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Abstract. We describe how to detect symmetry in Mixed-Integer Conic
Programming. We present our framework as an extension to the Mixed-
Integer Linear Programming case that results in a relatively small formal
overhead. To do so, we introduce the concept of symmetry labelings for
cones and study their properties, with a focus on what labelings are
useful in practice. We also report on computational experiments enabling
and disabling symmetry detection in the optimization software package
MOSEK on a series of Mixed-Integer Conic Programming problems.
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1 Introduction and literature review

Symmetry handling in Mathematical Programming may be broken down into two
steps: detection and exploitation. The first step consists, very roughly speaking,
in understanding how symmetric solutions (i.e., feasible solutions with the same
cost) arise in a given model. Once such knowledge has been established, the goal
is to use it in order to speed-up the solution process.

Handling symmetry has proven to be essential for some classes of Mixed-
Integer Linear Programming (MILP) problems, but as well in general-purpose
MILP solvers some techniques have been found to be useful. Symmetry han-
dling techniques may be categorized as being either static or dynamic [34, 35].
Static techniques try to remove symmetry through better model representations,
for instance by adding symmetry-breaking inequalities [44, 23, 26, 43], or by in-
troducing an objective perturbation [12]. Dynamic methods address symmetry
directly during the search method applied to a given model, such as Branch-and-
Cut. Two prominent lines of research here are isomorphism pruning [28–31] and
orbital branching [34, 36], both coming along with versions of so-called orbital
fixing. [21, 20, 5, 8] study the concept of orbitopes for performing symmetry han-
dling in the presence of set partitioning, packing or covering constraints. More
approaches making use of additional structural knowledge on the underlying
problem can be found in [18, 17]. [27, 35] provide more comprehensive surveys on
the topic, and [38] a broad computational study comparing various techniques.

Symmetry handling is not confined to MILP. A technique called LP-folding
[13] is applied to Linear Programming (LP) problems, and [11, 4, 37] treat sym-
metric Semidefinite Programming (SDP). For general convex programs, it is
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well-known how to “project out” symmetries by unifying variables along the
same orbit, and the line of research centered around core-points [6, 14, 15, 40,
16] extends these ideas to integer programs. Orbital shrinking [9, 42] is based
on similar ideas. As well for Mixed-Integer Nonlinear Programming (MINLP)
problems it has been shown that symmetries arise, and symmetry handling has
been extended to that case [25, 24]. This paper focuses on symmetry detection
for Mixed-Integer Conic Programming (MICP), which may be seen as an exten-
sion to MILP, and we put particular emphasis on how the proposed detection
procedure is an extension of the one applied in MILP.

The rest of this paper is organized as follows. In Section 2.1 we review how
to perform the first symmetry handling step, i.e., the detection step, in MILP,
and then show how to do the same in MICP. To that end, we introduce the
concept of symmetry labelings for a given cone and therewith define what a
formulation symmetry in MICP is in Section 2.2, and then describe the actual
detection routine in Section 2.3. We will also give a characterization of symmetry
labelings via orbits in Section 2.4, making the whole concept more tangible.
We will not introduce new techniques for exploiting already detected symmetry
in this paper, but mention how existing techniques from MI(N)LP carry over
in Section 2.5. In the same section, we highlight the differences in symmetry
detection for MICP and MINLP, respectively. In the recent MOSEK version
10 [33], symmetry handling has been added for both MILP and MICP, and in
Section 3 we report on computational experiments assessing its value in the
MICP case.

2 Symmetry handling in MICP

We consider Mixed-Integer Conic Programming problems in standard form:

min cTx
s.t. Ax = b

x ∈ K ∩ (Zp × Rn−p) .
(P)

Here, A ∈ Rm×n, b ∈ Rm, and K is a proper cone. Denoting the feasible set of
(P) by F , a symmetry of (P) is a bijection s : Rn 7→ Rn such that s(F) = F and
cT s(x) = cTx ∀x ∈ F . Since establishing the set of all such bijections, i.e., the
symmetry group of (P), is hard both in theory and practice, we take the usual
route of resorting to so-called formulation symmetries, a subset of the whole
symmetry group.

A formulation symmetry is a permutation of the variable space that leaves
the specific description of the feasible set invariant. To that end, let Sn denote
the symmetric group on [n] := {1, . . . , n}, i.e. the group of all permutations of
n elements. Here and in all cases of permutation groups to follow, we assume
the group operation to be the composition, i.e., the product πσ is such that
(πσ)(i) = (π ◦ σ)(i) = π(σ(i)) ∀i ∈ [n]. In order to cast a permutation of [n] as
a symmetry of (P), by a slight abuse of notation we let π ∈ Sn act on x ∈ Rn
by permuting its components, π(x) = (xπ−1(1), . . . , xπ−1(n))

T .
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Below we will also mention symmetry generators, or generators for short. For
any set of permutations S ⊆ Sn, we denote by 〈S〉 the smallest group containing
S. A generating set for some group G ⊆ Sn is a set S ⊆ Sn such that 〈S〉 = G,
and its members are referred to as generators.

2.1 Detecting formulation symmetries: the linear case

Note that MILP is the special case of (P) where K = Rn+, the non-negative
orthant. In that case, we have the following definition.

Definition 1 (see, e.g., [38]) If K = Rn+, then π ∈ Sn is a formulation sym-
metry of (P) iff ∃ σ ∈ Sm such that

π([p]) = [p] (1)

π(c) = c (2)

σ(b) = b (3)

Aσ(i),π(j) = Aij . (4)

(1) assures that integer variables are permuted with integer variables only, and
(2) guarantees that the cost of a permuted solution is not changed. (3)-(4) mean
that for every linear constraint, there is another constraint that imposes the same
restriction after the variables have been permuted. I.e., the permuted variables
have the same coefficients in that constraint as the non-permuted variables have
in the original one, and also the right-hand sides are equal. It is thus straight-
forward to see that in the MILP case, for any formulation symmetry π, x ∈ F
implies π(x) ∈ F .

The problem of finding formulation symmetries in MILP is usually reduced to
the graph automorphism problem, see [41, 39]. From an instance of (P) with K =
Rn+ we build a colored bipartite graph (V ∪W,E), where the set V = {v1, . . . , vn}
contains a vertex for each variable xj , colored with its objective value cj , and
W = {w1, . . . , wm} contains one vertex for each constraint, colored with the
right-hand side bi. Also, integer variables, j ∈ [p], get different colors than con-
tinuous variables. We further add an edge e = {vj , wi} if variable xj appears
in constraint i with a non-zero coefficient aij , the latter determining the edge
color. A graph automorphism is given by a tuple of bijections (π, σ), mapping
from V to itself and from W to itself, respectively, such that {π(vj), σ(wi)} ∈ E
iff {vj , wi} ∈ E. One can check that any graph automorphism that keeps vertex
and edge colors invariant gives rise to a formulation symmetry, and vice-versa.

Examples of software packages that compute graph automorphisms are Nauty
[32], Saucy [7] or Bliss [19]. The algorithms implemented in these software pack-
ages are not designed for accounting for edge colors though, so that we need
to accommodate this requirement in some other way. One method is to extend
the above graph construction to the so-called matrix graph, that we assume to
be the method of choice throughout this paper. Therefore, each edge {v, w} is
replaced with two edges {v, a}, {a,w}, introducing an additional vertex a receiv-
ing the color of the edge it represents. The number of so introduced additional
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Fig. 1. Matrix graph for a linear constraint

vertices may furthermore be reduced significantly by applying so-called grouping
by variables or grouping by constraints, see the following example. We refer to
[38] for more details on the matrix and related graph constructions.

Example 1. Consider the constraint 2x1 + 2x2 + 3x3 ≤ 4, and assume for sim-
plicity that all variables have the same objective coefficient and are of the same
type. The matrix graph for this (sub-)program would look like in Figure 1. Note
that grouping by variables is applied, i.e., we introduce only one intermediate
vertex of “color 2”, covering both the coefficients of x1 and x2 in this constraint.

Graph automorphism algorithms usually return a set S̃ of symmetry gen-
erators (π, σ), and the symmetry group to work with is thus G = 〈S〉 with
S = {π | (π, σ) ∈ S̃}.

2.2 The conic case: a cone’s symmetry labelings

We will now extend the concepts of the previous section to the conic case, starting
with the one essential definition we need.

Definition 2 We call a function h : [n] 7→ N a symmetry labeling w.r.t. a cone
K ⊆ Rn, iff for any π ∈ Sn the condition h(π(i)) = h(i) ∀i ∈ [n] implies
π(K) = K.

Finding a symmetry labeling, in the following just labeling for short, to a
given cone just means to assign some value to each variable in such a way that
permuting variables with the same value does not affect cone membership. A
trivial labeling for every cone is the identity map. We now give some examples
of more interesting labelings in the case of commonly used cones.

– K = Rn+, the non-negative orthant. Cone membership in Rn is preserved for
arbitrary permutations, meaning that a labeling is any constant function,
h(i) = c ∀i ∈ [n].

– K = Qn = {x ∈ Rn | x1 ≥ ‖x2:n‖2}, the quadratic cone. A labeling is given
by

h(i) =

{
1, i = 1

2, otherwise.

In fact, for any permutation π having 1 as a fixed-point (i.e., π(1) = 1),
clearly π(x) ∈ Qn for any x ∈ Qn.
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– K = Qnr = {x ∈ Rn | 2x1x2 ≥ ‖x3:n‖22, x1, x2 ≥ 0}, the rotated quadratic
cone. A labeling is given by

h(i) =

{
1, i ≤ 2

2, otherwise.

In fact, permuting either the first two variables, or permuting any subset of
the remaining variables does not change cone membership.

– K = Kexp = cl{x ∈ R3 | x1 ≥ x2 exp(x3/x2), x2 > 0}, the exponential cone.
Without any further constraints on x, there is no way to permute variables
inside Kexp. The only labeling is thus given by the identity.

– K = Pnα = {x ∈ Rn |
∏ñ
k=1 x

αk

k ≥ ‖xñ+1:n‖2, x1, . . . , xñ ≥ 0}, the power
cone with parameter vector α ∈ Rñ, ñ < n. In this form

∑
k αk = 1 is

required. A labeling is given by

h(i) =

{
i, i ≤ ñ
ñ+ 1, otherwise.

This is similar to the rotated quadratic cone case.

All the above are examples of primitive cones, i.e., cones that cannot be
written as the Cartesian product of two or more lower-dimensional cones. In
practice, the cone K in (P) is often the Cartesian product of primitive cones, and
we will now use the concept of labelings to extend the definition of a formulation
symmetry to that case.

Definition 3 Let K = K1 × . . . ,×KK where Kk ⊆ Rnk , k ∈ [K], are proper
cones, and denote by Nk =

∑
l<k nl the number of variables before Kk, with

NK+1 = n. Then π ∈ Sn is a formulation symmetry of (P) iff ∃ σ ∈ Sm such
that (1) - (4), and ∃ τ ∈ SK and labelings hk : [nk] 7→ N w.r.t. Kk such that
∀k ∈ [K]

Kτ(k) = Kk (5)

π({Nk + 1, . . . , Nk+1}) = {Nτ(k) + 1, . . . , Nτ(k)+1} (6)

hτ(k)(π(i)−Nτ(k)) = hk(i−Nk) ∀i ∈ {Nk + 1, . . . , Nk+1}. (7)

One can check that a formulation symmetry preserves feasibility also in the
MICP case. The additional conditions (5) - (7), similar to the case of a linear
constraint, require that for any conic constraint x′ ∈ Kk, where x′ is a nk-
dimensional component of x, there is another conic constraint that imposes the
same restriction on the permuted variables. (5) corresponds to (3), and (6) -
(7) together to (4). (6) states that the variables in the “support” of the original
cone are jointly mapped to the new one. In the case of a linear constraint, an
analogue condition is implicitly imposed also by (4). (7) then requires that all
variables have the same symmetry labeling in the new cone as in the original
one. In that light, the analogue of a labeling for a single linear constraint could
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Fig. 2. Matrix graph for linear and conic constraints

be thought of as a function that assigns to each variable its coefficient in that
constraint.

As mentioned above, when K = 1 and K = Rn+ we get the MILP case, so the
additional conditions in Definition 3 should not impose any restriction. In fact,
(5) - (6) are trivially redundant, and taking into account that a labeling in that
case is any constant function, also (7) becomes redundant.

2.3 Extending the matrix graph

Definition 3 can be used to extend the matrix graph construction described
in Section 2.1 to the conic case. We introduce a third set of vertices U =
{u1, . . . , uK}, containing one vertex for each cone Kk, colored with the cone
type (i.e., quadratic, rotated quadratic, exponential, ...). If xj appears in Kk, we
add an edge {vj , uk} with color h(j −Nk) for some labeling w.r.t. Kk. Needless
to say, for same cone types we use the same labelings. A formulation symmetry
is then given by a triple (π, σ, τ) such that in addition to what is required in
the linear case, {π(vj), τ(uk)} ∈ E iff {vj , uk} ∈ E. Also here, before applying
any algorithm for detecting graph automorphisms, we introduce additional ver-
texes in order to account for edge colors. Again, we can reduce the number of
additional vertexes by applying grouping by variables.

Example 2. Assume that in addition to the setting from Example 1, we also have
the conic constraint (x1, x2, x3) ∈ Q3. The matrix graph would now look like in
Figure 2. Note that grouping by variables is applied: there is only one additional
vertex marking the labels of both x2 and x3 in the conic constraint.

2.4 Orbit characterization of symmetry labelings

We will now give an alternative characterization of a cone’s labelings. While the
concepts of the previous section seem more suitable to work with in practice,
this section’s purpose is to better capture the idea behind labelings, and how
a certain such labeling might be preferable to another one. We first need some
notation regarding permutations and permutation groups.
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For any subgroup G ⊆ Sn, the orbit of i ∈ [n] under G is

orb(G, i) = {j ∈ [n] | ∃ π ∈ G : j = π(i)}.

In other words, the orbit of i is the set of all elements to which i can be mapped
by the application of permutations in G. It is a well-known fact that the union
of orbits,

OG :=
⋃
j∈[n]

orb(G, j),

forms a partition of [n], the so-called orbital partition.
We further define the orbital partition of a single permutation through the

group it generates, i.e., Oπ := O〈{π}〉.
Also, for any function f : X 7→ Y , we denote the level sets by

Ly(f) = {x ∈ X | f(x) = y}.

When X is finite, so is f(X) and we can partition X into a finite collection of
level sets, denoted by

Pf =
⋃

y∈f(X)

Ly(f).

Finally, for two partitions V,W of the ground set [n], we write V ≤ W if
V is finer than W, i.e. ∀V ∈ V ∃ W ∈ W : V ⊆ W . W instead is then called
coarser than V. If V ≤ W andW ≤ V, the two partitions are equal, and we write
V =W.

With all that in mind, we can give an alternative characterization of a label-
ing, the proof of which is immediate.

Lemma 1. h : [n] 7→ N is a symmetry labeling w.r.t. K ⊆ Rn, iff for any π ∈ Sn
the condition Oπ ≤ Ph implies π(K) = K.

Proof. We show the equivalence Oπ ≤ Ph ⇐⇒ h(π(i)) = h(i) ∀i ∈ [n] for any
π ∈ Sn. First let Oπ ≤ Ph and i ∈ [n]. By definition of the orbital partition,
there is some o ∈ Oπ with i, π(i) ∈ o. And since Oπ is finer than Ph, there is
some level set Ly(h) ⊇ o, and thus h(π(i)) = h(i).

The other way round, let o ∈ O and fix some i0 ∈ o. For any other i ∈ o,
i = πr(i0) for some r ∈ N0. Now by assumption h(i) = h(πr(i0)) = h(i0), and
therefore there is again some level set Ly(h) ⊇ o. We conclude Oπ ≤ Ph.

This view on labelings tells us that finding one means partitioning the vari-
ables in the cone in such a way that permuting inside a partition cell does not
affect cone membership. Note that if h is a labeling w.r.t. K and h′ : [n] 7→ N is
such that Ph′ ≤ Ph, then also h′ is a labeling. In practice it is desirable to work
with coarse orbit-preserving functions, implicitly referring to their underlying
partitions Ph, and we believe that thinking in terms of orbits helps to better
capture this fact. It is also underlined by the following corollary, a straightfor-
ward application of Lemma 1 to Definition 3. Note that for ease of exposition,
it is stated for the special case K = 1, i.e., without assuming that K can be
written as a Cartesian product of primitive cones.
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Corollary 1. Let K ⊆ Rn be a proper cone. Then π ∈ Sn is a formulation
symmetry of (P) iff ∃ σ ∈ Sm such that (1) - (4), and ∃ a labeling h : [n] 7→ N
w.r.t. K such that Oπ ≤ Ph.

Lemma 1 could as well be applied to the general setting of Definition 3 to
get an analogue but more general result in the product setting, but notation
would be more cumbersome. In either case, Corollary 1 highlights that a coarser
labeling of the cone K (coarser labelings of the individual primitive cones in
K1 × . . . ,×KK) can in principle only lead to the discovery of more formulation
symmetries, and is thus more desirable when performing symmetry detection. As
an example take the power cone labeling from Section 2.2. If α has some special
structure, it might be possible to find coarser labelings. E.g., if αk1 = αk2 for
some k1, k2 ≤ ñ, then xk1 and xk2 may be permuted without affecting cone
membership, and we may chose h such that h(k1) = h(k2).

Neglecting the product representation of K for illustration purposes as above
is fine, but we now argue that it is in fact crucial to exploit such structural
knowledge, if available. Otherwise, it may simply not be easy to specify a good
labeling, as the following example shows.

Example 3. Let K = Q3 ×Q3 ⊂ R6, i.e., K = 2, and consider the permutation
π1 = (1, 4)(2, 5)(3, 6). Note that here we use cycle notation, i.e., (i1, . . . , iT ) is a
permutation such that i2 is the image of i1, i3 is the image of i2 and so forth,
and i1 is the image of iT . π1 is the composition of 3 cycles, each of length 2. One
can verify that π1 is a formulation symmetry as per Definition 3. In fact, with
τ = (1, 2) ∈ S2 and the labeling proposed for Qn in Section 2.2, (5) - (7) are
satisfied. Now it is easy to see that Oπ1 = {{1, 4}, {2, 5}, {3, 6}}, so any labeling
h w.r.t K to capture the valid formulation symmetry π1 would have to be such
that Oπ1 ≤ Ph. However, such a labeling cannot exist, since then also Oπ2 ≤ Ph
for π2 = (1, 4). But the point x = (1, 0, 0, 2, 1, 1) ∈ K is such that π2(x) /∈ K,
disqualifying h as a labeling as per Lemma 1.

The gist of this example is that a labeling cannot capture the variable per-
mutation π and the conic constraint permutation τ at the same time. However,
if we exploit a cone’s product representation and perform symmetry detection
with the matrix graph based on Definition 3, as is described in Section 2.3, we
don’t even need that.

2.5 Exploiting symmetry and relation to MINLP

Symmetry detection is only the first step of symmetry handling. Once the sym-
metry group G is established, various techniques exist to exploit that knowledge
in order to speed-up the solution process, as highlighted in Section 1. Most
of these techniques have been introduced and studied in the context of MILP.
However, one may realize that several of them are solely based on the symme-
try group G defined over the variable space. For example, arguments based on
choosing one representative from a set of symmetric solutions exclusively exploit
knowledge about G. Or arguments based on the so-called fundamental domain
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[10], originally defined not only for polyhedra, but for arbitrary sets. So it is
to some extent intuitive why certain techniques would remain valid when go-
ing from linear constraints only over to linear and conic constraints. Changing
the constraint structure definitely affects the detection step in symmetry han-
dling, but not necessarily the exploitation step. This should be true for, e.g., the
addition of symmetry breaking inequalities, isomorphism pruning, and orbital
branching and fixing. Care has to be taken instead when a symmetry handling
technique explicitly takes into account the constraint structure. One example in
this regard is the aggregation of symmetric integer variables [3].

Several of the commonly encountered cones in MICP can be defined through
the epigraph of a (convex) function, and in that case the respective problems
may be thought of as (convex) MINLP problems. However, this is not true for
all cones. And even if it is, the symmetry detection procedure we present in this
paper makes use of the representation of a problem in the conic framework. Also
[24] uses a graph automorphism algorithm in the MINLP setting, but applied to
the expression graph of the underlying problem. Contrary to the matrix graph as
in Sections 2.1 and 2.3, expression graphs contain nodes for operators like “+”
or “−”, in addition to nodes for variables, constraints and coefficients. Although
the reformulation of an MINLP into conic form, if possible, may require the
introduction of auxiliary constraints, expression graphs are thus expected to
have a tendency to be larger than the matrix graph available for MICP. It is
sometimes argued that one nice feature of MICP as in (P) is the separation of
data and structure. The data of an instance (c, A, b) is contained entirely in the
linear part of the problem, while the (non-linear) structure is specified in the
conic constraint(s) x ∈ K. All this comes in handy in our context: the formal
overhead introduced when extending symmetry detection from MILP to MICP
as in Definition 3 is relatively small, in particular, it is completely independent
of the instance data. Not having to deal with data makes the construction of the
part of the matrix graph that represents the conic structure relatively easy.

3 Computation

Symmetry handling has been introduced in MOSEK version 10 and is applied
to both MILP and MICP problems. MOSEK detects symmetry as described in
Section 2, and mainly applies a mixture of certain versions of orbital branching
and fixing, and symmetric variable aggregation, see the remarks in Section 2.5.
Without going into more detail here, we analyze the effect of symmetry han-
dling and thus show that symmetry does occur in MICP, and what the value in
detecting it is. In the following we report on computational results comparing
the default version 10.0.15 (row default in Tables 1 - 2) against setting the pa-
rameter MSK IPAR MIO SYMMETRY LEVEL to 0 (row sym-0). The latter completely
deactivates any symmetry handling.

All runs were performed in a single thread on isolated nodes of a cluster,
each equipped with 32 GB of RAM and 4 cores running at 3.30 GHz. Below
we report shifted geometric means of the time to optimality, with a shift of
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10 secs. The time limit was set to 7200 secs., and means are computed over
all instances that could be solved by at least one setting, counting timed-out
instances in a conservative fashion with a value equal to the time limit. We also
report how many instances were solved and how often one algorithmic setting
was the winner, in the sense that running time was better by at least 5%. We
finally report the shifted geometric mean of the explored nodes, with a shift of
10 nodes, and taking into account only those instances that were solved by both
configurations.

3.1 Disk covering

The first set of instances arises from the geometric setting in which we have n
points p1, . . . , pn ∈ Rd and want to find a configuration of k balls with centers
c1, . . . , ck ∈ Rd and radii r1, . . . , rk, respectively, that covers some or all of the
points pi and satisfies some additional constraints. See [1] and references therein
for some specific variants and more material. The two variants we considered for
the following set of experiments are

– Smallest area k-circle cover: cover all points with k circles of variable diam-
eter, minimizing their compound area

– Maximum k-coverage: cover as many points as possible with k fixed-radius
circles

In both variants we have an underlying basic model with variables xij ∈ {0, 1},
i ∈ [n], j ∈ [k], stating whether point i is covered by ball j or not. We further
have variables cj ∈ Rd and rj ≥ 0 for the ball centers and radii, respectively,
and the big-M constraints ri +M(1− xij) ≥ ‖cj − pi‖2, or equivalently in conic
form

(ri +M(1− xij), cj − pi) ∈ Qd+1. (8)

Note that a safe value for M can always be deduced from the dispersion of the
given points pi, and that (8) can be brought to the standard form in (P) by
introducing linear auxiliary constraints.

– In the smallest-area variant we have an additional conic constraint arising
from the minimization of a sum of squares, and require that each point is
covered by at least some ball,

∑
j xij ≥ 1 ∀i. Symmetry arises since inter-

changing the roles of balls gives rise to symmetric solutions.
– In the maximum-coverage variant, we fix the radii rj to desired values and

count the number of covered points with the additional variables ti ∈ {0, 1}
and the constraint ti ≤

∑
j xij , maximizing the sum of the ti. If the radii of

different balls are fixed to the same value, their roles are again interchange-
able and we can detect symmetry in the model. Below we always fixed the
radii of all involved balls to the same value.

We created instances for both variants by randomly sampling n points in
[0, 1] × [0, 0.3], either uniformly or following a Gaussian distribution, with n ∈
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solved wins
mean time
(n = 80)

mean nodes
(n = 66)

default 80 62 65.54 2895
sym-0 66 2 167.47 6833

Table 1. Computational results for disk covering instances

{10, 20, 30, 40, 50}, k ∈ {3, 4, 5}, and r ∈ {0.1, 0.2} in case of the maximum-
coverage variant. This gives a total of 90 instances. The number of symmetry
generators found in a single instance after presolve ranges from 1 to 4. The
computational results are shown in Table 1. The advantage of enabling symmetry
handling is quite clear here, leading to more solved instances and a reduction in
running times and explored nodes by more than a factor of 2.

3.2 F-SPARC

The second set of instances are conic reformulations of the fractional subcar-
rier and power allocation problem with rate constraints (F-SPARC) arising in
OFDMA systems [22]. Roughly speaking, we want to maximize energy efficiency
in a data transmission system with n communication channels and k users. We
have to assign to each user a number of communication channels so as to assure
the user a certain data rate dj , giving rise to variables xij , i ∈ [n], j ∈ [k],
indicating the assignment. In addition, if channel i is assigned to user j, we have
to determine the power pij assigned to the channel when used by user j (i.e.,
xij = 0 =⇒ pij = 0). The data rate requirement for user j can be written as
B
∑
i log2(1+pij/N) ≥ dj , where B and N denote the channel’s bandwidth and

noise level, respectively. Albeit the presence of some more side constraints on,
e.g., total power consumption, interchanging the roles of communication chan-
nels again gives rise to symmetric solutions, and thus symmetry can be found
in these models. More details and how to obtain a conic reformulation using the
exponential cone can be found in [2].

We created instances just as described in [22], with

– (n, k) ∈ {(8, 4), (10, 5), (10, 6), (12, 7), (15, 7)} and
– the so-called demand ratio DR ∈ {0.7, 0.8, 0.9}, used for randomly sampling

user demands.

For each of the resulting 15 combinations we have 5 such random samplings,
leading to 75 instances in total. Note that [22] allows for channels with distinct
noise levels Ni. Symmetry arises only when at least two channels are identical,
which is why we kept Ni fixed over all channels. The number of found symmetry
generators after presolve is always n− 1. The computational results are summa-
rized in Table 2. The advantage of symmetry handling is even clearer here than
in the previous section, leading to twice as many solved instances and savings in
the range of 1 -2 orders of magnitude.
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solved wins
mean time
(n = 62)

mean nodes
(n = 31)

default 62 62 28.54 352
sym-0 31 0 1262.33 28722

Table 2. Computational results for F-SPARC instances

Conclusions

We have seen how symmetry can be detected in MICP, and that the detection
procedure is quite similar to the one applied in MILP, making use of how close
MICP is to MILP as a problem class. The concept of a cone’s symmetry labelings
is easily applicable in practice, especially when a product representation through
primitive cones is used. We therefore outlined how to get an intuitive grasp on
what favorable labelings are by looking at them from different points of view.
We further listed two MICP models in which symmetry can be detected, and
showed how dramatic the effect of symmetry handling on the solution times in
MOSEK can be, i.e., even up to orders of magnitude.
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