
On the Linear Algebra Employed in the
MOSEK Conic Optimizer

Monday Jul 13

Erling D. Andersen

www.mosek.com



MOSEK summary

LP

QP

CQP

SDP

General
Convex

MIP

• Version 8: Work in progress.



The conic optimization problem

min
n∑

j=1

cjxj +
n̄∑

j=1

〈
C̄j , X̄j

〉
subject to

n∑
j=1

aijxj +
n̄∑

j=1

〈
Āij , X̄j

〉
= bi , i = 1, . . . ,m,

x ∈ K,
X̄j � 0, j = 1, . . . , n̄.

Explanation:

• xj is a scalar variable.

• X̄j is a square matrix variable.



• K represents Cartesian product of conic quadratic constraints
e.g.

x1 ≥ ‖x2:n‖ .

• X̄j � 0 represents X̄j = X̄T
j and X̄j is PSD.

• C̄j and Āj are required to be symmetric.

• 〈A,B〉 := tr(ATB).

• Dimensions are large.

• Data matrices are typically sparse.
• A has ≤ 10 nonzeros per column on average usually.
• Āij contains few nonzeros and/or is low rank.



The algorithm: Simplified version

• Step 1: Setup the homogeneous and self-dual model.

• Step 2. Choose a starting point.

• Step 3: Compute Nesterov-Todd search direction.

• Step 4: Take a step.

• Step 5: Stop if the trial solution is good enough.

• Step 6: Goto 3.



Search direction computation

Requires solution of: −(WW T )−1 0 AT

0 −(W̄ W̄ T )−1 ĀT

A Ā 0

 dx
dx̄
dy

 =

 rx
rx̄
ry


where

• W and W̄ are nonsingular block diagonal matrices.

• WW T is a diagonal matrix + low rank terms.



Reduced Schur system approach

We have
((AW )(AW )T + (ĀW̄ )(ĀW̄ )T )dy = · · ·

and
dx = −(WW T )(rx − ATdy ),

dx̄ = −(W̄ W̄ T )(rx̄ − ĀTdy ).

Cons:

• Dense columns cause issues.

• Numerical stability. Bad condition number.

Pros:

• A positive definite symmetric system.

• Use Cholesky with no pivoting.

• Employed in major commercial solvers.



Computing the Schur matrix

Assumptions:

• Let us focus at:

(ĀW̄ )(ĀW̄ )T = ĀW̄ W̄ T ĀT .

• Only one 1 matrix variable. The general case follows easily.

• NT search direction implies

W̄ = R ⊗ R and W̄ T = RT ⊗ RT

where the Kronecker product ⊗ is defined as

R ⊗ R =

 R11R R12R · · ·
R21R R22R

...

 .



Fact:
eTk ĀW̄ W̄ T ĀT el = vec(Āk)T vec(RRT ĀlRR

T ).



Exploiting sparsity 1

Compute the lower triangular part of

ĀW̄ W̄ T ĀT =

 vec(Ā1)T

...

vec(Ām)T


 vec(RRT Ā1RR

T )
...

vec(RRT ĀmRR
T )


T

so the lth column is computed as

eTk ĀW̄ W̄ T ĀT el = vec(Āk)T vec(RRT ĀlRR
T ), for k ≥ l .

Avoid computing

eTk ĀW̄ W̄ T ĀT el
= vec(Āk)T vec(RRT ĀlRR

T )
= 0

if Ak = 0 or Al = 0.



Exploiting sparsity 2

Moreover,

• R is a dense square matrix.

• Ai is typically extremely sparse e.g.

Ai = eke
T
k .

as observed by J. Sturm for instance.

• Wlog assume
Ai = UiV

T
i + (UiV

T
i )T .

because Ui = Ai/2 and Vi = I is a valid choice.

• In practice Ui and Vi are sparse and low rank e.g. has few
columns.

• The new idea!



Recall

eTk ĀW̄ W̄ T ĀT el = vec(Āk)T vec(RRT ĀlRR
T )

must be computed for all k ≥ l and

RRT ĀlRR
T = RRT (Ul(Vl)

T + (Ul(Vl)
T )T )RRT

= Ûl V̂
T
l + (Ûl V̂

T
l )T

where
Ûl := RRTUl ,

V̂l := RRTVl .



• Ûl and V̂l are dense matrices.

• Sparsity in Ul and Vl are exploited.

• Low rank structure is exploited.

• Is all of Ûl and V̂l required?



Observe
eTi (UkV

T
k + (UkV

T
k )T ) = 0, ∀i 6∈ Ik

where
Ik := {i | Uki : 6= 0 ∨ Vki : 6= 0} .

Now

vec(Āk)T vec(RRT ĀlRR
T )

= vec(UkV
T
k + (UkV

T
k )T )vec(Ûl V̂

T
l + (Ûl V̂

T
l )T )

=
∑
i

2(Ukei )
T (Ûl V̂

T
l + (Ûl V̂

T
l )T )(Vkei )

Therefore, only rows Ûl and V̂l corresponding to⋃
k≥l

Ik

are needed.



Proposed algorithm:

• Compute ⋃
k≥l

Ik

• Compute ÛkIK : and V̂kIK :.

• Compute ∑
i

2(Ukei )
T (Ûl V̂

T
l + (Ûl V̂

T
l )T )(Vkei )

Possible improvements

• Exploit the special case Uk:j = αVk:j .

• Exploit dense computations e.g. level 3 BLAS when possible
and worthwhile.



Summary:

• Exploit sparsity as done in SeDuMi by Sturm.

• Also able to exploit low rank structure.

• Not implemented yet!



Linear algebra summary

• Sparse matrix operations e.g. multiplications.

• Large sparse matrix factorization e.g. Cholesky.
• Including ordering (AMD,GP).
• Dense column detection and handling.

• Dense sequential level 1,2,3 BLAS operations.
• Inside sparse Cholesky for instance.
• Sequential INTEL Math Kernel Library is employed extensively.

• Eigenvalue computations.

• What about the parallelization?
• Modern computers have many cores.
• Typically from 4 to 12.
• Recent customer example had 80.



The parallelization challenge on shared memory

• A computer has many cores.

• Parallelization using native threads is cumbersome and error
prone.

• Employ a parallelization framework e.g. Cilk or OpenMP.

Other issues;

• Exploit caches.

• Do not overload the memory bus.

• Not fine grained due to threading overhead.



Cilk summary:

• Extension to C and C++.

• Has a runtime environment that execute tasks in parallel on a
number of workers.

• Handles the load balancing.

• Allows nested/recursive parallelism e.g.
• Parallel dense matrix mul. within parallelized sparse Cholesky.
• Parallel IPM within B&B.

• Is run to run deterministic.
• Care must be taken in floating point computatiosn.

• Supported by the Intel C compiler, Gcc, Clang.



Example parallelized dense syrk

The dense level 3 BLAS syrk operation does

C = AAT .

Parallelized version using Cilk:
If C is small

C = AAT

else
cilk spawn C21 = A2:A

T
1: gemm

cilk spawn C11 = A1:A
T
1: syrk

cilk spawn C22 = A2:A
T
2: syrk

cilk sync

Usage of recursion is allowed!



Our experience with cilk

• cilk is easy to learn i.e. 3 new keywords.

• Nested/recursive parallelism is allowed.

• Useful for both sparse and dense matrix computations.

• Efficient parallelization is nevertheless hard.



Summary and conclusions

• I am behind the schedule with MOSEK version 8.

• Proposed a new algorithm for computing the Schur matrix in
the semidefinite case.

• Discussed the usage of task based parallelization framework
exemplified by cilk.

• Slides url https://mosek.com/resources/presentations.

https://mosek.com/resources/presentations

