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Overview :

® Few words about MOSEK

® New features in upcoming v3

©® QCQP to COP automatic conversion
O Pitfalls in PSD detection

©® Some computational experience



Few words about MOSEK v

MOSEK is one of the leading provider of high-quality optimization
software world-wide.

General
Convex




Version 8 - work in progress

@ Improved presolve.

o Faster.

e Eliminator uses much less space.

e Eliminator has increased stability emphasis.
e Added some conic presolve.

® Revised scaling procedure for conic problems:

e Emphasize accuracy of the unscaled solution.

e Scales semidefinite problems too.
© Automatic dualizer for conic problems (no matrix variables).
O Rewritten interior-point optimizer for conic problems.

e Emphasize numerical stability for semidefinite problems.

® QCQPs internally reformulated to conic form.



Convex Quadratic vs. Conic Quadratic

From our practical experience the conic model is :

e numerically more robust,

e easier to exploit duality,

better when quadratic constraints are present,

better for primal infeasible problems,

e a more general framework.

However, users are still very much used to QCQPs formulations,
therefore

e Convert (QO) to conic form (CQO).

e Map the primal and dual solutions back.



From QCQP to CQO v

The quadratic optimization model

L 1
minimize ~x' QJ x4 c'x

subject to EXTQ,-TX +aix < b, i=1...,m (QO)
Assumptions:
e Symmetry: Q; = Q,-T, i=,...,m.

e Convexity: Q; = 0.

Hence, @; should be positive semidefinite.



The conic optimization model v

minimize cTx
subjectto  Ax = b, i=1,...,m (CQO)
x e,
where
K=K x Ko x---.

Each K, can have the form
e Linear: {x € R" | x > 0}.
e Quadratic: {x € R" | x1 > ||x2:, || }-
¢ Rotated quadratic: {x € R" | 2x1x2 > HX3;,,I.H2, x1,x2 > 0}.



The separable reformulation

If L;s such that L,-L,-T = Q; are known, then the separable
equivalent is

1
minimize  ~fy fy + ¢ x
subject to Ef,-Tf,- +aix < b, i=1,...,m, (SQO)
LIx—f =
e The separable problem formulation is (much) bigger.

e But the sparse representation may require much less storage if
Q; is dense but low rank.

e |; does not have to be lower triangular.



Conic reformulation

From (QO) to (CQO):

minimize to + cTx
subject to ti + aj.x = b, i=,1...,m (CQO)
LIx—fi = 0,
Zj = 1,
2zit; > || fi||* .
e Theory:

e Both problems solves in the same worst case complexity using
an interior-point method.
e No bad duality states is introduced in the conic reformulation

ART [1].



Conic Reformulation

Converting QO to CQO is a trivial procedure once L;‘s are known.
So who should do that?

the user!

e Factorization may be already available.

e Better control on the choice of the way to factorize Q;'s,

However, MOSEK v8 will make the conversion automatically.



Quadratic PSD form characterization v

The statements are equivalent

) Qi = 0.

”) Amin(Qi) 2 0.
i) 3L | Q= LiL].
iv) viQiv>0, Vv.

Practical observation:
¢ How does the modeler knows (QO) is convex?

e Claim: The modeler knows L;!



Automatic conversion implemented in MOSEK (1) v

Purpose is to compute L such that
Q=1LL"

or in practice
Q~LLT

considering rounding errors.
Assumptions on the users:

e Users applies this to (near) positive semidefinite problems.

e Users prefer a false positive to a false negative.



How to deal with factorizations?

Motivating example

minimize —X1 — Xo
subject to (x1 — xz)2 < 0,
0<x,x%<1

Often in practice the quadratic constraints could be affected by a
small error ¢, i.e.

Typical error sources:
e Introduced by user.

e Coming from finite precision floating point precision
computations.



Practicabilities about the conversion

Observe:
e ¢ < 0: The problem is not convex.
e c=0:x=x;=1

e c>0:xf=x;=0.

Conclusions:
e Hard to produce a 100% automatic fool proof conversion.

e Conversion should be done at the modelling stage!



Automatic conversion implemented in MOSEK (l1)

Lemma

If Q is symmetric positive semidefinite then it holds
T _
e; Qer = Q11 >0

and
Quu=0= Q1. =Q1=0.



Automatic conversion implemented in MOSEK (l11) ‘

Lemma

If Q is symmetric positive semidefinite and Q11 > 0, then

QR = EQES
1 0

Q1 = 0 022_ Qleﬂ
Qu1

where

E_| VOu_ o0
Qu1/vVQu ||’

Q@ Q)
Q11

Moreover,

@22

will be positive semidefinite.



Automatic conversion implemented in MOSEK (V)

\4

Hence, if Q is positive definite then
Q=LLT
where

L=EE---E,.

Fact: L will be lower triangular.
But what if

Qi1 ~ 07



Automatic conversion implemented in MOSEK (V) v

e Q11 < —¢ then Q is said to be NOT positive semidefinite.
o —¢ < @11 < e then

e Replace Q1 by e.
o If the complete @ is determined PSD, then replace L.; by 0 in
the final result.

e Default value: ¢ = 10719,

0 1
1 108

The procedure will detect

negative semidefinite.



Automatic conversion implemented in MOSEK (V1) v

Note the procedure is applied to a scaled Q i.e.
SQS’

where S = diag(s) and all diagonal elements of SQST belongs to
{—1,0,1}. Makes the usage of a absolute constant sensible.



MOSEK results

The MOSEK procedure produces on our example:

L:[_ll g]



An alternative procedure v

e Q11 < —¢ then Q is said to be NOT positive semidefinite.
o —& < @11 < ¢ then replace Q11 by €.

Take a look at the example

and hence

1 0
L= -1 1010]

which most likely is not what the user intended because this
implies x = 0.



Discussion

e Procedure can be fooled.
e Alternative approaches:
e Revised Schnable and Eskow approach [5].
e Rank revealing Cholesky [4]. (Pivotting required!)
e Alternatives are computational more complicated or (much
more) expensive.



Preliminary computation results v

Setting:

64 bit Linux.

1 thread only.

v7.1 vs. v8

Public and customer provided models.

time
Small < bs
Medium | < 60s
Large > 60s

An optimizer o is declared a winner if

to < max(tmin + 0.01, 1.005tmin)-



Algorithms in MOSEK v

e (QO): Solves a homogenized KKT system using
(=nonsymmetric primal-dual algorithm) ( [3] ).

e (CQO): Symmetric primal-dual algorithm based on the
Nesterov-Todd direction ART ([2]).



Quadratic problems (linear constraints only)

small medium large
7.1 8.0 7.1 8.0 7.1 8.0
Num. 220 220 10 10 1 1
Firsts 187 158 2 8 0 1
Total time | 128.41 56.20 | 359.13 311.56 | 444.28 244.01




Param ILS instances :

Available at www.cs.ubc.ca/labs/beta/Projects/ParamILS/.

7.1 8.0
Num. 100 100
Firsts 0 100
Total time | 917.955 90.179



www.cs.ubc.ca/labs/beta/Projects/ParamILS/

Quadratically constrained problems v

small medium
7.1 8.0 7.1 8.0
Num. 239 239 8 8
Firsts 161 150 3 5
Total time | 350.790 94.290 | 1360.417 213.454




Discussion

e Conic reformulations wins because

e it requires less iterations.
e dualization sometimes lead to huge wins.
e employs better linear algebra (newer code path).

However, for smallish models the nonconic formulation is better.



Summary

e MOSEK version 8 will internally solve quadratic and
quadratically constrained problems on conic form.

e |mproves robustness,
e Solution speed on average.

e Checking positive semi definiteness is tricky.

e |t is recommended to formulate problem on conic form
e or as a separable problem.



mdassek

Thank youl!

Andrea Cassioli, PhD

andrea.cassioli@mosek.com

WWW.mosek.com


andrea.cassioli@mosek.com

References

) & W =

E. D. Andersen, C. Roos, and T. Terlaky.

Notes on duality in second order and p -order cone optimization.
Optimization, 51(4):627-643, 2002

E. D. Andersen, C. Roos, and T. Terlaky.

On implementing a primal-dual interior-point method for conic quadratic optimization.
Math. Programming, 95(2), February 2003

E. D. Andersen and Y. Ye.

On a homogeneous algorithm for the monotone complementarity problem.
Math. Programming, 84(2):375-399, February 1999

M. Gu and L. Miranian.

Strong rank revealing cholesky factorization.

Electronic Transactions on Numerical Analysis, 17:76-92, 2004

R. B. Schnable and E. Eskow.

A revised modified Cholesky Factorization Algorithm.
SIAM J. on Optim., 9(4):1135-1148, 1999.



