moseк

On Recent Improvements in the Interior-Point Optimizer in MOSEK

ISMP2015 - 14 July 2015 Pittsburgh (US)

Andrea Cassioli, PhD
andrea.cassioli@mosek.com

WWW.mosek.com
(1) Few words about MOSEK
(2) New features in upcoming v8
(3) QCQP to COP automatic conversion
(4) Pitfalls in PSD detection
(5) Some computational experience

MOSEK is one of the leading provider of high-quality optimization software world-wide.

Version 8 - work in progress

(1) Improved presolve.

- Faster.
- Eliminator uses much less space.
- Eliminator has increased stability emphasis.
- Added some conic presolve.
(2) Revised scaling procedure for conic problems:
- Emphasize accuracy of the unscaled solution.
- Scales semidefinite problems too.
(3) Automatic dualizer for conic problems (no matrix variables).

4) Rewritten interior-point optimizer for conic problems.

- Emphasize numerical stability for semidefinite problems.
(5) QCQPs internally reformulated to conic form.

From our practical experience the conic model is :

- numerically more robust,
- easier to exploit duality,
- better when quadratic constraints are present,
- better for primal infeasible problems,
- a more general framework.

However, users are still very much used to QCQPs formulations, therefore

- Convert (QO) to conic form (CQO).
- Map the primal and dual solutions back.

From QCQP to CQO

The quadratic optimization model

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} x^{T} Q_{0}^{T} x+c^{T} x \\
\text { subject to } & \frac{1}{2} x^{T} Q_{i}^{T} x+a_{i:} x \leq b_{i}, \quad i=1 \ldots, m . \quad(Q O)
\end{array}
$$

Assumptions:

- Symmetry: $Q_{i}=Q_{i}^{T}, \quad i=, \ldots, m$.
- Convexity: $Q_{i} \succeq 0$.

Hence, Q_{i} should be positive semidefinite.

The conic optimization model

$$
\begin{array}{lc}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \\
x \in \mathcal{K},
\end{array}=b_{i}, \quad i=1, \ldots, m, \quad \text { (CQO) }
$$

where

$$
\mathcal{K}=\mathcal{K}_{1} \times \mathcal{K}_{2} \times \cdots .
$$

Each \mathcal{K}_{k} can have the form

- Linear: $\left\{x \in \mathbb{R}^{n_{i}} \mid x \geq 0\right\}$.
- Quadratic: $\left\{x \in \mathbb{R}^{n_{i}} \mid x_{1} \geq\left\|x_{2: n_{i}}\right\|\right\}$.
- Rotated quadratic: $\left\{x \in \mathbb{R}^{n_{i}} \mid 2 x_{1} x_{2} \geq\left\|x_{3: n_{i}}\right\|^{2}, \quad x_{1}, x_{2} \geq 0\right\}$.

The separable reformulation

If $L_{i} s$ such that $L_{i} L_{i}^{T}=Q_{i}$ are known, then the separable equivalent is

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} f_{0}^{T} f_{0}+c^{T} x \\
\text { subject to } & \frac{1}{2} f_{i}^{T} f_{i}+a_{i:} x \leq b_{i}, \quad i=1, \ldots, m, \quad(\mathrm{SQO}) \\
& L_{i}^{T} x-f_{i}=0 .
\end{array}
$$

- The separable problem formulation is (much) bigger.
- But the sparse representation may require much less storage if Q_{i} is dense but low rank.
- L_{i} does not have to be lower triangular.

From (QO) to (CQO):

$$
\begin{array}{lll}
\operatorname{minimize} \quad t_{0}+c^{\top} x \\
\text { subject to } \quad t_{i}+a_{i} x & =b_{i}, \quad i=, 1 \ldots, m, \quad(\mathrm{CQO}) \\
L_{i}^{T} x-f_{i} & =0, \\
z_{i} & =1,
\end{array}
$$

- Theory:
- Both problems solves in the same worst case complexity using an interior-point method.
- No bad duality states is introduced in the conic reformulation ART [1].

Converting QO to CQO is a trivial procedure once L_{i} 's are known. So who should do that?

the user!

- Factorization may be already available.
- Better control on the choice of the way to factorize Q_{i} 's,

However, MOSEK v8 will make the conversion automatically.

The statements are equivalent

$$
\begin{array}{lc}
\text { i) } & Q_{i} \succeq 0 . \\
\text { ii) } & \lambda_{\min }\left(Q_{i}\right) \geq 0 \\
\text { iii) } & \exists L_{i} \mid Q_{i}=L_{i} L_{i}^{T} . \\
\text { iv) } & v^{T} Q_{i} v \geq 0, \quad \forall v .
\end{array}
$$

Practical observation:

- How does the modeler knows ($Q O$) is convex?
- Claim: The modeler knows L_{i} !

Automatic conversion implemented in MOSEK (I)

Purpose is to compute L such that

$$
Q=L L^{T}
$$

or in practice

$$
Q \approx L L^{T}
$$

considering rounding errors.
Assumptions on the users:

- Users applies this to (near) positive semidefinite problems.
- Users prefer a false positive to a false negative.

How to deal with factorizations?

Motivating example

$$
\begin{array}{lc}
\operatorname{minimize} & -x_{1}-x_{2} \\
\text { subject to } & \left(x_{1}-x_{2}\right)^{2} \leq 0 \\
0 \leq x_{1}, x_{2} \leq 1
\end{array}
$$

Often in practice the quadratic constraints could be affected by a small error ε, i.e.

$$
x^{T}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1+\epsilon
\end{array}\right] x \leq 0
$$

Typical error sources:

- Introduced by user.
- Coming from finite precision floating point precision computations.

Observe:

- $\epsilon<0$: The problem is not convex.
- $\epsilon=0: x_{1}^{*}=x_{2}^{*}=1$.
- $\epsilon>0: x_{1}^{*}=x_{2}^{*}=0$.

Conclusions:

- Hard to produce a 100% automatic fool proof conversion.
- Conversion should be done at the modelling stage!

Automatic conversion implemented in MOSEK (II)

Lemma

If Q is symmetric positive semidefinite then it holds

$$
e_{1}^{T} Q e_{1}=Q_{11} \geq 0
$$

and

$$
Q_{11}=0 \Rightarrow Q_{1:}=Q_{: 1}=0
$$

Automatic conversion implemented in MOSEK (III)

Lemma

If Q is symmetric positive semidefinite and $Q_{11}>0$, then

$$
\begin{aligned}
Q & =E_{1} Q_{1} E_{1}^{T} \\
Q_{1} & =\left[\begin{array}{cc}
1 & 0 \\
0 & Q_{22}-\frac{Q_{21} Q_{21}^{T}}{Q_{11}}
\end{array}\right]
\end{aligned}
$$

where

$$
E=\left[\begin{array}{cc}
\sqrt{Q_{11}} & 0 \\
Q_{21} / \sqrt{Q_{11}} & l
\end{array}\right]
$$

Moreover,

$$
Q_{22}-\frac{Q_{21} Q_{21}^{T}}{Q_{11}}
$$

will be positive semidefinite.

Automatic conversion implemented in MOSEK (IV)

Hence, if Q is positive definite then

$$
Q=L L^{T}
$$

where

$$
L=E_{1} E_{2} \cdots E_{n}
$$

Fact: L will be lower triangular.
But what if

$$
Q_{11} \approx 0 ?
$$

Automatic conversion implemented in MOSEK (V)

- $Q_{11} \leq-\varepsilon$ then Q is said to be NOT positive semidefinite.
- $-\varepsilon<Q_{11} \leq \varepsilon$ then
- Replace Q_{11} by ε.
- If the complete Q is determined PSD, then replace $L_{: 1}$ by 0 in the final result.
- Default value: $\varepsilon=10^{-10}$.

The procedure will detect

$$
\left[\begin{array}{cc}
0 & 1 \\
1 & 10^{8}
\end{array}\right]
$$

negative semidefinite.

Automatic conversion implemented in MOSEK (VI)

Note the procedure is applied to a scaled Q i.e.

$$
S Q S^{T}
$$

where $S=\operatorname{diag}(s)$ and all diagonal elements of $S Q S^{T}$ belongs to $\{-1,0,1\}$. Makes the usage of a absolute constant sensible.

MOSEK results

The MOSEK procedure produces on our example:

$$
L=\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right]
$$

An alternative procedure

- $Q_{11} \leq-\varepsilon$ then Q is said to be NOT positive semidefinite.
- $-\varepsilon<Q_{11} \leq \varepsilon$ then replace Q_{11} by ε.

Take a look at the example

$$
Q=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

and hence

$$
L=\left[\begin{array}{cc}
1 & 0 \\
-1 & 10^{-10}
\end{array}\right]
$$

which most likely is not what the user intended because this implies $x=0$.

Discussion

- Procedure can be fooled.
- Alternative approaches:
- Revised Schnable and Eskow approach [5].
- Rank revealing Cholesky [4]. (Pivotting required!)
- Alternatives are computational more complicated or (much more) expensive.

Preliminary computation results

Setting:

- 64 bit Linux.
- 1 thread only.
- v7.1 vs. v8
- Public and customer provided models.

	time
Small	$\leq 6 s$
Medium	$\leq 60 s$
Large	$>60 s$

An optimizer o is declared a winner if

$$
t_{0} \leq \max \left(t_{\min }+0.01,1.005 t_{\min }\right)
$$

Algorithms in MOSEK

- (QO): Solves a homogenized KKT system using (=nonsymmetric primal-dual algorithm) ([3]).
- (CQO): Symmetric primal-dual algorithm based on the Nesterov-Todd direction ART ([2]).

Quadratic problems (linear constraints only)

	small		medium		large	
	7.1	8.0	7.1	8.0	7.1	8.0
Num.	220	220	10	10	1	1
Firsts	187	158	2	8	0	1
Total time	128.41	56.20	359.13	311.56	444.28	244.01

Param ILS instances

Available at www.cs.ubc.ca/labs/beta/Projects/ParamILS/.

	7.1	8.0
Num.	100	100
Firsts	0	100
Total time	917.955	90.179

Quadratically constrained problems

	small		medium	
	7.1	8.0	7.1	8.0
Num.	239	239	8	8
Firsts	161	150	3	5
Total time	350.790	94.290	1360.417	213.454

Discussion

- Conic reformulations wins because
- it requires less iterations.
- dualization sometimes lead to huge wins.
- employs better linear algebra (newer code path).

However, for smallish models the nonconic formulation is better.

- MOSEK version 8 will internally solve quadratic and quadratically constrained problems on conic form.
- Improves robustness,
- Solution speed on average.
- Checking positive semi definiteness is tricky.
- It is recommended to formulate problem on conic form
- or as a separable problem.

moseк

Thank you!

Andrea Cassioli, PhD andrea.cassioli@mosek.com

WWW.mosek. com

00
E. D. Andersen, C. Roos, and T. Terlaky.

Notes on duality in second order and p-order cone optimization.
Optimization, 51(4):627-643, 2002.
E. D. Andersen, C. Roos, and T. Terlaky.

On implementing a primal-dual interior-point method for conic quadratic optimization.
Math. Programming, 95(2), February 2003.
E. D. Andersen and Y. Ye.

On a homogeneous algorithm for the monotone complementarity problem.
Math. Programming, 84(2):375-399, February 1999.
$\mathrm{M} . \mathrm{Gu}$ and L. Miranian.
Strong rank revealing cholesky factorization.
Electronic Transactions on Numerical Analysis, 17:76-92, 2004.
R. B. Schnable and E. Eskow.

A revised modified Cholesky Factorization Algorithm.
SIAM J. on Optim., 9(4):1135-1148, 1999.

