mosek

On Recent Improvements in the Interior-Point Optimizer in MOSEK

ISMP2015 – 14 July 2015 Pittsburgh (US)

Andrea Cassioli, PhD andrea.cassioli@mosek.com

www.mosek.com

- **1** Few words about **MOSEK**
- 2 New features in upcoming v8
- **3** QCQP to COP automatic conversion
- **4** Pitfalls in PSD detection
- **5** Some computational experience

MOSEK is one of the leading provider of high-quality optimization software world-wide.

Version 8 - work in progress

1 Improved presolve.

- Faster.
- Eliminator uses much less space.
- Eliminator has increased stability emphasis.
- Added some conic presolve.
- 2 Revised scaling procedure for conic problems:
 - Emphasize accuracy of the unscaled solution.
 - Scales semidefinite problems too.
- 3 Automatic dualizer for conic problems (no matrix variables).
- **4** Rewritten interior-point optimizer for conic problems.
 - Emphasize numerical stability for semidefinite problems.
- **5** QCQPs internally reformulated to conic form.

From our practical experience the conic model is :

- numerically more robust,
- easier to exploit duality,
- better when quadratic constraints are present,
- better for primal infeasible problems,
- a more general framework.

However, users are still very much used to QCQPs formulations, therefore

- Convert (QO) to conic form (CQO).
- Map the primal and dual solutions back.

The quadratic optimization model

minimize
$$\frac{1}{2}x^{T}Q_{0}^{T}x + c^{T}x$$

subject to
$$\frac{1}{2}x^{T}Q_{i}^{T}x + a_{i:}x \leq b_{i}, \quad i = 1..., m. \quad (QO)$$

Assumptions:

- Symmetry: $Q_i = Q_i^T$, $i =, \ldots, m$.
- Convexity: $Q_i \succeq 0$.

Hence, Q_i should be **positive semidefinite.**

minimize
$$c^T x$$

subject to $Ax = b_i$, $i = 1, ..., m$, (CQO)
 $x \in \mathcal{K}$,

where

$$\mathcal{K} = \mathcal{K}_1 \times \mathcal{K}_2 \times \cdots$$

Each \mathcal{K}_k can have the form

- Linear: $\{x \in \mathbb{R}^{n_i} \mid x \ge 0\}$.
- Quadratic: $\{x \in \mathbb{R}^{n_i} \mid x_1 \ge \|x_{2:n_i}\|\}.$
- Rotated quadratic: $\{x \in \mathbb{R}^{n_i} \mid 2x_1x_2 \ge \|x_{3:n_i}\|^2, x_1, x_2 \ge 0\}.$

If $L_i s$ such that $L_i L_i^T = Q_i$ are known, then the separable equivalent is

minimize
$$\frac{1}{2}f_0^T f_0 + c^T x$$

subject to
$$\frac{1}{2}f_i^T f_i + a_{i:}x \leq b_i, \quad i = 1, \dots, m, \quad (SQO)$$
$$L_i^T x - f_i = 0.$$

- The separable problem formulation is (much) bigger.
- But the sparse representation may require much less storage if Q_i is dense but low rank.
- L_i does not have to be lower triangular.

From (QO) to (CQO):

minimize
$$t_0 + c^T x$$

subject to $t_i + a_{i:} x = b_i, \quad i =, 1..., m, \quad (CQO)$
 $L_i^T x - f_i = 0,$
 $z_i = 1,$
 $2z_i t_i \ge \|f_i\|^2.$

• Theory:

- Both problems solves in the same worst case complexity using an interior-point method.
- No bad duality states is introduced in the conic reformulation ART [1].

Converting QO to CQO is a trivial procedure once L_i 's are known. So who should do that?

the user!

- Factorization may be already available.
- Better control on the choice of the way to factorize Q_i's,

However, MOSEK v8 will make the conversion automatically.

The statements are equivalent

$$\begin{array}{ll} i) & Q_i \succeq 0. \\ ii) & \lambda_{\min}(Q_i) \geq 0. \\ iii) & \exists L_i \mid Q_i = L_i L_i^{\mathsf{T}}. \\ iv) & v^{\mathsf{T}} Q_i v \geq 0, \quad \forall v. \end{array}$$

Practical observation:

- How does the modeler knows (QO) is convex?
- Claim: The modeler knows L_i!

Purpose is to compute L such that

$$Q = LL^T$$

or in practice

 $Q \approx LL^T$

considering rounding errors.

Assumptions on the users:

- Users applies this to (near) positive semidefinite problems.
- Users prefer a false positive to a false negative.

$$\begin{array}{lll} \mbox{minimize} & -x_1 - x_2 \\ \mbox{subject to} & (x_1 - x_2)^2 & \leq & 0, \\ & 0 \leq x_1, x_2 \leq 1 \end{array}$$

Often in practice the quadratic constraints could be affected by a small error ε , i.e.

$$x^{\mathcal{T}} \begin{bmatrix} 1 & -1 \\ -1 & 1+\epsilon \end{bmatrix} x \le 0$$

Typical error sources:

- Introduced by user.
- Coming from finite precision floating point precision computations.

Observe:

• $\epsilon < 0$: The problem is not convex.

•
$$\epsilon = 0 : x_1^* = x_2^* = 1.$$

•
$$\epsilon > 0 : x_1^* = x_2^* = 0.$$

Conclusions:

- Hard to produce a 100% automatic fool proof conversion.
- Conversion should be done at the modelling stage!

Automatic conversion implemented in **MOSEK** (II)

Lemma

If Q is symmetric positive semidefinite then it holds

$$e_1^T Q e_1 = Q_{11} \ge 0$$

and

$$Q_{11}=0 \Rightarrow Q_{1:}=Q_{:1}=0.$$

Lemma

If Q is symmetric positive semidefinite and $Q_{11} > 0$, then

$$Q = E_1 Q_1 E_1^T$$

$$Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & Q_{22} - \frac{Q_{21} Q_{21}^T}{Q_{11}} \end{bmatrix}$$

where

$$E = \left[\begin{array}{cc} \sqrt{Q_{11}} & 0 \\ Q_{21}/\sqrt{Q_{11}} & I \end{array} \right].$$

Moreover,

$$Q_{22} - rac{Q_{21}Q_{21}^T}{Q_{11}}$$

will be positive semidefinite.

Hence, if Q is positive definite then

$$Q = LL^T$$

where

$$L=E_1E_2\cdots E_n.$$

Fact: *L* will be lower triangular. But what if

 $Q_{11} \approx 0?$

Automatic conversion implemented in **MOSEK** (V)

- $Q_{11} \leq -\varepsilon$ then Q is said to be NOT positive semidefinite.
- $-\varepsilon < Q_{11} \leq \varepsilon$ then
 - Replace Q_{11} by ε .
 - If the complete *Q* is determined PSD, then replace *L*_{:1} by 0 in the final result.
- Default value: $\varepsilon = 10^{-10}$.

The procedure will detect

$$\left[\begin{array}{rr} 0 & 1 \\ 1 & 10^8 \end{array}\right]$$

negative semidefinite.

Note the procedure is applied to a scaled Q i.e.

SQS^T

where S = diag(s) and all diagonal elements of SQS^{T} belongs to $\{-1, 0, 1\}$. Makes the usage of a absolute constant sensible.

The **MOSEK** procedure produces on our example:

$$L = \left[\begin{array}{rr} 1 & 0 \\ -1 & 0 \end{array} \right].$$

- $Q_{11} \leq -\varepsilon$ then Q is said to be NOT positive semidefinite.
- $-\varepsilon < Q_{11} \leq \varepsilon$ then replace Q_{11} by ε .

Take a look at the example

$${oldsymbol Q} = \left[egin{array}{cc} 1 & -1 \ -1 & 1 \end{array}
ight]$$

and hence

$$L = \begin{bmatrix} 1 & 0 \\ -1 & 10^{-10} \end{bmatrix}$$

which most likely is not what the user intended because this implies x = 0.

- Procedure can be fooled.
- Alternative approaches:
 - Revised Schnable and Eskow approach [5].
 - Rank revealing Cholesky [4]. (Pivotting required!)
- Alternatives are computational more complicated or (much more) expensive.

Preliminary computation results

Setting:

- 64 bit Linux.
- 1 thread only.
- v7.1 vs. v8
- Public and customer provided models.

	time
Small	≤ 6 <i>s</i>
Medium	$\leq 60s$
Large	> 60 <i>s</i>

An optimizer o is declared a winner if

 $t_o \le \max(t_{\min} + 0.01, 1.005 t_{\min}).$

- (*QO*): Solves a homogenized KKT system using (=nonsymmetric primal-dual algorithm) ([3]).
- (*CQO*): Symmetric primal-dual algorithm based on the Nesterov-Todd direction ART ([2]).

	small		medium		large	
	7.1	8.0	7.1	8.0	7.1	8.0
Num.	220	220	10	10	1	1
Firsts	187	158	2	8	0	1
Total time	128.41	56.20	359.13	311.56	444.28	244.01

Available at www.cs.ubc.ca/labs/beta/Projects/ParamILS/.

	7.1	8.0
Num.	100	100
Firsts	0	100
Total time	917.955	90.179

	sm	all	medium	
	7.1	8.0	7.1	8.0
Num.	239	239	8	8
Firsts	161	150	3	5
Total time	350.790	94.290	1360.417	213.454

- Conic reformulations wins because
 - it requires less iterations.
 - dualization sometimes lead to huge wins.
 - employs better linear algebra (newer code path).

However, for smallish models the nonconic formulation is better.

- **MOSEK** version 8 will internally solve quadratic and quadratically constrained problems on conic form.
 - Improves robustness,
 - Solution speed on average.
- Checking positive semi definiteness is tricky.
 - It is recommended to formulate problem on conic form
 - or as a separable problem.

mosek

Thank you!

Andrea Cassioli, PhD andrea.cassioli@mosek.com

www.mosek.com

References

E. D. Andersen, C. Roos, and T. Terlaky.

Notes on duality in second order and p -order cone optimization. *Optimization*, 51(4):627–643, 2002.

On implementing a primal-dual interior-point method for conic quadratic optimization. *Math. Programming*, 95(2), February 2003.

E. D. Andersen and Y. Ye.

On a homogeneous algorithm for the monotone complementarity problem. Math. Programming, 84(2):375–399, February 1999.

M. Gu and L. Miranian.

Strong rank revealing cholesky factorization. Electronic Transactions on Numerical Analysis, 17:76–92, 2004.

R. B. Schnable and E. Eskow.

A revised modified Cholesky Factorization Algorithm. SIAM J. on Optim., 9(4):1135–1148, 1999.