

Power cones in second-order cone form and dual recovery

SIAM Conference on Optimization 2017

Henrik A. Friberg

www.mosek.com

Defined by parameter vector, $\alpha \in \mathbb{R}_+^k$, spanning:

• Quadratic cone:

$$\mathcal{P}_1^n = \{(x,z) \mid x_1^1 \ge ||z||_2\}$$

Defined by parameter vector, $\alpha \in \mathbb{R}_+^k$, spanning:

• Quadratic cone:

$$\mathcal{P}_1^n = \{(x,z) \mid x_1^1 \ge ||z||_2\}$$

• Rotated quadratic cone in the non-self-dualized form:

$$\mathcal{P}_{1,1}^n = \{(x,z) \mid x_1^1 x_2^1 \ge ||z||_2^2\}$$

Defined by parameter vector, $\alpha \in \mathbb{R}_+^k$, spanning:

Quadratic cone:

$$\mathcal{P}_1^n = \{(x,z) \mid x_1^1 \ge ||z||_2\}$$

Rotated quadratic cone in the non-self-dualized form:

$$\mathcal{P}_{1,1}^n = \{(x,z) \mid x_1^1 x_2^1 \ge ||z||_2^2\}$$

Geometric mean:

$$\mathcal{P}_{1,1,\ldots,1}^n = \{(x,z) \mid x_1^1 x_2^1 \cdots x_k^1 \ge ||z||_2^k\}$$

Defined by parameter vector, $\alpha \in \mathbb{R}_+^k$, spanning:

Quadratic cone:

$$\mathcal{P}_1^n = \{(x,z) \mid x_1^1 \ge ||z||_2\}$$

• Rotated quadratic cone in the non-self-dualized form:

$$\mathcal{P}_{1,1}^n = \{(x,z) \mid x_1^1 x_2^1 \ge ||z||_2^2\}$$

Geometric mean:

$$\mathcal{P}_{1,1,\ldots,1}^n = \{(x,z) \mid x_1^1 x_2^1 \cdots x_k^1 \ge ||z||_2^k\}$$

• Weighted geometric mean:

$$\mathcal{P}^{n}_{\alpha_{1},\alpha_{2},...,\alpha_{k}} = \{(x,z) \mid x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}} \ge ||z||_{2}^{\alpha_{1}+\alpha_{2}+...+\alpha_{k}}\}$$

Defined by parameter vector, $\alpha \in \mathbb{R}_+^k$, spanning:

Quadratic cone:

$$\mathcal{P}_1^n = \{(x,z) \mid x_1^1 \ge ||z||_2\}$$

• Rotated quadratic cone in the non-self-dualized form:

$$\mathcal{P}_{1,1}^n = \{(x,z) \mid x_1^1 x_2^1 \ge ||z||_2^2\}$$

• Geometric mean:

$$\mathcal{P}_{1,1,\ldots,1}^n = \{(x,z) \mid x_1^1 x_2^1 \cdots x_k^1 \ge ||z||_2^k\}$$

Weighted geometric mean:

$$\mathcal{P}_{\alpha_1,\alpha_2,...,\alpha_k}^n = \{(x,z) \mid x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k} \ge ||z||_2^{\alpha_1 + \alpha_2 + ... + \alpha_k}\}$$

The **power cone** can be given for any $\alpha \in \mathbb{R}_+^k$ as

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{\mathsf{e}^{\mathsf{T}}\alpha}\},$$

by convention of $0^0 = 1$.

The **power cone** can be given for any $\alpha \in \mathbb{R}^k_+$ as

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{T_{\alpha}}}\},$$

by convention of $0^0 = 1$.

The **power cone** can be given for any $\alpha \in \mathbb{R}^k_+$ as

$$\mathcal{P}_{\alpha}^{n} = \{(x, z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{\mathsf{T}} \alpha}\},$$

by convention of $0^0 = 1$.

Common restrictions

∑₁^k α_j = e^Tα = 1.
 Full generality by scale invariance P_αⁿ = P_{λα}ⁿ for λ > 0, but only useful in barrier function to my knowledge.

The **power cone** can be given for any $\alpha \in \mathbb{R}^k_+$ as

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq \|z\|_{2}^{e^{\mathsf{T}_{\alpha}}}\},$$

by convention of $0^0 = 1$.

Common restrictions

- $\sum_{1}^{k} \alpha_{j} = e^{T} \alpha = 1$. Full generality by scale invariance $\mathcal{P}_{\alpha}^{n} = \mathcal{P}_{\lambda\alpha}^{n}$ for $\lambda > 0$, but only useful in barrier function to my knowledge.
- $\alpha \in \mathbb{R}^k_{++}$. Full generality by $\mathcal{P}^n_{(0,\alpha)} = \mathbb{R}_+ \times \mathcal{P}^n_{\alpha}$. When are zeros useful?
 - Powers, $s \ge |x|^p$, for any $p \ge 1$: $(1, s, x) \in \mathcal{P}^3_{(p-1), 1} \iff 1^{p-1} s^1 \ge |x|^p$
 - $\begin{array}{c} \bullet \ \ \text{p-norms,} \ t \geq \|x\|_p, \ \text{for any} \ p \geq 1: \\ t \geq \mathrm{e}^\mathsf{T} s, \quad \text{and} \quad (t, s_j, x_j) \in \mathcal{P}^3_{(p-1), 1} \ \ \forall j \\ \end{array}$

The **dual power cone** was be obtained on $\alpha \subseteq \mathbb{R}_{++}^k$ by (Chares 2009, Theorem 4.3.1) as:

$$(\mathcal{P}^{\textit{n}}_{\alpha})^* = \textit{M}\mathcal{P}^{\textit{n}}_{\alpha}, \quad \text{for } \textit{M} = \left(\begin{smallmatrix} (e^{T}\alpha)^{-1} \operatorname{diag}(\alpha) & 0 \\ 0 & I_{\mathrm{n-k}} \end{smallmatrix}\right) \succ 0,$$

expanding to:

$$(\mathcal{P}_{\alpha}^{n})^{*} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid \alpha^{-\alpha} x^{\alpha} \geq (\mathbf{e}^{\mathsf{T}} \alpha)^{-\mathbf{e}^{\mathsf{T}} \alpha} \|z\|_{2}^{\mathbf{e}^{\mathsf{T}} \alpha}\},\$$

which is easily shown valid on all of $\alpha \subseteq \mathbb{R}_+^k$.

The **dual power cone** was be obtained on $\alpha \subseteq \mathbb{R}_{++}^k$ by (Chares 2009, Theorem 4.3.1) as:

$$(\mathcal{P}_{\alpha}^{\textit{n}})^* = \textit{M}\mathcal{P}_{\alpha}^{\textit{n}}, \quad \text{for } \textit{M} = \left(\begin{smallmatrix} (e^{T_{\alpha}})^{-1} \operatorname{diag}(\alpha) & 0 \\ 0 & I_{\mathrm{n-k}} \end{smallmatrix}\right) \succ 0,$$

expanding to:

$$(\mathcal{P}_{\alpha}^{n})^{*} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid \alpha^{-\alpha} x^{\alpha} \geq (e^{\mathsf{T}} \alpha)^{-e^{\mathsf{T}} \alpha} \|z\|_{2}^{e^{\mathsf{T}} \alpha}\},\$$

which is easily shown valid on all of $\alpha \subseteq \mathbb{R}_+^k$.

Note self-duality of $M^{1/2}\mathcal{P}_{\alpha}^{n}$ in general (the self-dualized variant).

Power cones in MOSEK?

Power cones in MOSEK? Absolutely***!

- ① Convert α to rationals. Best rational approximations to π : $\frac{3}{1}, \frac{13}{4}, \frac{16}{5}, \frac{19}{6}, \frac{22}{7}, \frac{179}{57}, \frac{201}{64}, \frac{223}{71}, \frac{245}{78}, \frac{267}{85}, \frac{289}{92}, \frac{311}{99}, \frac{333}{106}, \frac{355}{113}, \frac{52163}{16604}, \dots$
- $2 \ \text{Use} \ \mathcal{P}^n_\alpha = \mathcal{P}^n_{\lambda\alpha} \ \text{with} \ \lambda = \frac{\text{lcm}(\text{denominators})}{\text{gcd}(\text{numerators})} \ \text{to make} \ \alpha \ \text{integer}.$
- **3** Construct tower of variables (Ben-tal and Nemirovski 2001); here $x_1x_2x_3x_4x_5x_6x_7x_8 \ge \omega_1^8$.

Power cones in MOSEK? Absolutely***!

- ① Convert α to rationals. Best rational approximations to π : $\frac{3}{1}, \frac{13}{4}, \frac{16}{5}, \frac{19}{6}, \frac{22}{7}, \frac{179}{57}, \frac{201}{64}, \frac{223}{71}, \frac{245}{78}, \frac{267}{85}, \frac{289}{92}, \frac{311}{99}, \frac{333}{106}, \frac{355}{113}, \frac{52163}{16604}, \dots$
- $\textbf{2} \ \ \mathsf{Use} \ \mathcal{P}^n_\alpha = \mathcal{P}^n_{\lambda\alpha} \ \ \mathsf{with} \ \lambda = \frac{\mathsf{lcm}(\mathsf{denominators})}{\mathsf{gcd}(\mathsf{numerators})} \ \ \mathsf{to} \ \ \mathsf{make} \ \alpha \ \mathsf{integer}.$
- 3 Construct tower of variables (Ben-tal and Nemirovski 2001); here $x_1x_2x_3x_4x_5x_6x_7x_8 \ge \omega_1^8$.

Non-unique, e.g. permute *x*

Power cones in MOSEK? Absolutely***!

- ① Convert α to rationals. Best rational approximations to π : $\frac{3}{1}, \frac{13}{4}, \frac{16}{5}, \frac{19}{6}, \frac{22}{7}, \frac{179}{57}, \frac{201}{64}, \frac{223}{71}, \frac{245}{78}, \frac{267}{85}, \frac{289}{92}, \frac{311}{99}, \frac{333}{106}, \frac{355}{113}, \frac{52163}{16604}, \dots$
- $\textbf{2} \ \ \mathsf{Use} \ \mathcal{P}^n_\alpha = \mathcal{P}^n_{\lambda\alpha} \ \ \mathsf{with} \ \lambda = \frac{\mathsf{lcm}(\mathsf{denominators})}{\mathsf{gcd}(\mathsf{numerators})} \ \ \mathsf{to} \ \ \mathsf{make} \ \alpha \ \mathsf{integer}.$
- 3 Construct tower of variables (Ben-tal and Nemirovski 2001); here $x_1x_2x_3x_4x_5x_6x_7x_8 \ge \omega_1^8$.

Distinct, e.g., consider $x_1 = x_2$

Complication summary

- Implementation: cumbersome and error-prone
- Tower constructions: suboptimal
- Dual information: where?

Complication summary

- Implementation: cumbersome and error-prone
- Tower constructions: suboptimal
- Dual information: where?

Same three complications decomposing $\mathcal{P}^{k+1}_{(\alpha_1,\ldots,\alpha_k)}$ into k-1 power cones of the form $\mathcal{P}^3_{(\alpha_1,\alpha_2)}$. See Chares (2009). Reason?

- Barrier parameter increases.
- Linear outer approximation is stronger.
- Hessian matrix is approximated with less effort in quasi-newton methods, e.g., using BFGS updates.

Rules of the game

Start with any power cone defined by $\alpha \in \mathbb{R}_+^k$:

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{\mathsf{T}} \alpha}\}.$$

Rules:

 $oldsymbol{0}$ α is invariant to permutation, zeros and positive scaling.

Rules of the game

Start with any power cone defined by $\alpha \in \mathbb{R}_+^k$:

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{\mathsf{T}}\alpha}\}.$$

Rules:

- $\ensuremath{\mathbf{0}}$ α is invariant to permutation, zeros and positive scaling.
- 2 Split $\alpha \longrightarrow \{(\alpha \beta, e^T \beta), (\beta)\}$ for any $\beta \le \alpha$.

Split rule

$$x^{\alpha} \ge \|z\|_{2}^{\mathbf{e}^{\mathsf{T}}\alpha} \iff x^{\alpha-\beta}x^{\beta} \ge \|z\|_{2}^{\mathbf{e}^{\mathsf{T}}\alpha}, \\ \Leftrightarrow x^{\alpha-\beta}u^{\mathbf{e}^{\mathsf{T}}\beta} \ge \|z\|_{2}^{\mathbf{e}^{\mathsf{T}}\alpha}, \quad x^{\beta} \ge u^{\mathbf{e}^{\mathsf{T}}\beta}$$

Rules of the game

Start with any power cone defined by $\alpha \in \mathbb{R}^k$:

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{\mathsf{T}}\alpha}\}.$$

Rules:

- $\mathbf{0}$ α is invariant to permutation, zeros and positive scaling.
- 2 Split $\alpha \longrightarrow \{(\alpha \beta, e^T \beta), (\beta)\}$ for any $\beta \le \alpha$.

Split rule

$$x^{\alpha} \ge \|z\|_{2}^{\mathbf{e}^{\mathsf{T}}\alpha} \Leftrightarrow x^{\alpha-\beta}x^{\beta} \ge \|z\|_{2}^{\mathbf{e}^{\mathsf{T}}\alpha}, \\ \Leftrightarrow x^{\alpha-\beta}u^{\mathbf{e}^{\mathsf{T}}\beta} \ge \|z\|_{2}^{\mathbf{e}^{\mathsf{T}}\alpha}, \quad x^{\beta} \ge u^{\mathbf{e}^{\mathsf{T}}\beta}$$

V

Rules of the game

Start with any power cone defined by $\alpha \in \mathbb{R}_+^k$:

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{\mathsf{T}_{\alpha}}}\}.$$

Rules:

- $\ensuremath{\mathbf{0}}$ α is invariant to permutation, zeros and positive scaling.
- 2 Split $\alpha \longrightarrow \left\{ (\alpha \beta, e^T \beta), (\beta) \right\}$ for any $\beta \le \alpha$.
- **3** Expand $\alpha \longrightarrow \{(\alpha, \beta), 1\}$ for any $\beta \in \mathbb{R}_+$.

$$x^{\alpha} \geq \|z\|_{2}^{e^{\mathsf{T}_{\alpha}}} \iff x^{\alpha} \geq u^{e^{\mathsf{T}_{\alpha}}} \geq \|z\|_{2}^{e^{\mathsf{T}_{\alpha}}},$$

$$\Leftrightarrow x^{\alpha} \geq u^{e^{\mathsf{T}_{\alpha}}}, \quad u \geq \|z\|_{2},$$

$$\Leftrightarrow x^{\alpha}u^{\beta} \geq u^{e^{\mathsf{T}_{\alpha}+\beta}}, \quad u \geq \|z\|_{2},$$

V

Rules of the game

Start with any power cone defined by $\alpha \in \mathbb{R}_+^k$:

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{\mathsf{T}}\alpha}\}.$$

Rules:

- $oldsymbol{0}$ α is invariant to permutation, zeros and positive scaling.
- **3** Expand $\alpha \longrightarrow \{(\alpha, \beta), 1\}$ for any $\beta \in \mathbb{R}_+$.

$$\begin{aligned} x^{\alpha} & \geq \|z\|_{2}^{\mathsf{e}^{\mathsf{T}}\alpha} & \Leftrightarrow & x^{\alpha} \geq u^{\mathsf{e}^{\mathsf{T}}\alpha} \geq \|z\|_{2}^{\mathsf{e}^{\mathsf{T}}\alpha}, \\ & \Leftrightarrow & x^{\alpha} \geq u^{\mathsf{e}^{\mathsf{T}}\alpha}, \quad u \geq \|z\|_{2}, \\ & \Leftrightarrow & x^{\alpha}u^{\beta} \geq u^{\mathsf{e}^{\mathsf{T}}\alpha + \beta}, \quad u \geq \|z\|_{2}, \\ & \boxed{\mathsf{simple base}} \end{aligned}$$

Rules of the game

Start with any power cone defined by $\alpha \in \mathbb{R}_+^k$:

$$\mathcal{P}_{\alpha}^{n} = \{(x, z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{T_{\alpha}}}\}.$$

Rules:

- $oldsymbol{0}$ α is invariant to permutation, zeros and positive scaling.
- 2 Split $\alpha \longrightarrow \left\{ (\alpha \beta, e^T \beta), (\beta) \right\}$ for any $\beta \le \alpha$.
- **3** Expand $\alpha \longrightarrow \{(\alpha, \beta), 1\}$ for any $\beta \in \mathbb{R}_+$.
- **4** Expand $\alpha \longrightarrow \{(\alpha, \beta)\}$ for any $\beta \in \mathbb{R}_+$ (on simple base).

$$\begin{aligned} x^{\alpha} & \geq \|z\|_{2}^{\mathbf{e}^{\mathsf{T}}\alpha} & \Leftrightarrow & x^{\alpha} \geq u^{\mathbf{e}^{\mathsf{T}}\alpha} \geq \|z\|_{2}^{\mathbf{e}^{\mathsf{T}}\alpha}, \\ & \Leftrightarrow & x^{\alpha} \geq u^{\mathbf{e}^{\mathsf{T}}\alpha}, \quad u \geq \|z\|_{2}, \\ & \Leftrightarrow & x^{\alpha}u^{\beta} \geq u^{\mathbf{e}^{\mathsf{T}}\alpha+\beta}, \quad u \geq \|z\|_{2}, \end{aligned}$$

V

Goal: second-order cone representation

Start with any power cone defined by $\alpha \in \mathbb{Z}_+^k$:

$$\mathcal{P}_{\alpha}^{n} = \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid x^{\alpha} \geq ||z||_{2}^{e^{\mathsf{T}}\alpha}\}.$$

Rules:

- $oldsymbol{0}$ α is invariant to permutation, zeros and positive scaling.
- **3** Expand $\alpha \longrightarrow \{(\alpha, \beta), 1\}$ for any $\beta \in \mathbb{R}_+$.
- **4** Expand $\alpha \longrightarrow \{(\alpha, \beta)\}$ for any $\beta \in \mathbb{R}_+$ (on simple base).

Objective: Transform α to a set of second-order representable power cone parameters, minimizing the number of cones.

- Split rule costs 1 cone.
- Expand rule costs 0 cones on simple base, 1 otherwise.

Strategy: Powers of 2

(Morenko et al. 2013) worked on, and proved their strategy optimal for, cone $\mathcal{P}^3_{(\alpha_1,\alpha_2)}$ with simple base. Generalized here.

$$(13,3,14,21,5,18)$$

$$(13,3,14,21,5,18,54)$$

$$(3,3,0,0,0,0,0,0)$$

$$(0,0,0,5,5,0,0)$$

$$(10,0,14,16,0,18,54,6,10)$$

$$(1,1)$$

$$(5,7,8,9,27,3,5)$$

- **1** Initialize: $2^6 < e^T(13, 3, 14, 21, 5, 18) < 2^7$ with **54** to upper.
- $e^{T}(13,3,14,21,5,18,54) = 2^{7}.$

V

Strategy: Powers of 2

(Morenko et al. 2013) worked on, and proved their strategy optimal for, cone $\mathcal{P}^3_{(\alpha_1,\alpha_2)}$ with simple base. Generalized here.

$$(13,3,14,21,5,18)$$

$$(13,3,14,21,5,18,54)$$

$$(3,3,0,0,0,0,0,0)$$

$$(0,0,0,5,5,0,0)$$

$$(10,0,14,16,0,18,54,6,10)$$

$$(1,1)$$

$$(5,7,8,9,27,3,5)$$

- **1** Initialize: $2^6 < e^T(13, 3, 14, 21, 5, 18) < 2^7$ with **54** to upper.
- $e^{T}(13, 3, 14, 21, 5, 18, 54) = 2^{7}$.
- **3** Apply split rule to odd power pairs (in this case 2 pairs).

Strategy: Powers of 2

(Morenko et al. 2013) worked on, and proved their strategy optimal for, cone $\mathcal{P}^3_{(\alpha_1,\alpha_2)}$ with simple base. Generalized here.

$$(13,3,14,21,5,18)$$

$$(13,3,14,21,5,18,54)$$

$$(3,3,0,0,0,0,0,0)$$

$$(0,0,0,5,5,0,0)$$

$$(10,0,14,16,0,18,54,6,10)$$

$$(1,1)$$

$$(5,7,8,9,27,3,5)$$

- **1** Initialize: $2^6 < e^T(13, 3, 14, 21, 5, 18) < 2^7$ with **54** to upper.
- $e^{T}(13,3,14,21,5,18,54) = 2^{7}$.
- **3** Apply split rule to odd power pairs (in this case 2 pairs).
- $e^{\mathsf{T}}(5,7,8,9,27,3,5) = 2^6.$

V

(10,0,14,16,0,18,54,**6,10**)

(5,7,8,9,27,3,5)

Strategy: Powers of 2

(3,3,0,0,0,0,0)

(1,1)

(Morenko et al. 2013) worked on, and proved their strategy optimal for, cone $\mathcal{P}^3_{(\alpha_1,\alpha_2)}$ with simple base. Generalized here. (13,3,14,21,5,18) $(13,3,14,21,5,18,\mathbf{54})$

- **1** Initialize: $2^6 < e^T(13, 3, 14, 21, 5, 18) < 2^7$ with **54** to upper.
- $e^{T}(13, 3, 14, 21, 5, 18, 54) = 2^{7}$.
- 3 Apply split rule to odd power pairs (in this case 2 pairs).

(0,0,0,5,5,0,0)

(1,1)

- $e^{\mathsf{T}}(5,7,8,9,27,3,5) = 2^6.$
- 6 Apply split rule to odd power pairs (in this case 3 pairs).
- **6** $e^{T}(1, 4, 9, 1, 5, 9, 3) = 2^{5}...$

V

Still room for improvement

|S| = 4 if initial cone has a simple base, and |S| = 5 otherwise.

Let's play Tower Tycoon Still room for improvement (subset sum split)

Still room for improvement (subset sum split)

|S|=3. In fact, subset sum splits handle $(1,2,3,6,12,24,48,\ldots)$ in k second-order cones, while the powers of 2 strategy (empirically) uses 2(k-1) second-order cones.

Dual information recovery

Split rule

$$x^{\alpha} \geq \|z\|_{2}^{\mathsf{e}^{\mathsf{T}}\alpha} \quad \Leftrightarrow \quad x^{\alpha-\beta}x^{\beta} \geq \|z\|_{2}^{\mathsf{e}^{\mathsf{T}}\alpha}, \\ \Leftrightarrow \quad x^{\alpha-\beta}u^{\mathsf{e}^{\mathsf{T}}\beta} \geq \|z\|_{2}^{\mathsf{e}^{\mathsf{T}}\alpha}, \quad x^{\beta} \geq u^{\mathsf{e}^{\mathsf{T}}\beta}$$

$$\begin{aligned} x^{\alpha} & \geq \|z\|_{2}^{\mathsf{e}^{\mathsf{T}}\alpha} & \Leftrightarrow & x^{\alpha} \geq u^{\mathsf{e}^{\mathsf{T}}\alpha} \geq \|z\|_{2}^{\mathsf{e}^{\mathsf{T}}\alpha}, \\ & \Leftrightarrow & x^{\alpha} \geq u^{\mathsf{e}^{\mathsf{T}}\alpha}, \quad u \geq \|z\|_{2}, \\ & \Leftrightarrow & x^{\alpha}u^{\beta} \geq u^{\mathsf{e}^{\mathsf{T}}\alpha+\beta}, \quad u \geq \|z\|_{2}, \end{aligned}$$

Dual information recovery Split rule

	BEFORE	AFTER		
PRIMAL	$\begin{pmatrix} x \\ z \end{pmatrix} \in \mathcal{P}^n_{\alpha} [\begin{smallmatrix} s \\ t \end{bmatrix}$	$\left(\begin{array}{c} \left(\begin{smallmatrix} x\\ x\\ z \end{smallmatrix}\right) \in \mathcal{P}^n_{(\alpha-\beta,\beta)} \left[\begin{smallmatrix} \sigma_1\\ \sigma_2\\ \tau \end{smallmatrix}\right]$		
	x: +s	$x: +\sigma_1+\sigma_2$		
DUAL	z: +t	$z: +\tau$		
DUAL	where	where		
	$(s,t)\in \left(\mathcal{P}^n_lpha ight)^*$	$(\sigma_1, \sigma_2, au) \in (\mathcal{P}^n_{(\alpha-eta, eta)})^*$		

Recover as $(s,t) \leftarrow (\sigma_1 + \sigma_2, \tau)$.

Dual information recovery

Expansion rule

	BEFORE	AFTER
PRIMAL	$\begin{pmatrix} \binom{x}{u} \in \mathcal{P}_{\alpha}^{n_x+1} & \begin{bmatrix} s \\ t \end{bmatrix} \\ (u \ge 0) \end{pmatrix}$	$ \begin{pmatrix} x \\ u \\ u \end{pmatrix} \in \mathcal{P}_{(\alpha,\beta)}^{n_{\chi}+2} \begin{bmatrix} \sigma \\ \tau_1 \\ \tau_2 \end{bmatrix} $ $ (u \ge 0) $
DUAL	$x: +s$ $u: +t (\leq 0)$ where $(s,t) \in (\mathcal{P}_{\alpha}^{n_{x}+1})^{*}$	$x: +\sigma$ $u: +\tau_1 + \tau_2 \ (\leq 0)$ where $(\sigma, \tau_1, \tau_2) \in (\mathcal{P}^{n_x+2}_{(\alpha,\beta)})^*$

Recover as $(s, t) \leftarrow (\sigma, \tau_1 + \tau_2)$.

Dual split rule

$$(x,z) \in (\mathcal{P}_{\alpha}^{n})^{*} \Leftrightarrow (x-u,u,z) \in (\mathcal{P}_{(\alpha-\beta,\beta)}^{n})^{*}, \Leftrightarrow (x-u,v,z) \in (\mathcal{P}_{(\alpha-\beta,e^{\mathsf{T}}\beta)}^{n})^{*}, (u,v) \in (\mathcal{P}_{e^{\mathsf{T}}\beta}^{n})^{*}.$$

Dual expansion rule

$$(x,z) \in (\mathcal{P}_{\alpha}^{n_x+1})^*, \ z \geq 0 \ \Leftrightarrow \ (x,u,z+u) \in (\mathcal{P}_{(\alpha,\beta)}^{n_x+2})^*.$$

Dual information recovery

V

Proving the prerequisites

The AM-GM inequality does it all:

$$(e^{\mathsf{T}}\alpha)^{-1}(\alpha^{\mathsf{T}}x) \ge e^{\mathsf{T}}\alpha \sqrt{x^{\alpha}},$$

for $x, \alpha \in \mathbb{R}_+^k$ where $e^T \alpha > 0$.

Bonus info

It gives rise to a family of outer approximations, the simplest of which is a quadratic cone:

$$\mathcal{P}_{\alpha}^{n} \subseteq \{(x,z) \in \mathbb{R}_{+}^{k} \times \mathbb{R}^{n-k} \mid (e^{\mathsf{T}}\alpha)^{-1}(\alpha^{\mathsf{T}}x) \geq ||z||_{2}\},$$

Numerical results

Shooting sparrows with a cannon

The 8'th root of 42 is 1.5955343603, but also the infimum of

$$\begin{array}{ll} \text{minimize} & x \\ \text{subject to} & y = 42, \\ & (y, 1, x) \in \mathcal{P}^3_{(1,7)}. \end{array}$$

ITE	PFEAS	DFEAS	GFEAS	PRSTATUS	POBJ	DOBJ	MU	TIME
0	5.5e+00	1.0e+00	1.0e+00	0.00e+00	0.000000000e+00	0.000000000e+00	1.0e+00	0.01
1	1.1e+00	2.1e-01	1.5e-01	-6.56e-01	2.184849059e-01	-1.207084580e+00	2.1e-01	0.01
2	2.2e-01	3.9e-02	5.4e-02	3.82e-01	5.765513222e-01	1.852211210e-01	3.9e-02	0.01
3	4.2e-02	7.8e-03	2.0e-02	7.43e-01	1.340272353e+00	1.221223568e+00	7.8e-03	0.01
4	7.2e-03	1.3e-03	7.7e-03	8.65e-01	1.539177880e+00	1.515646623e+00	1.3e-03	0.01
5	3.1e-04	5.6e-05	1.6e-03	9.55e-01	1.593269995e+00	1.592202275e+00	5.6e-05	0.01
6	7.0e-06	1.3e-06	2.3e-04	9.98e-01	1.595487015e+00	1.595462738e+00	1.3e-06	0.01
7	2.6e-07	4.8e-08	4.5e-05	1.00e+00	1.595532790e+00	1.595531871e+00	4.8e-08	0.01
8	1.6e-08	2.9e-09	1.1e-05	1.00e+00	1.595534274e+00	1.595534219e+00	2.9e-09	0.01
Optimizer terminated.		Time: 0.03						

Interior-point solution summary

Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL.

Solution status : OPTIMAL

 Primal.
 obj:
 1.5955342736e+00
 nrm:
 4e+01
 Viol.
 con:
 9e-09
 var:
 0e+00
 cones:
 0e+00

 Dual.
 obj:
 1.5955342195e+00
 nrm:
 1e+00
 Viol.
 con:
 0e+00
 var:
 1e-08
 cones:
 3e-09

Two quadratic cones after presolve. Complementarity is $x^T s = 3.388688e - 08$ after dual information recovery.