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Section 1



Linear optimization

e We minimize a linear function given linear constraints.

e Example: minimize a linear function
X1+ 2x0 — X3
under the constraints that

x1+x+x3=1, x1,x,x3>0.

e The function we minimize is called the objective function.
e The constraitns are either equality or inequality constraints.

e Important: everything is linear in x.



Linear optimization

A simple example

Standard notation:

minimize x1 + 2xo — x3
subjectto x1+xx+x3=1
X1, X2, X3 > 0.

Feasible set:

Ty T2

Optimal solution x* = (0,0, 1) with value=—1.



Geometry of linear optimization

Hyperplanes and halfspaces

o Hyperplane: {x|a’(x —x0) =0} = {x|a’x =~}

o Halfspace: {x|a’(x —xp) >0} = {x|a'x>~}




Geometry of linear optimization

Polyhedral sets

e A polyhedron is an intersection of halfspaces:

e Can be both bounded (as shown) or unbounded.



Geometry of linear optimization

Optimizing of a polyhedral set

e The contour lines are shifted hyperplanes

e Optimal solution is a vertex, on a facet, or unbounded.



Convex piecewise-linear functions

Consider f defined as a the maximum of affine functions,

f(x):= _max {a] x + b;}.
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Convex piecewise-linear functions

Consider f defined as a the maximum of affine functions,

f(x):= _max {a] x + b;}.
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The epigraph f(x) < t is equivalent to

a,-Tx—l—b,-gt, i=1,...,m.



Simple examples

Convex piecewise-linear functions

e The absolute value function
la| := max{a, —a}
is a convex piecewise-linear function,

la] <t «— —-t<a<t.



Simple examples

Convex piecewise-linear functions

e The absolute value function
la| := max{a, —a}
is a convex piecewise-linear function,

la] <t «— —-t<a<t.

e The ¢, -norm of a vector x € R" is

Ix[loo := max |xil,
i= n

=1,...,



Simple examples

The -norm

The ¢1-norm of a vector x € R" is
lIx[l1 = Pxal + [xa| + -+ + |xal.
We can characterize the epigraph
Ixlly <t

as
|xi| <z, i=1,...,n, E zi <'t.
i



Programming exercises \ 4

Given data

m=500; n=100;

A=randn(m,n); b=randn(m,1);

write a Yalmip program that minimizes f;(Ax — b) for
0 f(z) =[]
0 f(z) = [|z]2

® f3(z) = [1z]

0 f4(z) = Z max{0,z — 1,—z — 1}

Plot a histogram comparing Ax — b for the different choices of f.



Duality in linear optimization

We consider a problem in standard form

minimize ¢’ x

subject to Ax=0b
x > 0.
The Lagrangian function is a lower bound,

L(x,y,s) = CTX+yT(b — Ax) — sTx<cTx

where y € R™ and s € R are Lagrange multipliers or dual
variables.

Note: It's important that s > 0.



Duality in linear optimization

The dual problem

The dual function is

g(yvs) = iQfL(X,y,S) = iQfXT(C_ATy - S) + bTyv

by, c—ATy—s=0
—o00, otherwise,

g(y;s) = {
which is a global lower bound (valid for all x).
The dual problem is the best such lower bound,

maximize b’y
subjectto c— ATy =s
s> 0.



Duality in linear optimization

Weak duality

Primal problem with optimal value p*:

minimize ¢’ x

subjectto Ax=b
x > 0.

Dual problem with optimal value d*:

maximize b’y
subjectto c— ATy =s
s> 0.
Weak duality:

c"x—bTy=xT(c—ATy)=xTs>0,

e, p*>d*.



Duality in linear optimization

Summary of strong duality

Convention:
e p* = oo if primal problem is infeasible.

e d* = —oo if dual problem is infeasible.

We then have:
e Primal feasible, dual feasible: p* = d* and finite.
e Primal infeasible, dual unbounded: p* = oo, d* = cc.
e Primal unbounded, dual infeasible: p* = —o0, d* = —o0.

e Primal infeasible, dual infeasble: p* = oo, d* = —c0.

Only in the last case is p* > d*.



Duality in linear optimization

Example: basis pursuit

Basis pursuit problem:

minimize  ||x||1
subject to Ax = b.

Used as heuristic for sparse representation of b.

Equivalent linear problem:

minimize e’z

subject to Ax = b
—z< x<z



Duality in linear optimization

Example: dual of basis pursuit

By change of variables
1

1
u:i(z—x), VZE(Z—{_X)

we get a standard form linear problem:

minimize e’ (v + u)
subject to A(v—u)=b
u,v > 0.

Dual problem:

maximize b’y

T
subject to [ :} — [ _AAT }yZO.

Note that

ATy <e, —ATy <e <— ||ATyHOo <1.



Duality in linear optimization

Example: basis pursuit

Primal-dual basis pursuit problems:

minimize  ||x||1 maximize b’y
subject to Ax = b. subject to [|ATy|lo < 1.

Recall the definition of dual norms:

[[x[[4,p := SUP{XTV [ Ivlp <1}

Exercise: Derive the dual of the £5,-norm.
Exercise: Derive the dual of the dual basis pursuit problem.



Duality in linear optimization

Primal infeasibility certificates

minimize ¢’ x maximize bTy
subject to Ax=0b subjectto c— ATy =s
x> 0. s> 0.

e Theorems of strong alternatives (Farkas' lemma): either
Ax=b, x>0

or
ATy <0, bTy

has a solution.



Duality in linear optimization

Primal infeasibility certificates

minimize ¢’ x maximize bTy
subject to Ax=0b subjectto c— ATy =s
x> 0. s> 0.

e Theorems of strong alternatives (Farkas' lemma): either
Ax=b, x>0

or
ATy <o, by
has a solution.

e The latter is a certificate of primal infeasibility.



Duality in linear optimization

Primal infeasibility certificates

minimize ¢’ x maximize bTy
subject to Ax=0b subjectto c— ATy =s
x> 0. s> 0.

e Theorems of strong alternatives (Farkas' lemma): either
Ax=b, x>0

or
ATy <o, by
has a solution.
e The latter is a certificate of primal infeasibility.
e If ATy <0, b7y > 0 then y is an unbounded dual direction.



Duality in linear optimization

Example of primal infeasibility

Consider
minimize —x1 — X2
subject to x3 +x = —1
x1,x2 >0

with a dual problem

maximize —y

. 1 1
subject to —[1}y2[1].

e Primal is trivially infeasible, p* = cc.

e Any y < —1 is a certificate of primal infeasibility, as well as an
unbounded dual direction, d* = cc.



Separating hyperplane theorem v

Theorem: Let S be a closed convex set, and b & S. Then there
exists a separating hyperplane such that

a’b>a'x, VxeS.



Farkas' lemma

Sketch of proof

Either
Ax=b, x>0

or
ATy <0, b'y>0

has a solution.
e Both cannot be true, because then b7y = x"ATy < 0.



Farkas' lemma

Sketch of proof

Either
Ax=b, x>0

or
ATy <0, b'y>0

has a solution.
e Both cannot be true, because then b7y = x"ATy < 0.
e Assume b ¢ S where

S ={Ax| x> 0}.
Then there exists a separating hyperplane y (for b and S):
yTb>yTAx, Vx>0

implying b7y > 0and ATy <0.



Strong duality

Sketch of proof (using Farkas’ lemma)
We assume d”* is finite. Enough to show that p* < d*.

Assume there is no x > 0 such that Ax = b, cTx < p" ie.,

2 2]5]-[ ) woes

has no solution. Then (from Farkas’ lemma)

[AT c

y T *
<
0 1}[(}(]_0, b'y4+ad* >0, a#0

has a solution. Normalizing y’ := y/«a gives us
c—ATy' >0, bTy > d*,

contradicting optimality of d*.



Duality in linear optimization

Dual infeasibility certificates

minimize ¢’ x maximize b’y
subject to Ax=b subjectto c— ATy =s
x> 0. s> 0.

e Theorems of strong alternatives (dual variant): either
c—ATy>0

or
Ax=0, x>0, c'x<0

has a solution.



Duality in linear optimization

Dual infeasibility certificates

minimize ¢’ x maximize b’y
subject to Ax=b subjectto c— ATy =s
x> 0. s> 0.

e Theorems of strong alternatives (dual variant): either
c—ATy>0

or
Ax=0, x>0, c'x<0
has a solution.

e The latter is a certificate of dual infeasibility.



Duality in linear optimization

Example with both primal and dual infeasibility

Consider
minimize —x1 — X
subject to x3 = —1
x1,x2 >0
with a dual problem
maximize —y
. 1 1
subject to [O]Y—[l]
e y = —1 is a certificate of primal infeasibility, p* = oo

e x =(0,1) is a certificate of dual infeasibility, d* = —oc.



Section 2



Proper convex cones v

We consider proper convex cones K in R":
e Closed.
e Pointed: KN (—K) = {0}.

e Non-empty interior.
Dual-cone:
K={veR"|u"v>0,VuecK}
If K is a proper cone, then K* is also proper.

We use the notation:

xrky <= (x—-y)eK
XKy <= (x—y)e€intK



Example of cones

Quadratic cone (second-order cone, Lorenz cone)

Q"={x€eR"| x> /x5 + x5+ +x2}.

T2

Q" is self-dual: (Q")* = Q".



Examples of quadratic cones v

e Epigraph of absolute value:

x| <t <= (t,x)e€ Q%



Examples of quadratic cones v

e Epigraph of absolute value:

x| <t <= (t,x)e€ Q%

e Epigraph of Euclidean norm:

x|z <t <= (t,x)e Q"1

where x € R" and ||x|| = \/x2 + -+ + x2.



Examples of quadratic cones v

e Epigraph of absolute value:

x| <t <= (t,x)e€ Q%

e Epigraph of Euclidean norm:
X[l <t = (t,x)e Q"
where x € R" and ||x|| = \/x2 + -+ + x2.
e Second-order cone inequality:
|Ax+bla < c"x+d <= (c"x+d,Ax+b)c Q™!

for AcR™" pbeR™ ceR" deR.



Examples of quadratic cones

Robust optimization with ellipsoidal uncertainty

Ellipsoidal set:

£={xeR"||P(x—a)2 <1}
—{xeR" [ x=Ply+a |yl <1}.



Examples of quadratic cones

Robust optimization with ellipsoidal uncertainty

Ellipsoidal set:

E={x eR"[[[P(x—a)lla <1}
={xeR"|x=Ply+alyl<1}.

Worst-case realization of a linear function over &:

supc’x=a'x+ sup y' P ix=ax+ ||P 1x|s.
ce€ llyll2<1



Examples of quadratic cones

Robust optimization with ellipsoidal uncertainty

Ellipsoidal set:

E={x eR"[[[P(x—a)lla <1}
={xeR"|x=Ply+alyl<1}.

Worst-case realization of a linear function over &:

supc’x=a'x+ sup y' P ix=ax+ ||P 1x|s.

ce€ llyll2<1
Robust LP:
s T minimize a'x -+t
minimize supc'x
ces subject to Ax=0b
subjectto Ax=b (t P_lx) e Q!
b

x 20, x > 0.



Example of cones

Rotated quadratic cone

Rotated quadratic cone:
QN = {x € R" | 2x1x2 > X3 + ... X2, x1, % > 0}.
Related to standard quadratic cone:

xe Q! — (Tyx)eQ"

for
° 1/vV2 1/V2 0
Toi=|1/V2 -1/vV2 0
0 0 oo

Q7 is self-dual: (Q])" = Q7.



Examples of rotated quadratic cones v

e Epigraph of squared Euclidean norm:

IxIZ<t <= (1/2,t,x) € QI*2.



Examples of rotated quadratic cones v

e Epigraph of squared Euclidean norm:

IxIZ<t <= (1/2,t,x) € QI*2.

e Convex quadratic inequality:
(1/2)xT@x < c"™x+d <= (1/2,c"x+d,FTx) € Qk+2

with Q = FTF, F € R™*. So we can write QCQPs as conic
problems.



Examples of rotated quadratic cones v

e Convex hyperbolic function:

1
—<t, x>0 <= (x,t,V2) e Q3
X



Examples of rotated quadratic cones v

e Convex hyperbolic function:

1
—<t, x>0 <= (x,t,V2) e Q3
X

e Square roots:

1
VX>t, x>0 <= (E,x,t)eQ?.



Examples of rotated quadratic cones v

e Convex hyperbolic function:

1
—<t, x>0 <= (x,t,V2) e Q3
X

e Square roots:

1
VX>t, x>0 <= (E,x,t)eQ?.

e Convex positive rational power:

X3P <t x>0 <« (s tx)(x,1/8,s) € Q.



Examples of rotated quadratic cones v

e Convex hyperbolic function:

1
—<t, x>0 <= (x,t,V2) e Q3
X

e Square roots:

1
VX>t, x>0 <= (E,x,t)eQ?.

e Convex positive rational power:

X3P <t x>0 <« (s tx)(x,1/8,s) € Q.

e Convex negative rational power:

1 1
S<tx>0 = (t,§7s),(x,s7\/§)EQ§-
X



Semidefinite matrices

Basic definitions

e We denote n X n symmetric matrices by S".



Semidefinite matrices

Basic definitions

e We denote n X n symmetric matrices by S".

e Standard inner product for matrices:

(V,W) = tx(VTW) =) VW = vec(V) vec(W).



Semidefinite matrices

Basic definitions

e We denote n X n symmetric matrices by S".

e Standard inner product for matrices:

(V,W) = tx(VTW) =) VW = vec(V) vec(W).

e X is semidefinite if and only if
o zTXz >0, Vz € R".
@® All the eigenvalues of X are nonnegative.
©® X is a Grammian matrix, X = vTv.



Semidefinite matrices

Basic definitions

We denote n x n symmetric matrices by S".

Standard inner product for matrices:

(V,W) = tx(VTW) =) VW = vec(V) vec(W).

e X is semidefinite if and only if
o zTXz >0, Vz € R".
@® All the eigenvalues of X are nonnegative.
©® X is a Grammian matrix, X = vTv.

The (semi)definite matrices form a cone (S4) Si+.

Exercise: Show the three definitions are equivalent.



Semidefinite matrices

Basic definitions

Dual cone:
(ST ={ZeR™"|(X,Z) >0, VX € ST}
The semidefinite is self-dual: (S7)* = SY.
Easy to prove: Assume Z = 0sothat Z=U"Uand X = V'V.
(X,Z) =(vTv UTU) =tx(UVT)(UVT)T = |UVT|Z > 0.
Conversely assume Z % 0. Then 3w € R" such that

w'zZw = (ww',2) = (X,Z) <0.



Positive semidefinite matrices

Schur’s lemma

Schur’s lemma:

B cT TH-1
c D =0 < B-C'D"C+=0,C>0,D>0.

Example:

t x 1 +
-0 <= x'x<t <<= |x|<t,
x tl t

i.e., quadratic cone can be embedded in a semidefinite cone.



A geometric example

The pillow spectrahedron

The convex set

S= {(x,y,z)eRH <

<X
N = X
=N <
N————
Y
o
—

is called a pillow. 22

Exercise: Characterize the restriction S|,—o.



Eigenvalue optimization

Symmetric matrices

F(X):F0+X1F1+'~-+XmFm, Fi € Sn.

e Minimize largest eigenvalue A\1(F(x)):
minimize 7y
subject to /I = F(x),



Eigenvalue optimization

Symmetric matrices

F(X):F0+X1F1+'~-+XmFm, Fi € Sn.

e Minimize largest eigenvalue A\1(F(x)):
minimize 7y
subject to /I = F(x),
e Maximize smallest eigenvalue \,(F(x)):

maximize vy
subject to  F(x) = v/,



Eigenvalue optimization

Symmetric matrices

F(X):F0+X1F1+'~-+XmFm, Fi € Sn.

e Minimize largest eigenvalue A\1(F(x)):
minimize 7y
subject to /I = F(x),
e Maximize smallest eigenvalue \,(F(x)):
maximize vy
subject to  F(x) = v/,
e Minimize eigenvalue spread A\1(F(x)) — Ap(F(x)):

minimize vy — A
subject to /= F(x) = M,



Matrix norms

Nonsymmetric matrices

F(X):F0+X1F1+"'+me:m, FiERnXp,

e Frobenius norm: ||F(x)||F := v/ (F(x), F(x)),

IFC)lle <t & (tvec(F(x)) € Q"



Matrix norms

Nonsymmetric matrices

F(X):F0+X1F1+"'+me:m, FiERnXp,

e Frobenius norm: ||F(x)||F := v/ (F(x), F(x)),

IFC)lle <t & (tvec(F(x)) € Q"

e Induced ¢ norm: [|F(x)l2 := mfxak(F(x)),

minimize t
th F(x)T

subject to {F(x) "

| o

corresponds to the largest eigenvalue for F(x) € SY.



Nearest correlation matrix

Consider
5:{X681|Xi,‘:17 i:l,...,n}.

For a symmetric A € R™", the nearest correlation matrix is

X* = in[|A— X
arg min || IF,



Nearest correlation matrix

Consider
5:{X681|Xi,‘:17 i:l,...,n}.

For a symmetric A € R™", the nearest correlation matrix is

X* = in[|A— X
arg min || IF,

which corresponds to a mixed SOCP/SDP,

minimize t

subject to |vec(A—X)|2 <t
diag(X) =e
X = 0.

MOSEK is limited by the many constraints to, say n < 200.



Combinatorial relaxations

Consider a binary problem

minimize x' Qx4+ c'x
subject to x; € {0,1}, i=1,...,n.

where @ € 8" can be indefinite.



Combinatorial relaxations

Consider a binary problem

minimize x' Qx4+ c'x

subject to x; € {0,1}, i=1,...,n.
where @ € 8" can be indefinite.

e Rewrite binary constraints x; € {0,1}:

2
Xj

=x <= X=xx', diag(X)=x.



Combinatorial relaxations v

Consider a binary problem

minimize x' Qx4+ c'x
subject to x; € {0,1}, i=1,...,n.

where Q@ € S§" can be indefinite.
e Rewrite binary constraints x; € {0,1}:

2
Xj

=x <= X=xx', diag(X)=x.

e Semidefinite relaxation:

X = xx", diag(X) = x.



Combinatorial relaxations v

Lifted non-convex problem:

minimize  (Q, X) 4+ c'x
subject to diag(X) = x
X =xx".



Combinatorial relaxations v

Lifted non-convex problem:

minimize  (Q, X) 4+ c'x
subject to diag(X) = x

X =xx".

Semidefinite relaxation:

minimize (@, X) + ¢’ x
subject to diag(X) = x

X x
> 0.
()=



Combinatorial relaxations v

Lifted non-convex problem:

minimize  (Q, X) 4+ c'x

subject to diag(X) = x
X =xx".

Semidefinite relaxation:

minimize (@, X) + ¢’ x
subject to diag(X) = x

X x
> 0.
()=

e Relaxation is exact if X = xx .



Combinatorial relaxations

Lifted non-convex problem:

minimize  (Q, X) 4+ c'x
subject to diag(X) = x
X =xx".

Semidefinite relaxation:

minimize (@, X) + ¢’ x
subject to diag(X) = x

X x
> 0.
()=

e Relaxation is exact if X = xx .

e Otherwise can be strengthened, e.g., by adding Xj; > 0.



Relaxations for boolean optimization

Same approach used for boolean constraints x; € {—1, +1}.

Lifting of boolean constraints

Rewrite boolean constraints x; € {—1,1}:

x*}=1 <= X=xx', diag(X)=e.

]

Semidefinite relaxation of boolean constraints

X = xxT, diag(X) = e.




Relaxations for boolean optimization

Example: MAXCUT

Undirected graph G with vertices V and edges E.

N

V2 Vo

A cut partitions V into disjoint sets S and T with cut-set
I ={(u,v)€eE|luecS,veT}

The capacity of a cut is |/|. The cut {vz, v4, v5} has capacity 9.



Relaxations for boolean optimization

Example: MAXCUT

Let
. — +1, v;e$
e 71, Vi ¢ S

and assume x; € S. Then

1—x-x-—{27 v €5
" 0, v¢S~

If A is the adjancency matrix for G, then the capacity is

1 1
cap(x) = 3 > (L—xix) = 2 > (1= xix)Aj,
(iJ)eE i
i.e, the MAXCUT problem is
1 1

maximize -e'Ae — ~xT Ax
subject to x € {—1,+1}".

Exercise: Implement a SDP relaxation for G on the previous slide.



Sums-of-squares relaxations

e f: multivariate polynomial of degree 2d.

2 2 d
o Vg = (1,X1, X0, ooy Xny XTy XIX2y « v oy Xy v e vy Xp )

Vector of monomials of degree d or less.



Sums-of-squares relaxations

e f: multivariate polynomial of degree 2d.

2 2 d
o Vg = (1,X1, X0, ooy Xny XTy XIX2y « v oy Xy v e vy Xp )

Vector of monomials of degree d or less.

Sums-of-squares representation

f is a sums-of-squares (SOS) iff
f(x1,...,xn) = vJde, Q >~ 0.

If Q= LL" then

m

(X1, Xn) = vg LLTvg = Z(I,Tvd)z.
i=1

Sufficient condition for f(xi,...,x,) > 0.



A simple example :

Consider
f(x,z) = 2x* + 2x3z — x*2% + 5%,

homogeneous of degree 4, so we only need

vV = (X2 XZ 22).



A simple example -

Consider
f(x,z) = 2x* + 2x3z — x*2% + 5%,

homogeneous of degree 4, so we only need
v = (x2 xz 22) .

Comparing cofficients of f(x,z) and v! Qv = (Q,w ),

4 3 2.2
T doo doi1 4go2 X3 x2 z2 X z3
(Qw')=(g10 gu qgi2].| Xz x°z Xz )
2.2 3 4
a0 q21 Qg2 Xz Xz z

we see that f(x, z) is SOS iff @ > 0 and

Goo =2, 2q10=2, 290 +qi1=-1, 221 =0, g =05.



Applications in polynomial optimization

21
f(x,z) = 4x*> — —x

10 4+§x6—|—xz—4z2—|—4z4

Global lower bound

Replace non-tractable problem,

v
L \\\\\\\\\\‘
minimize f(x, z) &‘:“‘?‘\3\\:\)\\\
Q0%
PP\ et
(@ \\\}\“Q‘o

e !

Ea)f

PRI

STAEINN

by a tractable lower bound I
maximize t

subject to  f(x,z) — t is SOS.

Relaxation finds the global optimum t = —1.031.



2 21 4 1 2 4
f(x,z) —t=4x"— —=x"+ =x +xz—4z" + 4z —t
10 3

2 2 3 2 2

1 X z X Xz z X x“z Xz
2 3 2 2 3 2 2

X X Xz X x‘z  xz x'z Xz
2 2 2 3 3 2.2 3

z Xz z x“z xz z x’z x°z xz
2 3 2 3 2 2 5 4 3.2
X X Xz xz Xz X x'z Xz
2 2 3 2.2 3 4 3.2 2.3

T xz Xz xz Xz Xz Xz x'z xz¢ x°z
wo = 3 2.2 3 4 3.2 2.3 4
z Xz z Xz Xz z x'z° x°z xz
3 3 5 4 3.2 6 5 4.2
X X'z X X'z x X x’z Xz
2 3 2.2 4 3.2 2.3 5 4 2 3.3
Xz Xz x°Z X'z xz¢ x°z x’z xz¢ xz
2.2 3 3.2 2.3 42 3.3 2.4

xz° x°z Xz x'z° x°z xz x'z° xz0 Xz
3 3 4 2.3 4 5 3.3 2.4 5
z Xz z x‘z Xz z X'z x°z xz

By comparing cofficients of v’ Qv and f(x,z) — t:
21 1
=—t, (2 =4, (2 == =z
goo v (2930 +qu) =4, (2972 + qu) 00 973
2(gs1+g32) =1, (2qe1 +g33) = —4, (2gi03+ ges) =4
2q10 =0, 2g20 =0, 2(gm1+ qs)=0,

A standard SDP with a 10 x 10 variable and 28 constraints.




Nonnegative polynomials \ 4

e Univariate polynomial of degree 2n:

f(X) =Cc+tCXxX+---+ C2nX2n.



Nonnegative polynomials v

e Univariate polynomial of degree 2n:

f(X) =Cc+tCXxX+---+ C2nX2n.

¢ Nonnegativity is equivalent to SOS, i.e.,
f(x)>0 = f(x)=viQv, Q=0

with v = (1, x, ..., x").



Nonnegative polynomials v

e Univariate polynomial of degree 2n:

f(X) =Cc+tCXxX+---+ C2nX2n.

¢ Nonnegativity is equivalent to SOS, i.e.,
f(x)>0 = f(x)=viQv, Q=0

with v = (1, x, ..., x").

e Simple extensions for nonnegativity on a subinterval | C R.



Polynomial interpolation

Fit a polynomial of degree n to a set of points (x;, y;),
fx)=yj, j=1....m,

i.e., linear equality constraints in c,

2 n
1 X1 Xy .. X1 [&)) i
1 xo x2 ... XJ a y2
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Polynomial interpolation

Fit a polynomial of degree n to a set of points (x;, y;),
fx)=yj, j=1....m,

i.e., linear equality constraints in c,

2 n
1 X1 Xy .. X1 [&)) i
1 xo x2 ... XJ a y2
1 2 n
Xm Xm o oo Xp Cn Ym

Semidefinite shape constraints:
¢ Nonnegativity f(x) > 0.
e Monotonicity '(x) > 0.
e Convexity f”(x) > 0.



Polynomial interpolation
A specific example

Smooth interpolation

Minimize largest derivative,

minimize max__|f'(x)]
x€[-1,1] i1
subject to f(—1)=1
f(0)=0
fll)=1 % %

or equivalently

minimize  z

subject to —z < f/(x) <z
f(-1)=1
£(0) = 0
f(1)=1.
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Polynomial interpolation

A specific example

Smooth interpolation

Minimize largest derivative,

minimize max__|f'(x)]
x€[-1,1]

subject to f(—1)=1
f(0)=0
f(1)=1

or equivalently

minimize  z

subject to —z < f/(x) <z 1 1
f(-1)=1 ﬂ;(x)zix —5X fl(—=) =2
f(0)=0
f(1)=1.



Optimizing over Hermitian semidefinite matrices

Let X € H'| be a Hermitian semidefinite matrix of order n with
inner product

(V, W) :=tx(VIW) = ViW; = vec(V) vec(W).

Then
Xz = Rz — iS2) T (RX + iSX)(Rz + iS2)
T

Rz RX —3X Rz n
:[%z] [%X %X][%z}zo’ vz e Ch



Optimizing over Hermitian semidefinite matrices

Let X € H'| be a Hermitian semidefinite matrix of order n with
inner product

(V, W) :=tx(VIW) = ViW; = vec(V) vec(W).

Then

Xz = Rz — iS2) T (RX + iSX)(Rz + iS2)
_[%Z]T[%X _sx] [éRz

Sz X RX Sz

}20, Vz e C".

In other words,

RX —-SX

X eH — [%X X

} €S

Note skew-symmetry SX = —S3X 7.



Nonnegative trigonometric polynomials

Consider a trigonometric polynomial:
n .
f2) =x+2R0) _xz"), |zl=1
i=1

parametrized by x € R x C". Let T; be Toeplitz matrices with

1, k—I=i . _
[Ti]kl_{ 0, otherwise i=0,...,n.

Then f(z) > 0 on the unit-circle iff
XeH, x=(X,T}), i=0,...,n

Proved by Nesterov. Simple extensions for nonnegativity on
subintervals.



Cones of nonnegative trigonometric polynomials

Filter design example

Consider a transfer function:

H(w) = xo + 2R xke ™).
k=1

We can design a lowpass filter by solving

minimize t
subjectto 0 < H(w) Yw € [0, 7]
1-0 < Hw) < 144§ Ywe[0,wp)
Hw) < t Vwé€ [ws,m),

where ws and ws are design parameters.

The constraints all have simple semidefinite characterizations.



Cones of nonnegative trigonometric polynomials

Filter design example

144
1-4

H(w)

t*
1 1
wp  Ws

w
Transfer function for n = 10,6 = 0.05, wp, = 7/4,ws = wp + /8.



Power cone v

The (n + 1)-dimensional power-cone is
Ko ={xe€ R | xx52 - X3 > X1y Xiyee ey Xn > 0}
for @ >0, e’ = 1. Dual cone:
Ki={s e R™ | (s1/a1) - (sn/an)" > |Snt1|, S1,...,5n >0}
The power cone is self-dual:
T.K* = K,

where T, := Diag(ag,...,a,,1) = 0.



Power cone

Simple examples

Three dimensional power cone:

Qq = {X S R3 | Xféle_a > |X3|, X1, X2 > 0}

e Epigraph of convex power p > 1:

|X|p <t <~ (t7 17X) € Ql/p‘

e Epigraph of p-norm:

Ixllp <t <= (z,t,%) € Qi/p, elz=t.

1/p
where ||x||, := <Z ]x,-|p> .
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Exponential cone |

Exponential cone:

Kep = cl {x € R3 | x1 > X032 3y > 0}
={x eR3|x; > %€/ x>0} U(R; x {0} xR_)

Dual cone:

K:Xp =cl{se R3 | s1 > (—s3)exp (53 _552> , 53 < 0}
—S3

={seR3| s > (—s3)exp <S3

) , 53 < O}U(Ri x {0}).

Not a self-dual cone.



Exponential cone
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Exponential cone

Simple examples

e Epigraph of negative logarithm:

—log(x) <t <<= (x,1,—t) € Kexp-

e Epigraph of negative entropy:

xlogx <t <= (1,x,—t) € Keyp.

e Epigraph of Kullback-Leibler divergence (with variable p):

D(p | q) Zpllogf <t =

pilogp; < pilogqi, Y _pilogaq <t

i



Exponential cone

Simple examples

e Epigraph of exponential:

<t <= (t,1,x)€ Keep-

e Epigraph of log of sum of exponentials:

Iogz 3 xtbi —  (z;,1,a] x+bi—t) € Kexps elz=1.



Section 3



The homogeneous model for conic problems

The homogenous model:

0 AT -] [x
+ | A 0 —-b||y| =0, x,seK,1,k>0.
cm —bp" 0| |7
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The homogeneous model for conic problems

The homogenous model:

s 0 AT —c] [x
0|+ | A 0 —-b||y| =0, x,seK,1,k>0.
K cm —bp" 0 T

Encapsulates different duality cases:

1
o If 7> 0, k=0 then =(x,y,s) is optimal,
T

Ax=br, ct—ATy=sc"x—bly=x"s=0.



The homogeneous model for conic problems

The homogenous model:

s 0 AT —c] [x
0|+ | A 0 —-b||y| =0, x,seK,1,k>0.
K cm —bp" 0 T

Encapsulates different duality cases:

1
o If 7> 0, k=0 then =(x,y,s) is optimal,
T

Ax=br, ct—ATy=sc"x—bly=x"s=0.

e If 7 =0, k > 0 then the problem is infeasible,
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The homogeneous model for conic problems

The homogenous model:

s 0 AT —c] [x
0|+ | A 0 —-b||y| =0, x,seK,1,k>0.
K cm —bp" 0 T

Encapsulates different duality cases:

1
o If 7> 0, k=0 then =(x,y,s) is optimal,
T

Ax=br, ct—ATy=sc"x—bly=x"s=0.

e If 7 =0, k > 0 then the problem is infeasible,
Ax=0, —-ATy=s c"'x—bTy<o.

e If 7 =0, kK =0 then the problem is ill-posed.



Symmetric cones

Symmetric cones can be written as squares
X2 = XO0X

for appropriate product x o y.

Products for three symmetric cones:
e Nonnegative orthant: x o y = diag(X)y.
¢ Second-order cone with x = (x1,x2) and y = (y1, y2):

X O = XTy
Y xiy2 +yixe |

e Semidefinite cone with X = mat(x) and Y = mat(y):

xoy = (1/2)vec(XY + YX).



Central path for homogeneous model

Given initial point 20 := (x?,°,s% 7%, ).

Central path:

s 0 AT —c] [x ATy0 1% — 70
ol +|A 0 —b||y|l =9~ Ax® — br0
K c” —bT 0 T cTx0— pTy0 4 k0

X0S§ = ry,uoe, 70k0 = vuo

0yT <0 4 0,0

. . X")'sT+ 71K

where e is the unit-element and 0 = ()—i-l
n

Continuously connects z° to z* as 4 goes from 1 to 0.



Nesterov-Todd scaling for symmetric cones

Properties of symmetric Nesterov-Todd scaling W:

e Maps x and s to the same scaling point .

A= Wx=W-ls

e Leaves the cone invariant.

e Preserves the central path.

xos=(Wx)o (W ls)=XoX= )\



Computing a search-direction

Essential part of a primal-dual method

Linearizing the scaled central path:

As 0 AT —c] [Ax Iy
0O+ A 0 —b| |Ay| =|r
Ak c” —b" 0 AT rr

Mo (WAx + W™LAs) = yue — N2, 7Ak + KAT = yu — 7K,

where r,, r, and r, depend on previous iteration.
Most expensive step (after block-elimination):
-2 T o~
AW A" Ay =T,.

Solved using a Cholesky factorization.
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