MuSEK

Polynomial optimization using MOSEK and
Julia

ISMP, Pittsburgh, July 12-17, 2015
Joachim Dahl, MOSEK ApS

collaborators: Martin S. Andersen (DTU), Frank Permenter (MIT)

www.mosek.com

Polyopt.jl

A brief overview.

e Julia package for polynomial optimization (requires Julia 0.4).
e Implements the Lasserre hierarchy of moment relaxations.

e Uses the MOSEK conic optimizer to solve the relaxations.

Installation

Pkg.clone("https://github.com/MOSEK/Polyopt.jl.git")

Polynomial optimization

What problems do we solve?

We consider polynomials optimization problems

minimize f(x)

subject to gi(x) >0, i=1,....m
hi(x) =0, i=1,...,1
x € R"

for real polynomials f, gj, hj : R" — R.

e Solved by a sequence of relaxations.

Polynomial optimization

What problems do we solve?

We consider polynomials optimization problems

minimize f(x)

subject to gi(x) >0, i=1,....m
hi(x) =0, i=1,...,1
x € R"

for real polynomials f, gj, hj : R" — R.

e Solved by a sequence of relaxations.
e An important recent application of semidefinite optimization.

Polynomial optimization

What problems do we solve?

We consider polynomials optimization problems

minimize f(x)

subject to gi(x) >0, i=1,....m
hi(x) =0, i=1,...,1
x € R"

for real polynomials f, gj, hj : R" — R.

e Solved by a sequence of relaxations.
e An important recent application of semidefinite optimization.

e The relaxations can be difficult to solve numerically.

Software packages for polynomial optimization

Why develop a new package?

Other Matlab packages with same functionality exists:
e GloptiPoly, standard moment relaxations.
e SparsePoP, sparse moment relaxations.
e SOSTools, general sum-of-squares problems.

e Yalmip, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:
e Test and improve the MOSEK semidefinite solver.

Software packages for polynomial optimization

Why develop a new package?

Other Matlab packages with same functionality exists:
e GloptiPoly, standard moment relaxations.
e SparsePoP, sparse moment relaxations.
e SOSTools, general sum-of-squares problems.

e Yalmip, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:
e Test and improve the MOSEK semidefinite solver.

e Have full control of the generated semidefinite problems.

Software packages for polynomial optimization

Why develop a new package?

Other Matlab packages with same functionality exists:
e GloptiPoly, standard moment relaxations.
e SparsePoP, sparse moment relaxations.
e SOSTools, general sum-of-squares problems.

e Yalmip, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:
e Test and improve the MOSEK semidefinite solver.
e Have full control of the generated semidefinite problems.

o Investigate other approaches for exploiting sparsity.

Software packages for polynomial optimization

Why develop a new package?

Other Matlab packages with same functionality exists:

GloptiPoly, standard moment relaxations.

SparsePoP, sparse moment relaxations.

SOSTools, general sum-of-squares problems.

Yalmip, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

Test and improve the MOSEK semidefinite solver.

Have full control of the generated semidefinite problems.

Investigate other approaches for exploiting sparsity.

Implement it in Julia to remove dependency on Matlab.

Lasserre hierarchy of moment relaxations

Primal and dual formulations

e Standard moment relaxation:
minimize pTy
subjectto yp =1
Mi(y) = 0
I\/lk_dgj(gjy) = 0, _] = 1,...,m
Mk*dh,-(h"y) = 0, = 1, ey l.

Lasserre hierarchy of moment relaxations

Primal and dual formulations

e Standard moment relaxation:
minimize pTy
subjectto yp =1
Mi(y) = 0
I\/lk_dgj(gjy) = 0, _] = 1,...,m
Mk*dh,-(h"y) = 0, = 1, ey l.

e Dual problem (which we feed into MOSEK):

maximize t

m /
subject to ZA{JOXJH—ZBé‘oZk:pO—t
j=1 k=1

m /
S Aexi+) BfeZN=p;, i=1,...,r
j=1 k=1

X/ - 0, Zk are free symmetric matrices.

How to solve a simple example in Julia

minimize —x3 — X

subject to 2xj —8x3 +8xF —x2 +2>0
4x7 — 32x3 + 88x% — 96x1 — xo + 36 > 0
0 fgxq < 3, 0 EZXQ < 4.

using Polyopt

x1, x2 = variables(["x1", "x2"])

f = —x1-x2

[2xx174 - 8%x1°3 + 8*x1°2 - x2 + 2,
4*xx1°4 - 32xx1°3 + 88*x172 - 96*x1 - x2 + 36,
x1, 3-x1,
x2, 4-x2]

prob = momentprob(4, f, g)

X, Z, t, y, solsta = solve_mosek(prob)

More examples on Github...

https://github.com/MOSEK/Polyopt.jl/tree/master/notebooks

Concluding remarks

Package overview:
e Lasserre's hierarchy of moment relaxations in Julia.
o Correlative sparsity and chordal relaxations by Waki et al.

¢ No solution extracting method by Henrion and Lasserre;
perturb problem to extract a single global optimizer.

Concluding remarks

Package overview:
e Lasserre's hierarchy of moment relaxations in Julia.
o Correlative sparsity and chordal relaxations by Waki et al.

¢ No solution extracting method by Henrion and Lasserre;
perturb problem to extract a single global optimizer.

Modern features of Julia facilitate lean implementation:
e polynomial.jl 258 lines of code.
e cliques.jl 66 lines of code.
e Polyopt.jl 268 lines of code.

e solver mosek.jl 134 lines of code.

Concluding remarks

Package overview:
e Lasserre's hierarchy of moment relaxations in Julia.
o Correlative sparsity and chordal relaxations by Waki et al.

¢ No solution extracting method by Henrion and Lasserre;
perturb problem to extract a single global optimizer.

Modern features of Julia facilitate lean implementation:
e polynomial.jl 258 lines of code.
e cliques.jl 66 lines of code.
e Polyopt.jl 268 lines of code.

e solver mosek.jl 134 lines of code.

Important for improving conic solver in upcoming MOSEK 8.0.

MuSEK

Thank you!

Joachim Dahl, MOSEK ApS

collaborators: Martin S. Andersen (DTU), Frank Permenter (MIT)

WWW.mosek.com

