
A computational practicability study of
MIQCQP reformulations

Sven Wiese1

MOSEK ApS, Fruebjergvej 3, Symbion Science Park, 2100 Copenhagen, Denmark
sven.wiese@mosek.com

Abstract. We report on computational results regarding several refor-
mulation methods for MIQCQPs. The focus is set on the computational
practicability of a reformulation, and we include challenging instances
in our experiments. We are especially, though not exclusively, interested
in reformulations based on SDPs and pursue the question of how such
reformulations can be useful in an off-the-shelf solver.

Keywords: MIQCQP · Eienvalue-method · Diagonal perturbation · SDP
relaxation

1 Introduction

Most authors use the term Mixed Integer Quadratic Programming (MIQP) for
the minimization of a quadratic form over linear constraints imposed on mixed-
integer variables. When also the constraints are allowed to contain quadratic
terms, we usually talk about Mixed Integer Quadratically-Constrained Quadratic
Programming (MIQCQP). The canonical form we use for describing such a prob-
lem throughout this paper is

min xTQ0x+ cTx
s.t. xTQkx+ aTk x ≤ bk, k = 1, . . . ,m

l ≤ x ≤ u
x ∈ Zp × Rn−p.

(P)

A decisive question about (P) is whether all involved matrices Qk, that are
w.l.o.g. assumed to be symmetric, are positive semidefinite (p.s.d.) or not. If so,
it is well known that the continuous relaxation of (P) is a convex optimization
problem, thus solvable in polynomial time to any desired accuracy. For solv-
ing (P), we may employ non-linear Branch-and-Bound or Outer-Approximation
methods in this case. Although (P) is not a convex optimization problem it-
self due to the presence of integer variables, we then call it a convex MIQCQP,
implicitly referring to its continuous relaxation.

If the latter is non-convex instead, we call it a non-convex MIQCQP. In
that case we usually have to resort to spatial branching in order to solve it,
increasing the computational burden. Yet, it is sometimes possible to translate
the non-convexity encoded in the Q-matrices to the integrality of variables, and

2 Sven Wiese

we end up with a reformulation of the problem that is a convex MIQCQP,
or even a Mixed Integer Linear Program (MILP). Such reformulations and their
implementation, with a special focus on practicability, are the topic of this paper.
Note that such reformulations can be useful also when (P) is already convex, as
we will shortly discuss further below.

Two recurring themes in the literature for solving (MI)QCQPs are given by
the reformulation-linearization (RLT) technique [5], and by the exploitation of
Semidefinite Programming (SDP) relaxations. Our study is largely inspired by
the line of research in [9, 7, 8, 14], that can be roughly described as a means of
finding suitable perturbations of the matrices Q with desirable properties, again
based on SDP-techniques. Perturbations that are restricted to the diagonals of
the involved matrices are studied in [12, 13]. The recent paper [11] addresses
the issue of choosing automatically between some of the reformulations we treat
further below by means of machine learning.

Many commercial and non-commercial solvers that allow for mixed inte-
ger variables, i.e., Mixed Integer Programming (MIP) solvers, can handle some
form of MIQCQP nowadays. Global optimization solvers like ANTIGONE [18],
BARON [19], Couenne [6] and SCIP [20] accept both convex and non-convex
MIQCQPs. Also CPLEX [3], and more recently Gurobi [2] extended their ca-
pability of solving convex MIQCQPs to the non-convex case. [10] provides an
overview of the various techniques that contribute to the solution of MIQCQPs in
such a software package. FICO Xpress [1] can be used to solve convex MIQCQPs,
and non-convex ones are accepted and solved in a heuristic fashion. MOSEK [4]
accepts convex MIQCQP in the current release 9.2. The results in Section 3 with
non-convex MIQCQPs were obtained using MOSEK and showcase how it will
be extended in a future release.

A recently vivid topic has been the conversion of convex quadratic constraints
to conic form. For Q p.s.d., it is well-known that we can always find a factoriza-
tion Q = FTF with some matrix F , leading to the identity

xTQx = ‖Fx‖22. (1)

Replacing all quadratic forms in (P) with the above right-hand side for some ap-
propriate factor F k will transform (P) into a Mixed Integer Second-Order Cone
Program (MISOCP). Some of the above solvers accept second-order constraints,
or maybe even perform the conversion internally. A discussion about the advan-
tages or disadvantages of the transformation of quadratic constraints to conic
form is, nevertheless, outside the scope of this paper.

The remainder is organized in two sections: In Section 2 we discuss in more
detail the various reformulation methods that form the basis of the computa-
tional results presented in Section 3. The contributions are twofold:

– We present computational results comparing these approaches in a unified
computational environment, with a special focus on practical implementa-
tions. We include instances in our experiments that to the best of our knowl-
edge have not been part of previous computational studies on the subject.

A computational practicability study of MIQCQP reformulations 3

– Some of the reformulation methods are based on the solution of SDPs, and to
the best of our knowledge there is so far no other MIP solver employing such
reformulations. We thus try to answer the question of how useful SPD-based
reformulations of MIQCQPs can be in such a software package.

2 Reformulation methods

In order to outline the various reformulation approaches, we largely base our
notation on [8]. The authors therein introduce an infinite family of reformulations
of (P), parametrized in the matrices P 0, . . . , Pm, as follows:

min xT (Q0 + P 0)x+ cTx− 〈P 0, X〉
s.t. xT (Qk + P k)x+ aTk x− 〈P k, X〉 ≤ bk, k = 1, . . . ,m

X = xxT

l ≤ x ≤ u
x ∈ Zp × Rn−p,

(R̃P 0,...,Pm)

where X ∈ Rn×n and X = xxT encodes the product relations Xij = xixj . The
idea here is to perturb each Qk with some matrix P k, and we are of course
interested in those perturbations such that Qk + P k are p.s.d. for all k. If so,
the new sources of non-convexity in (R̃P 0,...,Pm) are the integrality of variables,
and the constraint X = xxT . The latter can, under certain circumstances, again
be reformulated so as to translate this non-convexity to the integrality of the
variables. The easiest case where this can be seen is when i = j and xi is a
binary variable. Then clearly

x2i = xi, (2)

or in other words Xii = xi, which is why it is not even necessary to introduce the
variable Xii explicitly. A more difficult case is when still at least one of the two
variables in the product xixj , say xi, is binary, and the other has finite bounds
lj ≤ xj ≤ uj . Then Xij = xixj is equivalent to

ljxi ≤ Xij ≤ ujxi, (3)

xj − uj(1− xi) ≤ Xij ≤ xj − lj(1− xi). (4)

If none of the two variables is binary instead, but at least one is integer with
finite bounds, say again li ≤ xi ≤ ui, it can be written via its binary expansion

xi =

blog(ui−li)c∑
k=0

2ktik + li (5)

with auxiliary binary variables tik. Therewith we can rewrite the product

xixj =

blog(ui−li)c∑
k=0

2ktikxj + lixj , (6)

4 Sven Wiese

and subsequently introduce yet more auxiliary variables zjik = tikxj . Since these
products contain a binary variable now, they can be rewritten using the same
idea as in (3) - (4), leading to an extended but linear description of Xij = xixj .

Denote by L = {(i, j) | ∃k : pki,j 6= 0} the set of all variable pairs that are

perturbed with a non-zero coefficient in (R̃P 0,...,Pm), and by L1 ⊆ L those pairs
that can be linearized by (2) - (6). For ease of exposition, we assume that L = L1

throughout the rest of this section. We denote by Sx,X,t,z the mixed-integer set
collecting all the relations (2) - (6) for the pairs in L, and can thus write the
next step in our reformulation process as

min xT (Q0 + P 0)x+ cTx− 〈P 0, X〉
s.t. xT (Qk + P k)x+ aTk x− 〈P k, X〉 ≤ bk, k = 1, . . . ,m

(x,X, t, z) ∈ Sx,X,t,z
l ≤ x ≤ u
x ∈ Zp × Rn−p.

(RP 0,...,Pm)

(RP 0,...,Pm) is the generic reformulation we work with, and below we list four
different choices for the matrices P k.

Remark 1. It can happen that L0 := L \ L1 6= ∅, for example in the presence
of products between two continuous variables, or when required bounds are not
finite. One might also resort to a policy of not performing the linearizations (3)
- (6) when either max(|lj |, |uj |) or ui − li are larger than specified constants.
In Section 3 we allow that L0 6= ∅, provided that

∑
i,j∈L0

qkijxixj ≥ 0 for all k.

Also, we restrict to reformmulations such that pkij = 0 for all i, j ∈ L0 and all
k in such a case. In other words, we never perturb the coefficient of a product
that is not linearized, and the non-linearized residual of each Qk is required to
be p.s.d. This way we still end up with a valid reformulation (RP 0,...,Pm) that is
a convex MIQCQP. For the details, especially regarding Section 2.4, we refer to
[8]. The approaches in Sections 2.1 - 2.3 can be extended to the case L0 6= ∅ in
straightforward ways.

2.1 Complete linearization

Setting P k = −Qk for all k amounts to linearizing the whole program, ending up
with a MILP (unless L0 6= ∅, cf. Remark 1). This is particularly interesting from a
computational point-of-view. MILP solver technology is much more sophisticated
than Mixed Integer Nonlinear Programming (MINLP) technology in general, but
also compared to more special paradigms like convex MIQCQP or MISOCP, say.
This means that a MILP can on average be solved faster than a MIQCQP of
comparable size. This alone shows how such a reformulation can also be useful
for convex MIQCQPs.

The average dominance of MILP over the other named paradigms may of
course not hold true when looking at two individual problems. That is also
the reason why it is not necessarily true that a complete linearization is always
preferable to any of the reformulation methods in the sections to follow, although

A computational practicability study of MIQCQP reformulations 5

they usually don’t lead to MILPs. Also, depending on the set L, the amount of
linearization required to perform this reformulation can vary from instance to
instance and make it more or less attractive.

2.2 The eigenvalue-method

The so-called eigenvalue-method has originally been proposed in [16]. Assume
for a moment that Qk is not p.s.d. and let its eigenvalues be denoted by λk1 ≤
λk2 ≤ . . . ≤ λkm with λk1 < 0. Setting P k = −λk1I will make sure that the matrix
Qk + P k is p.s.d. This can be seen by noting that its eigenvalues are given by
0 ≤ λk2 − λk1 ≤ . . . ≤ λkm − λk1 , i.e., they are all non-negative.

One might ask why exactly we take λk1 in order to form the perturbation
matrix, as by the same reasoning any f ≤ λk1 would achieve positive semidefi-
niteness of Qk + P k. The reason is the somewhat heuristic way of thinking that
less convex quadratic forms, achieved through smaller eigenvalues, lead to better
dual bounds, i.e. lower bounds obtained from solving the continuous relaxation
of (RP 0,...,Pm). Therefore we seek such an f that is maximal. Another way of
looking at it is to shift the whole interval of eigenvalues [λk1 , λ

k
m] to the right,

but just enough so that its left boundary is the origin.
The dual-bound point-of-view is also well suited for illustrating how this

reformulation (and also the ones of the following two sections) can be useful for
convex MIQCQPs. If λk1 > 0, perturbing with P k = −λk1I will again shift the
interval of eigenvalues (this time leftward) so that its left boundary is precisely
the origin. This “less convex” problem is likely to have a better dual bound
than the original one. We analyze the dual bounds of the various reformulations
computationally in section 3.

Contrary to a complete linearization, the reformulated problem will still be
a MIQCQP. Another difference is the amount of linearization that has to be
performed: this tends to be lower since the perturbation is restricted to the
diagonal of the matrices, while otherwise they have to be linearized entirely. On
the other hand we note the following:

Remark 2. It seems quite natural, from the presolving point-of-view, say, to
substitute all squares of binary variables in (P) with just the variable itself, and
a complete linearization does precisely that via (2). In the eigenvalue-method,
if xi is binary, we are likely to keep x2i explicitly in (RP 0,...,Pm) with a non-zero
perturbed coefficient. It might even be that qkii = 0 in (P), but pkii 6= 0, and we
thus introduce a square where there was none before. The eigenvalue-method
(and the two methods to follow) are thus not necessarily able to make use of the
simplification x2i = xi everywhere in (RP 0,...,Pm).

2.3 The diagonal-method

From the dual-bound point-of-view, taking the minimum eigenvalue in the pre-
vious section is the best we can do, but only under the restriction that the whole
diagonal of Qk is perturbed by the same value. [13] removes this restriction and

6 Sven Wiese

allows for different perturbations in different diagonal entries. So the task is to
find a P k = −diag(µ1, . . . , µn) such that the resulting perturbed matrix is p.s.d.,
making the µi possibly large. Just as in [13] we choose to maximize their sum
in the following. Thus, for each k we solve the SDP

max
n∑
i=1

µi

s.t. Qk − diag(µ1, . . . , µn) � 0.
(µ-SDP)

We refer to the resulting reformulation as the diagonal-method. The chosen
objective amounts to minimizing the sum of the eigenvalues of the perturbed
matrix. This can be seen by the fact that the sum of the eigenvalues of any
matrix is equal to its trace, and we have

tr
(
Qk − diag(µ1, . . . , µn)

)
=

n∑
i=1

(qkii − µi) =

n∑
i=1

qkii −
n∑
i=1

µi,

where the first sum is constant in (µ-SDP).
We can see that the diagonal-method is in a certain sense more general than

the eigenvalue-method: if we added the constraints µi = µj for all i 6= j, the
optimal solution would be given by a vector composed of n repetitions of the
minimum eigenvalue. Therefore one may expect the dual bound of the diagonal-
method to be tendentially better. However, performing the reformulation is also
likely more expensive, since it involves the solution of a SDP, opposed to just
the computation of the minimum eigenvalue.

2.4 Maximizing the dual bound

[8] provides the fourth reformulation method we consider. It is based on the
solution of a SPD relaxation of (P) that combines two themes for constructing
relaxations of MIQCQPs. First, we have the famous RLT- or McCormick [17]
inequalities,

Xij − ujxi − lixj ≤ −uj li, (7)

Xij − ljxi − uixj ≤ −ljui, (8)

Xij − ujxi − uixj ≥ −ujui, (9)

Xij − ljxi − lixj ≥ −lj li. (10)

Note that (3) - (4) are just a special case of these. A feature that seems unique
to [8] is the additional use of the equations

Xii − xi ≥ 0, (11)

Xii + xi ≥ 0 (12)

that represent x2i ≥ |xi|, which holds true for any integer variable xi. We
then also have the routinely used semidefinite relaxation of X = xxT , i.e.,
X − xxT � 0. The SDP in question then reads

A computational practicability study of MIQCQP reformulations 7

min 〈Q0, X〉+ cTx
s.t. 〈Qk, X〉+ aTk x ≤ bk, k = 1, . . . ,m

(7)− (10) (i, j) ∈ L
(11), (12) i = 1, . . . , p
l ≤ x ≤ u(
X x
xT 1

)
� 0.

(RSDP)

The last constraint can be seen to be equivalent to X − xxT � 0 by the Schur
complement lemma. If we wrote out the dual of (RSDP) it would contain a dual
(n + 1) × (n + 1)-matrix variable S̄ � 0. The reformulation consists in taking
P 0 = S −Q0, where S � 0 is obtained from S̄ by eliminating the last row and
column, and P k = −Qk for all k ≥ 1.

The nice theoretical results in [8] show that among all convex reformulations
(RP 0,...,Pm) with added inequalities (7) - (10) and (11), (12), this one maximizes
the optimal value of its continuous relaxation. On the one hand, it can thus
be seen as the reformulation that has the desirable property of maximizing the
dual bound. On the other hand, we note that it is likely to be more expensive
than a complete linearization or the eigenvalue-method, since it involves the
solution of a costly SDP. It is likely also more expensive than the diagonal-
method, since (RSDP) is generally more difficult than the SDPs required for the
diagonal-method. Especially when MIQCQP contains several Q-matrices, the
diagonal-method acts on them independently, one at a time, instead of solving
a problem that considers all the quadratic structure (and more) at once.

We close this section by noting that the amount of linearization required for
this reformulation is in the ballpark area of that of a complete linearization, and
thus tends to be larger than that for the eigenvalue- or diagonal-method.

3 Computation

We now report on computational experiments with the above reformulations
that we conducted inside MOSEK. The history of MOSEK is tied to convex
optimization, and so it accepts convex MIQCQPs and will instead reject non-
convex ones in the current release MOSEK 9.2. The results presented in this
section allowing to solve also non-convex MIQCQPs are part of the development
version of MOSEK and are intended to carry over to a future release. We point
out, however, that if a given instance is not amenable to a reformulation because
the conditions stated in Remark 1 are not met, MOSEK will continue to reject
it. All the sub-problem classes needed in the following, i.e., LPs and QCQPs for
the computation of dual bounds, and SPDs, are readily solvable with MOSEK.

Performing the reformulation. We want to asses advantages and disadvan-
tages of the different approaches computationally. We have mentioned the fact

8 Sven Wiese

Table 1. Comparison of gaps, (reformulation) times and non-zeroes on instances from
[?].

gap reform. time (sec.) total time (sec.) #nz
ar. geo. ar. geo. ar. geo. ar. geo.

(RQ) 267.74 227.16 0.0038 0.0038 0.1556 0.1480 20674 11489
(Rλ) 54.85 42.90 0.0018 0.0018 0.0599 0.0580 3040 2002
(Rµ) 37.13 21.56 0.0168 0.0166 0.0754 0.0730 3037 2003
(RS) 20.93 15.26 4.9738 1.9407 6.0085 2.4002 21302 11915
(Rc

S) 20.43 13.70 0.4781 0.3576 0.9778 0.7309 15320 8991
(Ri

S) 11238.70 24.08 0.0237 0.0236 0.2372 0.161 5859 2759

that they lead to different dual bounds, and thus include the latter in our anal-
ysis, besides the cost of a reformulation in terms of the time it takes to perform
it. When we compute optimality gaps, we mean

gap = 100 · z − z∗

max(1, |z|)
,

where z is the objective value of the optimal or best known solution to a given
instance, and z∗ is the solution value of the continuous relaxation of the re-
formulation in question. We also report the total time it takes to compute the
dual bound of the reformulated problem (i.e., the reformulation time plus the
time for solving the relaxation) and the number of non-zeroes in its constraint
matrix. Note that for QCQPs, MOSEK automatically performs the conversion
(1) by computing a Cholesky factorization, so that the reported number of non-
zeroes captures both the linear and quadratic part of (P), and is thus to give an
indication of the problem size that a reformulation leads to.

We apply a moderate amount of MOSEK’s presolving before applying a
reformulation so as to increase the likelihood of being able to apply one at all,
cf. Remark 1. Below we report arithmetic and geometric means of gaps, times and
number of non-zeroes. For gaps, the geometric mean is computed by considering
the maximum of 1 and the actual gap for each instance, while for times, we use a
shift of 1 second. Throughout the tables, we write (RQ), (Rλ), (Rµ) and (RS) for
referring to the reformulations from Sections 2.1, 2.2, 2.3 and 2.4, respectively.

Smallish instances for illustration purposes. We start by taking the in-
stance set used in [8]. These are 281 randomly generated non-convex instances
that cover both the cases p = n and p < n. Some instances also have m = 0,
and we stress that no binary variables appear in any instance. These instances
might be of less practical interest, but they are also rather small when compared
to the instance set we use further down, and are thus useful for illustrating some
concepts that guide us in making amendments later on.

Table 1 shows means for the four methods we introduced. They indicate
a clear dominance relationship: the average gaps decrease monotonically when
going from (RQ) over (Rλ) and (Rµ) to (RS). This gain in the dual bound

A computational practicability study of MIQCQP reformulations 9

comes with a price though: the average reformulation times increase. While (RQ)
and (Rλ) seem equally cheap, (Rµ) is more expensive by about an order of
magnitude, and (RS) by several orders of magnitude. This reflects the cost of
solving SDPs, but also shows that (RSDP) in particular can become quite costly
to solve. In fact, on the more realistic instance set we use in the next section, it is
sometimes completely out-of-reach to solve (RSDP) within the range of hours,
or it can cause memory issues due to its size. The bottleneck are usually the
RLT-inequalities (7) - (10) when the set L (or better L1) is large.

Therefore, we refrain from solving (RSDP) in its entirety in the following,
but instead start with some relaxation of (RSDP), containing (7) - (10) for only
some selected pairs (i, j), and separate more in successive separation rounds. We
included the numbers obtained with this strategy in Table 1 in the column (Rc

S).
In each round we separated all RLT-inequalities that were violated by a small
tolerance, and only aborted this straightforward cut loop if no new inequalities
were separated.

We note that the average reformulation time is cut down again by about an
order of magnitude. Taking into account that we have to solve several SDPs suc-
cessively during the cut loop, this is an interesting gain, showing the savings that
can be achieved by using only those RLT-inequalities that are “necessary”. We
stress though that the average reformulation time remains significantly higher
than that of the other reformulation methods. We also note that we don’t loose
anything of the average gap closure here. This seems intuitive as at the end of
a cut loop as described above, there are no violated inequalities left that could
increase the solution value of (RSDP). The latter is directly connected to the
dual bound of the reformulation [8]. The gap closure is even slightly higher for
(Rc

S), which is related to the fact that additional inequalities in (RSDP) can
alter the dual solution and thus the matrix S used in the reformulation.

It is also interesting to note that when we only use the initial relaxation of
(RSDP) without any separation, included in Table 1 in the column (Ri

S), we
sometimes are left with huge gaps, explaining the large arithmetic mean. This
again highlights the importance that the separation can have in some cases.

Finally we note that the different amount of linearization required for differ-
ent reformulations is reflected in Table 1. (Rλ) and (Rµ) behave almost identi-
cally, as could be expected, and lead to significantly smaller reformulations than
(RQ) and (RS), who behave quite similar to each other. Note that just as for
reformulation times, the separation in (Rc

S) is able to cut down a non-negligible
part of the reformulation size compared to (RS). The difference in size can also
have an impact on the time spent solving the relaxation, and thus the total time,
as can be seen by comparing (RQ) with (Rλ) or (Rµ) for example.

QPLIB. We now present results obtained with QPLIB [15]. We first picked
a subset of 143 instances by discarding those that are either convex or not
amenable to a reformulation according to Remark 1 or don’t contain any inte-
ger variable. The instances in the QPLIB collection are more realistic and also
much larger on average than the ones of the previous section, and as anticipated

10 Sven Wiese

Table 2. Comparison of gaps, (reformulation) times and non-zeroes on 128 QPLIB
instances.

gap reform. time (sec.) total time (sec.) #nz
ar. geo. ar. geo. ar. geo. ar. geo.

(RQ) 1810.56 195.53 0.0345 0.0331 7.6124 3.5416 63958 28164
(Rλ) 5556.73 62.24 0.0859 0.0671 7.2121 1.0821 73959 17601
(Rµ) 3769.75 70.12 3.8893 0.7897 10.7663 1.6356 73978 17641
(Rc

S) 2647.31 28.96 41.3180 4.7273 49.4606 6.1242 79564 21776
(Ri

S) 3578.91 41.25 9.4072 1.8879 16.0606 2.9770 77736 20285

solving (RSDP) is sometimes completely out-of-reach for excessive memory or
time consumption. Even the initial relaxation of (RSDP), used for (Rc

S) and
(Ri

S), can be so large that it is prohibitive to solve. Also the solution of (µ-SDP)
or the computation of a minimum eigenvalue can be prohibitive for very large
matrices. We therefore made it possible in our implementation to impose several
work limits when performing a reformulation, in particular on:

1. the dimension of any involved matrix when performing (Rλ) or (Rµ)
2. the size of the initial relaxation of (RSDP) when performing (Rc

S) or (Ri
S)

3. the total computational effort spent in all solved SDPs
4. the amount of work spent in separation, in terms of

– the number of separation rounds
– the number of inequalities added per round
– the minimum required improvement of the optimal value of the (RSDP)

from one round to the next

1. and 2. can also mean that an instance is not amenable to a certain reformu-
lation. In order to obtain the following results, we set the work limits such that
no memory issues occur, and such that the reformulation time never exceeds 30
minutes. This leaves us with 128 instances on which all four reformulations can
be performed. Table 2 shows the results for (RQ), (Rλ), (Rµ), (Rc

S) and (Ri
S).

The picture about the gap closure on this more realistic instance set is some-
what different to the previous section. No such clear dominance relation can be
seen here, some methods having lower geometric but higher arithmetic means
than others. Out of 128 instances, it happens 39 times that (RQ) leads to a better
bound than any of the other methods. Note that (RS) is dominant in gap over
(RQ) by construction, but in these 39 cases the separation-based approach (Rc

S)
is not able to identify the right RLT-inequalities within a reasonable amount
of effort. This difference to the previous section can in part be explained by
the presence of binary variables in many instances, see also Remark 2. We stress
though that the sheer presence of binary variables is not a sufficient indicator for
explaining the observed phenomenon, as there are pure binary instances where
a complete linearization has the worst bound of all methods. Providing such an
indicator, one that divides instances into those where a complete linearization is
likely to lead to a better bound than other methods that keep quadratic struc-
ture in the reformulation, is outside the scope of this paper. We mention [11] as
a possible direction here.

A computational practicability study of MIQCQP reformulations 11

We still note that in two thirds of the cases, we can achieve a better dual
bound by not performing a complete linearizaton, and among these methods,
we still see a dominance relation in average gap closure of (Rc

S) over (Rµ) over
(Rλ). The dominance of (Rµ) over (Rλ) is not as clear as in the previous section.
This is mostly due though to a series of problems with an optimal objective of
zero on which (Rλ) performs better, and on which a small absolute gap results
in large relative gaps. (Rµ) still wins in 101 cases over (Rλ) in the sense that its
gap closure is smaller, while the latter wins 27 times.

(Ri
S) is included again in order to demonstrate the importance that the sep-

aration of RLT-inequalities can have. The trends on reformulation times persist,
and the cost of solving SDPs becomes more evident also when looking at (Rµ).
We then note again that the resulting problem sizes somewhat divide (Rλ) and
(Rµ) from (RQ) and (Rc

S), although it can happen that (RQ) leads to a much
smaller reformulation than the other methods. The nevertheless larger geometric
mean in the non-zeroes of (RQ) is also reflected in comparing its geometric mean
of the total times (including LP-time) with those of (Rλ) and (Rµ), just as in
the previous section.

Conclusions

We set out to shed light on the question of how useful the reformulations, espe-
cially SDP-based ones, can be in an off-the-shelf solver when solving instances to
optimality or to some predefined optimality gap. We have seen that performing
some of the reformulation methods, for example at the root of a Branch-and-
Bound tree, can lead to excessive time or memory consumption, which one usu-
ally would like to avoid in such a setting. However, we have also seen that effective
work limits can be imposed to prevent this from happening. In MOSEK, we have
implemented yet more restrictive work limits than those used in the previous
section, so that performing a reformulation should never exceed a few seconds,
even on very large instances. The subset of 128 instances that are amenable to
all four reformulations from the previous section, for example, is therewith fur-
ther reduced, but only by roughly 20%. All of the four methods thus represent a
value that can be added to a solver by exposing the choice of the reformulation
method, if amenable, through a user parameter. We stress particularly that we
do observe instance classes where the SDP-based method (Rc

S) can systemati-
cally outperform all other ones. Also (Rµ) often gives an advantage over (Rλ)
due to a better dual bound with almost identical reformulation sizes, albeit paid
with a slightly higher reformulation time.

It would be desirable to have an automatic choice of the best reformulation
method for a given instance. We have implemented some heuristic rules that try
to take into account the characteristics of each reformulation discussed in the
previous section. This heuristic choice is of course far from perfect, and more
data-driven methods like the one in [11] are likely to be of value here. We point
out, however, that on the initial set of 143 QPLIB instances from the previous
section, each of the methods (RQ), (Rλ), (Rµ) and (Rc

S) is chosen at least once.

12 Sven Wiese

References

1. FICO Xpress Solver. https://www.fico.com/en/products/fico-xpress-solver, ac-
cessed October-23-2020

2. Gurobi Optimizer. https://www.gurobi.com/products/gurobi-optimizer/, accessed
October-23-2020

3. IBM ILOG CPLEX. https://www.ibm.com/products/ilog-cplex-optimization-
studio, accessed October-23-2020

4. MOSEK. https://www.mosek.com/products/mosek/, accessed October-23-2020
5. Adams, W., Sherali, H.: A tight linearization and an algorithm for zero-one

quadratic programming problems. Management Science 32, 1274–1290 (1986)
6. Belotti, P.: Couenne: A users manual. Tech. rep., Lehigh University (2009)
7. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general

mixed-integer programs. Math. Programming 131, 381–401 (2012)
8. Billionnet, A., Elloumi, S., Lambert, A.: Exact quadratic convex reformulations

of mixed-integer quadratically constrained problems. Math. Programming 158,
235–266 (2016)

9. Billionnet, A., Elloumi, S., Plateau, M.: Improving the performance of standard
solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR
method. Discrete Applied Mathematics 157(6), 1185–1197 (2009)

10. Bliek, C., Bonami, P., Lodi, A.: Solving mixed-integer quadratic programming
problems with IBM-CPLEX: a progress report. In: Proceedings of the twenty-sixth
RAMP symposium. pp. 171–180 (2014)

11. Bonami, P., Lodi, A., Zarpellon, G.: Learning a classification of mixed-integer
quadratic programming problems. In: van Hoeve, W.J. (ed.) Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research. CPAIOR
2018. pp. 595–604. Springer (2018)

12. Dong, H.: Relaxing nonconvex quadratic functions by multiple adaptive diagonal
perturbations. SIAM J. on Optim. 26(3), 1962–1985 (2016)

13. Dong, H., Lou, Y.: Compact disjunctive approximations to nonconvex quadrati-
cally constrained programs. Tech. rep. (2018)

14. Elloumi, S., Lambert, A.: Global solution of non-convex quadratically constrained
quadratic programs. Optimization Methods and Software 34(1), 98–114 (2019)

15. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti,
L., Lodi, A., Misener, R., Mittelmann, H., Sahinidis, N., Vigerske, S., Wiegele, A.:
QPLIB: A library of quadratic programming instances. Mathematical Program-
ming Computation (11), 237–265 (2018)

16. Hammer, P.L., Rubin, A.: Some remarks on quadratic programming with 0-1 vari-
ables. RAIRO 3, 67–79 (1970)

17. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part I Convex underestimating problems. Math. Programming 10(1), 147–
175 (1976)

18. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global
optimization of nonlinear equations. Journal of Global Optimization 59(2–3), 503–
526 (2014)

19. Sahinidis, N.: BARON: A general purpose global optimization software package.
Journal of Global Optimization 8, 201–205 (1996)

20. Vigerske, S., Gleixner, A.: SCIP: Global Optimization of Mixed-Integer Nonlinear
Programs in a Branch-and-Cut Framework. Optimization Methods and Software
33(3), 563–593 (2018)

