moseк

On the Linear Algebra Employed in the MOSEK Conic Optimizer

Monday Jul 13

Erling D. Andersen

WWW.mosek. com

MOSEK summary

- Version 8: Work in progress.

The conic optimization problem

$$
\begin{array}{cc}
\min & \sum_{j=1}^{n} c_{j} x_{j}+\sum_{j=1}^{\bar{n}}\left\langle\bar{C}_{j}, \bar{X}_{j}\right\rangle \\
\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j}+\sum_{j=1}^{\bar{n}}\left\langle\bar{A}_{i j}, \bar{X}_{j}\right\rangle=\quad b_{i}, \quad i=1, \ldots, m, \\
x \in \mathcal{K}, \\
\bar{X}_{j} \succeq 0, & j=1, \ldots, \bar{n} .
\end{array}
$$

Explanation:

- x_{j} is a scalar variable.
- \bar{X}_{j} is a square matrix variable.
- \mathcal{K} represents Cartesian product of conic quadratic constraints e.g.

$$
x_{1} \geq\left\|x_{2: n}\right\| .
$$

- $\bar{X}_{j} \succeq 0$ represents $\bar{X}_{j}=\bar{X}_{j}^{T}$ and \bar{X}_{j} is PSD.
- \bar{C}_{j} and \bar{A}_{j} are required to be symmetric.
- $\langle A, B\rangle:=\operatorname{tr}\left(A^{T} B\right)$.
- Dimensions are large.
- Data matrices are typically sparse.
- A has ≤ 10 nonzeros per column on average usually.
- $\bar{A}_{i j}$ contains few nonzeros and/or is low rank.

The algorithm: Simplified version

- Step 1: Setup the homogeneous and self-dual model.
- Step 2. Choose a starting point.
- Step 3: Compute Nesterov-Todd search direction.
- Step 4: Take a step.
- Step 5: Stop if the trial solution is good enough.
- Step 6: Goto 3.

Search direction computation

Requires solution of:

$$
\left[\begin{array}{ccc}
-\left(W W^{T}\right)^{-1} & 0 & A^{T} \\
0 & -\left(\bar{W} \bar{W}^{T}\right)^{-1} & \bar{A}^{T} \\
A & \bar{A} & 0
\end{array}\right]\left[\begin{array}{l}
d_{x} \\
d_{\bar{x}} \\
d_{y}
\end{array}\right]=\left[\begin{array}{l}
r_{x} \\
r_{\bar{x}} \\
r_{y}
\end{array}\right]
$$

where

- W and \bar{W} are nonsingular block diagonal matrices.
- $W W^{T}$ is a diagonal matrix + low rank terms.

Reduced Schur system approach

We have

$$
\left((A W)(A W)^{T}+(\bar{A} \bar{W})(\bar{A} \bar{W})^{T}\right) d_{y}=\cdots
$$

and

$$
\begin{aligned}
& d_{x}=-\left(W W^{T}\right)\left(r_{x}-A^{T} d_{y}\right) \\
& d_{\bar{x}}=-\left(\bar{W} \bar{W}^{T}\right)\left(r_{\bar{x}}-\bar{A}^{T} d_{y}\right)
\end{aligned}
$$

Cons:

- Dense columns cause issues.
- Numerical stability. Bad condition number.

Pros:

- A positive definite symmetric system.
- Use Cholesky with no pivoting.
- Employed in major commercial solvers.

Computing the Schur matrix

Assumptions:

- Let us focus at:

$$
(\bar{A} \bar{W})(\bar{A} \bar{W})^{T}=\bar{A} \bar{W} \bar{W}^{T} \bar{A}^{T}
$$

- Only one 1 matrix variable. The general case follows easily.
- NT search direction implies

$$
\bar{W}=R \otimes R \text { and } \bar{W}^{T}=R^{T} \otimes R^{T}
$$

where the Kronecker product \otimes is defined as

$$
R \otimes R=\left[\begin{array}{ccc}
R_{11} R & R_{12} R & \cdots \\
R_{21} R & R_{22} R & \\
\vdots & &
\end{array}\right]
$$

Fact:

$$
e_{k}^{T} \bar{A} \bar{W} \bar{W}^{T} \bar{A}^{T} e_{l}=\operatorname{vec}\left(\bar{A}_{k}\right)^{T} \operatorname{vec}\left(R R^{T} \bar{A}_{l} R R^{T}\right)
$$

Compute the lower triangular part of

$$
\bar{A} \bar{W} \bar{W}^{T} \bar{A}^{T}=\left[\begin{array}{c}
\operatorname{vec}\left(\bar{A}_{1}\right)^{T} \\
\vdots \\
\operatorname{vec}\left(\bar{A}_{m}\right)^{T}
\end{array}\right]\left[\begin{array}{c}
\operatorname{vec}\left(R R^{T} \bar{A}_{1} R R^{T}\right) \\
\vdots \\
\operatorname{vec}\left(R R^{T} \bar{A}_{m} R R^{T}\right)
\end{array}\right]^{T}
$$

so the /th column is computed as

$$
e_{k}^{T} \bar{A} \bar{W} \bar{W}^{T} \bar{A}^{T} e_{l}=\operatorname{vec}\left(\bar{A}_{k}\right)^{T} \operatorname{vec}\left(R R^{T} \bar{A}_{l} R R^{T}\right), \quad \text { for } \quad k \geq l
$$

Avoid computing

$$
\begin{aligned}
& e_{k}^{T} \bar{A} \bar{W} \bar{W}^{T} \bar{A}^{T} e_{l} \\
= & \operatorname{vec}\left(\bar{A}_{k}\right)^{T} \operatorname{vec}\left(R R^{T} \bar{A}_{l} R R^{T}\right) \\
= & 0
\end{aligned}
$$

if $A_{k}=0$ or $A_{l}=0$.

Exploiting sparsity 2

Moreover,

- R is a dense square matrix.
- A_{i} is typically extremely sparse e.g.

$$
A_{i}=e_{k} e_{k}^{T} .
$$

as observed by J. Sturm for instance.

- Wlog assume

$$
A_{i}=U_{i} V_{i}^{T}+\left(U_{i} V_{i}^{T}\right)^{T}
$$

because $U_{i}=A_{i} / 2$ and $V_{i}=I$ is a valid choice.

- In practice U_{i} and V_{i} are sparse and low rank e.g. has few columns.
- The new idea!

Recall

$$
e_{k}^{T} \bar{A} \bar{W} \bar{W}^{T} \bar{A}^{T} e_{l}=\operatorname{vec}\left(\bar{A}_{k}\right)^{T} \operatorname{vec}\left(R R^{T} \bar{A}_{l} R R^{T}\right)
$$

must be computed for all $k \geq I$ and

$$
\begin{aligned}
R R^{T} \bar{A}_{l} R R^{T} & =R R^{T}\left(U_{l}\left(V_{l}\right)^{T}+\left(U_{l}\left(V_{l}\right)^{T}\right)^{T}\right) R R^{T} \\
& =\hat{U}_{l} \hat{V}_{l}^{T}+\left(\hat{U}_{l} \hat{V}_{l}^{T}\right)^{T}
\end{aligned}
$$

where

$$
\begin{aligned}
& \hat{U}_{1}:=R R^{T} U_{1}, \\
& \hat{V}_{1}:=R R^{T} V_{1} .
\end{aligned}
$$

- \hat{U}_{l} and \hat{V}_{l} are dense matrices.
- Sparsity in U_{l} and V_{l} are exploited.
- Low rank structure is exploited.
- Is all of \hat{U}_{l} and \hat{V}_{l} required?

Observe

$$
e_{i}^{T}\left(U_{k} V_{k}^{T}+\left(U_{k} V_{k}^{T}\right)^{T}\right)=0, \quad \forall i \notin \mathcal{I}^{k}
$$

where

$$
\mathcal{I}^{k}:=\left\{i \mid U_{k i:} \neq 0 \vee V_{k i:} \neq 0\right\}
$$

Now

$$
\begin{aligned}
& \operatorname{vec}\left(\bar{A}_{k}\right)^{T} \operatorname{vec}\left(R R^{T} \bar{A}_{l} R R^{T}\right) \\
= & \operatorname{vec}\left(U_{k} V_{k}^{T}+\left(U_{k} V_{k}^{T}\right)^{T}\right) \operatorname{vec}\left(\hat{U}_{l} \hat{V}_{l}^{T}+\left(\hat{U}_{l} \hat{V}_{l}^{T}\right)^{T}\right) \\
= & \sum_{i} 2\left(U_{k} e_{i}\right)^{T}\left(\hat{U}_{l} \hat{V}_{l}^{T}+\left(\hat{U}_{l} \hat{V}_{l}^{T}\right)^{T}\right)\left(V_{k} e_{i}\right)
\end{aligned}
$$

Therefore, only rows \hat{U}_{I} and \hat{V}_{l} corresponding to

$$
\bigcup_{k \geq 1} \mathcal{I}^{k}
$$

are needed.

Proposed algorithm:

- Compute

$$
\bigcup_{k \geq 1} \mathcal{I}^{k}
$$

- Compute $\hat{U}_{k l}$: and $\hat{V}_{k l^{k}:}$.
- Compute

$$
\sum_{i} 2\left(U_{k} e_{i}\right)^{T}\left(\hat{U}_{l} \hat{V}_{l}^{T}+\left(\hat{U}_{l} \hat{V}_{l}^{T}\right)^{T}\right)\left(V_{k} e_{i}\right)
$$

Possible improvements

- Exploit the special case $U_{k: j}=\alpha V_{k: j}$.
- Exploit dense computations e.g. level 3 BLAS when possible and worthwhile.

Summary:

- Exploit sparsity as done in SeDuMi by Sturm.
- Also able to exploit low rank structure.
- Not implemented yet!

Linear algebra summary

- Sparse matrix operations e.g. multiplications.
- Large sparse matrix factorization e.g. Cholesky.
- Including ordering (AMD,GP).
- Dense column detection and handling.
- Dense sequential level 1,2,3 BLAS operations.
- Inside sparse Cholesky for instance.
- Sequential INTEL Math Kernel Library is employed extensively.
- Eigenvalue computations.
- What about the parallelization?
- Modern computers have many cores.
- Typically from 4 to 12 .
- Recent customer example had 80.

The parallelization challenge on shared memory

- A computer has many cores.
- Parallelization using native threads is cumbersome and error prone.
- Employ a parallelization framework e.g. Cilk or OpenMP.

Other issues;

- Exploit caches.
- Do not overload the memory bus.
- Not fine grained due to threading overhead.

Cilk summary:

- Extension to C and $\mathrm{C}++$.
- Has a runtime environment that execute tasks in parallel on a number of workers.
- Handles the load balancing.
- Allows nested/recursive parallelism e.g.
- Parallel dense matrix mul. within parallelized sparse Cholesky.
- Parallel IPM within B\&B.
- Is run to run deterministic.
- Care must be taken in floating point computatiosn.
- Supported by the Intel C compiler, Gcc, Clang.

Example parallelized dense syrk

The dense level 3 BLAS syrk operation does

$$
C=A A^{T} .
$$

Parallelized version using Cilk:
If C is small

$$
C=A A^{T}
$$

else

$$
\begin{array}{lll}
\text { cilk_spawn } & C_{21}=A_{2:} A_{1:}^{T} & \text { gemm } \\
\text { cilk_spawn } & C_{11}=A_{1:} A_{1:}^{T} & \text { syrk } \\
\text { cilk_spawn } & C_{22}=A_{2:} A_{2:}^{T} & \text { syrk } \\
\text { cilk_sync } & &
\end{array}
$$

Usage of recursion is allowed!

Our experience with cilk

- cilk is easy to learn i.e. 3 new keywords.
- Nested/recursive parallelism is allowed.
- Useful for both sparse and dense matrix computations.
- Efficient parallelization is nevertheless hard.

Summary and conclusions

- I am behind the schedule with MOSEK version 8.
- Proposed a new algorithm for computing the Schur matrix in the semidefinite case.
- Discussed the usage of task based parallelization framework exemplified by cilk.
- Slides url https://mosek.com/resources/presentations.

