moseк

Conic optimization

Aalborg University, June 26th, 2017

Joachim Dahl

WWW.mosek. com

Section 1

Linear optimization

Linear optimization

- We minimize a linear function given linear constraints.
- Example: minimize a linear function

$$
x_{1}+2 x_{2}-x_{3}
$$

under the constraints that

$$
x_{1}+x_{2}+x_{3}=1, \quad x_{1}, x_{2}, x_{3} \geq 0
$$

- The function we minimize is called the objective function.
- The constraitns are either equality or inequality constraints.
- Important: everything is linear in x.

Linear optimization

A simple example

Standard notation:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}+2 x_{2}-x_{3} \\
\text { subject to } & x_{1}+x_{2}+x_{3}=1 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Feasible set:

Optimal solution $x^{\star}=(0,0,1)$ with value $=-1$.

Geometry of linear optimization

Hyperplanes and halfspaces

- Hyperplane: $\left\{x \mid a^{T}\left(x-x_{0}\right)=0\right\}=\left\{x \mid a^{T} x=\gamma\right\}$

- Halfspace: $\left\{x \mid a^{T}\left(x-x_{0}\right) \geq 0\right\}=\left\{x \mid a^{T} x \geq \gamma\right\}$

Geometry of linear optimization

Polyhedral sets

- A polyhedron is an intersection of halfspaces:

- Can be both bounded (as shown) or unbounded.

Geometry of linear optimization

Optimizing of a polyhedral set

- The contour lines are shifted hyperplanes

- Optimal solution is a vertex, on a facet, or unbounded.

Consider f defined as a the maximum of affine functions,

$$
f(x):=\max _{i=1, \ldots, m}\left\{a_{i}^{T} x+b_{i}\right\}
$$

The epigraph $f(x) \leq t$ is equivalent to

Consider f defined as a the maximum of affine functions,

$$
f(x):=\max _{i=1, \ldots, m}\left\{a_{i}^{T} x+b_{i}\right\}
$$

The epigraph $f(x) \leq t$ is equivalent to

$$
a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
$$

Simple examples

Convex piecewise-linear functions

- The absolute value function

$$
|\alpha|:=\max \{\alpha,-\alpha\}
$$

is a convex piecewise-linear function,

$$
|\alpha| \leq t \quad \Longleftrightarrow \quad-t \leq \alpha \leq t
$$

- The ℓ_{∞}-norm of a vector $x \in \mathbb{R}^{n}$ is

Simple examples

Convex piecewise-linear functions

- The absolute value function

$$
|\alpha|:=\max \{\alpha,-\alpha\}
$$

is a convex piecewise-linear function,

$$
|\alpha| \leq t \quad \Longleftrightarrow \quad-t \leq \alpha \leq t
$$

- The ℓ_{∞}-norm of a vector $x \in \mathbb{R}^{n}$ is

$$
\|x\|_{\infty}:=\max _{i=1, \ldots, n}\left|x_{i}\right|
$$

i.e.,

$$
\|x\|_{\infty} \leq t \quad \Longleftrightarrow \quad-t \leq x_{i} \leq t, i=1, \ldots, n
$$

Simple examples

The ℓ_{1}-norm

The ℓ_{1}-norm of a vector $x \in \mathbb{R}^{n}$ is

$$
\|x\|_{1}:=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| .
$$

We can characterize the epigraph

$$
\|x\|_{1} \leq t
$$

as

$$
\left|x_{i}\right| \leq z_{i}, i=1, \ldots, n, \quad \sum_{i} z_{i} \leq t
$$

Programming exercises

Given data
$\mathrm{m}=500$; $\mathrm{n}=100$;
$A=r \operatorname{andn}(m, n) ; b=r a n d n(m, 1)$;
write a Yalmip program that minimizes $f_{i}(A x-b)$ for
(1) $f_{1}(z)=\|z\|_{1}$
(2) $f_{2}(z)=\|z\|_{2}$
(3) $f_{3}(z)=\|z\|_{\infty}$
(4) $f_{4}(z)=\sum_{i} \max \left\{0, z_{i}-1,-z_{i}-1\right\}$

Plot a histogram comparing $A x-b$ for the different choices of f.

Duality in linear optimization

We consider a problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

The Lagrangian function is a lower bound,

$$
L(x, y, s)=c^{\top} x+y^{\top}(b-A x)-s^{\top} x \leq c^{T} x
$$

where $y \in \mathbb{R}^{m}$ and $s \in R_{+}^{n}$ are Lagrange multipliers or dual variables.

Note: It's important that $s \geq 0$.

Duality in linear optimization
The dual problem

The dual function is

$$
g(y, s)=\inf _{x} L(x, y, s)=\inf _{x} x^{T}\left(c-A^{T} y-s\right)+b^{T} y
$$

i.e.,

$$
g(y, s)= \begin{cases}b^{T} y, & c-A^{T} y-s=0 \\ -\infty, & \text { otherwise }\end{cases}
$$

which is a global lower bound (valid for all x).
The dual problem is the best such lower bound,

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & c-A^{T} y=s \\
& s \geq 0
\end{array}
$$

Duality in linear optimization

Weak duality

Primal problem with optimal value p^{\star} :

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

Dual problem with optimal value d^{\star} :

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & c-A^{T} y=s \\
& s \geq 0 .
\end{array}
$$

Weak duality:

$$
c^{T} x-b^{T} y=x^{T}\left(c-A^{T} y\right)=x^{T} s \geq 0
$$

i.e., $p^{\star} \geq d^{\star}$.

Duality in linear optimization

Summary of strong duality

Convention:

- $p^{\star}=\infty$ if primal problem is infeasible.
- $d^{\star}=-\infty$ if dual problem is infeasible.

We then have:

- Primal feasible, dual feasible: $p^{\star}=d^{\star}$ and finite.
- Primal infeasible, dual unbounded: $p^{\star}=\infty, d^{\star}=\infty$.
- Primal unbounded, dual infeasible: $p^{\star}=-\infty, d^{\star}=-\infty$.
- Primal infeasible, dual infeasble: $p^{\star}=\infty, d^{\star}=-\infty$.

Only in the last case is $p^{\star}>d^{\star}$.

Duality in linear optimization

Example: basis pursuit

Basis pursuit problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \|x\|_{1} \\
\text { subject to } & A x=b
\end{array}
$$

Used as heuristic for sparse representation of b.

Equivalent linear problem:

$$
\begin{array}{ll}
\operatorname{minimize} & e^{T} z \\
\text { subject to } & A x=b \\
& -z \leq x \leq z
\end{array}
$$

Duality in linear optimization
Example: dual of basis pursuit
By change of variables

$$
u=\frac{1}{2}(z-x), \quad v=\frac{1}{2}(z+x)
$$

we get a standard form linear problem:

$$
\begin{array}{ll}
\operatorname{minimize} & e^{T}(v+u) \\
\text { subject to } & A(v-u)=b \\
& u, v \geq 0
\end{array}
$$

Dual problem:

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & {\left[\begin{array}{l}
e \\
e
\end{array}\right]-\left[\begin{array}{c}
A^{T} \\
-A^{T}
\end{array}\right] y \geq 0 .}
\end{array}
$$

Note that

$$
A^{T} y \leq e,-A^{T} y \leq e \quad \Longleftrightarrow \quad\left\|A^{T} y\right\|_{\infty} \leq 1
$$

Duality in linear optimization

Example: basis pursuit

Primal-dual basis pursuit problems:

$$
\begin{array}{lll}
\operatorname{minimize} & \|x\|_{1} & \text { maximize } b^{T} y \\
\text { subject to } & A x=b . & \text { subject to }\left\|A^{T} y\right\|_{\infty} \leq 1
\end{array}
$$

Recall the definition of dual norms:

$$
\|x\|_{*, p}:=\sup \left\{x^{T} v \mid\|v\|_{p} \leq 1\right\}
$$

Exercise: Derive the dual of the ℓ_{∞}-norm.
Exercise: Derive the dual of the dual basis pursuit problem.

Duality in linear optimization
Primal infeasibility certificates

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & b^{T} y \\
\text { subject to } & A x=b & \text { subject to } & c-A^{T} y=s \\
& x \geq 0 . & & s \geq 0
\end{array}
$$

- Theorems of strong alternatives (Farkas' lemma): either

$$
A x=b, \quad x \geq 0
$$

or

$$
A^{T} y \leq 0, \quad b^{T} y
$$

has a solution.

- The latter is a certificate of primal infeasibility.
- If $A^{T} y<0, b^{T} y>0$ then y is an unbounded dual direction.

Duality in linear optimization
Primal infeasibility certificates

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & b^{T} y \\
\text { subject to } & A x=b & \text { subject to } & c-A^{T} y=s \\
& x \geq 0 . & & s \geq 0
\end{array}
$$

- Theorems of strong alternatives (Farkas' lemma): either

$$
A x=b, \quad x \geq 0
$$

or

$$
A^{T} y \leq 0, \quad b^{T} y
$$

has a solution.

- The latter is a certificate of primal infeasibility.
- If $A^{\top} y<0, b^{\top} y>0$ then y is an unbounded dual direction.

Duality in linear optimization
Primal infeasibility certificates

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & b^{T} y \\
\text { subject to } & A x=b & \text { subject to } & c-A^{T} y=s \\
& x \geq 0 . & & s \geq 0
\end{array}
$$

- Theorems of strong alternatives (Farkas' lemma): either

$$
A x=b, \quad x \geq 0
$$

or

$$
A^{T} y \leq 0, \quad b^{T} y
$$

has a solution.

- The latter is a certificate of primal infeasibility.
- If $A^{T} y<0, b^{T} y>0$ then y is an unbounded dual direction.

Duality in linear optimization
Example of primal infeasibility

Consider

$$
\begin{array}{ll}
\operatorname{minimize} & -x_{1}-x_{2} \\
\text { subject to } & x_{1}+x_{2}=-1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

with a dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -y \\
\text { subject to } & -\left[\begin{array}{l}
1 \\
1
\end{array}\right] y \geq\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{array}
$$

- Primal is trivially infeasible, $p^{\star}=\infty$.
- Any $y \leq-1$ is a certificate of primal infeasibility, as well as an unbounded dual direction, $d^{\star}=\infty$.

Separating hyperplane theorem

Theorem: Let S be a closed convex set, and $b \notin S$. Then there exists a separating hyperplane such that

$$
a^{T} b>a^{T} x, \quad \forall x \in S
$$

Sketch of proof

Either

$$
A x=b, \quad x \geq 0
$$

or

$$
A^{T} y \leq 0, \quad b^{T} y>0
$$

has a solution.

- Both cannot be true, because then $b^{T} y=x^{T} A^{T} y \leq 0$.
- Assume $b \notin S$ where

$$
S=\{A x \mid x \geq 0\} .
$$

Then there exists a separating hyperplane y (for b and S):

implying $b^{T} y>0$ and $A^{T} y \leq 0$.

Sketch of proof

Either

$$
A x=b, \quad x \geq 0
$$

or

$$
A^{T} y \leq 0, \quad b^{T} y>0
$$

has a solution.

- Both cannot be true, because then $b^{T} y=x^{T} A^{T} y \leq 0$.
- Assume $b \notin S$ where

$$
S=\{A x \mid x \geq 0\}
$$

Then there exists a separating hyperplane y (for b and S):

$$
y^{\top} b>y^{\top} A x, \quad \forall x \geq 0
$$

implying $b^{T} y>0$ and $A^{T} y \leq 0$.

Strong duality

Sketch of proof (using Farkas' lemma)

We assume d^{\star} is finite. Enough to show that $p^{\star} \leq d^{\star}$.
Assume there is no $x \geq 0$ such that $A x=b, c^{T} x \leq p^{\star}$, i.e.,

$$
\left[\begin{array}{cc}
A & 0 \\
c^{T} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
\tau
\end{array}\right]=\left[\begin{array}{c}
b \\
d^{\star}
\end{array}\right], \quad(x, \tau) \geq 0
$$

has no solution. Then (from Farkas' lemma)

$$
\left[\begin{array}{cc}
A^{T} & c \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
y \\
\alpha
\end{array}\right] \leq 0, \quad b^{T} y+\alpha d^{\star}>0, \quad \underbrace{\alpha \neq 0}_{\text {why? }}
$$

has a solution. Normalizing $y^{\prime}:=y / \alpha$ gives us

$$
c-A^{T} y^{\prime} \geq 0, \quad b^{T} y^{\prime}>d^{\star}
$$

contradicting optimality of d^{\star}.

Duality in linear optimization
Dual infeasibility certificates
$\begin{array}{ll}\operatorname{minimize} & c^{\top} x \\ \text { subject to } & A x=b \\ & x \geq 0 .\end{array}$
maximize $b^{T} y$
subject to $c-A^{T} y=s$
$s \geq 0$.

- Theorems of strong alternatives (dual variant): either

$$
c-A^{T} y \geq 0
$$

or

$$
A x=0, \quad x \geq 0, \quad c^{T} x<0
$$

has a solution.

- The latter is a certificate of dual infeasibility.

Duality in linear optimization
Dual infeasibility certificates
$\begin{array}{ll}\operatorname{minimize} & c^{\top} x \\ \text { subject to } & A x=b \\ & x \geq 0 .\end{array}$
maximize $b^{T} y$
subject to $c-A^{T} y=s$
$s \geq 0$.

- Theorems of strong alternatives (dual variant): either

$$
c-A^{T} y \geq 0
$$

or

$$
A x=0, \quad x \geq 0, \quad c^{T} x<0
$$

has a solution.

- The latter is a certificate of dual infeasibility.

Duality in linear optimization
Example with both primal and dual infeasibility

Consider

$$
\begin{array}{ll}
\operatorname{minimize} & -x_{1}-x_{2} \\
\text { subject to } & x_{1}=-1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

with a dual problem

$$
\begin{array}{ll}
\operatorname{maximize} & -y \\
\text { subject to } & -\left[\begin{array}{l}
1 \\
0
\end{array}\right] y \geq\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
\end{array}
$$

- $y=-1$ is a certificate of primal infeasibility, $p^{\star}=\infty$
- $x=(0,1)$ is a certificate of dual infeasibility, $d^{\star}=-\infty$.

Section 2

Conic optimization

We consider proper convex cones K in \mathbb{R}^{n} :

- Closed.
- Pointed: $K \cap(-K)=\{0\}$.
- Non-empty interior.

Dual-cone:

$$
K^{*}=\left\{v \in \mathbb{R}^{n} \mid u^{T} v \geq 0, \forall u \in K\right\}
$$

If K is a proper cone, then K^{\star} is also proper.
We use the notation:

$$
\begin{aligned}
& x \succeq K y \quad \Longleftrightarrow(x-y) \in K \\
& x \succ_{K} y \quad \Longleftrightarrow(x-y) \in \operatorname{int} K
\end{aligned}
$$

Example of cones
Quadratic cone (second-order cone, Lorenz cone)

$$
\mathcal{Q}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq \sqrt{x_{2}^{2}+x_{3}^{2}+\cdots+x_{n}^{2}}\right\} .
$$

\mathcal{Q}^{n} is self-dual: $\left(\mathcal{Q}^{n}\right)^{*}=\mathcal{Q}^{n}$.

Examples of quadratic cones

- Epigraph of absolute value:

$$
|x| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{2} .
$$

- Epigraph of Euclidean norm:

$$
\|x\|_{2} \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{n-1},
$$

where $x \in \mathbb{R}^{n}$ and $\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2} \text {. }}$

- Second-order cone inequality:

$$
\|A x+b\|_{2} \leq c^{\top} x+d \quad \Longleftrightarrow \quad\left(c^{\top} x+d, A x+b\right) \in \mathcal{Q}^{m+1}
$$

for $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, d \in \mathbb{R}$.

- Epigraph of absolute value:

$$
|x| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{2} .
$$

- Epigraph of Euclidean norm:

$$
\|x\|_{2} \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{n-1}
$$

where $x \in \mathbb{R}^{n}$ and $\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$.

- Second-order cone inequality:
$\|A x+b\|_{2} \leq c^{\top} x+d \quad \Longleftrightarrow \quad\left(c^{\top} x+d, A x+b\right) \in \mathcal{Q}^{m+1}$
for $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, d \in \mathbb{R}$.
- Epigraph of absolute value:

$$
|x| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{2}
$$

- Epigraph of Euclidean norm:

$$
\|x\|_{2} \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{n-1}
$$

where $x \in \mathbb{R}^{n}$ and $\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$.

- Second-order cone inequality:

$$
\|A x+b\|_{2} \leq c^{\top} x+d \quad \Longleftrightarrow \quad\left(c^{T} x+d, A x+b\right) \in \mathcal{Q}^{m+1}
$$

for $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}, d \in \mathbb{R}$.

Examples of quadratic cones

Robust optimization with ellipsoidal uncertainty
Ellipsoidal set:

$$
\begin{aligned}
\mathcal{E} & =\left\{x \in \mathbb{R}^{n} \mid\|P(x-a)\|_{2} \leq 1\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid x=P^{-1} y+a,\|y\|_{2} \leq 1\right\} .
\end{aligned}
$$

Worst-case realization of a linear function over \mathcal{E} :

Robust LP

minimize
subject to $A x=b$
minimize
subiect to

Examples of quadratic cones

Robust optimization with ellipsoidal uncertainty

Ellipsoidal set:

$$
\begin{aligned}
\mathcal{E} & =\left\{x \in \mathbb{R}^{n} \mid\|P(x-a)\|_{2} \leq 1\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid x=P^{-1} y+a,\|y\|_{2} \leq 1\right\} .
\end{aligned}
$$

Worst-case realization of a linear function over \mathcal{E} :

$$
\sup _{c \in \mathcal{E}} c^{T} x=a^{T} x+\sup _{\|y\|_{2} \leq 1} y^{T} P^{-1} x=a^{T} x+\left\|P^{-1} x\right\|_{2} .
$$

Robust LP
minimize
subject to

Examples of quadratic cones

Robust optimization with ellipsoidal uncertainty

Ellipsoidal set:

$$
\begin{aligned}
\mathcal{E} & =\left\{x \in \mathbb{R}^{n} \mid\|P(x-a)\|_{2} \leq 1\right\} \\
& =\left\{x \in \mathbb{R}^{n} \mid x=P^{-1} y+a,\|y\|_{2} \leq 1\right\} .
\end{aligned}
$$

Worst-case realization of a linear function over \mathcal{E} :

$$
\sup _{c \in \mathcal{E}} c^{T} x=a^{T} x+\sup _{\|y\|_{2} \leq 1} y^{T} P^{-1} x=a^{T} x+\left\|P^{-1} x\right\|_{2}
$$

Robust LP:

$$
\begin{array}{llll}
\operatorname{minimize} & \sup _{c \in \mathcal{E}} c^{T} x & \text { minimize } & a^{T} x+t \\
\text { subject to } & A x=b & \text { subject to } & A x=b \\
& x \geq 0, & & \left(t, P^{-1} x\right) \in Q^{n+1} \\
& & x \geq 0 .
\end{array}
$$

Rotated quadratic cone

Rotated quadratic cone:

$$
\mathcal{Q}_{r}^{n}=\left\{x \in \mathbb{R}^{n} \mid 2 x_{1} x_{2} \geq x_{3}^{2}+\ldots x_{n}^{2}, x_{1}, x_{2} \geq 0\right\}
$$

Related to standard quadratic cone:

$$
x \in \mathcal{Q}_{r}^{n} \quad \Longleftrightarrow \quad\left(T_{n} x\right) \in \mathcal{Q}^{n}
$$

for

$$
T_{n}:=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & I_{n-2}
\end{array}\right]
$$

\mathcal{Q}_{r}^{n} is self-dual: $\left(\mathcal{Q}_{r}^{n}\right)^{*}=\mathcal{Q}_{r}^{n}$.

- Epigraph of squared Euclidean norm:

$$
\|x\|_{2}^{2} \leq t \quad \Longleftrightarrow \quad(1 / 2, t, x) \in \mathcal{Q}_{r}^{n+2}
$$

- Convex quadratic inequality:

with $Q=F^{T} F, F \in \mathbb{R}^{n \times k}$. So we can write QCQPs as conic problems.
- Epigraph of squared Euclidean norm:

$$
\|x\|_{2}^{2} \leq t \quad \Longleftrightarrow \quad(1 / 2, t, x) \in \mathcal{Q}_{r}^{n+2}
$$

- Convex quadratic inequality:
$(1 / 2) x^{\top} Q x \leq c^{T} x+d \quad \Longleftrightarrow \quad\left(1 / 2, c^{\top} x+d, F^{\top} x\right) \in \mathcal{Q}_{r}^{k+2}$ with $Q=F^{T} F, F \in \mathbb{R}^{n \times k}$. So we can write QCQPs as conic problems.
- Convex hyperbolic function:

$$
\frac{1}{x} \leq t, x>0 \quad \Longleftrightarrow \quad(x, t, \sqrt{2}) \in \mathcal{Q}_{r}^{3}
$$

- Square roots:

- Convex positive rational power:
$\Longleftrightarrow \quad(s, t, x),(x, 1 / 8, s) \in Q_{r}^{3}$.
- Convex negative rational power:

- Convex hyperbolic function:

$$
\frac{1}{x} \leq t, x>0 \quad \Longleftrightarrow \quad(x, t, \sqrt{2}) \in \mathcal{Q}_{r}^{3}
$$

- Square roots:

$$
\sqrt{x} \geq t, x \geq 0 \quad \Longleftrightarrow \quad\left(\frac{1}{2}, x, t\right) \in \mathcal{Q}_{r}^{3}
$$

- Convex positive rational power:

- Convex negative rational power:
- Convex hyperbolic function:

$$
\frac{1}{x} \leq t, x>0 \quad \Longleftrightarrow \quad(x, t, \sqrt{2}) \in \mathcal{Q}_{r}^{3}
$$

- Square roots:

$$
\sqrt{x} \geq t, x \geq 0 \quad \Longleftrightarrow \quad\left(\frac{1}{2}, x, t\right) \in \mathcal{Q}_{r}^{3}
$$

- Convex positive rational power:

$$
x^{3 / 2} \leq t, x \geq 0 \quad \Longleftrightarrow \quad(s, t, x),(x, 1 / 8, s) \in \mathcal{Q}_{r}^{3}
$$

- Convex negative rational power:
- Convex hyperbolic function:

$$
\frac{1}{x} \leq t, x>0 \quad \Longleftrightarrow \quad(x, t, \sqrt{2}) \in \mathcal{Q}_{r}^{3}
$$

- Square roots:

$$
\sqrt{x} \geq t, x \geq 0 \quad \Longleftrightarrow \quad\left(\frac{1}{2}, x, t\right) \in \mathcal{Q}_{r}^{3}
$$

- Convex positive rational power:

$$
x^{3 / 2} \leq t, x \geq 0 \quad \Longleftrightarrow \quad(s, t, x),(x, 1 / 8, s) \in \mathcal{Q}_{r}^{3}
$$

- Convex negative rational power:

$$
\frac{1}{x^{2}} \leq t, x>0 \quad \Longleftrightarrow \quad\left(t, \frac{1}{2}, s\right),(x, s, \sqrt{2}) \in \mathcal{Q}_{r}^{3}
$$

Semidefinite matrices

Basic definitions

- We denote $n \times n$ symmetric matrices by \mathcal{S}^{n}.
- Standard inner product for matrices:

- X is semidefinite if and only if
(1) $z^{\top} X z \geq 0, \forall z \in \mathbb{R}^{n}$
(2) All the eigenvalues of X are nonnegative.
(3) X is a Grammian matrix, $X=V^{\top} V$.
- The (semi)definite matrices form a cone $\left(\mathcal{S}_{+}\right) \mathcal{S}_{++}$

Semidefinite matrices

Basic definitions

- We denote $n \times n$ symmetric matrices by \mathcal{S}^{n}.
- Standard inner product for matrices:

$$
\langle V, W\rangle:=\operatorname{tr}\left(V^{T} W\right)=\sum_{i j} V_{i j} W_{i j}=\operatorname{vec}(V)^{T} \operatorname{vec}(W)
$$

- X is semidefinite if and only if
(1) $z^{\top} X z \geq 0, \forall z \in \mathbb{R}^{n}$
(2) All the eigenvalues of X are nonnegative.
(3) X is a Grammian matrix, $X=V^{\top} V$.
- The (semi)definite matrices form a cone $\left(\mathcal{S}_{+}\right) \mathcal{S}_{++}$

Semidefinite matrices

Basic definitions

- We denote $n \times n$ symmetric matrices by \mathcal{S}^{n}.
- Standard inner product for matrices:

$$
\langle V, W\rangle:=\operatorname{tr}\left(V^{T} W\right)=\sum_{i j} V_{i j} W_{i j}=\operatorname{vec}(V)^{T} \operatorname{vec}(W)
$$

- X is semidefinite if and only if
(1) $z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}$.
(2) All the eigenvalues of X are nonnegative.
(3) X is a Grammian matrix, $X=V^{T} V$.
- The (semi)definite matrices form a cone $\left(\mathcal{S}_{+}\right) \mathcal{S}_{++}$

Semidefinite matrices

Basic definitions

- We denote $n \times n$ symmetric matrices by \mathcal{S}^{n}.
- Standard inner product for matrices:

$$
\langle V, W\rangle:=\operatorname{tr}\left(V^{T} W\right)=\sum_{i j} V_{i j} W_{i j}=\operatorname{vec}(V)^{T} \operatorname{vec}(W)
$$

- X is semidefinite if and only if
(1) $z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}$.
(2) All the eigenvalues of X are nonnegative.
(3) X is a Grammian matrix, $X=V^{T} V$.
- The (semi)definite matrices form a cone $\left(\mathcal{S}_{+}\right) \mathcal{S}_{++}$.

Exercise: Show the three definitions are equivalent.

Semidefinite matrices

Basic definitions

Dual cone:

$$
\left(\mathcal{S}_{+}^{n}\right)^{*}=\left\{Z \in \mathbb{R}^{n \times n} \mid\langle X, Z\rangle \geq 0, \forall X \in \mathcal{S}_{+}^{n}\right\} .
$$

The semidefinite is self-dual: $\left(\mathcal{S}_{+}^{n}\right)^{*}=\mathcal{S}_{+}^{n}$.
Easy to prove: Assume $Z \succeq 0$ so that $Z=U^{T} U$ and $X=V^{T} V$.

$$
\langle X, Z\rangle=\left\langle V^{T} V, U^{T} U\right\rangle=\operatorname{tr}\left(U V^{T}\right)\left(U V^{T}\right)^{T}=\left\|U V^{T}\right\|_{F}^{2} \geq 0 .
$$

Conversely assume $Z \nsucceq 0$. Then $\exists w \in \mathbb{R}^{n}$ such that

$$
w^{\top} Z w=\left\langle w w^{\top}, Z\right\rangle=\langle X, Z\rangle<0
$$

Positive semidefinite matrices

Schur's lemma

Schur's lemma:

$$
\left(\begin{array}{ll}
B & C^{T} \\
C & D
\end{array}\right) \succ 0 \quad \Longleftrightarrow \quad B-C^{T} D^{-1} C \succ 0, C \succ 0, D \succ 0 .
$$

Example:

$$
\left[\begin{array}{cc}
t & x^{T} \\
x & t /
\end{array}\right] \succ 0 \quad \Longleftrightarrow \quad \frac{1}{t} x^{T} x<t \quad \Longleftrightarrow \quad\|x\|<t
$$

i.e., quadratic cone can be embedded in a semidefinite cone.

A geometric example
The pillow spectrahedron
The convex set

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\,\left(\begin{array}{ccc}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right) \succ 0\right.\right\},
$$

is called a pillow.

Exercise: Characterize the restriction $\left.S\right|_{z=0}$.

Eigenvalue optimization

Symmetric matrices

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathcal{S}_{m} .
$$

- Minimize largest eigenvalue $\lambda_{1}(F(x))$: $\begin{array}{ll}\text { minimize } & \gamma \\ \text { subject to } & \gamma I \succeq F(x),\end{array}$
- Maximize smallest eigenvalue $\lambda_{n}(F(x))$:
maximize
subject to $\quad F(x) \succeq \gamma /$,
- Minimize eigenvalue spread $\lambda_{1}(F(x))-\lambda_{n}(F(x))$:

Eigenvalue optimization

Symmetric matrices

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathcal{S}_{m} .
$$

- Minimize largest eigenvalue $\lambda_{1}(F(x))$:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma \\
\text { subject to } & \gamma I \succeq F(x),
\end{array}
$$

- Maximize smallest eigenvalue $\lambda_{n}(F(x))$:

$$
\begin{array}{ll}
\begin{array}{l}
\text { maximize } \\
\text { subject to }
\end{array} & F(x) \succeq \gamma I,
\end{array}
$$

- Minimize eigenvalue spread $\lambda_{1}(F(x))-\lambda_{n}(F(x))$

Eigenvalue optimization

Symmetric matrices

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathcal{S}_{m} .
$$

- Minimize largest eigenvalue $\lambda_{1}(F(x))$:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma \\
\text { subject to } & \gamma I \succeq F(x),
\end{array}
$$

- Maximize smallest eigenvalue $\lambda_{n}(F(x))$:

$$
\begin{array}{ll}
\operatorname{maximize} & \gamma \\
\text { subject to } & F(x) \succeq \gamma I
\end{array}
$$

- Minimize eigenvalue spread $\lambda_{1}(F(x))-\lambda_{n}(F(x))$:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma-\lambda \\
\text { subject to } & \gamma I \succeq F(x) \succeq \lambda I,
\end{array}
$$

Matrix norms

Nonsymmetric matrices

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathbb{R}^{n \times p} .
$$

- Frobenius norm: $\|F(x)\|_{F}:=\sqrt{\langle F(x), F(x)\rangle}$,

$$
\|F(x)\|_{F} \leq t \quad \Leftrightarrow \quad(t, \operatorname{vec}(F(x))) \in \mathcal{Q}^{n p+1}
$$

- Induced ℓ_{2} norm: $\|F(x)\|_{2}:=\max _{k} \sigma_{k}(F(x))$,

minimize

subject to

corresponds to the largest eigenvalue for $F(x) \in \mathcal{S}_{+}^{n}$

Matrix norms

Nonsymmetric matrices

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathbb{R}^{n \times p} .
$$

- Frobenius norm: $\|F(x)\|_{F}:=\sqrt{\langle F(x), F(x)\rangle}$,

$$
\|F(x)\|_{F} \leq t \quad \Leftrightarrow \quad(t, \operatorname{vec}(F(x))) \in \mathcal{Q}^{n p+1}
$$

- Induced ℓ_{2} norm: $\|F(x)\|_{2}:=\max _{k} \sigma_{k}(F(x))$,

$$
\begin{aligned}
& \operatorname{minimize} \\
& \text { subject to }
\end{aligned}\left[\begin{array}{cc}
t l & F(x)^{T} \\
F(x) & t l
\end{array}\right] \succeq 0
$$

corresponds to the largest eigenvalue for $F(x) \in \mathcal{S}_{+}^{n}$.

Nearest correlation matrix

Consider

$$
S=\left\{X \in \mathcal{S}_{+}^{n} \mid X_{i i}=1, i=1, \ldots, n\right\} .
$$

For a symmetric $A \in \mathbb{R}^{n \times n}$, the nearest correlation matrix is

$$
X^{\star}=\arg \min _{X \in S}\|A-X\|_{F}
$$

which corresponds to a mixed SOCP/SDP,
minimize
subject to

MOSEK is limited by the many constraints to, say $n<200$.

Nearest correlation matrix

Consider

$$
S=\left\{X \in \mathcal{S}_{+}^{n} \mid X_{i i}=1, i=1, \ldots, n\right\} .
$$

For a symmetric $A \in \mathbb{R}^{n \times n}$, the nearest correlation matrix is

$$
X^{\star}=\arg \min _{X \in S}\|A-X\|_{F}
$$

which corresponds to a mixed SOCP/SDP,

$$
\begin{array}{lcl}
\operatorname{minimize} & t & \\
\text { subject to } & \|\mathbf{v e c}(A-X)\|_{2} & \leq t \\
& \mathbf{d i a g}(X) & =e \\
& X \succeq 0 . &
\end{array}
$$

MOSEK is limited by the many constraints to, say $n<200$.

Combinatorial relaxations

Consider a binary problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & x_{i} \in\{0,1\}, \quad i=1, \ldots, n .
\end{array}
$$

where $Q \in \mathcal{S}^{n}$ can be indefinite.

- Rewrite binary constraints $x_{i} \in\{0,1\}$
- Semidefinite relaxation:

Combinatorial relaxations

Consider a binary problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & x_{i} \in\{0,1\}, \quad i=1, \ldots, n
\end{array}
$$

where $Q \in \mathcal{S}^{n}$ can be indefinite.

- Rewrite binary constraints $x_{i} \in\{0,1\}$:

$$
x_{i}^{2}=x_{i} \quad \Longleftrightarrow \quad X=x x^{T}, \quad \operatorname{diag}(X)=x
$$

- Semidefinite relaxation:

Consider a binary problem

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & x_{i} \in\{0,1\}, \quad i=1, \ldots, n
\end{array}
$$

where $Q \in \mathcal{S}^{n}$ can be indefinite.

- Rewrite binary constraints $x_{i} \in\{0,1\}$:

$$
x_{i}^{2}=x_{i} \quad \Longleftrightarrow \quad X=x x^{T}, \quad \operatorname{diag}(X)=x
$$

- Semidefinite relaxation:

$$
X \succeq x x^{T}, \quad \operatorname{diag}(X)=x
$$

Combinatorial relaxations

Lifted non-convex problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{\top} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& X=x x^{\top} .
\end{array}
$$

Semidefinite relaxation:

minimize
subject to

- Relaxation is exact if $X=x x^{T}$
- Otherwise can be strengthened, $\epsilon . g$., by adding $X_{i j} \geq 0$.

Combinatorial relaxations

Lifted non-convex problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{\top} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& X=x x^{\top} .
\end{array}
$$

Semidefinite relaxation:

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& \left(\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right) \succeq 0 .
\end{array}
$$

- Relaxation is exact if $X=x x^{T}$
- Otherwise can be strengthened, e.g., by adding $X_{i j} \geq 0$.

Combinatorial relaxations

Lifted non-convex problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{\top} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& X=x x^{\top} .
\end{array}
$$

Semidefinite relaxation:

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& \left(\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right) \succeq 0 .
\end{array}
$$

- Relaxation is exact if $X=x x^{T}$.
- Otherwise can be strengthened, e.g., by adding $X_{i j} \geq 0$.

Lifted non-convex problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{\top} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& X=x x^{\top} .
\end{array}
$$

Semidefinite relaxation:

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& \left(\begin{array}{cc}
X & x \\
x^{T} & 1
\end{array}\right) \succeq 0 .
\end{array}
$$

- Relaxation is exact if $X=x x^{T}$.
- Otherwise can be strengthened, e.g., by adding $X_{i j} \geq 0$.

Relaxations for boolean optimization

Same approach used for boolean constraints $x_{i} \in\{-1,+1\}$.

Lifting of boolean constraints

Rewrite boolean constraints $x_{i} \in\{-1,1\}$:

$$
x_{i}^{2}=1 \quad \Longleftrightarrow \quad X=x x^{T}, \quad \operatorname{diag}(X)=e
$$

Semidefinite relaxation of boolean constraints

$$
X \succeq x x^{\top}, \quad \operatorname{diag}(X)=e
$$

Relaxations for boolean optimization
Example: MAXCUT
Undirected graph G with vertices V and edges E.

A cut partitions V into disjoint sets S and T with cut-set

$$
I=\{(u, v) \in E \mid u \in S, v \in T\}
$$

The capacity of a cut is $|I|$. The cut $\left\{v_{2}, v_{4}, v_{5}\right\}$ has capacity 9 .

Relaxations for boolean optimization Example: MAXCUT

Let

$$
x_{i}= \begin{cases}+1, & v_{i} \in S \\ -1, & v_{i} \notin S\end{cases}
$$

and assume $x_{i} \in S$. Then

$$
1-x_{i} x_{j}= \begin{cases}2, & v_{j} \in S \\ 0, & v_{j} \notin S\end{cases}
$$

If A is the adjancency matrix for G, then the capacity is

$$
\operatorname{cap}(x)=\frac{1}{2} \sum_{(i, j) \in E}\left(1-x_{i} x_{j}\right)=\frac{1}{4} \sum_{i, j}\left(1-x_{i} x_{j}\right) A_{i j}
$$

i.e, the MAXCUT problem is

$$
\begin{array}{ll}
\text { maximize } & \frac{1}{4} e^{T} A e-\frac{1}{4} x^{T} A x \\
\text { subject to } & x \in\{-1,+1\}^{n}
\end{array}
$$

Exercise: Implement a SDP relaxation for G on the previous slide.

Sums-of-squares relaxations

- f : multivariate polynomial of degree $2 d$.
- $v_{d}=\left(1, x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{2}, \ldots, x_{n}^{d}\right)$.

Vector of monomials of degree d or less.

Sums-of-squares representation
 f is a sums-of-squares (SOS) iff

Sums-of-squares relaxations

- f : multivariate polynomial of degree $2 d$.
- $v_{d}=\left(1, x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{2}, \ldots, x_{n}^{d}\right)$.

Vector of monomials of degree d or less.

Sums-of-squares representation

f is a sums-of-squares (SOS) iff

$$
f\left(x_{1}, \ldots, x_{n}\right)=v_{d}^{T} Q v_{d}, \quad Q \succeq 0 .
$$

If $Q=L L^{T}$ then

$$
f\left(x_{1}, \ldots, x_{n}\right)=v_{d}^{T} L L^{T} v_{d}=\sum_{i=1}^{m}\left(l_{i}^{T} v_{d}\right)^{2} .
$$

Sufficient condition for $f\left(x_{1}, \ldots, x_{n}\right) \geq 0$.

A simple example

Consider

$$
f(x, z)=2 x^{4}+2 x^{3} z-x^{2} z^{2}+5 z^{4}
$$

homogeneous of degree 4, so we only need

$$
v=\left(\begin{array}{lll}
x^{2} & x z & z^{2}
\end{array}\right)
$$

Comparing cofficients of $f(x, z)$ and $v^{\top} Q v=\left\langle Q, v v^{\top}\right\rangle$,

we see that $f(x, z)$ is SOS iff $Q \succeq 0$ and

A simple example

Consider

$$
f(x, z)=2 x^{4}+2 x^{3} z-x^{2} z^{2}+5 z^{4}
$$

homogeneous of degree 4, so we only need

$$
v=\left(\begin{array}{lll}
x^{2} & x z & z^{2}
\end{array}\right)
$$

Comparing cofficients of $f(x, z)$ and $v^{\top} Q v=\left\langle Q, v v^{\top}\right\rangle$,

$$
\left\langle Q, v v^{T}\right\rangle=\left\langle\left(\begin{array}{lll}
q_{00} & q_{01} & q_{02} \\
q_{10} & q_{11} & q_{12} \\
q_{20} & q_{21} & q_{22}
\end{array}\right),\left(\begin{array}{ccc}
x^{4} & x^{3} z & x^{2} z^{2} \\
x^{3} z & x^{2} z^{2} & x z^{3} \\
x^{2} z^{2} & x z^{3} & z^{4}
\end{array}\right)\right\rangle
$$

we see that $f(x, z)$ is SOS iff $Q \succeq 0$ and

$$
q_{00}=2, \quad 2 q_{10}=2, \quad 2 q_{20}+q_{11}=-1, \quad 2 q_{21}=0, \quad q_{22}=5 .
$$

Applications in polynomial optimization

$$
f(x, z)=4 x^{2}-\frac{21}{10} x^{4}+\frac{1}{3} x^{6}+x z-4 z^{2}+4 z^{4}
$$

Global lower bound

Replace non-tractable problem, minimize $f(x, z)$
by a tractable lower bound

```
maximize t
subject to f(x,z)-t is SOS.
```


Relaxation finds the global optimum $t=-1.031$.

$$
\begin{gathered}
f(x, z)-t=4 x^{2}-\frac{21}{10} x^{4}+\frac{1}{3} x^{6}+x z-4 z^{2}+4 z^{4}-t \\
v v^{T}=\left(\begin{array}{cccccccccc}
1 & x & z & x^{2} & x z & z^{2} & x^{3} & x^{2} z & x z^{2} & z^{3} \\
x & x^{2} & x z & x^{3} & x^{2} z & x z^{2} & x^{4} & x^{3} z & x^{2} z^{2} & x z^{3} \\
z & x z & z^{2} & x^{2} z & x z^{2} & z^{3} & x^{3} z & x^{2} z^{2} & x z^{3} & z^{4} \\
x^{2} & x^{3} & x^{2} z & x^{4} & x^{3} z & x^{2} z^{2} & x^{5} & x^{4} z & x^{3} z^{2} & x^{2} z^{3} \\
x z & x^{2} z & x z^{2} & x^{3} z & x^{2} z^{2} & x z^{3} & x^{4} z & x^{3} z^{2} & x^{2} z^{3} & x z^{4} \\
z^{2} & x z^{2} & z^{3} & x^{2} z^{2} & x z^{3} & z^{4} & x^{3} z^{2} & x^{2} z^{3} & x z^{4} & y^{5} \\
x^{3} & x^{4} & x^{3} z & x^{5} & x^{4} z & x^{3} z^{2} & x^{6} & x^{5} z & x^{4} z^{2} & x^{3} z^{3} \\
x^{2} z & x^{3} z & x^{2} z^{2} & x^{4} z & x^{3} z^{2} & x^{2} z^{3} & x^{5} z & x^{4} z^{2} & x^{3} z^{3} & x^{2} z^{4} \\
x z^{2} & x^{2} z^{2} & x z^{3} & x^{3} z^{2} & x^{2} z^{3} & x z^{4} & x^{4} z^{2} & x^{3} z^{3} & x^{2} z^{4} & x z^{5} \\
z^{3} & x z^{3} & z^{4} & x^{2} z^{3} & x z^{4} & z^{5} & x^{3} z^{3} & x^{2} z^{4} & x z^{5} & z^{6}
\end{array}\right)
\end{gathered}
$$

By comparing cofficients of $v^{T} Q v$ and $f(x, z)-t$:

$$
\begin{gathered}
q_{00}=-t, \quad\left(2 q_{30}+q_{11}\right)=4, \quad\left(2 q_{72}+q_{44}\right)=-\frac{21}{10}, \quad q_{77}=\frac{1}{3} \\
2\left(q_{51}+q_{32}\right)=1, \quad\left(2 q_{61}+q_{33}\right)=-4, \quad\left(2 q_{10,3}+q_{66}\right)=4 \\
2 q_{10}=0, \quad 2 q_{20}=0, \quad 2\left(q_{71}+q_{42}\right)=0, \quad \ldots
\end{gathered}
$$

A standard SDP with a 10×10 variable and 28 constraints.

Nonnegative polynomials

- Univariate polynomial of degree $2 n$:

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{2 n} x^{2 n}
$$

- Nonnegativity is equivalent to SOS, i.e.,

- Simple extensions for nonnegativity on a subinterval $/ \subset \mathbb{R}$.

Nonnegative polynomials

- Univariate polynomial of degree $2 n$:

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{2 n} x^{2 n}
$$

- Nonnegativity is equivalent to SOS, i.e.,

$$
f(x) \geq 0 \quad \Longleftrightarrow \quad f(x)=v^{T} Q v, \quad Q \succeq 0
$$

with $v=\left(1, x, \ldots, x^{n}\right)$.

- Simple extensions for nonnegativity on a subinterval $/ \subset \mathbb{R}$

Nonnegative polynomials

- Univariate polynomial of degree $2 n$:

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{2 n} x^{2 n}
$$

- Nonnegativity is equivalent to SOS, i.e.,

$$
f(x) \geq 0 \quad \Longleftrightarrow \quad f(x)=v^{T} Q v, \quad Q \succeq 0
$$

with $v=\left(1, x, \ldots, x^{n}\right)$.

- Simple extensions for nonnegativity on a subinterval $/ \subset \mathbb{R}$.

Fit a polynomial of degree n to a set of points $\left(x_{j}, y_{j}\right)$,

$$
f\left(x_{j}\right)=y_{j}, \quad j=1, \ldots, m
$$

i.e., linear equality constraints in c,

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

Semidefinite shape constraints:

- Nonnegativity $f(x) \geq 0$.
- Monotonicity $f^{\prime}(x) \geq 0$.
- Convexity $f^{\prime \prime}(x) \geq 0$

Polynomial interpolation

Fit a polynomial of degree n to a set of points $\left(x_{j}, y_{j}\right)$,

$$
f\left(x_{j}\right)=y_{j}, \quad j=1, \ldots, m
$$

i.e., linear equality constraints in c,

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

Semidefinite shape constraints:

- Nonnegativity $f(x) \geq 0$.
- Monotonicity $f^{\prime}(x) \geq 0$.
- Convexity $f^{\prime \prime}(x) \geq 0$.

Polynomial interpolation

A specific example

Smooth interpolation

Minimize largest derivative,

$$
\begin{array}{ll}
\text { minimize } & \max _{x \in[-1,1]}\left|f^{\prime}(x)\right| \\
\text { subject to } & f(-1)=1 \\
& f(0)=0 \\
& f(1)=1
\end{array}
$$

or equivalently

$$
\begin{array}{ll}
\operatorname{minimize} & z \\
\text { subject to } & -z \leq f^{\prime}(x) \leq z \\
& f(-1)=1 \\
& f(0)=0 \\
& f(1)=1 .
\end{array}
$$

$$
f_{2}(x)=x^{2} \quad f_{2}^{\prime}(1)=2
$$

Polynomial interpolation
A specific example

Smooth interpolation

Minimize largest derivative,

$$
\begin{array}{ll}
\text { minimize } & \max _{x \in[-1,1]}\left|f^{\prime}(x)\right| \\
\text { subject to } & f(-1)=1 \\
& f(0)=0 \\
& f(1)=1
\end{array}
$$

or equivalently

$$
\begin{array}{ll}
\operatorname{minimize} & z \\
\text { subject to } & -z \leq f^{\prime}(x) \leq z \\
& f(-1)=1 \\
& f(0)=0 \\
& f(1)=1 .
\end{array}
$$

$$
f_{2}(x)=x^{2} \quad f_{2}^{\prime}(1)=2
$$

$$
f_{4}(x)=\frac{3}{2} x^{2}-\frac{1}{2} x^{4} \quad f_{4}^{\prime}\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}
$$

Polynomial interpolation
A specific example

Smooth interpolation

Minimize largest derivative,

$$
\begin{array}{ll}
\text { minimize } & \max _{x \in[-1,1]}\left|f^{\prime}(x)\right| \\
\text { subject to } & f(-1)=1 \\
& f(0)=0 \\
& f(1)=1
\end{array}
$$

or equivalently

$$
\begin{array}{ll}
\operatorname{minimize} & z \\
\text { subject to } & -z \leq f^{\prime}(x) \leq z \\
& f(-1)=1 \\
& f(0)=0 \\
& f(1)=1
\end{array}
$$

$$
f_{2}(x)=x^{2} \quad f_{2}^{\prime}(1)=2
$$

$$
f_{4}(x)=\frac{3}{2} x^{2}-\frac{1}{2} x^{4} \quad f_{4}^{\prime}\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}
$$

Polynomial interpolation
A specific example

Smooth interpolation

Minimize largest derivative,

$$
\begin{array}{ll}
\text { minimize } & \max _{x \in[-1,1]}\left|f^{\prime}(x)\right| \\
\text { subject to } & f(-1)=1 \\
& f(0)=0 \\
& f(1)=1
\end{array}
$$

or equivalently

$$
\begin{array}{ll}
\operatorname{minimize} & z \\
\text { subject to } & -z \leq f^{\prime}(x) \leq z \\
& f(-1)=1 \\
& f(0)=0 \\
& f(1)=1 .
\end{array}
$$

$$
f_{2}(x)=x^{2} \quad f_{2}^{\prime}(1)=2
$$

$$
f_{4}(x)=\frac{3}{2} x^{2}-\frac{1}{2} x^{4} \quad f_{4}^{\prime}\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}
$$

Optimizing over Hermitian semidefinite matrices

Let $X \in \mathcal{H}_{+}^{n}$ be a Hermitian semidefinite matrix of order n with inner product

$$
\langle V, W\rangle:=\operatorname{tr}\left(V^{H} W\right)=\sum_{i j} V_{i j}^{*} W_{i j}=\operatorname{vec}(V)^{H} \mathbf{v e c}(W) .
$$

Then

$$
\begin{aligned}
z^{H} X z & =(\Re z-i \Im z)^{T}(\Re X+i \Im X)(\Re z+i \Im z) \\
& =\left[\begin{array}{c}
\Re z \\
\Im z
\end{array}\right]^{T}\left[\begin{array}{rr}
\Re X & -\Im X \\
\Im X & \Re X
\end{array}\right]\left[\begin{array}{c}
\Re z \\
\Im z
\end{array}\right] \geq 0, \quad \forall z \in \mathbb{C}^{n} .
\end{aligned}
$$

In other words,

Optimizing over Hermitian semidefinite matrices

Let $X \in \mathcal{H}_{+}^{n}$ be a Hermitian semidefinite matrix of order n with inner product

$$
\langle V, W\rangle:=\operatorname{tr}\left(V^{H} W\right)=\sum_{i j} V_{i j}^{*} W_{i j}=\operatorname{vec}(V)^{H} \mathbf{v e c}(W)
$$

Then

$$
\begin{aligned}
z^{H} X z & =(\Re z-i \Im z)^{T}(\Re X+i \Im X)(\Re z+i \Im z) \\
& =\left[\begin{array}{c}
\Re z \\
\Im z
\end{array}\right]^{T}\left[\begin{array}{rr}
\Re X & -\Im X \\
\Im X & \Re X
\end{array}\right]\left[\begin{array}{c}
\Re z \\
\Im z
\end{array}\right] \geq 0, \quad \forall z \in \mathbb{C}^{n} .
\end{aligned}
$$

In other words,

$$
X \in \mathcal{H}_{+}^{n} \quad \Longleftrightarrow \quad\left[\begin{array}{rr}
\Re X & -\Im X \\
\Im X & \Re X
\end{array}\right] \in \mathcal{S}_{+}^{2 n}
$$

Note skew-symmetry $\Im X=-\Im X^{T}$.

Nonnegative trigonometric polynomials

Consider a trigonometric polynomial:

$$
f(z)=x_{0}+2 \Re\left(\sum_{i=1}^{n} x_{i} z^{-i}\right), \quad|z|=1
$$

parametrized by $x \in \mathbb{R} \times \mathbb{C}^{n}$. Let T_{i} be Toeplitz matrices with

$$
\left[T_{i}\right]_{k l}=\left\{\begin{array}{ll}
1, & k-I=i \\
0, & \text { otherwise }
\end{array} \quad i=0, \ldots, n .\right.
$$

Then $f(z) \geq 0$ on the unit-circle iff

$$
X \in \mathcal{H}_{+}^{n+1}, \quad x_{i}=\left\langle X, T_{i}\right\rangle, \quad i=0, \ldots, n
$$

Proved by Nesterov. Simple extensions for nonnegativity on subintervals.

Cones of nonnegative trigonometric polynomials

Filter design example

Consider a transfer function:

$$
H(\omega)=x_{0}+2 \Re\left(\sum_{k=1}^{n} x_{k} e^{-j \omega k}\right) .
$$

We can design a lowpass filter by solving

$$
\begin{array}{lcccl}
\operatorname{minimize} & & t & & \\
\text { subject to } & 0 & \leq H(\omega) & & \forall \omega \in[0, \pi] \\
& 1-\delta & \leq H(\omega) & \leq 1+\delta & \forall \omega \in\left[0, \omega_{p}\right] \\
& & H(\omega) \leq & t & \forall \omega \in\left[\omega_{s}, \pi\right]
\end{array}
$$

where ω_{s} and ω_{s} are design parameters.
The constraints all have simple semidefinite characterizations.

Cones of nonnegative trigonometric polynomials

Filter design example

Transfer function for $n=10, \delta=0.05, \omega_{p}=\pi / 4, \omega_{s}=\omega_{p}+\pi / 8$.

The $(n+1)$-dimensional power-cone is

$$
K_{\alpha}=\left\{x \in \mathbb{R}^{n+1}\left|x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}} \geq\left|x_{n+1}\right|, x_{1}, \ldots, x_{n} \geq 0\right\}\right.
$$

for $\alpha>0, e^{T} \alpha=1$. Dual cone:
$K_{\alpha}^{*}=\left\{s \in \mathbb{R}^{n+1}\left|\left(s_{1} / \alpha_{1}\right)^{\alpha_{1}} \cdots\left(s_{n} / \alpha_{n}\right)^{\alpha_{n}} \geq\left|s_{n+1}\right|, s_{1}, \ldots, s_{n} \geq 0\right\}\right.$
The power cone is self-dual:

$$
T_{\alpha} K_{\alpha}^{*}=K_{\alpha}
$$

where $T_{\alpha}:=\boldsymbol{\operatorname { D i a g }}\left(\alpha_{1}, \ldots, \alpha_{n}, 1\right) \succ 0$.

Simple examples

Three dimensional power cone:

$$
\mathcal{Q}_{\alpha}=\left\{x \in \mathbb{R}^{3}\left|x_{1}^{\alpha} x_{2}^{1-\alpha} \geq\left|x_{3}\right|, x_{1}, x_{2} \geq 0\right\} .\right.
$$

- Epigraph of convex power $p \geq 1$:

$$
|x|^{p} \leq t \quad \Longleftrightarrow \quad(t, 1, x) \in \mathcal{Q}_{1 / p}
$$

- Epigraph of p-norm:

$$
\|x\|_{p} \leq t \quad \Longleftrightarrow \quad\left(z_{i}, t, x_{i}\right) \in \mathcal{Q}_{1 / p}, \quad e^{T} z=t
$$

where $\|x\|_{p}:=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$.

$\mathcal{Q}_{1 / 2}$

$\mathcal{Q}_{1 / 4}$

Exponential cone:

$$
\begin{aligned}
K_{\exp } & =\mathbf{c l}\left\{x \in \mathbb{R}^{3} \mid x_{1} \geq x_{2} e^{x_{3} / x_{2}}, x_{2}>0\right\} \\
& =\left\{x \in \mathbb{R}^{3} \mid x_{1} \geq x_{2} e^{x_{3} / x_{2}}, x_{2}>0\right\} \cup\left(\mathbb{R}_{+} \times\{0\} \times \mathbb{R}_{-}\right)
\end{aligned}
$$

Dual cone:

$$
\begin{aligned}
K_{\exp }^{*} & =\mathbf{c l}\left\{s \in \mathbb{R}^{3} \left\lvert\, s_{1} \geq\left(-s_{3}\right) \exp \left(\frac{s_{3}-s_{2}}{-s_{3}}\right)\right., s_{3}<0\right\} \\
& =\left\{s \in \mathbb{R}^{3} \left\lvert\, s_{1} \geq\left(-s_{3}\right) \exp \left(\frac{s_{3}-s_{2}}{-s_{3}}\right)\right., s_{3}<0\right\} \cup\left(\mathbb{R}_{+}^{2} \times\{0\}\right)
\end{aligned}
$$

Not a self-dual cone.

Exponential cone

Simple examples

- Epigraph of negative logarithm:

$$
-\log (x) \leq t \quad \Longleftrightarrow \quad(x, 1,-t) \in K_{\text {exp }}
$$

- Epigraph of negative entropy:

$$
x \log x \leq t \quad \Longleftrightarrow \quad(1, x,-t) \in K_{\exp }
$$

- Epigraph of Kullback-Leibler divergence (with variable p):

$$
\begin{aligned}
& D(p \| q)=\sum_{i} p_{i} \log \frac{p_{i}}{q_{i}} \leq t \Longleftrightarrow \\
& p_{i} \log p_{i} \leq p_{i} \log q_{i}, \quad \sum_{i} p_{i} \log q_{i} \leq t
\end{aligned}
$$

Exponential cone

Simple examples

- Epigraph of exponential:

$$
e^{x} \leq t \quad \Longleftrightarrow \quad(t, 1, x) \in K_{\exp }
$$

- Epigraph of log of sum of exponentials:

$$
\log \sum e^{a_{i}^{T} x+b_{i}} \leq t \quad \Longleftrightarrow \quad\left(z_{i}, 1, a_{i}^{T} x+b_{i}-t\right) \in K_{\exp }, \quad e^{T} z=1 .
$$

Section 3

Primal-dual methods for conic optimization

The homogeneous model for conic problems

The homogenous model:

$$
\left[\begin{array}{l}
s \\
0 \\
\kappa
\end{array}\right]+\left[\begin{array}{ccc}
0 & A^{T} & -c \\
A & 0 & -b \\
c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\tau
\end{array}\right]=0, \quad x, s \in K, \tau, \kappa \geq 0
$$

Encapsulates different duality cases:

- If $\tau>0, \kappa=0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,
- If $\tau=0, \kappa>0$ then the problem is infeasible,

The homogeneous model for conic problems

The homogenous model:

$$
\left[\begin{array}{l}
s \\
0 \\
\kappa
\end{array}\right]+\left[\begin{array}{ccc}
0 & A^{T} & -c \\
A & 0 & -b \\
c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\tau
\end{array}\right]=0, \quad x, s \in K, \tau, \kappa \geq 0
$$

Encapsulates different duality cases:

- If $\tau>0, \kappa=0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,

$$
A x=b \tau, \quad c \tau-A^{T} y=s, \quad c^{T} x-b^{T} y=x^{T} s=0
$$

- If $\tau=0, \kappa>0$ then the problem is infeasible,

The homogeneous model for conic problems

The homogenous model:

$$
\left[\begin{array}{l}
s \\
0 \\
\kappa
\end{array}\right]+\left[\begin{array}{ccc}
0 & A^{T} & -c \\
A & 0 & -b \\
c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\tau
\end{array}\right]=0, \quad x, s \in K, \tau, \kappa \geq 0
$$

Encapsulates different duality cases:

- If $\tau>0, \kappa=0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,

$$
A x=b \tau, \quad c \tau-A^{T} y=s, \quad c^{T} x-b^{T} y=x^{T} s=0
$$

- If $\tau=0, \kappa>0$ then the problem is infeasible,

$$
A x=0, \quad-A^{T} y=s, \quad c^{T} x-b^{T} y<0
$$

The homogeneous model for conic problems

The homogenous model:

$$
\left[\begin{array}{l}
s \\
0 \\
\kappa
\end{array}\right]+\left[\begin{array}{ccc}
0 & A^{T} & -c \\
A & 0 & -b \\
c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\tau
\end{array}\right]=0, \quad x, s \in K, \tau, \kappa \geq 0
$$

Encapsulates different duality cases:

- If $\tau>0, \kappa=0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,

$$
A x=b \tau, \quad c \tau-A^{T} y=s, \quad c^{T} x-b^{T} y=x^{T} s=0
$$

- If $\tau=0, \kappa>0$ then the problem is infeasible,

$$
A x=0, \quad-A^{T} y=s, \quad c^{T} x-b^{T} y<0
$$

- If $\tau=0, \kappa=0$ then the problem is ill-posed.

Symmetric cones

Symmetric cones can be written as squares

$$
x^{2}=x \circ x
$$

for appropriate product $x \circ y$.
Products for three symmetric cones:

- Nonnegative orthant: $x \circ y=\operatorname{diag}(X) y$.
- Second-order cone with $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$:

$$
x \circ y=\left[\begin{array}{c}
x^{\top} y \\
x_{1} y_{2}+y_{1} x_{2}
\end{array}\right] .
$$

- Semidefinite cone with $X=\boldsymbol{\operatorname { m a t }}(x)$ and $Y=\boldsymbol{m a t}(y)$:

$$
x \circ y=(1 / 2) \operatorname{vec}(X Y+Y X)
$$

Given initial point $z^{0}:=\left(x^{0}, y^{0}, s^{0}, \tau^{0}, \kappa^{0}\right)$.
Central path:

$$
\begin{aligned}
& {\left[\begin{array}{l}
s \\
0 \\
\kappa
\end{array}\right]+\left[\begin{array}{ccc}
0 & A^{T} & -c \\
A & 0 & -b \\
c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\tau
\end{array}\right]=\gamma\left[\begin{array}{c}
A^{T} y^{0}+s^{0}-c \tau^{0} \\
A x^{0}-b \tau^{0} \\
c^{T} x^{0}-b^{T} y^{0}+\kappa^{0}
\end{array}\right]} \\
& x \circ s=\gamma \mu^{0} e, \quad \tau^{0} \kappa^{0}=\gamma \mu^{0} \\
& \text { where } e \text { is the unit-element and } \mu^{0}:=\frac{\left(x^{0}\right)^{T} s^{0}+\tau^{0} \kappa^{0}}{n+1} .
\end{aligned}
$$

Continuously connects z^{0} to z^{\star} as γ goes from 1 to 0 .

Nesterov-Todd scaling for symmetric cones

Properties of symmetric Nesterov-Todd scaling W :

- Maps x and s to the same scaling point λ.

$$
\lambda=W x=W^{-1} s
$$

- Leaves the cone invariant.

$$
x, s \succeq 0 \quad \Longleftrightarrow \quad \lambda \succeq 0
$$

- Preserves the central path.

$$
x \circ s=(W x) \circ\left(W^{-1} s\right)=\lambda \circ \lambda=\lambda^{2}
$$

Computing a search-direction

Essential part of a primal-dual method

Linearizing the scaled central path:

$$
\left[\begin{array}{c}
\Delta s \\
0 \\
\Delta \kappa
\end{array}\right]+\left[\begin{array}{ccc}
0 & A^{T} & -c \\
A & 0 & -b \\
c^{T} & -b^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\Delta x \\
\Delta y \\
\Delta \tau
\end{array}\right]=\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{\tau}
\end{array}\right]
$$

$$
\lambda \circ\left(W \Delta x+W^{-1} \Delta s\right)=\gamma \mu e-\lambda^{2}, \quad \tau \Delta \kappa+\kappa \Delta \tau=\gamma \mu-\tau \kappa,
$$

where r_{x}, r_{y} and r_{z} depend on previous iteration.
Most expensive step (after block-elimination):

$$
A W^{-2} A^{T} \Delta y=\tilde{r}_{y}
$$

Solved using a Cholesky factorization.

