
Technical Report
Doc ID: TR-1-2009.

14-April-2009 (Last revised: 02-June-2009)

The homogeneous and self-
dual model and algorithm
for linear optimization.

Author: Erling D. Andersen

In this white paper we present the homogeneous and self-dual interior point methods
which forms the basis for several commercial optimization software packages such as
MOSEK.

1 Introduction

The linear optimization problem
min. cTx
s.t. Ax = b,

x ≥ 0
(1)

may have an optimal solution, be primal infeasible or be dual infeasible for a particular set of data
c ∈ Rn, b ∈ Rm, and A ∈ Rm×n. In fact the problem can be both primal and dual infeasible for some
data where (1) is denoted dual infeasible if the dual problem

max bT y
s.t. AT y + s = c,

s ≥ 0
(2)

corresponding to (1) is infeasible. The vector s is the so-called dual slacks.

2 The homogenous and self dual model

However, most methods for solving (1) assume that the problem has an optimal solution. This is in
particular true for interior-point methods. To overcome this problem it has been suggested to solve
the homogeneous and self-dual model

min 0
s.t. Ax −bτ = 0,

−AT y +cτ ≥ 0,
bT y −cTx ≥ 0,

x ≥ 0, τ ≥ 0

(3)

instead of (1). Clearly, (3) is a homogeneous LP and is self-dual which essentially follows from the
constraints form a skew-symmetric system. The interpretation of (3) is τ is a homogenizing variable
and the constraints represent primal feasibility, dual feasibility, and reversed weak duality.

The homogeneous model (3) was first studied by Goldman and Tucker [2] in 1956 and they proved
(3) always has a nontrivial solution (x∗, y∗, τ∗) satisfying

x∗js
∗
j = 0, x∗j + s∗j > 0, ∀j,

τ∗κ∗ = 0, τ∗ + κ∗ > 0,
(4)
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where s∗ := cτ∗ − AT y∗ ≥ 0 and κ∗ := bT y∗ − cTx∗ ≥ 0. A solution to (3) satisfying the condition
(4) is said to be a strictly complementary solution. Moreover, Goldman and Tucker showed that
if (x∗, τ∗, y∗, s∗, κ∗) is any strictly complementary solution, then exactly one of the two following
situations occurs:

• τ∗ > 0 if and only if (1) has an optimal solution. In this case (x∗, y∗, s∗)/τ∗ is an optimal
primal-dual solution to (1).

• κ∗ > 0 if and only if (1) is primal or dual infeasible. In the case bT y∗ > 0 (cTx∗ < 0) then (1)
is primal (dual) infeasible.

The conclusion is that a strictly complementary solution to (3) provides all the information required,
because in the case τ∗ > 0 then an optimal primal-dual solution to (1) is trivially given by (x, y, s) =
(x∗, y∗, s∗)/τ∗. Otherwise, the problem is primal or dual infeasible. Therefore, the main algorithmic
idea is to compute a strictly complementary solution to (3) instead of solving (1) directly.

3 The homogenous algorithm

Ye, Todd, and Mizuno [6] suggested to solve (3) by solving the problem

min n0z
s.t. Ax −bτ −b̄z = 0,

−AT y +cτ +c̄z ≥ 0,
bT y −cTx +d̄z ≥ 0,
b̄T y −c̄Tx −d̄τ = −n0,

x ≥ 0, τ ≥ 0,

(5)

where
b̄ := Ax0 − bτ0,
c̄ := −cτ0 +AT y0 + s0,
d̄ := cTx0 − bT y0 + κ0,
n0 := (x0)T s0 + τ0κ0

and
(x0, τ0, y0, s0, κ0) = (e, 1, 0, e, 1)

(e is a n vector of all ones). It can be proved that the problem (5) always has an optimal solution.
Moreover, the optimal value is identical to zero and it is easy to verify that if (x, τ, y, z) is an optimal
strictly complementary solution to (5), then (x, τ, y) is a strictly complementary solution to (3). Hence,
the problem (5) can solved using any method that generates an optimal strictly complementary solu-
tion because the problem always has a solution. Note by construction then (x, τ, y, z) = (x0, τ0, y0, 1)
is an interior feasible solution to (5). This implies that the problem (1) can be solved by most
feasible-interior-point algorithms.

Xu, Hung, and Ye [4] suggest an alternative solution method which is also an interior-point algo-
rithm, but specially adapted to the problem (3). The so-called homogeneous algorithm can be stated
as follows:

1. Choose (x0, τ0, y0, s0, κ0) such that (x0, τ0, s0, κ0) > 0. Choose εf , εg > 0 and γ ∈ (0, 1) and let
η := 1− γ.

2. k := 0.

3. Compute:
rkp := bτk −Axk,
rkd := cτk −AT yk − sk,
rkg := κk + cTxk − bT yk,
µk := (xk)T sk+τkκk

n+1 .

4. If
||(rkp ; rkd ; rkg )|| ≤ εf and µk ≤ εg,

then terminate.
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5. Solve the linear equations

Adx − bdτ = ηrkp ,
AT dy + ds − cdτ = ηrkd ,

−cT dx + bT dy − dκ = ηrkg ,
Skdx +Xkds = −Xksk + γµke,
κkdτ + τkdκ = −τkκk + γµk

for (dx, dτ , dy, ds, dκ) where Xk := diag(xk) and Sk := diag(sk).

6. For some θ ∈ (0, 1) let αk be the optimal objective value to

max θα

s.t.


xk

τk

sk

κk

+ α


dx
dτ
ds
dκ

 ≥ 0,

α ≤ θ−1.

7. 
xk+1

τk+1

yk+1

sk+1

κk+1

 :=


xk

τk

yk

sk

κk

 + αk


dx
dτ
dy
ds
dκ

 .

8. k = k + 1.

9. goto 3

The following facts can be proved about the algorithm

rk+1
p = (1− (1− γ)αk)rkP ,

rk+1
d = (1− (1− γ)αk)rkD,
rk+1
g = (1− (1− γ)αk)rkG,

(6)

and
((xk+1)T sk+1 + τk+1κk+1)

= (1− (1− γ)αk)((xk)T sk + τkκk)
(7)

which shows that the primal residuals (rp), the dual residuals (rd), the gap residual (rg), and the
complementary gap (xT s + τκ) all are reduced strictly if αk > 0 and at the same rate. This shows
that (xk, τk, yk, sk, κk) generated by the algorithm converges towards an optimal solution to (3) (and
the termination criteria in step 4 is ultimately reached). In principle the initial point and the stepsize
αk should be chosen such that

min
j

(xkj s
k
j , τ

kκk) ≥ βµk, for k = 0, 1, . . .

is satisfied for some β ∈ (0, 1) because this guarantees (xk, τk, yk, sk, κk) converges towards a strictly
complementary solution. Finally, it is possible to prove that the algorithm has the complexity O(n3.5L)
given an appropriate choice of the starting point and the algorithmic parameters.

4 Termination

Note (6) and (6) implies that that rkp , rkd , rkg , and ((xk)T sk+τkκk) all converge towards zero at exactly
the same rate. This implies that feasibility and optimality is reached at the same time. Therefore,
if the algorithm is stopped prematurely then solution will neither be feasible nor optimal. Moreover,
relaxing εg without relaxing εf is not likely to have much effect. This can be seen by making the
reasonable assumptions that

||(r0p; r0d; r0g)|| ≈ µ0

and
εg ≈ εf .
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5 Warmstart

It is well known that the simplex algorithm easily can be warmstarted when a sequence of closely
related optimization problems has to be solved. This can in many cases cut the computational time
significantly. Although there are no guarantees for that. It is also possible warmstart an interior-point
algorithm if an initial solution satisfying the conditions in step 4 and

||(r0p; r0d; r0g)|| and µ0

are small. Moreover, the initial solution should satisfy

min
j

(x0js
0
j , τ

0κ0) ≥ βµ0

for a reasonably large β e.g. β = 0.1. Such an initial solution virtually never known because usually
either the primal or dual solution is vastly infeasible. Therefore, in practice it is hard to warmstart
an interior-point algorithm with any efficiency gain.

6 Further reading

Further details about the homogeneous algorithm can be seen in [3, 5]. Issues related to implementing
the homogeneous algorithm are discussed in [1, 4].
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“the fast path to optimum”

MOSEK ApS provides optimization software which help our clients
to make better decisions. Our customer base consists of financial in-
stitutions and companies, engineering and software vendors, among
others.

The company was established in 1997 by Erling D. Andersen and
Knud D. Andersen and it specializes in creating advanced software
for solution of mathematical optimization problems. In particular,
the company focuses on solution of large-scale linear, quadratic, and
conic optimization problems.


