
Conic optimization

Aalborg University, June 26th, 2017

Joachim Dahl

www.mosek.com



Section 1

Linear optimization



Linear optimization

• We minimize a linear function given linear constraints.

• Example: minimize a linear function

x1 + 2x2 − x3

under the constraints that

x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0.

• The function we minimize is called the objective function.

• The constraitns are either equality or inequality constraints.

• Important: everything is linear in x .



Linear optimization
A simple example

Standard notation:

minimize x1 + 2x2 − x3
subject to x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0.

Feasible set:

Optimal solution x? = (0, 0, 1) with value=−1.



Geometry of linear optimization
Hyperplanes and halfspaces

• Hyperplane: {x |aT (x − x0) = 0} = {x | aT x = γ}

• Halfspace: {x |aT (x − x0) ≥ 0} = {x | aT x ≥ γ}



Geometry of linear optimization
Polyhedral sets

• A polyhedron is an intersection of halfspaces:

• Can be both bounded (as shown) or unbounded.



Geometry of linear optimization
Optimizing of a polyhedral set

• The contour lines are shifted hyperplanes

• Optimal solution is a vertex, on a facet, or unbounded.



Convex piecewise-linear functions

Consider f defined as a the maximum of affine functions,

f (x) := max
i=1,...,m

{aTi x + bi}.

The epigraph f (x) ≤ t is equivalent to

aTi x + bi ≤ t, i = 1, . . . ,m.
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Simple examples
Convex piecewise-linear functions

• The absolute value function

|α| := max{α,−α}

is a convex piecewise-linear function,

|α| ≤ t ⇐⇒ −t ≤ α ≤ t.

• The `∞-norm of a vector x ∈ Rn is

‖x‖∞ := max
i=1,...,n

|xi |,

i.e.,

‖x‖∞ ≤ t ⇐⇒ −t ≤ xi ≤ t, i = 1, . . . , n.
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Simple examples
The `1-norm

The `1-norm of a vector x ∈ Rn is

‖x‖1 := |x1|+ |x2|+ · · ·+ |xn|.

We can characterize the epigraph

‖x‖1 ≤ t

as
|xi | ≤ zi , i = 1, . . . , n,

∑
i

zi ≤ t.



Programming exercises

Given data

m=500; n=100;

A=randn(m,n); b=randn(m,1);

write a Yalmip program that minimizes fi (Ax − b) for

1 f1(z) = ‖z‖1
2 f2(z) = ‖z‖2
3 f3(z) = ‖z‖∞
4 f4(z) =

∑
i

max{0, zi − 1,−zi − 1}

Plot a histogram comparing Ax − b for the different choices of f .



Duality in linear optimization

We consider a problem in standard form

minimize cT x
subject to Ax = b

x ≥ 0.

The Lagrangian function is a lower bound,

L(x , y , s) = cT x + yT (b − Ax)− sT x ≤ cT x

where y ∈ Rm and s ∈ Rn
+ are Lagrange multipliers or dual

variables.

Note: It’s important that s ≥ 0.



Duality in linear optimization
The dual problem

The dual function is

g(y , s) = inf
x

L(x , y , s) = inf
x

xT (c − AT y − s) + bT y ,

i.e.,

g(y , s) =

{
bT y , c − AT y − s = 0
−∞, otherwise,

which is a global lower bound (valid for all x).

The dual problem is the best such lower bound,

maximize bT y

subject to c − AT y = s
s ≥ 0.



Duality in linear optimization
Weak duality

Primal problem with optimal value p?:

minimize cT x
subject to Ax = b

x ≥ 0.

Dual problem with optimal value d?:

maximize bT y

subject to c − AT y = s
s ≥ 0.

Weak duality:

cT x − bT y = xT (c − AT y) = xT s ≥ 0,

i.e., p? ≥ d?.



Duality in linear optimization
Summary of strong duality

Convention:

• p? =∞ if primal problem is infeasible.

• d? = −∞ if dual problem is infeasible.

We then have:

• Primal feasible, dual feasible: p? = d? and finite.

• Primal infeasible, dual unbounded: p? =∞, d? =∞.

• Primal unbounded, dual infeasible: p? = −∞, d? = −∞.

• Primal infeasible, dual infeasble: p? =∞, d? = −∞.

Only in the last case is p? > d?.



Duality in linear optimization
Example: basis pursuit

Basis pursuit problem:

minimize ‖x‖1
subject to Ax = b.

Used as heuristic for sparse representation of b.

Equivalent linear problem:

minimize eT z
subject to Ax = b

−z ≤ x ≤ z .



Duality in linear optimization
Example: dual of basis pursuit

By change of variables

u =
1

2
(z − x), v =

1

2
(z + x)

we get a standard form linear problem:

minimize eT (v + u)
subject to A(v − u) = b

u, v ≥ 0.

Dual problem:

maximize bT y

subject to

[
e
e

]
−
[

AT

−AT

]
y ≥ 0.

Note that

AT y ≤ e, −AT y ≤ e ⇐⇒ ‖AT y‖∞ ≤ 1.



Duality in linear optimization
Example: basis pursuit

Primal-dual basis pursuit problems:

minimize ‖x‖1
subject to Ax = b.

maximize bT y

subject to ‖AT y‖∞ ≤ 1.

Recall the definition of dual norms:

‖x‖∗,p := sup{xT v | ‖v‖p ≤ 1}.

Exercise: Derive the dual of the `∞-norm.
Exercise: Derive the dual of the dual basis pursuit problem.



Duality in linear optimization
Primal infeasibility certificates

minimize cT x
subject to Ax = b

x ≥ 0.

maximize bT y

subject to c − AT y = s
s ≥ 0.

• Theorems of strong alternatives (Farkas’ lemma): either

Ax = b, x ≥ 0

or
AT y ≤ 0, bT y

has a solution.

• The latter is a certificate of primal infeasibility.

• If AT y < 0, bT y > 0 then y is an unbounded dual direction.
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Duality in linear optimization
Example of primal infeasibility

Consider
minimize −x1 − x2
subject to x1 + x2 = −1

x1, x2 ≥ 0

with a dual problem

maximize −y

subject to −
[

1
1

]
y ≥

[
1
1

]
.

• Primal is trivially infeasible, p? =∞.

• Any y ≤ −1 is a certificate of primal infeasibility, as well as an
unbounded dual direction, d? =∞.



Separating hyperplane theorem

Theorem: Let S be a closed convex set, and b 6∈ S . Then there
exists a separating hyperplane such that

aTb > aT x , ∀x ∈ S .



Farkas’ lemma
Sketch of proof

Either
Ax = b, x ≥ 0

or
AT y ≤ 0, bT y > 0

has a solution.

• Both cannot be true, because then bT y = xTAT y ≤ 0.

• Assume b 6∈ S where

S = {Ax | x ≥ 0}.

Then there exists a separating hyperplane y (for b and S):

yTb > yTAx , ∀x ≥ 0

implying bT y > 0 and AT y ≤ 0.
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Strong duality
Sketch of proof (using Farkas’ lemma)

We assume d? is finite. Enough to show that p? ≤ d?.

Assume there is no x ≥ 0 such that Ax = b, cT x ≤ p?, i.e.,[
A 0

cT 1

] [
x
τ

]
=

[
b

d?

]
, (x , τ) ≥ 0

has no solution. Then (from Farkas’ lemma)[
AT c
0 1

] [
y
α

]
≤ 0, bT y + αd? > 0, α 6= 0︸ ︷︷ ︸

why?

has a solution. Normalizing y ′ := y/α gives us

c − AT y ′ ≥ 0, bT y ′ > d?,

contradicting optimality of d?.



Duality in linear optimization
Dual infeasibility certificates

minimize cT x
subject to Ax = b

x ≥ 0.

maximize bT y

subject to c − AT y = s
s ≥ 0.

• Theorems of strong alternatives (dual variant): either

c − AT y ≥ 0

or
Ax = 0, x ≥ 0, cT x < 0

has a solution.

• The latter is a certificate of dual infeasibility.



Duality in linear optimization
Dual infeasibility certificates

minimize cT x
subject to Ax = b

x ≥ 0.

maximize bT y

subject to c − AT y = s
s ≥ 0.
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c − AT y ≥ 0

or
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Duality in linear optimization
Example with both primal and dual infeasibility

Consider
minimize −x1 − x2
subject to x1 = −1

x1, x2 ≥ 0

with a dual problem

maximize −y

subject to −
[

1
0

]
y ≥

[
1
1

]
.

• y = −1 is a certificate of primal infeasibility, p? =∞
• x = (0, 1) is a certificate of dual infeasibility, d? = −∞.



Section 2

Conic optimization



Proper convex cones

We consider proper convex cones K in Rn:

• Closed.

• Pointed: K ∩ (−K ) = {0}.
• Non-empty interior.

Dual-cone:

K ∗ = {v ∈ Rn | uT v ≥ 0, ∀u ∈ K}.

If K is a proper cone, then K ? is also proper.

We use the notation:

x �K y ⇐⇒ (x − y) ∈ K
x �K y ⇐⇒ (x − y) ∈ intK



Example of cones
Quadratic cone (second-order cone, Lorenz cone)

Qn = {x ∈ Rn | x1 ≥
√

x2
2 + x2

3 + · · ·+ x2
n}.

Qn is self-dual: (Qn)∗ = Qn.



Examples of quadratic cones

• Epigraph of absolute value:

|x | ≤ t ⇐⇒ (t, x) ∈ Q2.

• Epigraph of Euclidean norm:

‖x‖2 ≤ t ⇐⇒ (t, x) ∈ Qn−1,

where x ∈ Rn and ‖x‖ =
√

x2
1 + · · ·+ x2

n .

• Second-order cone inequality:

‖Ax + b‖2 ≤ cT x + d ⇐⇒ (cT x + d ,Ax + b) ∈ Qm+1

for A ∈ Rm×n, b ∈ Rm, c ∈ Rn, d ∈ R.
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Examples of quadratic cones
Robust optimization with ellipsoidal uncertainty

Ellipsoidal set:

E = {x ∈ Rn | ‖P(x − a)‖2 ≤ 1}
=
{

x ∈ Rn | x = P−1y + a, ‖y‖2 ≤ 1
}
.

Worst-case realization of a linear function over E :

sup
c∈E

cT x = aT x + sup
‖y‖2≤1

yTP−1x = aT x + ‖P−1x‖2.

Robust LP:

minimize sup
c∈E

cT x

subject to Ax = b
x ≥ 0,

minimize aT x + t
subject to Ax = b

(t,P−1x) ∈ Qn+1

x ≥ 0.
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Example of cones
Rotated quadratic cone

Rotated quadratic cone:

Qn
r = {x ∈ Rn | 2x1x2 ≥ x2

3 + . . . x2
n , x1, x2 ≥ 0}.

Related to standard quadratic cone:

x ∈ Qn
r ⇐⇒ (Tnx) ∈ Qn

for

Tn :=

 1/
√

2 1/
√

2 0

1/
√

2 −1/
√

2 0
0 0 In−2

 .
Qn

r is self-dual: (Qn
r )∗ = Qn

r .



Examples of rotated quadratic cones

• Epigraph of squared Euclidean norm:

‖x‖22 ≤ t ⇐⇒ (1/2, t, x) ∈ Qn+2
r .

• Convex quadratic inequality:

(1/2)xTQx ≤ cT x + d ⇐⇒ (1/2, cT x + d ,FT x) ∈ Qk+2
r

with Q = FTF , F ∈ Rn×k . So we can write QCQPs as conic
problems.
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1
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√
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2
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Semidefinite matrices
Basic definitions

• We denote n × n symmetric matrices by Sn.

• Standard inner product for matrices:

〈V ,W 〉 := tr(V TW ) =
∑
ij

VijWij = vec(V )Tvec(W ).

• X is semidefinite if and only if

1 zTXz ≥ 0, ∀z ∈ Rn.
2 All the eigenvalues of X are nonnegative.
3 X is a Grammian matrix, X = V TV .

• The (semi)definite matrices form a cone (S+) S++.

Exercise: Show the three definitions are equivalent.
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Semidefinite matrices
Basic definitions

Dual cone:

(Sn+)∗ = {Z ∈ Rn×n | 〈X ,Z 〉 ≥ 0, ∀X ∈ Sn+}.

The semidefinite is self-dual: (Sn+)∗ = Sn+.

Easy to prove: Assume Z � 0 so that Z = UTU and X = V TV .

〈X ,Z 〉 = 〈V TV ,UTU〉 = tr(UV T )(UV T )T = ‖UV T‖2F ≥ 0.

Conversely assume Z 6� 0. Then ∃w ∈ Rn such that

wTZw = 〈wwT ,Z 〉 = 〈X ,Z 〉 < 0.



Positive semidefinite matrices
Schur’s lemma

Schur’s lemma:(
B CT

C D

)
� 0 ⇐⇒ B − CTD−1C � 0, C � 0, D � 0.

Example:[
t xT

x tI

]
� 0 ⇐⇒ 1

t
xT x < t ⇐⇒ ‖x‖ < t,

i.e., quadratic cone can be embedded in a semidefinite cone.



A geometric example
The pillow spectrahedron

The convex set

S =

{
(x , y , z) ∈ R3 |

(
1 x y
x 1 z
y z 1

)
� 0

}
,

is called a pillow.

Exercise: Characterize the restriction S |z=0.



Eigenvalue optimization
Symmetric matrices

F (x) = F0 + x1F1 + · · ·+ xmFm, Fi ∈ Sm.

• Minimize largest eigenvalue λ1(F (x)):

minimize γ
subject to γI � F (x),

• Maximize smallest eigenvalue λn(F (x)):

maximize γ
subject to F (x) � γI ,

• Minimize eigenvalue spread λ1(F (x))− λn(F (x)):

minimize γ − λ
subject to γI � F (x) � λI ,
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Matrix norms
Nonsymmetric matrices

F (x) = F0 + x1F1 + · · ·+ xmFm, Fi ∈ Rn×p.

• Frobenius norm: ‖F (x)‖F :=
√
〈F (x),F (x)〉,

‖F (x)‖F ≤ t ⇔ (t, vec(F (x))) ∈ Qnp+1,

• Induced `2 norm: ‖F (x)‖2 := max
k
σk(F (x)),

minimize t

subject to

[
tI F (x)T

F (x) tI

]
� 0,

corresponds to the largest eigenvalue for F (x) ∈ Sn+.
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Nearest correlation matrix

Consider
S = {X ∈ Sn+ | Xii = 1, i = 1, . . . , n}.

For a symmetric A ∈ Rn×n, the nearest correlation matrix is

X ? = arg min
X∈S
‖A− X‖F ,

which corresponds to a mixed SOCP/SDP,

minimize t
subject to ‖vec(A− X )‖2 ≤ t

diag(X ) = e
X � 0.

MOSEK is limited by the many constraints to, say n < 200.
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Combinatorial relaxations

Consider a binary problem

minimize xTQx + cT x
subject to xi ∈ {0, 1}, i = 1, . . . , n.

where Q ∈ Sn can be indefinite.

• Rewrite binary constraints xi ∈ {0, 1}:

x2
i = xi ⇐⇒ X = xxT , diag(X ) = x .

• Semidefinite relaxation:

X � xxT , diag(X ) = x .
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Combinatorial relaxations

Lifted non-convex problem:

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x

X = xxT .

Semidefinite relaxation:

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x(

X x

xT 1

)
� 0.

• Relaxation is exact if X = xxT .
• Otherwise can be strengthened, e.g., by adding Xij ≥ 0.



Combinatorial relaxations

Lifted non-convex problem:

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x

X = xxT .

Semidefinite relaxation:

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x(

X x

xT 1

)
� 0.

• Relaxation is exact if X = xxT .
• Otherwise can be strengthened, e.g., by adding Xij ≥ 0.



Combinatorial relaxations

Lifted non-convex problem:

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x

X = xxT .

Semidefinite relaxation:

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x(

X x

xT 1

)
� 0.

• Relaxation is exact if X = xxT .
• Otherwise can be strengthened, e.g., by adding Xij ≥ 0.



Combinatorial relaxations

Lifted non-convex problem:

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x

X = xxT .

Semidefinite relaxation:

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x(

X x

xT 1

)
� 0.

• Relaxation is exact if X = xxT .
• Otherwise can be strengthened, e.g., by adding Xij ≥ 0.



Relaxations for boolean optimization

Same approach used for boolean constraints xi ∈ {−1,+1}.

Lifting of boolean constraints

Rewrite boolean constraints xi ∈ {−1, 1}:

x2
i = 1 ⇐⇒ X = xxT , diag(X ) = e.

Semidefinite relaxation of boolean constraints

X � xxT , diag(X ) = e.



Relaxations for boolean optimization
Example: MAXCUT

Undirected graph G with vertices V and edges E .

A cut partitions V into disjoint sets S and T with cut-set

I = {(u, v) ∈ E | u ∈ S , v ∈ T}.

The capacity of a cut is |I |. The cut {v2, v4, v5} has capacity 9.



Relaxations for boolean optimization
Example: MAXCUT

Let

xi =

{
+1, vi ∈ S
−1, vi /∈ S

and assume xi ∈ S . Then

1− xixj =

{
2, vj ∈ S
0, vj /∈ S

.

If A is the adjancency matrix for G , then the capacity is

cap(x) =
1

2

∑
(i ,j)∈E

(1− xixj) =
1

4

∑
i ,j

(1− xixj)Aij ,

i.e, the MAXCUT problem is

maximize
1

4
eTAe − 1

4
xTAx

subject to x ∈ {−1,+1}n.

Exercise: Implement a SDP relaxation for G on the previous slide.



Sums-of-squares relaxations

• f : multivariate polynomial of degree 2d .

• vd = (1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

2
n , . . . , x

d
n ).

Vector of monomials of degree d or less.

Sums-of-squares representation

f is a sums-of-squares (SOS) iff

f (x1, . . . , xn) = vT
d Qvd , Q � 0.

If Q = LLT then

f (x1, . . . , xn) = vT
d LLT vd =

m∑
i=1

(lTi vd)2.

Sufficient condition for f (x1, . . . , xn) ≥ 0.
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A simple example

Consider
f (x , z) = 2x4 + 2x3z − x2z2 + 5z4,

homogeneous of degree 4, so we only need

v =
(
x2 xz z2

)
.

Comparing cofficients of f (x , z) and vTQv = 〈Q, vvT 〉,

〈Q, vvT 〉 = 〈

q00 q01 q02

q10 q11 q12

q20 q21 q22

 ,

 x4 x3z x2z2

x3z x2z2 xz3

x2z2 xz3 z4

〉
we see that f (x , z) is SOS iff Q � 0 and

q00 = 2, 2q10 = 2, 2q20 + q11 = −1, 2q21 = 0, q22 = 5.
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Applications in polynomial optimization

f (x , z) = 4x2 − 21

10
x4 +

1

3
x6 + xz − 4z2 + 4z4

Global lower bound

Replace non-tractable problem,

minimize f (x , z)

by a tractable lower bound

maximize t
subject to f (x , z)− t is SOS.

x

-2.0-1.5-1.0-0.50.00.51.01.5
z

-1.0
-0.5

0.0
0.5

f
(x
, z

)

-2

-1

0

1

2

3

4

5

6

Relaxation finds the global optimum t = −1.031.



f (x , z) − t = 4x2 − 21

10
x4 +

1

3
x6 + xz − 4z2 + 4z4 − t

vvT =



1 x z x2 xz z2 x3 x2z xz2 z3

x x2 xz x3 x2z xz2 x4 x3z x2z2 xz3

z xz z2 x2z xz2 z3 x3z x2z2 xz3 z4

x2 x3 x2z x4 x3z x2z2 x5 x4z x3z2 x2z3

xz x2z xz2 x3z x2z2 xz3 x4z x3z2 x2z3 xz4

z2 xz2 z3 x2z2 xz3 z4 x3z2 x2z3 xz4 y 5

x3 x4 x3z x5 x4z x3z2 x6 x5z x4z2 x3z3

x2z x3z x2z2 x4z x3z2 x2z3 x5z x4z2 x3z3 x2z4

xz2 x2z2 xz3 x3z2 x2z3 xz4 x4z2 x3z3 x2z4 xz5

z3 xz3 z4 x2z3 xz4 z5 x3z3 x2z4 xz5 z6


By comparing cofficients of vTQv and f (x , z) − t:

q00 = −t, (2q30 + q11) = 4, (2q72 + q44) = −21

10
, q77 =

1

3

2(q51 + q32) = 1, (2q61 + q33) = −4, (2q10,3 + q66) = 4

2q10 = 0, 2q20 = 0, 2(q71 + q42) = 0, . . .

A standard SDP with a 10 × 10 variable and 28 constraints.



Nonnegative polynomials

• Univariate polynomial of degree 2n:

f (x) = c0 + c1x + · · ·+ c2nx2n.

• Nonnegativity is equivalent to SOS, i.e.,

f (x) ≥ 0 ⇐⇒ f (x) = vTQv , Q � 0

with v = (1, x , . . . , xn).

• Simple extensions for nonnegativity on a subinterval I ⊂ R.
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Polynomial interpolation

Fit a polynomial of degree n to a set of points (xj , yj),

f (xj) = yj , j = 1, . . . ,m,

i.e., linear equality constraints in c ,
1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...

...
...

...

1 xm x2
m . . . xn

m




c0
c1
...

cn

 =


y1
y2
...

ym


Semidefinite shape constraints:

• Nonnegativity f (x) ≥ 0.

• Monotonicity f ′(x) ≥ 0.

• Convexity f ′′(x) ≥ 0.
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Polynomial interpolation
A specific example

Smooth interpolation

Minimize largest derivative,

minimize max
x∈[−1,1]

|f ′(x)|
subject to f (−1) = 1

f (0) = 0
f (1) = 1

or equivalently

minimize z
subject to −z ≤ f ′(x) ≤ z

f (−1) = 1
f (0) = 0
f (1) = 1.

1
2

1

−1 1 x

f2

f2(x) = x2 f ′2 (1) = 2
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Optimizing over Hermitian semidefinite matrices

Let X ∈ Hn
+ be a Hermitian semidefinite matrix of order n with

inner product

〈V ,W 〉 := tr(V HW ) =
∑
ij

V ∗ij Wij = vec(V )Hvec(W ).

Then

zHXz = (<z − i=z)T (<X + i=X )(<z + i=z)

=

[
<z
=z

]T [ <X −=X
=X <X

] [
<z
=z

]
≥ 0, ∀z ∈ Cn.

In other words,

X ∈ Hn
+ ⇐⇒

[
<X −=X
=X <X

]
∈ S2n+ .

Note skew-symmetry =X = −=XT .
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Nonnegative trigonometric polynomials

Consider a trigonometric polynomial:

f (z) = x0 + 2<(
n∑

i=1

xiz
−i ), |z | = 1

parametrized by x ∈ R× Cn. Let Ti be Toeplitz matrices with

[Ti ]kl =

{
1, k − l = i
0, otherwise

i = 0, . . . , n.

Then f (z) ≥ 0 on the unit-circle iff

X ∈ Hn+1
+ , xi = 〈X ,Ti 〉, i = 0, . . . , n.

Proved by Nesterov. Simple extensions for nonnegativity on
subintervals.



Cones of nonnegative trigonometric polynomials
Filter design example

Consider a transfer function:

H(ω) = x0 + 2<(
n∑

k=1

xke−jωk).

We can design a lowpass filter by solving

minimize t
subject to 0 ≤ H(ω) ∀ω ∈ [0, π]

1− δ ≤ H(ω) ≤ 1 + δ ∀ω ∈ [0, ωp]
H(ω) ≤ t ∀ω ∈ [ωs , π],

where ωs and ωs are design parameters.

The constraints all have simple semidefinite characterizations.



Cones of nonnegative trigonometric polynomials
Filter design example

Transfer function for n = 10, δ = 0.05, ωp = π/4, ωs = ωp + π/8.



Power cone

The (n + 1)-dimensional power-cone is

Kα =
{

x ∈ Rn+1 | xα1
1 xα2

2 · · · xαn
n ≥ |xn+1|, x1, . . . , xn ≥ 0

}
for α > 0, eTα = 1. Dual cone:

K ∗α =
{

s ∈ Rn+1 | (s1/α1)α1 · · · (sn/αn)αn ≥ |sn+1|, s1, . . . , sn ≥ 0
}

The power cone is self-dual:

TαK ∗α = Kα

where Tα := Diag(α1, . . . , αn, 1) � 0.



Power cone
Simple examples

Three dimensional power cone:

Qα = {x ∈ R3 | xα1 x1−α
2 ≥ |x3|, x1, x2 ≥ 0}.

• Epigraph of convex power p ≥ 1:

|x |p ≤ t ⇐⇒ (t, 1, x) ∈ Q1/p.

• Epigraph of p-norm:

‖x‖p ≤ t ⇐⇒ (zi , t, xi ) ∈ Q1/p, eT z = t.

where ‖x‖p :=

(∑
i

|xi |p
)1/p

.
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Exponential cone

Exponential cone:

Kexp = cl {x ∈ R3 | x1 ≥ x2ex3/x2 , x2 > 0}
= {x ∈ R3 | x1 ≥ x2ex3/x2 , x2 > 0} ∪ (R+ × {0} × R−)

Dual cone:

K ∗exp = cl {s ∈ R3 | s1 ≥ (−s3) exp

(
s3 − s2
−s3

)
, s3 < 0}

= {s ∈ R3 | s1 ≥ (−s3) exp

(
s3 − s2
−s3

)
, s3 < 0} ∪ (R2

+ × {0}).

Not a self-dual cone.



Exponential cone

x1

0.0

0.5

1.0

x2

0.0

0.5

1.0
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0
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Exponential cone
Simple examples

• Epigraph of negative logarithm:

− log(x) ≤ t ⇐⇒ (x , 1,−t) ∈ Kexp.

• Epigraph of negative entropy:

x log x ≤ t ⇐⇒ (1, x ,−t) ∈ Kexp.

• Epigraph of Kullback-Leibler divergence (with variable p):

D(p ‖ q) =
∑
i

pi log
pi

qi
≤ t ⇐⇒

pi log pi ≤ pi log qi ,
∑
i

pi log qi ≤ t



Exponential cone
Simple examples

• Epigraph of exponential:

ex ≤ t ⇐⇒ (t, 1, x) ∈ Kexp.

• Epigraph of log of sum of exponentials:

log
∑
i

ea
T
i x+bi ≤ t ⇐⇒ (zi , 1, a

T
i x+bi−t) ∈ Kexp, eT z = 1.



Section 3

Primal-dual methods for conic optimization



The homogeneous model for conic problems

The homogenous model:s
0
κ

+

 0 AT −c
A 0 −b

cT −bT 0

x
y
τ

 = 0, x , s ∈ K , τ, κ ≥ 0.

Encapsulates different duality cases:

• If τ > 0, κ = 0 then
1

τ
(x , y , s) is optimal,

Ax = bτ, cτ − AT y = s, cT x − bT y = xT s = 0.

• If τ = 0, κ > 0 then the problem is infeasible,

Ax = 0, −AT y = s, cT x − bT y < 0.

• If τ = 0, κ = 0 then the problem is ill-posed.
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Symmetric cones

Symmetric cones can be written as squares

x2 = x ◦ x

for appropriate product x ◦ y .

Products for three symmetric cones:

• Nonnegative orthant: x ◦ y = diag(X )y .

• Second-order cone with x = (x1, x2) and y = (y1, y2):

x ◦ y =

[
xT y

x1y2 + y1x2

]
.

• Semidefinite cone with X = mat(x) and Y = mat(y):

x ◦ y = (1/2)vec(XY + YX ).



Central path for homogeneous model

Given initial point z0 := (x0, y0, s0, τ0, κ0).

Central path:s
0
κ

+

 0 AT −c
A 0 −b

cT −bT 0

x
y
τ

 = γ

 AT y0 + s0 − cτ0

Ax0 − bτ0

cT x0 − bT y0 + κ0


x ◦ s = γµ0e, τ0κ0 = γµ0

where e is the unit-element and µ0 :=
(x0)T s0 + τ0κ0

n + 1
.

Continuously connects z0 to z? as γ goes from 1 to 0.



Nesterov-Todd scaling for symmetric cones

Properties of symmetric Nesterov-Todd scaling W :

• Maps x and s to the same scaling point λ.

λ = Wx = W−1s

• Leaves the cone invariant.

x , s � 0 ⇐⇒ λ � 0

• Preserves the central path.

x ◦ s = (Wx) ◦ (W−1s) = λ ◦ λ = λ2



Computing a search-direction
Essential part of a primal-dual method

Linearizing the scaled central path:∆s
0

∆κ

+

 0 AT −c
A 0 −b

cT −bT 0

∆x
∆y
∆τ

 =

rx
ry
rτ


λ ◦ (W ∆x + W−1∆s) = γµe − λ2, τ∆κ+ κ∆τ = γµ− τκ,

where rx , ry and rz depend on previous iteration.

Most expensive step (after block-elimination):

AW−2AT∆y = r̃y .

Solved using a Cholesky factorization.
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