
Projection onto the exponential cone:

a univariate root-finding problem

Henrik A. Friberg∗

January 12, 2021

Abstract

The exponential function and its logarithmic counterpart are essential
corner stones of nonlinear mathematical modeling. In this paper we treat
their conic extensions, the exponential cone and the relative entropy cone,
in primal, dual and polar form, and show that finding the nearest mapping
of a point onto these convex sets all reduce to a single univariate root-
finding problem. This leads to a fast algorithm shown numerically robust
over a wide range of inputs.

keywords: projection, exponential cone, relative entropy cone, julia code.

1 Introduction

In the conic subfield of mathematical optimization—the motivational back-
ground for this paper—nonlinear functions are embedded in conic extensions
before use. That is, rather than using a convex function f : Rn → R directly,
conic optimization researchers and practitioners operate with the closed conic
hull of its epigraph, given by

cl
{

(t, s, r) ∈ R2+n | ts ≥ f
(
r
s

)
, s > 0

}
, (1)

where t, s and r denotes the epigraph, perspective and function variable of
the convex cone (1), respectively. From this construction, the reader might
recognize that f(x) = ‖x‖2 leads to a quadratic cone, whereas f(x) = 1

2‖x‖
2
2

leads to a rotated quadratic cone, both of which are mainline in proprietary and
open-source software for conic optimization.

In case of the exponential function, f(x) = exp(x), the conic construction
(1) leads to the so-called exponential cone, which by [4, lemma 4.2.1] can be
formulated as the union

Kexp := cl([Kexp]++) = [Kexp]++ ∪ [Kexp]0, (2)

∗MOSEK ApS, DK-2100 Copenhagen O, Denmark (haf@mosek.com).

1

joining the two sets

[Kexp]++ =
{

(t, s, r) ∈ R3 | s > 0, t ≥ s exp
(
r
s

)}
,

and [Kexp]0 =
{

(t, s, r) ∈ R3 | s = 0, t ≥ 0, r ≤ 0
}
.

(3)

We refer to [Kexp]++ and [Kexp]0 as the perspective interior and perspective
boundary of the exponential cone, referring in both name and subscript to the
represented subdomain of s.

In case of the concave logarithm function, using f(x) = − log(x) = log(x−1)
in (1) leads the so-called relative entropy cone. This cone, Klog, is nevertheless
nothing but an orthogonal transformation of the exponential cone, realized from
definition by the relationship (t, s, r) ∈ Klog ⇔ (r, s,−t) ∈ Kexp.

We shall not dwell on the general advantages of working with conic extensions,
referring instead to [7], but will nevertheless try to explain why the exponential
cone (of all possible conic extensions) is an interesting subject of study.

From a mathematical modeling perspective, the expressive abilities of the
exponential cone is vast. For instance, given the simple relationship between
Kexp and Klog above, it should come as no surprise that both the exponential
epigraph and logarithmic hypograph sets can be represented using the exponen-
tial cone, namely,

t ≥ exp(r)⇔ (t, 1, r) ∈ Kexp, and t ≤ log(r)⇔ (r, 1, t) ∈ Kexp.

More broadly, it can be used to represent convex compositions of exponentials,
logarithms, entropy functions, product logarithms (such as Lambert W), soft-
max and softplus known from neural networks, and generalized posynomials
known from geometric programming [4, 12]. These constructions are usually
made in conjunction with quadratic cones, but note that this is purely for the
sake of simplicity and computational performance. In principle, the exponential
cone is powerful enough to represent semidefiniteness of a 2x2 symmetric matrix
variable (which is an orthogonal transformation of a 3-dimensional quadratic
cone) [3], and thus single-handily represent all the above.

From a computational perspective, the exponential cone has a numerically
stable 3-self-concordant barrier function [13], and is both nonempty, closed and
convex by construction, making it compatible with most duality, facial reduction
and interior-point properties desired for conic optimization [16]. It is not a
symmetric cone, however, as is traditionally needed to ensure fast and reliable
convergence, but the implementations in ECOS [18], SCS [14] and MOSEK [11,
5] have shown that this property is not necessary for large-scale computational
viability. In particular, Dahl and Andersen claims in [5] that they achieve ”good
numerical performance, on level with standard symmetric cone (e.g., quadratic
cone) algorithms”.

The projection problem addressed in this paper asks for the nearest mapping of
a point v0 ∈ R3 onto the exponential cone, that is,

d(v0) = min{‖v − v0‖2 | v ∈ Kexp}. (4)

2

This problem was studied in support of the research leading to [5], in order to
establish sound grounds for error analysis of the proposed implementation. In
particular, while forward error for the set membership constraint, v0 ∈ Kexp,
could easily be defined in any number of ways, e.g.,{∣∣ [t− s exp(rs)

]
−

∣∣ if s > 0,

‖([t]−, |s|, [r]+)‖ otherwise,
(5)

where [x]+ = max(x, 0) and [x]− = min(x, 0), it can only ever provide answers to
whether the constraint is satisfied or not in the chosen computational precision.
Specifically, due to the condition number of the exponential function, it is hard
to put meaningful tolerances on acceptable levels of forward error as the function
value may vary widely with small changes to input.

In contrast, the projection distance, d(v0) from (4), provides a measure of
backward error for the set membership constraint, v0 ∈ Kexp, which depends
solely on the geometric properties of the exponential cone and not on its internal
algebraic representation. Moreover, as desired, small changes to input gives
small changes to output, bounded according to d(v0 + ∆v0) ≤ d(v0) + ‖∆v0‖2
by the triangle inequality.

To a broader audience, the applications of a fast and stable solution method
for the projection problem (4) extends well beyond judging membership con-
straints and reporting errors. The solution itself, the projection of v0 onto
Kexp denoted as [v0]Kexp , is useful for first-order feasibility seeking methods and
heuristics [2, 14]. Moreover, this solution gives rise to a supporting hyperplane
for the exponential cone with maximal separation of the given point and finds
use, e.g., in incremental constructions of outer approximations [9].

Previous work on the projection problem (4) is given by the analysis of [15],
printed in 2013 with an implementation attached to its online material, and an
undocumented function in SCS [14] tracing back to 2013 also.

The work of [15] propose closed-form solutions for a subset of inputs to the
projection problem (4)—which are all restated with proof in Section 3—as well
as necessary optimality conditions for the remaining set of points to be solved
by Newton’s method. These conditions are not sufficient, however, due to a lack
of nonnegativity on their dual multiplier, λ, allowing solutions such as(

t0
s0
r0

)
=

(
exp(3)+1

2 exp(3)+1
3−exp(3)

)
,
(
t
s
r

)
=
(

exp(3)
1
3

)
, λ = −1,

which suggest a projection distance of≈45. In comparison, the heuristic solution
(s0 exp(r0/s0), s0, r0) is only at distance ≈6. Whether this relaxation can be
justified algorithmically is outside the scope of this paper, but it does seem
as if the starting point they use, found in online material, is always in the
convergence region of the correct solution with λ > 0. The uncertainty of
correctness, combined with the stated intention of code to be pedagogical, not
performant, nevertheless strongly suggest improvements to be possible.

3

The undocumented work of [14] is harder to assess, but can be observed to
solve the projection problem (4) by iteratively applying Newton’s method to
solve a converging series of univariate root-finding subproblems. In particular,
this series of subproblems are parameterized by a single argument, and the
solution of each subproblem is used to determine if the given argument was too
big or too small. This allows bisection strategies to locate the correct argument
value and, in turn, obtain the final solution.

In the remainder of this paper, the projection problem (4) is simplified to
a single univariate root-finding problem, in no obvious relation to the series of
problems solved in [14], and solved by numerical methods. The basic theory is
covered in Section 2, along with results for how to solve other variants (namely,
orthogonal transformations) of the projection problem. Subsequent analysis
leads to closed-form solutions in Section 3 and the univariate root-finding prob-
lem in Section 4. Finally, the ingredients for a fast and numerically stable
algorithm is discussed in Section 5, leading to a proof-of-concept implementation
for which the computational experiences are reported in Section 6.

2 Optimality conditions

The Moreau decomposition theorem [10] elegantly states that if a point is
written as a sum of two orthogonal components belonging to a primal-polar pair
of non-empty closed convex cones, then these components are the respectively
projections of that point onto the pair of cones. Applied to the exponential
cone, this means that the projection problem (4) has optimal solution v? = vp,
with objective value d(v0) = ‖vd‖2, in terms of the unique feasible solution to
the Moreau system

v0 = vp + vd, vp ∈ Kexp, vd ∈ K◦exp, vTp vd = 0, (6)

where K◦exp is the polar form of the exponential cone (2). Using [4, Theorem
4.3.3], this polar cone can be formulated as the union

K◦exp := cl([K◦exp]++) = [K◦exp]++ ∪ [K◦exp]0, (7)

joining the two sets

[K◦exp]++ =
{

(t, s, r) ∈ R3 | r > 0, (−e)t ≥ r exp
(
s
r

)}
,

and [K◦exp]0 =
{

(t, s, r) ∈ R3 | r = 0, (−e)t ≥ 0, s ≤ 0
}
,

(8)

where e = exp(1). To the curious reader, note that the Moreau conditions (6)
are merely an easily understood and elegant reformulation of the first-order KKT
conditions for the projection problem (4), resembling Lagrangian stationarity,
primal feasibility, dual feasibility and complementarity.

As previously stated, the Moreau conditions (6) solves not only the projection
problem onto the exponential cone, but also the projection problem onto its

4

polar cone. Moreover, due to invariance of the Moreau system to orthogonal
transformations H ∈ R3x3, we see that any solution triplet (v0, vp, vd) projecting
onto Kexp and K◦exp, can be transformed to a solution triplet (Hv0, Hvp, Hvd)
projecting onto HKexp and (HKexp)◦ = HK◦exp. This property empowers any
algorithm solving the projection problem (4), to also solve a host of related
projection problems. To be concrete, consider a solution to (6) such as(

t0
s0
r0

)
=

(
exp(1)−1

1
exp(1)+1

)
,
(tp
sp
rp

)
=
(

exp(1)
1
1

)
,
(
td
sd
rd

)
=
(−1

0
exp(1)

)
, (9)

from which we know that vp is the projection of v0 onto the primal cone, Kexp,
and vd is the projection of v0 onto the polar cone, K◦exp. In other words,[(

exp(1)−1
1

exp(1)+1

)]
Kexp

=
(

exp(1)
1
1

)
and

[(
exp(1)−1

1
exp(1)+1

)]
K◦

exp

=
(−1

0
exp(1)

)
.

Since dual cones can be defined from polar cones by the transformation H = −I,
i.e., K∗exp = HK◦exp, we can use this result to derive that[

−
(

exp(1)−1
1

exp(1)+1

)]
K∗

exp

= −
(−1

0
exp(1)

)
.

Furthermore, since the relative entropy cone is given by Klog = HKexp, where

H =
(

0 0 −1
0 1 0
1 0 0

)
, we may also derive that[(

− exp(1)−1
1

exp(1)−1

)]
Klog

=
(−1

1
exp(1)

)
.

In general, one can compute the projection of v0 onto any primal-polar pair,
HKexp and HK◦exp, by first projecting HT v0 onto Kexp and K◦exp, and then
returning Hvp and Hvd as the solution.

3 Closed-form solutions

A simple trick to force out closed-form solutions to the Moreau system (6), is to
strengthen the complementarity condition, vTp vd = 0, to the elementwise zero
condition tp · td = sp · sd = rp · rd = 0. Given the readily available sign relations
in the exponential cone (2) and its polar (7), namely

tp ≥ 0, rp free, sp ≥ 0, and [tp = 0]⇒ [sp = 0]⇒ [rp ≤ 0],
td ≤ 0, rd ≥ 0, sd free, and [td = 0]⇒ [rd = 0]⇒ [sd ≤ 0],

this is achieved under the condition

[tp = 0] or [td = 0] or [sp = 0] or [rd = 0] or [sd ≤ 0 and rp ≤ 0]. (10)

5

Formally, as is left for the reader to verify, the relation is given by

[vTp vd = 0] and (10) ⇐⇒ [tp · td = sp · sd = rp · rd = 0]. (11)

With the elementwise zero condition in place, the Moreau system (6) can now
be shown to imply the projection rules stated in [15].

Theorem 3.1. The Moreau system (6) is solved in satisfaction of condition
(10) if and only if it is found by one of the following projection rules.

1. If v0 ∈ Kexp, then vp = v0 and vd = 0.

2. If v0 ∈ K◦exp, then vp = 0 and vd = v0.

3. If r0 ≤ 0 and s0 ≤ 0, then vp =
(
[t0]+, 0, r0

)
and vd =

(
[t0]−, s0, 0

)
.

Proof. All solutions above satisfy conditions (6) and (10). Hence, to complete
the proof, assume (10) to hold such that tTp td = sTp sd = rTp rd = 0 by (11).

• Case td = 0 (implies rd = 0) and sd = 0: The Moreau system reduces to
(t0, s0, r0) = (tp, sp, rp) ∈ Kexp covered by rule 1.

• Case td = 0 (implies rd = 0) and sp = 0: The Moreau system reduces to
t0 = tp ≥ 0, s0 = sd ≤ 0 and r0 = rp ≤ 0 covered by rule 3.

• Case tp = 0 (implies sp = 0) and rd = 0: The Moreau system reduces to
t0 = td ≤ 0, s0 = sd ≤ 0 and r0 = rp ≤ 0 covered by rule 3.

• Case tp = 0 (implies sp = 0) and rp = 0: The Moreau system reduces to
(t0, s0, r0) = (td, sd, rd) ∈ K◦exp covered by rule 2.

Note that the projection rules are not disjoint in the sense that membership
v0 ∈ [Kexp]0 covered by rule 1 (resp. v0 ∈ [K◦exp]0 covered by rule 2), are also
covered by the third projection rule.

4 The univarite root-finding problem

Let v0 ∈ F denote the set of points not covered by the projection rules of
Theorem 3.1. That is, points for which the solution to the Moreau system (6)
violates condition (10), and thus instead must satisfy

[tp > 0] and [td < 0] and [sp > 0] and [rd > 0] and [sd > 0 or rp > 0]. (12)

This allows one to simplify the Moreau system (6) in a long series of steps,
omitted here due to the end-result being independently provable. The essence
of the derivation is based on the fact that, in general, the Moreau system (6)
allows for the dual feasibility and complementary constraints to be combined as
a single normal cone constraint. In our case, this is given by

vd ∈ K◦exp ∩ v⊥p = NKexp
(vp),

6

where NKexp(vp) is the cone of normal vectors to Kexp at the point vp. Given
the simplifying nature of (12), and the characterization of normal cones in [17,
page 283] for sets of the form {x ∈ Rn | g(x) ≤ 0} generated by proper convex
functions, the following results can be obtained.

Lemma 4.1. The Moreau system (6) is satisfied by all solutions to the following
reduced system,

t0 = tp + td, sp > 0, rd > 0,

using substitutions

vp = (tp, sp, rp) = (exp(ρ), 1, ρ) sp, sp = (ρ−1)r0+s0
ρ2−ρ+1 ,

vd = (td, sd, rd) = (− exp(−ρ), 1− ρ, 1) rd, rd = r0−ρs0
ρ2−ρ+1 ,

depending solely on the primal ratio, ρ =
rp
sp

= 1− sd
rd

.

Proof. By inspection. For instance, vTp vd = −sprd + sp(1 − ρ)rd + ρsprd = 0
verifies complementarity in the Moreau system (6).

Theorem 4.2. Assuming v0 ∈ F , solving the Moreau system (6) is equivalent
to finding the unique root of the function

h(ρ) =
(ρ− 1)r0 + s0

ρ2 − ρ+ 1
exp(ρ)− r0 − ρs0

ρ2 − ρ+ 1
exp(−ρ)− t0,

on the nonempty strict domain, l < ρ < u, given by

l =

{
1− s0/r0 if r0 > 0,

−∞ otherwise,
and u =

{
r0/s0 if s0 > 0,

∞ otherwise,

and the transformations to/from the root ρ (i.e., the primal ratio) and the pair
of projections (vp, vd) are as stated in Lemma 4.1.

Proof. Compared to the reduced system of Lemma 4.1, note that a root satisfies
h(ρ) = tp + td − t0 = 0, as well as the bounds [sp > 0] ⇔ [(ρ− 1)r0 + s0 > 0]
and [rd > 0]⇔ [r0 − ρs0 > 0] expanding, respectively, to

ρ > 1− s0/r0 if r0 > 0,

ρ < 1− s0/r0 if r0 < 0,

s0 > 0 if r0 = 0,

and


ρ < r0/s0 if s0 > 0,

ρ > r0/s0 if s0 < 0,

r0 > 0 if s0 = 0,

where the last two cases of each expansion can be ignored. Specifically, the last
is a tautology, [r0 = 0] ⇒ [s0 > 0] and [s0 = 0] ⇒ [r0 > 0] on v0 ∈ F , and the
second is dominated; [r0 < 0] ⇒ [s0 > 0] whereby r0/s0 < 1 − s0/r0 holds for
the two upper bounds, and [s0 < 0]⇒ [r0 > 0] whereby 1− s0/r0 > r0/s0 holds
for the two lower bounds. By Lemma 4.1, a root of h(ρ) is thus a solution to the
Moreau system (6). By uniqueness of projection, it hence suffices to show that

7

h(ρ) always has a unique root on l < ρ < u for all v0 ∈ F . This is a consequence
of h(ρ) being smooth, strictly increasing and changing sign on this particular
domain as shown next in Theorem 4.5.

The next theorem, following two minor analytic results, characterize important
properties of h(ρ) that are both essential to the proof of Theorem 4.2 and of
great benefit to the development of root-finding algorithms for this function.

Lemma 4.3. If s0 > 0, then [h(u) ≤ 0]⇔ [v0 ∈ Kexp] for u = r0/s0.

Proof. Shown by h(u) = s0 exp(u)− t0 whereby [h(u) = 0]⇔ [v0 ∈ bd
(
Kexp

)
],

using both ((u − 1)r0 + s0)/(u2 − u + 1) = s0 and (r0 − us0) = 0 to simplify.
This characterizes all roots of h(u) as a function of v0. The claim hence follows
from decreasing t0 which exits Kexp and increases h(u).

Lemma 4.4. If r0 > 0, then [h(l) ≥ 0]⇔ [v0 ∈ K◦exp] for l = 1− s0/r0.

Proof. Shown by h(l) = −r0 exp(−l)−t0 whereby [h(l) = 0]⇔ [v0 ∈ bd
(
K◦exp

)
],

using both ((l− 1)r0 + s0) = 0 and (r0 − ls0)/(l2 − l+ 1) = r0 to simplify. This
characterizes all roots of h(l) as a function of v0. The claim hence follows from
increasing t0 which exits K◦exp and decreases h(l).

Theorem 4.5. Assuming v0 ∈ F , the function h(ρ) is smooth, changing sign
and strictly increasing on the domain, l < ρ < u, specified by Theorem 4.2.

Proof. The function h(ρ) is

(i) smooth, because it can be stated as a quotient of smooth functions plus a
constant, h = f

g −t0, with positive denominator g = ρ2−ρ+1 ≥ 3/4 for all

ρ ∈ R. It follows that the derivate, h′ = (f ′g+fg′)/g2, is a quotient of two
smooth functions with positive denominator and the argument repeats.

(ii) changing sign, because h(ρ) → ∞ for ρ → ∞ by dominant term exp(ρ)
with positive coefficient, and h(ρ)→ −∞ for ρ→ −∞ by dominant term
exp(−ρ) with negative coefficient. If s0 > 0, then h(ρ) is strictly positive
already at ρ = u by Lemma 4.3. Likewise, if r0 > 0, then h(ρ) is strictly
negative already at ρ = l by Lemma 4.4.

(iii) strictly increasing, because strict decrease and repeating function values
can both be ruled out. The former by results shown in (ii), the latter
since h(ρ1) = h(ρ2) = h̃, for a pair of arguments, l < ρ1 < ρ2 < u, implies
h(ρ1) = h(ρ2) = 0 for the perturbed parameter ṽ0 = (t0 + h̃, s0, r0). Under
this perturbation the reduced system of Lemma 4.1 would thus be satisfied
by two distinct values of ρ, yielding two distinct solutions to the Moreau
system (6), which contradicts uniqueness in the projection of ṽ0.

8

5 Solution techniques

If a given instance of the projection problem (4) is not solved in presolve via
the projection rules of Theorem 3.1, it can be solved by finding the unique root
of the function h(ρ) as demonstrated in Theorem 4.2. Although root-finding
can be hard in general, Theorem 4.5 showed us that h(ρ) is both smooth and
strictly increasing within the bracket of interest, l < ρ < u, making solutions
methods much easier to craft. Moreover, as will be shown in Section 5.2, this
bracket can always be strengthen to a finite range by simple preprocessing steps,
further expanding the design space of solutions methods. This paper makes no
effort to compare the multitude of root-finding approaches, nor argue for one
over the other. Instead, the richness of the subject is underlined.

To start out, a solution method can be based on a wide variety of search
techniques including bisection, regula falsi [6], and Newton’s method [1]. These
three techniques request an increasing level of information from left to right,
stepping from function value sign attributes, to function values, and up to
function derivatives. Higher-order information has the potential to give higher
convergence rates near the root, but must be balanced against the increased
computational cost of each iteration and the added sensitivity to computational
errors affecting the quality of this information.

One step further, methods can be combined in a ramp-up strategy where one
starts from a stable method (e.g., bisection) and only switch to more aggressive
methods if improved convergence rates are guaranteed (e.g., via the Kantorovich
theorem or similar convergence tests for the Newton method [8]). A ramp-down
strategy is similarly possible, in which aggressive methods are attempted until
iteration limits or numerical criteria triggers a switch to methods that are less
sensitive to computational errors. It is not cut in stone either that h(ρ) is the
best function to work on as, e.g., f(ρ) = h(ρ)g(ρ), given g(ρ) = ρ2−ρ+1 ≥ 3/4
for all ρ ∈ R, allow all higher-order derivatives to be computed at the same cost
as the function itself.

For the purpose of this paper, it suffices to show two results of significance
to the success of said solution methods. In Section 5.1 we present a short list of
heuristics solutions and show show their effectiveness in handling roots outside
the numerical range of the exponential function. Then, in Section 5.2, we show
that the weak bracket, l < ρ < u, can be strengthened to a finite (and often
tight) range around the root in a simple preprocessing step. This is instrumental
to the convergence of bisection methods and to the construction of initial guesses
used, e.g., in Newton’s method.

5.1 Heuristic solutions

For any point not covered by the projection rules of Theorem 3.1, i.e., v0 ∈ F ,
the Moreau system (6) can still be satisfied with limited error—solely affecting
the stationarity condition—by perturbing it to a neighbor, v0 + ∆v, where the
closed-form solution is known. This technique leads directly to the following
heuristic solution pairs.

9

Lemma 5.1. Let v0 ∈ F and consider the projection rules of Theorem 3.1.

1. If s0 > 0, one may increase t0 until the first rule applies. This gives the
heuristic solution pair

ṽp =
(

max(t0, s0 exp(r0/s0)), s0, r0

)
∈ Kexp, ṽd = 0 ∈ K◦exp.

2. If r0 > 0, one may decrease t0 until the second rule applies. This gives
the heuristic solution pair

ṽp = 0 ∈ Kexp, ṽd =
(

min(t0,−r0 exp(s0/r0 − 1)), s0, r0

)
∈ K◦exp.

3. One may always decrease s0 and r0 until the third rule applies. This gives
the heuristic solution pair

ṽp = ([t0]+, 0, [r0]−) ∈ Kexp, ṽd = ([t0]−, [s0]−, 0) ∈ K◦exp.

The list of heuristic solutions above is not complete by any means, and can be
extended in a number of ways.

First of, while the third rule is based on the actual projection onto the
set R × R2

− of points that it cover, rule 1 and rule 2 are not. In particular,
they just follow an arbitrary interior point direction given, respectively, as
(1, 0, 0) ∈ int(Kexp) and (−1, 0, 0) ∈ int(K◦exp), until the set of points they
cover is reached. Any other interior point could be used instead.

Secondly, by scaling invariance in the Moreau system (6), each and every
symbolic solution for some v0, such as (9), can be turned into a projection rule
covering all points in the conic hull of this v0. Projection onto these rays further
adds to the list of heuristic solution pairs.

What can be said about the particular selection of heuristics in Lemma 5.1 is
that they appear to work well in practice to overcome numerical challenges.
Taking v0 = (8,−8, 0.01) ∈ F as example, the function h(ρ) exhibits an large
root bounded from below by ρ > l = 1 − s0/r0 = 801. To be clear, this is way
beyond the finite range of the exponential function exp(ρ), used in h(ρ), when
evaluated in standard IEEE 64-bit floating-point arithmetic. Fortunately, by
choice of ṽp = (t0, 0, [r0]−) ∈ Kexp and ṽd = (−r0 exp(s0/r0− 1), s0, r0) ∈ K◦exp,
the Moreau system errors for this pair turn out to be

‖ṽp + ṽd − v0‖2 = |t̃d| ≈ 10−350, and |ṽTp ṽd| = |t0td| ≈ 10−349, (13)

which solves the problem for all practical purposes. Interestingly, all pairs
(ṽp, ṽd) as they are listed in Lemma 5.1 yield much larger errors, and it is
only by mixing the argmin of ‖ṽp − v0‖2 with the argmin of ‖ṽd − v0‖2 over all
candidates, that a practical solution is produced.

While the formal reasoning behind the seemingly general effectiveness of
these heuristics to solve numerically challenging instances is not yet established,

10

the intuitive answer is clear. When the lower bracket is high, the rate of change
in h(ρ)—powered by exp(ρ)—is enormous and the constant offset, t0, is easily
covered by extremely tiny steplengths from l. It is thus reasonable to believe
that the observation is an effect of the fact that vd tends to the above applied
heuristic solution vd → ṽd = (−r0 exp(s0/r0 − 1), s0, r0) for ρ → l. Analogous
arguments can be applied to the equivalent example, v0 = (−8, 0.01,−8) ∈ F ,
acting on the opposite end of the spectrum where ρ < u = r0/s0 = −800.

5.2 Bracket strengthening

The search bracket l < ρ < u given by Theorem 4.2 may be infinitely wide
which can be problematic to convergence analysis and the design of effective
search methods. Fortunately, this issue can be solved.

The ”just get it working” approach to finite brackets is exponential jump
search which is so simple it can be explained by example. If one were to find an
upper bound to the root of a monotonic increasing functions such as h(ρ), start
at any value and iteratively double the stepsize, h(ρ̃ + 2p) for p = {0, 1, . . .},
until the function becomes positive. At this point the argument overstepped
the root and therefore bound it from above.

A more analytical approach would require a thorough investigation of h(ρ),
e.g., using under- and overestimators. In this section, however, we shall make a
small detour and exploit that the terms of the function actually has meaning,
i.e., h(ρ) = tp + td − t0 as described by Lemma 4.1, and bound the terms tp
and td directly using the underlying projection problems. Bounds for ρ are then
derived in subsequent steps.

Lemma 5.2. The epigraph variables of a solution to the Moreau system (6) are
bounded according to

[t0]+ ≤ tp ≤ min (∆d, ∆p + t0) ,
−[t0]− ≤ −td ≤ min (∆p, ∆d − t0) ,

where

∆p =
√
‖ṽp − v0‖22 − [s0]2−, ∆d =

√
‖ṽd − v0‖22 − [r0]2−,

for any choice of ṽp ∈ Kexp and ṽd ∈ K◦exp.

Proof. The bounds ∆p + t0 and ∆d − t0 are found by the pair of relations√
(tp − t0)2 + [s0]2− ≤ ‖vp − v0‖2 ≤ ‖ṽp − v0‖2,√
(t0 − td)2 + [r0]2− ≤ ‖vd − v0‖2 ≤ ‖ṽd − v0‖2,

where [s0]− is included to tighten the former, using sp ≥ 0 on Kexp, as is [r0]−
in the latter using rd ≥ 0 on K◦exp. The rest is found by bound propagation on
t0 = tp + td, where tp > 0 and −td > 0 by cone definitions (2) and (7).

11

With this information at hand, we now derive a set of under- and overestimators,
e.g., tp(ρ) ≤ tp(ρ) ≤ tp(ρ) for all l < ρ < u, that are simple enough to provide
us with closed-form bound expressions to strengthen the bracket. The first pair
of estimators preserve the exponential growth, by instead replacing its linear-
over-quadratic coefficient by a constant.

Corollar 5.3. Assuming v0 ∈ F , an overestimator of tp is given by

tp =
(ψp − 1)r0 + s0

ψ2
p − ψp + 1

exp(ρ), ψp =

{
1/2 if r0 = 0,
r0−s0+

√
r20+s20−r0s0
r0

otherwise.

Proof. Given exp(ρ) > 0, the constant ψp is simply chosen as the unconstrained

argmax of (ρ−1)r0+s0
ρ2−ρ+1 . Its value can be improved by also considering the bracket,

l < ρ < u, but we forego this optimization for simplicity of proofs.

Corollar 5.4. Assuming v0 ∈ F , an underestimator of td is given by

td = − r0 − ψds0

ψ2
d − ψd + 1

exp(−ρ), ψd =

{
1/2 if s0 = 0,
r0−
√
r20+s20−r0s0
s0

otherwise.

Proof. Given − exp(−ρ) < 0, the constant ψd is simply chosen as the uncon-
strained argmax of r0−ρs0

ρ2−ρ+1 . Its value can be improved by also considering the
bracket, l < ρ < u, but we forego this optimization for simplicity of proofs.

The second pair of estimators preserves the position of the root (that is, tp(l) = 0
if r0 > 0, respective td(u) = 0 if s0 > 0), by keeping the linear expression and
instead replace its exponential-over-quadratic coefficient by a constant.

Corollar 5.5. Assuming v0 ∈ F , any choice of α ∈ R leads to an underestima-
tor of tp on the possibly reduced domain, l ≤ α < ρ < u, given by

tp = ωp(α)((ρ− 1)r0 + s0), ωp(α) =

{
ωp(α), if α ≥ 2

min(ωp(α), ωp(2)) otherwise,

where ωp(ρ) = exp(ρ)
ρ2−ρ+1 > 0.

Proof. Given (ρ− 1)r0 + s0 > 0 by definition of the bracket in Theorem 4.2, we
simply need ωp(α) to be an underestimator of ωp(ρ) on l ≤ α < ρ < u. This

follows from asymptotic increase, ωp(ρ) → ∞ for ρ → ∞, combined with the
fact that ωp(ρ) has exactly one local minimizer; the point ρ = 2. Numerical

evaluation shows the maximum relative error to be max
ρ∈R
|ωp(ρ)−ωp(ρ)

ωp(ρ) | ≈ 9%, so

the underestimator is fairly tight near α in general.

12

Corollar 5.6. Assuming v0 ∈ F , any choice of α ∈ R leads to an overestimator
of td on the possibly reduced domain, l < ρ < α ≤ u, given by

td = ωd(α)(r0 − ρs0), ωd(α) =

{
ωd(α), if α ≤ −1,

max(ωd(α), ωd(−1)), otherwise,

where ωd(ρ) = − exp(−ρ)
ρ2−ρ+1 < 0.

Proof. Given r0 − ρs0 > 0 by definition of the bracket in Theorem 4.2, we
simply need ωd(α) to be an overestimator of ωd(ρ) on l < ρ < α ≤ u. This
follows from asymptotic decrease, ωp(ρ)→ −∞ for ρ→ −∞, combined with the
fact that ωp(ρ) has exactly one local maximizer; the point ρ = −1. Numerical

evaluation shows the maximum relative error to be max
ρ∈R
|ωd(ρ)−ωd(ρ)

ωd(ρ) | ≈ 2%, so

the overestimator is fairly tight near α in general.

Finally we are able to show that bounds from Lemma 5.2 are sufficient to provide
us with finite bounds on ρ using the estimators above. Note that Corollar 5.3
and Corollar 5.4 are not needed to establish this fact, but we keep them here
because their contribution is only limited by the bounds of Lemma 5.2.

Theorem 5.7. Assuming v0 ∈ F , any choice of ṽp ∈ Kexp and ṽd ∈ K◦exp

(preferably close to v0) leads to a finite bracket around ρ. In particular,

(i) [t0 > 0]⇔ A finite lower bound is found by Corollar 5.3.

(ii) [t0 < 0]⇔ A finite upper bound is found by Corollar 5.4.

(iii) [r0 > 0] ⇔ A finite lower bound is found by Theorem 4.2. A finite upper
bound is found by Corollar 5.5.

(iv) [s0 > 0] ⇔ A finite lower bound is found by Corollar 5.6. A finite upper
bound is found by Theorem 4.2.

Proof. Let tlp ≤ tp ≤ tup and tld ≤ td ≤ tud denote the finite bounds of Lemma 5.2.
The statements are proven in order to show that a finite bracket can indeed be
constructed for all points v0 ∈ F .

(i) Corollar 5.3 gives tp = c exp(ρ) for a constant c > 0. A finite lower bound
can thus be derived, [tp ≥ tlp] ⇔ [−∞ < log(c−1tlp) ≤ ρ], under the

assumption tlp = [t0]+ > 0.

(ii) Corollar 5.4 gives td = −c exp(−ρ) for a constant c > 0. A finite upper
bound can thus be derived, [td ≤ tud] ⇔ [ρ ≤ − log(−c−1tud) < ∞],
under the assumption tud = [t0]− < 0.

(iii) Corollar 5.5 gives tp = c((ρ−1)r0+s0) for a constant c > 0. A finite upper

bound can thus be derived, [tp ≤ tup]⇔ [ρ ≤ 1 + r−1
0 (c−1tup − s0) <∞],

under the assumption r0 > 0.

13

(iv) Corollar 5.6 gives td = c(r0 − ρs0) for a constant c < 0. A finite lower
bound can thus be derived, [td ≥ tld] ⇔ [−∞ < s−1

0 (r0 − c−1tld) ≤ ρ],
under the assumption s0 > 0.

6 Implementation

A proof-of-concept implementation in the Julia programming language has been
made available online at github.com/HFriberg/projection. The code works
as described in Algorithm 1, and is generic in the floating-point type so users
can easily switch from the standard IEEE 64-bit type to any software emulated
higher-precision type available in Julia.

Algorithm 1: Projection of v0 onto the exponential cone

Data: v0 ∈ R3.
Result: Projections vp ∈ Kexp and vd ∈ K◦exp.

vp ← arg min ‖v0 − ṽp‖2 for ṽp in the primal heuristics of Lemma 5.1.
vd ← arg min ‖v0 − ṽd‖2 for ṽd in the polar heuristics of Lemma 5.1.

/* see if the projection rules of Theorem 3.1 are satisfied. */

if not
[
‖v0 − vp‖2 ≈ 0 or ‖v0 − vd‖2 ≈ 0 or [r0 ≤ 0 and s0 ≤ 0]

]
then

/* see if the Moreau system (6) is nearly satisfied to counter

numerical difficult examples such as in (13). */

if not
[‖vp + vd − v0‖ ≈ 0 and vTp vd ≈ 0

]
then

(ρl, ρu)← finite bracket from bounds of Theorem 5.7.
// computed using α = l in Corollar 5.5 and α = u in Corollar 5.6.

ρ← root of the function h(ρ) from Theorem 4.2 on ρl ≤ ρ ≤ ρu.
// computed using Newton’s method with dampened boundary steps,

switching to binary search if not converged in 20 iterations.

vp ← arg min ‖v0 − ṽp‖2 for ṽp ∈ {vp, vp(ρ) from Lemma 4.1}.
vd ← arg min ‖v0 − ṽd‖2 for ṽd ∈ {vd, vd(ρ) from Lemma 4.1}.

To test the performance and reliability of the proposed implementation, a
benchmark consisting of 853 points is assembled to span the expected numerical
range of inputs from 1e-9 to 1e9. That is,

v0 = (t0, s0, r0) ∈ (−I ∪ {0} ∪ I)3,

for I = {exp(x) | x ∈ {−20,−19 . . . , 20, 21}}

On an ordinary office laptop from 2019—equipped with an Intel Core i5-
8265U CPU @ 1.60GHz—running the Generic Linux distribution of Julia v.1.5.3
in single-threaded mode, it performs around 175’000 projections per second
(around 5.7e-6 seconds each) on average over this benchmark set. In terms of

14

github.com/HFriberg/projection

quality, the Moreau system (6) was satisfied with maximum relative errors on
stationarity and complementarity given by

‖vp + vd − v0‖2
max(1, ‖v0‖2)

≈ 1.1e-8, and
|vTp vd|

max(1, ‖v0‖2)
≈ 1.5e-7,

which is considered acceptable. In comparison, switching to the Float128 type
from Quadmath.jl, which is a software emulated 128-bit floating-point type
based on the GCC Quad-Precision Math Library API, this improves to

‖vp + vd − v0‖2
max(1, ‖v0‖2)

≈ 4.2e-14, and
|vTp vd‖2

max(1, ‖v0‖2)
≈ 1.2e-19,

at one order of magnitude increase in time. In both cases, the set membership
conditions of the Moreau system (6) are satisfied to working precision by design,
as can be verified by how points are constructed.

7 Conclusion

The proposed implementation is good enough for most practical purposes in
terms of speed and quality, and its precision can be made arbitrarily high by
switching to other floating-point types in the Julia language. Yet, there are still
many opportunities left to improve the algorithm.

The bracket strengthening techniques of Section 5.2 are chosen for simplicity
over performance and can obviously be improved in a number of ways, but the
real question is whether we can do so without making the overall projection
algorithm slower? In particular, what level of complexity in bound computations
strike the right balance for a fast implementation?

Moreover, in preparation of the proposed implementation, the author only
tried one solution method for the root-finding problem—a basic implementa-
tion of Newton’s method with fallback to binary search—and so it is likely
that tweaks (or entirely different approaches) exists to improve performance.
Hopefully, further work will reveal such optimizations.

15

References
[1] D. K. Babajee and M. Z. Dauhoo. An analysis of the properties of the variants of Newton’s

method with third order convergence. Applied Mathematics and Computation, 183(1):659–
684, 2006. ISSN 00963003. doi: 10.1016/j.amc.2006.05.116.

[2] H. H. Bauschke and V. R. Koch. Projection methods: Swiss army knives for solving feasibility
and best approximation problems with halfspaces. Contemporary mathematics, 636:1–40,
2015. URL http://arxiv.org/abs/1301.4506.

[3] V. Chandrasekaran and P. Shah. Relative entropy optimization and its applications, volume
161. Springer Berlin Heidelberg, 2017. ISBN 1010701609982. doi: 10.1007/s10107-016-0998-2.

[4] P. R. Chares. Cones and Interior-Point Algorithms for Structured Convex Optimization
involving Powers and Exponentials. PhD thesis, 2009.

[5] J. Dahl and E. D. Andersen. A primal-dual interior-point algorithm for nonsymmetric
exponential-cone optimization. 2019.

[6] S. Galdino. A family of regula falsi root-finding methods. Proceedings of 2011 World Congress
on Engineering and Technology, 2011.

[7] F. Glineur. Conic optimization: an elegant framework for convex optimization. Belgian
Journal of Operations Research Statistics and Computer Science, 41(1-2):5–28, 2001. URL
http://perso.uclouvain.be/francois.glineur/oldwww/Papers/Jorbel01.pdf.

[8] G. Lecerf and J. Saadé. A Short Survey on Kantorovich-Like Theorems for Newton’s Method.
ACM Commun. Comput. Algebra, 50(1):1–11, 2016. ISSN 1932-2240. doi: 10.1145/2930964.
2930965. URL http://doi.acm.org/10.1145/2930964.2930965.

[9] M. Lubin, E. Yamangil, R. Bent, and J. P. Vielma. Extended Formulations in Mixed-integer
Convex Programming. In Integer Programming and Combinatorial Optimization: 18th
International Conference, pages 102–113. Springer International Publishing, 2016.

[10] J. J. Moreau. Décomposition orthogonale d’un espace Hilbertien selon deux cônes mutuellement
polaires. C. R. Acad. Sci Paris, 255:238–240, 1962.

[11] Mosek APS. Optimization software. http://www.mosek.com.

[12] Mosek APS. The MOSEK Modeling Cookbook. Freely available at http://www.mosek.com,
2018.

[13] Y. E. Nesterov. Constructing self-concordant barriers for convex cones. CORE Discussion
Paper, (2006/30), 2006. ISSN 1556-5068. doi: 10.2139/ssrn.921790.

[14] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic Optimization via Operator Splitting
and Homogeneous Self-Dual Embedding. Journal of Optimization Theory and Applications,
169(3):1042–1068, 2016. ISSN 15732878. doi: 10.1007/s10957-016-0892-3.

[15] N. Parikh and S. Boyd. Proximal Algorithms. Foundations and Trends in Optimiza-
tion, 1(3):123–231, 2013. ISSN 2167-3888. doi: 10.1561/2400000003. Online material:
https://github.com/cvxgrp/proximal.

[16] F. Permenter, H. Friberg, and E. Andersen. Solving conic optimization problems via self-dual
embedding and facial reduction: A unified approach. SIAM Journal on Optimization, 27(3),
2017. ISSN 10526234. doi: 10.1137/15M1049415.

[17] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970. ISBN 978-0691015866.

[18] S. A. Serrano. Algorithms for unsymmetric cone optimization and an implementation for
problems with the exponential cone. PhD thesis, Stanford University, 2015.

16

http://arxiv.org/abs/1301.4506
http://perso.uclouvain.be/francois.glineur/oldwww/Papers/Jorbel01.pdf
http://doi.acm.org/10.1145/2930964.2930965

	Introduction
	Optimality conditions
	Closed-form solutions
	The univarite root-finding problem
	Solution techniques
	Heuristic solutions
	Bracket strengthening

	Implementation
	Conclusion

