
Polynomial optimization using MOSEK and
Julia

ISMP, Pittsburgh, July 12-17, 2015

Joachim Dahl, MOSEK ApS

collaborators: Martin S. Andersen (DTU), Frank Permenter (MIT)

www.mosek.com

Polyopt.jl
A brief overview.

• Julia package for polynomial optimization (requires Julia 0.4).

• Implements the Lasserre hierarchy of moment relaxations.

• Uses the MOSEK conic optimizer to solve the relaxations.

Installation

Pkg.clone("https://github.com/MOSEK/Polyopt.jl.git")

Polynomial optimization
What problems do we solve?

We consider polynomials optimization problems

minimize f (x)
subject to gi (x) ≥ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , l
x ∈ Rn

for real polynomials f , gi , hj : Rn 7→ R.

• Solved by a sequence of relaxations.

• An important recent application of semidefinite optimization.

• The relaxations can be difficult to solve numerically.

Polynomial optimization
What problems do we solve?

We consider polynomials optimization problems

minimize f (x)
subject to gi (x) ≥ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , l
x ∈ Rn

for real polynomials f , gi , hj : Rn 7→ R.

• Solved by a sequence of relaxations.

• An important recent application of semidefinite optimization.

• The relaxations can be difficult to solve numerically.

Polynomial optimization
What problems do we solve?

We consider polynomials optimization problems

minimize f (x)
subject to gi (x) ≥ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , l
x ∈ Rn

for real polynomials f , gi , hj : Rn 7→ R.

• Solved by a sequence of relaxations.

• An important recent application of semidefinite optimization.

• The relaxations can be difficult to solve numerically.

Software packages for polynomial optimization
Why develop a new package?

Other Matlab packages with same functionality exists:

• GloptiPoly, standard moment relaxations.

• SparsePoP, sparse moment relaxations.

• SOSTools, general sum-of-squares problems.

• Yalmip, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

• Test and improve the MOSEK semidefinite solver.

• Have full control of the generated semidefinite problems.

• Investigate other approaches for exploiting sparsity.

• Implement it in Julia to remove dependency on Matlab.

Software packages for polynomial optimization
Why develop a new package?

Other Matlab packages with same functionality exists:

• GloptiPoly, standard moment relaxations.

• SparsePoP, sparse moment relaxations.

• SOSTools, general sum-of-squares problems.

• Yalmip, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

• Test and improve the MOSEK semidefinite solver.

• Have full control of the generated semidefinite problems.

• Investigate other approaches for exploiting sparsity.

• Implement it in Julia to remove dependency on Matlab.

Software packages for polynomial optimization
Why develop a new package?

Other Matlab packages with same functionality exists:

• GloptiPoly, standard moment relaxations.

• SparsePoP, sparse moment relaxations.

• SOSTools, general sum-of-squares problems.

• Yalmip, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

• Test and improve the MOSEK semidefinite solver.

• Have full control of the generated semidefinite problems.

• Investigate other approaches for exploiting sparsity.

• Implement it in Julia to remove dependency on Matlab.

Software packages for polynomial optimization
Why develop a new package?

Other Matlab packages with same functionality exists:

• GloptiPoly, standard moment relaxations.

• SparsePoP, sparse moment relaxations.

• SOSTools, general sum-of-squares problems.

• Yalmip, general sums-of-squares and polynomial optimization.

Motivations for developing a new package:

• Test and improve the MOSEK semidefinite solver.

• Have full control of the generated semidefinite problems.

• Investigate other approaches for exploiting sparsity.

• Implement it in Julia to remove dependency on Matlab.

Lasserre hierarchy of moment relaxations
Primal and dual formulations

• Standard moment relaxation:

minimize pT y
subject to y0 = 1

Mk(y) � 0
Mk−dgj

(gjy) � 0, j = 1, . . . ,m

Mk−dhi
(hiy) = 0, i = 1, . . . , l .

• Dual problem (which we feed into MOSEK):

maximize t

subject to
m∑
j=1

Aj
0 • X

j +
l∑

k=1

Bk
0 • Z k = p0 − t

m∑
j=1

Aj
i • X

j +
l∑

k=1

Bk
i • Z k = pi , i = 1, . . . , r

X j � 0, Z k are free symmetric matrices.

Lasserre hierarchy of moment relaxations
Primal and dual formulations

• Standard moment relaxation:

minimize pT y
subject to y0 = 1

Mk(y) � 0
Mk−dgj

(gjy) � 0, j = 1, . . . ,m

Mk−dhi
(hiy) = 0, i = 1, . . . , l .

• Dual problem (which we feed into MOSEK):

maximize t

subject to
m∑
j=1

Aj
0 • X

j +
l∑

k=1

Bk
0 • Z k = p0 − t

m∑
j=1

Aj
i • X

j +
l∑

k=1

Bk
i • Z k = pi , i = 1, . . . , r

X j � 0, Z k are free symmetric matrices.

How to solve a simple example in Julia

minimize −x1 − x2
subject to 2x41 − 8x31 + 8x21 − x2 + 2 ≥ 0

4x41 − 32x31 + 88x21 − 96x1 − x2 + 36 ≥ 0
0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

using Polyopt

x1, x2 = variables(["x1", "x2"])

f = -x1-x2

g = [2*x1^4 - 8*x1^3 + 8*x1^2 - x2 + 2,

4*x1^4 - 32*x1^3 + 88*x1^2 - 96*x1 - x2 + 36,

x1, 3-x1,

x2, 4-x2]

prob = momentprob(4, f, g)

X, Z, t, y, solsta = solve_mosek(prob)

More examples on Github...

https://github.com/MOSEK/Polyopt.jl/tree/master/notebooks

Concluding remarks

Package overview:

• Lasserre’s hierarchy of moment relaxations in Julia.

• Correlative sparsity and chordal relaxations by Waki et al.

• No solution extracting method by Henrion and Lasserre;
perturb problem to extract a single global optimizer.

Modern features of Julia facilitate lean implementation:

• polynomial.jl 258 lines of code.

• cliques.jl 66 lines of code.

• Polyopt.jl 268 lines of code.

• solver mosek.jl 134 lines of code.

Important for improving conic solver in upcoming MOSEK 8.0.

Concluding remarks

Package overview:

• Lasserre’s hierarchy of moment relaxations in Julia.

• Correlative sparsity and chordal relaxations by Waki et al.

• No solution extracting method by Henrion and Lasserre;
perturb problem to extract a single global optimizer.

Modern features of Julia facilitate lean implementation:

• polynomial.jl 258 lines of code.

• cliques.jl 66 lines of code.

• Polyopt.jl 268 lines of code.

• solver mosek.jl 134 lines of code.

Important for improving conic solver in upcoming MOSEK 8.0.

Concluding remarks

Package overview:

• Lasserre’s hierarchy of moment relaxations in Julia.

• Correlative sparsity and chordal relaxations by Waki et al.

• No solution extracting method by Henrion and Lasserre;
perturb problem to extract a single global optimizer.

Modern features of Julia facilitate lean implementation:

• polynomial.jl 258 lines of code.

• cliques.jl 66 lines of code.

• Polyopt.jl 268 lines of code.

• solver mosek.jl 134 lines of code.

Important for improving conic solver in upcoming MOSEK 8.0.

Thank you!

Joachim Dahl, MOSEK ApS

collaborators: Martin S. Andersen (DTU), Frank Permenter (MIT)

www.mosek.com

