slice of variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getresponseclass¶
MSKrescodee (MSKAPI MSK_getresponseclass) ( MSKrescodee r, MSKrescodetypee * rc)
Obtain the class of a response code.
- Parameters
r
(MSKrescodee
) – A response code indicating the result of function call. (input)rc
(MSKrescodetypee
by reference) – The response class. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getskc¶
MSKrescodee (MSKAPI MSK_getskc) ( MSKtask_t task, MSKsoltypee whichsol, MSKstakeye * skc)
Obtains the status keys for the constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)skc
(MSKstakeye
*
) – Status keys for the constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getskcslice¶
MSKrescodee (MSKAPI MSK_getskcslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKstakeye * skc)
Obtains the status keys for a slice of the constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)skc
(MSKstakeye
*
) – Status keys for the constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getskn¶
MSKrescodee (MSKAPI MSK_getskn) ( MSKtask_t task, MSKsoltypee whichsol, MSKstakeye * skn)
Obtains the status keys for the conic constraints.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)skn
(MSKstakeye
*
) – Status keys for the conic constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getskx¶
MSKrescodee (MSKAPI MSK_getskx) ( MSKtask_t task, MSKsoltypee whichsol, MSKstakeye * skx)
Obtains the status keys for the scalar variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)skx
(MSKstakeye
*
) – Status keys for the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getskxslice¶
MSKrescodee (MSKAPI MSK_getskxslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKstakeye * skx)
Obtains the status keys for a slice of the scalar variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)skx
(MSKstakeye
*
) – Status keys for the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getslc¶
MSKrescodee (MSKAPI MSK_getslc) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * slc)
Obtains the \(s_l^c\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)slc
(MSKrealt
*
) – Dual variables corresponding to the lower bounds on the constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getslcslice¶
MSKrescodee (MSKAPI MSK_getslcslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * slc)
Obtains a slice of the \(s_l^c\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)slc
(MSKrealt
*
) – Dual variables corresponding to the lower bounds on the constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getslx¶
MSKrescodee (MSKAPI MSK_getslx) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * slx)
Obtains the \(s_l^x\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)slx
(MSKrealt
*
) – Dual variables corresponding to the lower bounds on the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getslxslice¶
MSKrescodee (MSKAPI MSK_getslxslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * slx)
Obtains a slice of the \(s_l^x\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)slx
(MSKrealt
*
) – Dual variables corresponding to the lower bounds on the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsnx¶
MSKrescodee (MSKAPI MSK_getsnx) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * snx)
Obtains the \(s_n^x\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)snx
(MSKrealt
*
) – Dual variables corresponding to the conic constraints on the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsnxslice¶
MSKrescodee (MSKAPI MSK_getsnxslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * snx)
Obtains a slice of the \(s_n^x\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)snx
(MSKrealt
*
) – Dual variables corresponding to the conic constraints on the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsolsta¶
MSKrescodee (MSKAPI MSK_getsolsta) ( MSKtask_t task, MSKsoltypee whichsol, MSKsolstae * solutionsta)
Obtains the solution status.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)solutionsta
(MSKsolstae
by reference) – Solution status. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsolution¶
MSKrescodee (MSKAPI MSK_getsolution) ( MSKtask_t task, MSKsoltypee whichsol, MSKprostae * problemsta, MSKsolstae * solutionsta, MSKstakeye * skc, MSKstakeye * skx, MSKstakeye * skn, MSKrealt * xc, MSKrealt * xx, MSKrealt * y, MSKrealt * slc, MSKrealt * suc, MSKrealt * slx, MSKrealt * sux, MSKrealt * snx)
Obtains the complete solution.
Consider the case of linear programming. The primal problem is given by
\[\begin{split}\begin{array}{lccccl} \mbox{minimize} & & & c^T x+c^f & & \\ \mbox{subject to} & l^c & \leq & A x & \leq & u^c, \\ & l^x & \leq & x & \leq & u^x. \\ \end{array}\end{split}\]and the corresponding dual problem is
\[\begin{split}\begin{array}{lccl} \mbox{maximize} & (l^c)^T s_l^c - (u^c)^T s_u^c & \\ & + (l^x)^T s_l^x - (u^x)^T s_u^x + c^f & \\ \mbox{subject to} & A^T y + s_l^x - s_u^x & = & c, \\ & -y + s_l^c - s_u^c & = & 0, \\ & s_l^c,s_u^c,s_l^x,s_u^x \geq 0. & & \\ \end{array}\end{split}\]A conic optimization problem has the same primal variables as in the linear case. Recall that the dual of a conic optimization problem is given by:
\[\begin{split}\begin{array}{lccccc} \mbox{maximize} & (l^c)^T s_l^c - (u^c)^T s_u^c & & \\ & +(l^x)^T s_l^x - (u^x)^T s_u^x + c^f & & \\ \mbox{subject to} & A^T y + s_l^x - s_u^x + s_n^x & = & c, \\ & -y + s_l^c - s_u^c & = & 0, \\ & s_l^c,s_u^c,s_l^x,s_u^x & \geq & 0, \\ & s_n^x \in \K^* & & \\ \end{array}\end{split}\]The mapping between variables and arguments to the function is as follows:
xx
: Corresponds to variable \(x\) (also denoted \(x^x\)).xc
: Corresponds to \(x^c:=Ax\).y
: Corresponds to variable \(y\).slc
: Corresponds to variable \(s_l^c\).suc
: Corresponds to variable \(s_u^c\).slx
: Corresponds to variable \(s_l^x\).sux
: Corresponds to variable \(s_u^x\).snx
: Corresponds to variable \(s_n^x\).
The meaning of the values returned by this function depend on the solution status returned in the argument
solsta
. The most important possible values ofsolsta
are:MSK_SOL_STA_OPTIMAL
: An optimal solution satisfying the optimality criteria for continuous problems is returned.MSK_SOL_STA_INTEGER_OPTIMAL
: An optimal solution satisfying the optimality criteria for integer problems is returned.MSK_SOL_STA_PRIM_FEAS
: A solution satisfying the feasibility criteria.MSK_SOL_STA_PRIM_INFEAS_CER
: A primal certificate of infeasibility is returned.MSK_SOL_STA_DUAL_INFEAS_CER
: A dual certificate of infeasibility is returned.
In order to retrieve the primal and dual values of semidefinite variables see
MSK_getbarxj
andMSK_getbarsj
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)problemsta
(MSKprostae
by reference) – Problem status. (output)solutionsta
(MSKsolstae
by reference) – Solution status. (output)skc
(MSKstakeye
*
) – Status keys for the constraints. (output)skx
(MSKstakeye
*
) – Status keys for the variables. (output)skn
(MSKstakeye
*
) – Status keys for the conic constraints. (output)xc
(MSKrealt
*
) – Primal constraint solution. (output)xx
(MSKrealt
*
) – Primal variable solution. (output)y
(MSKrealt
*
) – Vector of dual variables corresponding to the constraints. (output)slc
(MSKrealt
*
) – Dual variables corresponding to the lower bounds on the constraints. (output)suc
(MSKrealt
*
) – Dual variables corresponding to the upper bounds on the constraints. (output)slx
(MSKrealt
*
) – Dual variables corresponding to the lower bounds on the variables. (output)sux
(MSKrealt
*
) – Dual variables corresponding to the upper bounds on the variables. (output)snx
(MSKrealt
*
) – Dual variables corresponding to the conic constraints on the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsolutioninfo¶
MSKrescodee (MSKAPI MSK_getsolutioninfo) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * pobj, MSKrealt * pviolcon, MSKrealt * pviolvar, MSKrealt * pviolbarvar, MSKrealt * pviolcone, MSKrealt * pviolitg, MSKrealt * dobj, MSKrealt * dviolcon, MSKrealt * dviolvar, MSKrealt * dviolbarvar, MSKrealt * dviolcone)
Obtains information about a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)pobj
(MSKrealt
by reference) – The primal objective value as computed byMSK_getprimalobj
. (output)pviolcon
(MSKrealt
by reference) – Maximal primal violation of the solution associated with the \(x^c\) variables where the violations are computed byMSK_getpviolcon
. (output)pviolvar
(MSKrealt
by reference) – Maximal primal violation of the solution for the \(x\) variables where the violations are computed byMSK_getpviolvar
. (output)pviolbarvar
(MSKrealt
by reference) – Maximal primal violation of solution for the \(\barX\) variables where the violations are computed byMSK_getpviolbarvar
. (output)pviolcone
(MSKrealt
by reference) – Maximal primal violation of solution for the conic constraints where the violations are computed byMSK_getpviolcones
. (output)pviolitg
(MSKrealt
by reference) – Maximal violation in the integer constraints. The violation for an integer variable \(x_j\) is given by \(\min(x_j-\lfloor x_j \rfloor,\lceil x_j \rceil - x_j)\). This number is always zero for the interior-point and basic solutions. (output)dobj
(MSKrealt
by reference) – Dual objective value as computed byMSK_getdualobj
. (output)dviolcon
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the \(x^c\) variable as computed byMSK_getdviolcon
. (output)dviolvar
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the \(x\) variable as computed byMSK_getdviolvar
. (output)dviolbarvar
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the \(\barS\) variable as computed byMSK_getdviolbarvar
. (output)dviolcone
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the dual conic constraints as computed byMSK_getdviolcones
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsolutioninfonew¶
MSKrescodee (MSKAPI MSK_getsolutioninfonew) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * pobj, MSKrealt * pviolcon, MSKrealt * pviolvar, MSKrealt * pviolbarvar, MSKrealt * pviolcone, MSKrealt * pviolacc, MSKrealt * pvioldjc, MSKrealt * pviolitg, MSKrealt * dobj, MSKrealt * dviolcon, MSKrealt * dviolvar, MSKrealt * dviolbarvar, MSKrealt * dviolcone, MSKrealt * dviolacc)
Obtains information about a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)pobj
(MSKrealt
by reference) – The primal objective value as computed byMSK_getprimalobj
. (output)pviolcon
(MSKrealt
by reference) – Maximal primal violation of the solution associated with the \(x^c\) variables where the violations are computed byMSK_getpviolcon
. (output)pviolvar
(MSKrealt
by reference) – Maximal primal violation of the solution for the \(x\) variables where the violations are computed byMSK_getpviolvar
. (output)pviolbarvar
(MSKrealt
by reference) – Maximal primal violation of solution for the \(\barX\) variables where the violations are computed byMSK_getpviolbarvar
. (output)pviolcone
(MSKrealt
by reference) – Maximal primal violation of solution for the conic constraints where the violations are computed byMSK_getpviolcones
. (output)pviolacc
(MSKrealt
by reference) – Maximal primal violation of solution for the affine conic constraints where the violations are computed byMSK_getpviolacc
. (output)pvioldjc
(MSKrealt
by reference) – Maximal primal violation of solution for the disjunctive constraints where the violations are computed byMSK_getpvioldjc
. (output)pviolitg
(MSKrealt
by reference) – Maximal violation in the integer constraints. The violation for an integer variable \(x_j\) is given by \(\min(x_j-\lfloor x_j \rfloor,\lceil x_j \rceil - x_j)\). This number is always zero for the interior-point and basic solutions. (output)dobj
(MSKrealt
by reference) – Dual objective value as computed byMSK_getdualobj
. (output)dviolcon
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the \(x^c\) variable as computed byMSK_getdviolcon
. (output)dviolvar
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the \(x\) variable as computed byMSK_getdviolvar
. (output)dviolbarvar
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the \(\barS\) variable as computed byMSK_getdviolbarvar
. (output)dviolcone
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the dual conic constraints as computed byMSK_getdviolcones
. (output)dviolacc
(MSKrealt
by reference) – Maximal violation of the dual solution associated with the affine conic constraints as computed byMSK_getdviolacc
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsolutionnew¶
MSKrescodee (MSKAPI MSK_getsolutionnew) ( MSKtask_t task, MSKsoltypee whichsol, MSKprostae * problemsta, MSKsolstae * solutionsta, MSKstakeye * skc, MSKstakeye * skx, MSKstakeye * skn, MSKrealt * xc, MSKrealt * xx, MSKrealt * y, MSKrealt * slc, MSKrealt * suc, MSKrealt * slx, MSKrealt * sux, MSKrealt * snx, MSKrealt * doty)
Obtains the complete solution. See
MSK_getsolution
for further information.In order to retrieve the primal and dual values of semidefinite variables see
MSK_getbarxj
andMSK_getbarsj
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)problemsta
(MSKprostae
by reference) – Problem status. (output)solutionsta
(MSKsolstae
by reference) – Solution status. (output)skc
(MSKstakeye
*
) – Status keys for the constraints. (output)skx
(MSKstakeye
*
) – Status keys for the variables. (output)skn
(MSKstakeye
*
) – Status keys for the conic constraints. (output)xc
(MSKrealt
*
) – Primal constraint solution. (output)xx
(MSKrealt
*
) – Primal variable solution. (output)y
(MSKrealt
*
) – Vector of dual variables corresponding to the constraints. (output)slc
(MSKrealt
*
) – Dual variables corresponding to the lower bounds on the constraints. (output)suc
(MSKrealt
*
) – Dual variables corresponding to the upper bounds on the constraints. (output)slx
(MSKrealt
*
) – Dual variables corresponding to the lower bounds on the variables. (output)sux
(MSKrealt
*
) – Dual variables corresponding to the upper bounds on the variables. (output)snx
(MSKrealt
*
) – Dual variables corresponding to the conic constraints on the variables. (output)doty
(MSKrealt
*
) – Dual variables corresponding to affine conic constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsolutionslice¶
MSKrescodee (MSKAPI MSK_getsolutionslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKsoliteme solitem, MSKint32t first, MSKint32t last, MSKrealt * values)
Obtains a slice of one item from the solution. The format of the solution is exactly as in
MSK_getsolution
. The parametersolitem
determines which of the solution vectors should be returned.- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)solitem
(MSKsoliteme
) – Which part of the solution is required. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)values
(MSKrealt
*
) – The values in the required sequence are stored sequentially invalues
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsparsesymmat¶
MSKrescodee (MSKAPI MSK_getsparsesymmat) ( MSKtask_t task, MSKint64t idx, MSKint64t maxlen, MSKint32t * subi, MSKint32t * subj, MSKrealt * valij)
Get a single symmetric matrix from the matrix store.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)idx
(MSKint64t
) – Index of the matrix to retrieve. (input)maxlen
(MSKint64t
) – Length of the output arrayssubi
,subj
andvalij
. (input)subi
(MSKint32t
*
) – Row subscripts of the matrix non-zero elements. (output)subj
(MSKint32t
*
) – Column subscripts of the matrix non-zero elements. (output)valij
(MSKrealt
*
) – Coefficients of the matrix non-zero elements. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getstrparam¶
MSKrescodee (MSKAPI MSK_getstrparam) ( MSKtask_t task, MSKsparame param, MSKint32t maxlen, MSKint32t * len, char * parvalue)
Obtains the value of a string parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)param
(MSKsparame
) – Which parameter. (input)maxlen
(MSKint32t
) – Length of theparvalue
buffer. (input)len
(MSKint32t
by reference) – The length of the parameter value. (output)parvalue
(char
*
) – Parameter value. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getstrparamal¶
MSKrescodee (MSKAPI MSK_getstrparamal) ( MSKtask_t task, MSKsparame param, MSKint32t numaddchr, char ** value)
Obtains the value of a string parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)param
(MSKsparame
) – Which parameter. (input)numaddchr
(MSKint32t
) – Number of additional characters for which room is left invalue
. (input)value
(char
*
by reference) – Parameter value. MOSEK will allocate this char buffer of size equal to the actual length of the string parameter plusnumaddchr
. This memory must be freed byMSK_freetask
. (input/output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getstrparamlen¶
MSKrescodee (MSKAPI MSK_getstrparamlen) ( MSKtask_t task, MSKsparame param, MSKint32t * len)
Obtains the length of a string parameter.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)param
(MSKsparame
) – Which parameter. (input)len
(MSKint32t
by reference) – The length of the parameter value. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsuc¶
MSKrescodee (MSKAPI MSK_getsuc) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * suc)
Obtains the \(s_u^c\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)suc
(MSKrealt
*
) – Dual variables corresponding to the upper bounds on the constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsucslice¶
MSKrescodee (MSKAPI MSK_getsucslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * suc)
Obtains a slice of the \(s_u^c\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)suc
(MSKrealt
*
) – Dual variables corresponding to the upper bounds on the constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsux¶
MSKrescodee (MSKAPI MSK_getsux) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * sux)
Obtains the \(s_u^x\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)sux
(MSKrealt
*
) – Dual variables corresponding to the upper bounds on the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsuxslice¶
MSKrescodee (MSKAPI MSK_getsuxslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * sux)
Obtains a slice of the \(s_u^x\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)sux
(MSKrealt
*
) – Dual variables corresponding to the upper bounds on the variables. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsymbcon¶
MSKrescodee (MSKAPI MSK_getsymbcon) ( MSKtask_t task, MSKint32t i, MSKint32t sizevalue, char * name, MSKint32t * value)
Obtains the name and corresponding value for the \(i\)th symbolic constant.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index. (input)sizevalue
(MSKint32t
) – The length of the buffer pointed to by thevalue
argument. (input)name
(char
*
) – Name of the \(i\)th symbolic constant. (output)value
(MSKint32t
by reference) – The corresponding value. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsymbcondim¶
MSKrescodee (MSKAPI MSK_getsymbcondim) ( MSKenv_t env, MSKint32t * num, size_t * maxlen)
Obtains the number of symbolic constants defined by MOSEK and the maximum length of the name of any symbolic constant.
- Parameters
env
(MSKenv_t
) – The MOSEK environment. (input)num
(MSKint32t
by reference) – Number of symbolic constants defined by MOSEK. (output)maxlen
(size_t
by reference) – Maximum length of the name of any symbolic constants. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getsymmatinfo¶
MSKrescodee (MSKAPI MSK_getsymmatinfo) ( MSKtask_t task, MSKint64t idx, MSKint32t * dim, MSKint64t * nz, MSKsymmattypee * mattype)
MOSEK maintains a vector denoted by \(E\) of symmetric data matrices. This function makes it possible to obtain important information about a single matrix in \(E\).
- Parameters
task
(MSKtask_t
) – An optimization task. (input)idx
(MSKint64t
) – Index of the matrix for which information is requested. (input)dim
(MSKint32t
by reference) – Returns the dimension of the requested matrix. (output)nz
(MSKint64t
by reference) – Returns the number of non-zeros in the requested matrix. (output)mattype
(MSKsymmattypee
by reference) – Returns the type of the requested matrix. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_gettaskname¶
MSKrescodee (MSKAPI MSK_gettaskname) ( MSKtask_t task, MSKint32t sizetaskname, char * taskname)
Obtains the name assigned to the task.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_gettasknamelen¶
MSKrescodee (MSKAPI MSK_gettasknamelen) ( MSKtask_t task, MSKint32t * len)
Obtains the length the task name.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)len
(MSKint32t
by reference) – Returns the length of the task name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getvarbound¶
MSKrescodee (MSKAPI MSK_getvarbound) ( MSKtask_t task, MSKint32t i, MSKboundkeye * bk, MSKrealt * bl, MSKrealt * bu)
Obtains bound information for one variable.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of the variable for which the bound information should be obtained. (input)bk
(MSKboundkeye
by reference) – Bound keys. (output)bl
(MSKrealt
by reference) – Values for lower bounds. (output)bu
(MSKrealt
by reference) – Values for upper bounds. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data - variables
- MSK_getvarboundslice¶
MSKrescodee (MSKAPI MSK_getvarboundslice) ( MSKtask_t task, MSKint32t first, MSKint32t last, MSKboundkeye * bk, MSKrealt * bl, MSKrealt * bu)
Obtains bounds information for a slice of the variables.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)bk
(MSKboundkeye
*
) – Bound keys. (output)bl
(MSKrealt
*
) – Values for lower bounds. (output)bu
(MSKrealt
*
) – Values for upper bounds. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Problem data - linear part, Inspecting the task, Problem data - bounds, Problem data - variables
- MSK_getvarname¶
MSKrescodee (MSKAPI MSK_getvarname) ( MSKtask_t task, MSKint32t j, MSKint32t sizename, char * name)
Obtains the name of a variable.
- Parameters
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - linear part, Problem data - variables, Inspecting the task
- MSK_getvarnameindex¶
MSKrescodee (MSKAPI MSK_getvarnameindex) ( MSKtask_t task, const char * somename, MSKint32t * asgn, MSKint32t * index)
Checks whether the name
somename
has been assigned to any variable. If so, the index of the variable is reported.- Parameters
task
(MSKtask_t
) – An optimization task. (input)somename
(char
*
) – The name which should be checked. (input)asgn
(MSKint32t
by reference) – Is non-zero if the namesomename
is assigned to a variable. (output)index
(MSKint32t
by reference) – If the namesomename
is assigned to a variable, thenindex
is the index of the variable. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - linear part, Problem data - variables, Inspecting the task
- MSK_getvarnamelen¶
MSKrescodee (MSKAPI MSK_getvarnamelen) ( MSKtask_t task, MSKint32t i, MSKint32t * len)
Obtains the length of the name of a variable.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)i
(MSKint32t
) – Index of a variable. (input)len
(MSKint32t
by reference) – Returns the length of the indicated name. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
Names, Problem data - linear part, Problem data - variables, Inspecting the task
- MSK_getvartype¶
MSKrescodee (MSKAPI MSK_getvartype) ( MSKtask_t task, MSKint32t j, MSKvariabletypee * vartype)
Gets the variable type of one variable.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)j
(MSKint32t
) – Index of the variable. (input)vartype
(MSKvariabletypee
by reference) – Variable type of the \(j\)-th variable. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getvartypelist¶
MSKrescodee (MSKAPI MSK_getvartypelist) ( MSKtask_t task, MSKint32t num, const MSKint32t * subj, MSKvariabletypee * vartype)
Obtains the variable type of one or more variables. Upon return
vartype[k]
is the variable type of variablesubj[k]
.- Parameters
task
(MSKtask_t
) – An optimization task. (input)num
(MSKint32t
) – Number of variables for which the variable type should be obtained. (input)subj
(MSKint32t
*
) – A list of variable indexes. (input)vartype
(MSKvariabletypee
*
) – The variables types corresponding to the variables specified bysubj
. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getversion¶
MSKrescodee (MSKAPI MSK_getversion) ( MSKint32t * major, MSKint32t * minor, MSKint32t * revision)
Obtains MOSEK version information.
- Parameters
major
(MSKint32t
by reference) – Major version number. (output)minor
(MSKint32t
by reference) – Minor version number. (output)revision
(MSKint32t
by reference) – Revision number. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getxc¶
MSKrescodee (MSKAPI MSK_getxc) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * xc)
Obtains the \(x^c\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)xc
(MSKrealt
*
) – Primal constraint solution. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getxcslice¶
MSKrescodee (MSKAPI MSK_getxcslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * xc)
Obtains a slice of the \(x^c\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)xc
(MSKrealt
*
) – Primal constraint solution. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getxx¶
MSKrescodee (MSKAPI MSK_getxx) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * xx)
Obtains the \(x^x\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)xx
(MSKrealt
*
) – Primal variable solution. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getxxslice¶
MSKrescodee (MSKAPI MSK_getxxslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * xx)
Obtains a slice of the \(x^x\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)xx
(MSKrealt
*
) – Primal variable solution. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_gety¶
MSKrescodee (MSKAPI MSK_gety) ( MSKtask_t task, MSKsoltypee whichsol, MSKrealt * y)
Obtains the \(y\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)y
(MSKrealt
*
) – Vector of dual variables corresponding to the constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups
- MSK_getyslice¶
MSKrescodee (MSKAPI MSK_getyslice) ( MSKtask_t task, MSKsoltypee whichsol, MSKint32t first, MSKint32t last, MSKrealt * y)
Obtains a slice of the \(y\) vector for a solution.
- Parameters
task
(MSKtask_t
) – An optimization task. (input)whichsol
(MSKsoltypee
) – Selects a solution. (input)first
(MSKint32t
) – First index in the sequence. (input)last
(MSKint32t
) – Last index plus 1 in the sequence. (input)y
(MSKrealt
*
) – Vector of dual variables corresponding to the constraints. (output)
- Return
(
MSKrescodee
) – The function response code.- Groups