
On Recent Improvements in the Interior-Point
Optimizer in MOSEK

ISMP2015 – 14 July 2015 Pittsburgh (US)

Andrea Cassioli, PhD
andrea.cassioli@mosek.com

www.mosek.com

andrea.cassioli@mosek.com


Overview

1 Few words about MOSEK

2 New features in upcoming v8

3 QCQP to COP automatic conversion

4 Pitfalls in PSD detection

5 Some computational experience



Few words about MOSEK

MOSEK is one of the leading provider of high-quality optimization
software world-wide.
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Version 8 - work in progress

1 Improved presolve.
• Faster.
• Eliminator uses much less space.
• Eliminator has increased stability emphasis.
• Added some conic presolve.

2 Revised scaling procedure for conic problems:
• Emphasize accuracy of the unscaled solution.
• Scales semidefinite problems too.

3 Automatic dualizer for conic problems (no matrix variables).

4 Rewritten interior-point optimizer for conic problems.
• Emphasize numerical stability for semidefinite problems.

5 QCQPs internally reformulated to conic form.



Convex Quadratic vs. Conic Quadratic

From our practical experience the conic model is :

• numerically more robust,

• easier to exploit duality,

• better when quadratic constraints are present,

• better for primal infeasible problems,

• a more general framework.

However, users are still very much used to QCQPs formulations,
therefore

• Convert (QO) to conic form (CQO).

• Map the primal and dual solutions back.



From QCQP to CQO

The quadratic optimization model

minimize
1

2
xTQT

0 x + cT x

subject to
1

2
xTQT

i x + ai :x ≤ bi , i = 1 . . . ,m. (QO)

Assumptions:

• Symmetry: Qi = QT
i , i =, . . . ,m.

• Convexity: Qi � 0.

Hence, Qi should be positive semidefinite.



The conic optimization model

minimize cT x
subject to Ax = bi , i = 1, . . . ,m, (CQO)

x ∈ K,

where
K = K1 ×K2 × · · · .

Each Kk can have the form

• Linear: {x ∈ Rni | x ≥ 0}.
• Quadratic: {x ∈ Rni | x1 ≥ ‖x2:ni‖}.
• Rotated quadratic: {x ∈ Rni | 2x1x2 ≥ ‖x3:ni‖

2 , x1, x2 ≥ 0}.



The separable reformulation

If Li s such that LiL
T
i = Qi are known, then the separable

equivalent is

minimize
1

2
f T
0 f0 + cT x

subject to
1

2
f T
i fi + ai :x ≤ bi , i = 1, . . . ,m, (SQO)

LT
i x − fi = 0.

• The separable problem formulation is (much) bigger.

• But the sparse representation may require much less storage if
Qi is dense but low rank.

• Li does not have to be lower triangular.



Conic reformulation

From (QO) to (CQO):

minimize t0 + cT x
subject to ti + ai :x = bi , i =, 1 . . . ,m, (CQO)

LT
i x − fi = 0,

zi = 1,

2zi ti ≥ ‖fi‖2 .

• Theory:
• Both problems solves in the same worst case complexity using

an interior-point method.
• No bad duality states is introduced in the conic reformulation

ART [1].



Conic Reformulation

Converting QO to CQO is a trivial procedure once Li ‘s are known.
So who should do that?

the user!

• Factorization may be already available.

• Better control on the choice of the way to factorize Qi ‘s,

However, MOSEK v8 will make the conversion automatically.



Quadratic PSD form characterization

The statements are equivalent

i) Qi � 0.
ii) λmin(Qi ) ≥ 0.

iii) ∃Li | Qi = LiL
T
i .

iv) vTQiv ≥ 0, ∀v .

Practical observation:

• How does the modeler knows (QO) is convex?

• Claim: The modeler knows Li !



Automatic conversion implemented in MOSEK (I)

Purpose is to compute L such that

Q = LLT

or in practice
Q ≈ LLT

considering rounding errors.

Assumptions on the users:

• Users applies this to (near) positive semidefinite problems.

• Users prefer a false positive to a false negative.



How to deal with factorizations?
Motivating example

minimize −x1 − x2

subject to (x1 − x2)2 ≤ 0,
0 ≤ x1, x2 ≤ 1

Often in practice the quadratic constraints could be affected by a
small error ε, i.e.

xT

[
1 −1
−1 1 + ε

]
x ≤ 0

Typical error sources:

• Introduced by user.

• Coming from finite precision floating point precision
computations.



Practicabilities about the conversion

Observe:

• ε < 0 : The problem is not convex.

• ε = 0 : x∗
1 = x∗

2 = 1.

• ε > 0 : x∗
1 = x∗

2 = 0.

Conclusions:

• Hard to produce a 100% automatic fool proof conversion.

• Conversion should be done at the modelling stage!



Automatic conversion implemented in MOSEK (II)

Lemma

If Q is symmetric positive semidefinite then it holds

eT1 Qe1 = Q11 ≥ 0

and
Q11 = 0⇒ Q1: = Q:1 = 0.



Automatic conversion implemented in MOSEK (III)

Lemma

If Q is symmetric positive semidefinite and Q11 > 0, then

Q = E1Q1ET
1

Q1 =

 1 0

0 Q22 −
Q21QT

21

Q11


where

E =

[ √
Q11 0

Q21/
√

Q11 I

]
.

Moreover,

Q22 −
Q21QT

21

Q11

will be positive semidefinite.



Automatic conversion implemented in MOSEK (IV)

Hence, if Q is positive definite then

Q = LLT

where
L = E1E2 · · ·En.

Fact: L will be lower triangular.
But what if

Q11 ≈ 0?



Automatic conversion implemented in MOSEK (V)

• Q11 ≤ −ε then Q is said to be NOT positive semidefinite.

• −ε < Q11 ≤ ε then
• Replace Q11 by ε.
• If the complete Q is determined PSD, then replace L:1 by 0 in

the final result.

• Default value: ε = 10−10.

The procedure will detect [
0 1

1 108

]
negative semidefinite.



Automatic conversion implemented in MOSEK (VI)

Note the procedure is applied to a scaled Q i.e.

SQST

where S = diag(s) and all diagonal elements of SQST belongs to
{−1, 0, 1}. Makes the usage of a absolute constant sensible.



MOSEK results

The MOSEK procedure produces on our example:

L =

[
1 0
−1 0

]
.



An alternative procedure

• Q11 ≤ −ε then Q is said to be NOT positive semidefinite.

• −ε < Q11 ≤ ε then replace Q11 by ε.

Take a look at the example

Q =

[
1 −1
−1 1

]
and hence

L =

[
1 0

−1 10−10

]
which most likely is not what the user intended because this
implies x = 0.



Discussion

• Procedure can be fooled.

• Alternative approaches:
• Revised Schnable and Eskow approach [5].
• Rank revealing Cholesky [4]. (Pivotting required!)

• Alternatives are computational more complicated or (much
more) expensive.



Preliminary computation results

Setting:

• 64 bit Linux.

• 1 thread only.

• v7.1 vs. v8

• Public and customer provided models.

time

Small ≤ 6s
Medium ≤ 60s
Large > 60s

An optimizer o is declared a winner if

to ≤ max(tmin + 0.01, 1.005tmin).



Algorithms in MOSEK

• (QO): Solves a homogenized KKT system using
(=nonsymmetric primal-dual algorithm) ( [3] ).

• (CQO): Symmetric primal-dual algorithm based on the
Nesterov-Todd direction ART ([2]).



Quadratic problems (linear constraints only)

small medium large
7.1 8.0 7.1 8.0 7.1 8.0

Num. 220 220 10 10 1 1
Firsts 187 158 2 8 0 1
Total time 128.41 56.20 359.13 311.56 444.28 244.01



Param ILS instances

Available at www.cs.ubc.ca/labs/beta/Projects/ParamILS/.

7.1 8.0

Num. 100 100
Firsts 0 100
Total time 917.955 90.179

www.cs.ubc.ca/labs/beta/Projects/ParamILS/


Quadratically constrained problems

small medium
7.1 8.0 7.1 8.0

Num. 239 239 8 8
Firsts 161 150 3 5
Total time 350.790 94.290 1360.417 213.454



Discussion

• Conic reformulations wins because
• it requires less iterations.
• dualization sometimes lead to huge wins.
• employs better linear algebra (newer code path).

However, for smallish models the nonconic formulation is better.



Summary

• MOSEK version 8 will internally solve quadratic and
quadratically constrained problems on conic form.

• Improves robustness,
• Solution speed on average.

• Checking positive semi definiteness is tricky.
• It is recommended to formulate problem on conic form
• or as a separable problem.
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