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Mixed-Integer Conic Optimization

We consider problems of the form

minimize ¢’ x

subjectto Ax=b
xeXN (ZPXR’H”),

where K is a convex cone.

Typically, K = K1 x Ky x -+ x Kk is a product of
lower-dimensional cones - so-called conic building blocks.



What is MOSEK ?

MOSEK is a software package for large-scale (Mixed-Integer)
Conic Optimization.

conic-qp
(SOCP)

exponential
cones




Symmetric cones (supported by MOSEK 8)

e the nonnegative orthant

RY :={xeR"|x;>0,j=1,...,n},

the quadratic cone

Q"={xeR"|x > (X22+-~-+x,2,)1/2},

the rotated quadratic cone
Q= {x €R" | 2x13x0 > 5§ +...x2, x1,x2 > 0}.

the semidefinite matrix cone

8" = {x e R""/2 | zTmat(x)z > 0, Vz},
X1 x2/V2 L xa/V2
X/V2  Xpi1 ce Xono1/V2

with mat(x) :=

Xn/\/i X2n71/\[2 <o Xn(nt1)/2



Quadratic cones in dimension 3




Non-symmetric cones (in next MOSEK release)

e the three-dimensional power cone
« 3 a (1-a)
P = {x e B | x5 > |, 1,2 > 0},

for0<a<l1.
e the three-dimensional exponential cone

Kexp = cl{x € R3 | x1 > xp exp(x3/x2), xo > 0}.

Interior-point methods for non-symmetric cones are less studied,
and less mature.
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The beauty of Conic Optimization

In continuous optimization, conic (re-)formulations have been
highly advocated for quite some time, e.g., by Nemirovski [13].

e Separation of data and structure:

e Data: ¢, A and b.
e Structure: K.

e Structural convexity.
e Duality (almost...).

e No issues with smoothness and differentiability.

We call modeling with the aforementioned 5 cones extremely
disciplined convex programming: “Almost all convex constraints
which arise in practice are representable by using these cones.”



Cones in Mixed-Integer Optimization

Lubin et al. [11] show that all convex instances (333) in
MINLPLIB2 are conic representable using only 4 types of cones.

The exploitation of conic structures in the mixed-integer case is
slightly newer, but nonetheless an active research area:

e MISOCP:
e Extended Formulations: Vielma et al. [14].
e Cutting planes: Andersen and Jensen [1], Kiling-Karzan and
Yildiz [9], Belotti et al. [2], ...
e Primal heuristics: Cay, Pélik and Terlaky [5].

e Duality: Moran, Dey and Vielma [12].
o Outer approximation: Lubin [10].



Mixed-integer optimization in MOSEK

¢ MOSEK allows mixed-integer variables in combination with
the linear, the conic-quadratic, the exponential and the power
cones.

e Applies a branch-and-cut/branch-and-bound framework.
e Preliminary work in case of the non-symmetric cones.

e Tested on mixed-integer exp-cone instances from CBLIB by
Miles Lubin.



Mixed-integer exponential-cone instances |

Successfully solved instances

Time Obj. value # nodes
syn40mO04h 6.58 -901.75 476
syn40mO03h 231 -395.15 276
syn40m02h 0.43 -388.77 14
syn40h 0.19 -67.713 16
syn30m04h 3.27 -865.72 450
syn30m03h 1.11 -654.16 165
syn30m02m 1091.4 -399.68 348085
syn30m02h 0.44 -399.68 58
syn30m 9.98 -138.16 7849
syn30h 0.13 -138.16 11
syn20m04m 1833.48 -3532.7 534769
syn20m04h 0.55 -3532.7 27
syn20m03m 300.47 -2647 118089
syn20mO03h 0.37 -2647 25
syn20m02m 28.21 -1752.1 14321
syn20m02h 0.19 -1752.1 11
syn20m 0.63 -924.26 645
syn20h 0.09 -924.26 11
syn15m04m 16.59 -4937.5 5567
syn15m04h 0.33 -4937.5 7
syn15m03m 4.77 -3850.2 1907
syn15m03h 0.19 -3850.2 5
syn15m02m 1.24 -2832.7 751
syn15m02h 0.11 -2832.7 5
synlbm 0.12 -853.28 85
synl5h 0.04 -853.28 3
syn10m04m 2.99 -4557.1 1983
syn10mO04h 0.16 -4557.1 5
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Mixed-integer exponential-cone instances ||

Successfully solved instances

syn10m03m 1.13 -3354.7 923
syn10m03h 0.11 -3354.7 5
syn10m02m 0.36 -2310.3 409
syn1l0m02h 0.08 -2310.3 5
synlOm 0.05 -1267.4 31
synlOh 0 -1267.4 0
syn05m04m 0.17 -5510.4 45
syn05m04h 0.06 -5510.4 3
syn05m03m 0.09 -4027.4 33
syn05m03h 0.04 -4027.4 3
syn05m02m 0.06 -3032.7 23
syn05m02h 0.03 -3032.7 3
syn05m 0.02 -837.73 11
syn05h 0.02 -837.73 5
rsyn0840m04h 39.28 -2564.5 2197
rsyn0840mO03h 15.34 -2742.6 1577
rsyn0840m02h 1.56 -734.98 149
rsyn0840h 0.27 -325.55 19
rsyn0830m04h 29.9 -2529.1 2115
rsyn0830mO03h 8.3 -1543.1 935
rsyn0830m02h 2.38 -730.51 299
rsyn0830m 227.14 -510.07 99495
rsyn0830h 0.44 -510.07 117
rsyn0820m04h 10.59 -2450.8 635
rsyn0820mO03h 18.16 -2028.8 2079
rsyn0820m02h 3.35 -1092.1 510
rsyn0820m 110.08 -1150.3 58607
rsyn0820h 0.46 -1150.3 145
rsyn0815m04h 5.79 -3410.9 587
rsyn0815m03h 7.37 -2827.9 866
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Mixed-integer exponential-cone instances |lI

Successfully solved instances

rsyn0815m02m 2345.68 -1774.4 567030
rsyn0815m02h 2.08 -1774.4 365
rsyn0815m 10.47 -1269.9 7059
rsyn0815h 0.36 -1269.9 238
rsyn0810m04h 6.95 -6581.9 677
rsyn0810m03h 4.95 -2722.4 740
rsyn0810m02m 1353.22 -1741.4 425403
rsyn0810m02h 1.15 -1741.4 159
rsyn0810m 8.31 -1721.4 9041
rsyn0810h 0.21 -1721.4 134
rsyn0805m04m 578.5 -7174.2 66975
rsyn0805m04h 1.92 -7174.2 101
rsyn0805m03m 186.01 -3068.9 37908
rsyn0805m03h 1.61 -3068.9 177
rsyn0805m02m 86.81 -2238.4 34126
rsyn0805m02h 0.87 -2238.4 201
rsyn0805m 3.16 -1296.1 4639
rsyn0805h 0.19 -1296.1 120

12/28



Mixed-integer exponential-cone instances

Timed-out instances

Time Obj. value # nodes
gams01 3600.0 22265 70232
rsyn0810m03m 3600.0 -2722.4 493926
rsyn0810m04m 3600.0 -6580.9 307231
rsyn0815m03m 3600.1 -2827.9 420782
rsyn0815m04m 3600.2 -3359.8 309729
rsyn0820m02m 3600.2 -1077.6 683356
rsyn0820m03m 3600.2 -1980.4 380611
rsyn0820m04m 3600.1 -2401.1 262880
rsyn0830m02m 3600.4 -705.46 568113
rsyn0830m03m 3600.2 -1456.3 368794
rsyn0830m04m 3600.1 -2395.7 206456
rsyn0840m 3600.3 -325.55 1157426
rsyn0840m02m 3600.5 -634.17 422224
rsyn0840m03m 3600.1 -2656.5 252651
rsyn0840m04m 3600.0 -2426.3 142895
syn30m03m 3600.2 -654.15 831798
syn30m04m 3600.2 -848.07 643266
syn40m02m 3600.2 -366.77 748603
syn40m03m 3600.3 -355.64 607359
syn40m04m 3600.2 -859.71 371521
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WIP: Exploiting conic structures in FP

For convex MINLP, two variants of the Feasibility Pump heuristic
have been proposed:
e A straightforward extension of the original scheme in [6] by
solving convex NLPs in the projection step [4].
e A similar extension with an additional elaboration of the
rounding step [3].

In this talk, we focus on the first variant:

algorithm: fp-convex
C:={x:Ax=b,x € K};
x* =argmin{c'x: x € C};
while not termination criterion do
if x* is integer then return x*;
X% = Round(x");
if cycle detected then Perturb(X);
x* =Project(X);

end
14 /28




WIP: Exploiting conic structures in FP (cont.) @

Two observations:
e When extending FP from linear to non-linear problems, we
cannot use the simplex algorithm any longer!
e FP is a successive-projection method, and it is usually quite
easy to project onto cones.

Idea: shift the satisfaction of conic constraints from the projection
step to the rounding step!

algorithm: fp-conic
P:={x:Ax=b,x. >0} /7 L={i:proj (K) =R}
x* =argmin{c'x: x € P};
while not termination criterion do
if x*eKn (ZP X R"f”) then return x™;
X = ConicRoundi(x");
if cycle detected then Perturb(X);
x* = Projectp(X);
end 15/28




WIP: Exploiting conic structures in FP (cont.)

Instead of generating a sequence {(x*, %)} in
C x (ZP X ]R(”’p)) ,
we try to generate one in

P x (/c N <Z” x R(”_p)>> .

Then we can solve the projections onto P as LPs, in particular we
can use warm-stars.

In turn, the procedure ConicRoundy(+) has to transform the point
x* into an integral point that additionally satisfies the conic
constraints.

This can be achieved by exploiting cone projections.
16 /28



Cone projections

When dealing with cones, it is often desirable to solve the
projection problem

p' = argmin{||x — pl|2 : x € £}
for some cone L C R" and a point p € R".

In some cases, this is possible analytically:
e If pe R and K = Ry, then p’ = max(0, p).
e If p=(t,s) e RxR" ! and K = Q" then

(t75)7 t> ||5H2
o4 - < - 1) (IIsll2,s) [sll2 <t <|s]l
= " . 2, y T 2 2
2 \[Isll2
0, t < —|sl|2.

e A symmetric matrix can be projected onto the semidefinite
cone analytically via its spectral decomposition. 17/28
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Cone projections (cont.)

For the exponential and power cones, the projection problem is at
most a univariate root-finding problem [8, 7].
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Combining rounding with cone projections

Note that every variable can belong to at most one cone!

In order to implement ConicRoundy(-), two ways are thinkable:

e Assume w.l.o.g. that {1,...,p} C L= {i: proj, (K) = R}.
Integer variables are rounded, continuous variables are
projected onto their cones.

e Apply S-preserving roundings.
Definition

Let S CR". We call a function r : R" — ZP x R("P) 3p
S-preserving rounding, iff r(S) C S.
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Combining rounding with cone projections (cont.) v

With such a rounding, each variable can first be projected onto its
cone, and then rounded, if necessary.

Example

IfS = Q" then r(x) = ([x], |x2],.--, Lx,,J)T is S-preserving.

However, the practical relevance of such roundings is unclear: most
variables belonging to non-linear cones are continuous.

Note that for the perturbation step, amendments similar to those
for the rounding step are desirable.
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Computation: MISOCP

fp-convex fp-conic
time F#it success time #it success
cb_robust (n=35) | 343 1.0 94.8% 1.0 230 73.8%
cb_shortfall (n=56) | 1.74 1.0 96.2% 1.0 454 56.7%
cb_classical (n=14) | 142 1.0 98.2% 1.0 291  60.5%

e Significant speed-ups can be observed.

e In some cases, numerical issues arising in fp-convex are
circumvented.

e In this basic version however, the advantages are not
consistent and seemingly limited to instances with few cones...
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Open issues

e fp-conic exhibits non-negligible convergence problems. Even
when the algorithm converges, it would be desirable to reduce
the number of iterations.

e Can ConicRoundi(-) be integrated with Outer-approximation
cuts?

e How does fp-conic behave when dealing with power or
exponential cones?

e How does fp-conic behave on hard instances?

23 /28
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Further information on MOSEK

e Documentation at
https://www.mosek.com/documentation/

e Manuals for interfaces.
e Modeling cook book.
o White papers.
e Examples
e Tutorials at GitHub:
https://github.com/MOSEK/Tutorials
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