mdassek

On the Linear Algebra Employed in the
MOSEK Conic Optimizer

Monday Jul 13

Erling D. Andersen

WWW.mosek.com

MOSEK summary v

e Version 8: Work in progress.

The conic optimization problem

3
>
giNg
O
e
l
ing
o
Nall

= 1 j:l

subject to Za'JXJ+Z /_\)_(= bj, i=1,...,m,
)_<€IC,
)<ji07 ./:17 7,_7

Explanation:

e Xx; is a scalar variable.

e X; is a square matrix variable.

IC represents Cartesian product of conic quadratic constraints

e.g.
X1 2> HXZ:nH .

)_(J- > 0 represents)_(J =)_<J-T and)_<J is PSD.
(__'j and /_\j are required to be symmetric.
(A, B) :=tr(ATB).

Dimensions are large.

Data matrices are typically sparse.
e A has < 10 nonzeros per column on average usually.

e Ajj contains few nonzeros and/or is low rank.

The algorithm: Simplified version

Step 1:
Step 2.
Step 3:
Step 4:
Step 5:
Step 6:

Setup the homogeneous and self-dual model.
Choose a starting point.

Compute Nesterov-Todd search direction.
Take a step.

Stop if the trial solution is good enough.
Goto 3.

Search direction computation v

Requires solution of:

—(wwT)™1 0 AT dy I
0 —(wwT)=t AT d | = | r
A A 0 d, ry

where
e W and W are nonsingular block diagonal matrices.

e WWT is a diagonal matrix + low rank terms.

Reduced Schur system approach

We have
(AW)(AW)T + (AW)AW)T)d, = -
and
de = —(WWT)(r,—ATd,),
dz = —(VT/V_VT)(r)—(—,Z\Tdy)'
Cons:

e Dense columns cause issues.

e Numerical stability. Bad condition number.
Pros:

e A positive definite symmetric system.

e Use Cholesky with no pivoting.

e Employed in major commercial solvers.

Computing the Schur matrix v

Assumptions:
e Let us focus at:

(AW)AW)T = AWWTAT,

e Only one 1 matrix variable. The general case follows easily.

e NT search direction implies
W=R@Rand W' =RT @ RT
where the Kronecker product ® is defined as

RiiR Ri2R
RoR=| RaR RxR

Fact:
ef AWWTAT e = vec(Ax) " vec(RRTAIRRT).

Exploiting sparsity 1

Compute the lower triangular part of

vec(A;)T vec(RRTALRRT) T
AWWTAT = : :
vec(Am)" vec(RRTALRRT)
so the /th column is computed as

el AWWT AT e = vec(Ay)Tvec(RRTARRT), for k> 1.

Avoid computing

el AWWTAT ¢,
vec(Ax) T vec(RRTARRT)
=0

ifAkZOOI’A/:O.

Exploiting sparsity 2

Moreover,
e R is a dense square matrix.

o A; is typically extremely sparse e.g.
A,' = eke,z—.

as observed by J. Sturm for instance.
e Wlog assume
A= UV + (U v
because U; = A;/2 and V; = | is a valid choice.

e In practice U; and V; are sparse and low rank e.g. has few
columns.

e The new ideal

Recall
ef AWWT AT ¢ = vec(Ax) T vec(RRTAIRRT)
must be computed for all k > / and

RRTARRT = RRT(U(V)T + (U(V)T)T)RRT
= OV + (00T
where R
U, = RRTU,
V, .= RRTV,.

0/ and \7/ are dense matrices.
Sparsity in U; and V; are exploited.
Low rank structure is exploited.

Is all of U, and \7, required?

Observe
el (UV! +(UVIYT)=0, VigI~

where

TK = {i | Ugi. #0V Vii. # 0} .

Now
vec(Ar) Tvec(RRTARRT)
vec(Ur VI + (U V) Tvec(O, VT + (0,V,)T)
> 2(Uken) T (OV)T + (O, V7)) T)(Vicer)

1

Therefore, only rows Uy and V, corresponding to

Uz

k>1

are needed.

Proposed algorithm:
e Compute

Uz

k>1

e Compute Uk,K: and \A/k,K:.
e Compute

> 2(Uken) T (OV)T + (O,V)7)T)(Vicer)

i

Possible improvements
e Exploit the special case Uy.; = aVi.;.

e Exploit dense computations e.g. level 3 BLAS when possible
and worthwhile.

Summary:
e Exploit sparsity as done in SeDuMi by Sturm.
e Also able to exploit low rank structure.

e Not implemented yet!

Linear algebra summary

Sparse matrix operations e.g. multiplications.

e Large sparse matrix factorization e.g. Cholesky.
e Including ordering (AMD,GP).
e Dense column detection and handling.

e Dense sequential level 1,2,3 BLAS operations.

e Inside sparse Cholesky for instance.
e Sequential INTEL Math Kernel Library is employed extensively.

Eigenvalue computations.

What about the parallelization?
e Modern computers have many cores.
e Typically from 4 to 12.
e Recent customer example had 80.

The parallelization challenge on shared memory

e A computer has many cores.

e Parallelization using native threads is cumbersome and error
prone.

e Employ a parallelization framework e.g. Cilk or OpenMP.
Other issues;

e Exploit caches.

e Do not overload the memory bus.

e Not fine grained due to threading overhead.

Cilk summary:

Extension to C and C++.

Has a runtime environment that execute tasks in parallel on a
number of workers.

Handles the load balancing.

Allows nested/recursive parallelism e.g.

e Parallel dense matrix mul. within parallelized sparse Cholesky.
o Parallel IPM within B&B.

Is run to run deterministic.
o Care must be taken in floating point computatiosn.

Supported by the Intel C compiler, Gee, Clang.

Example parallelized dense syrk v

The dense level 3 BLAS syrk operation does

C=AAT.
Parallelized version using Cilk:
If C is small

C=AAT
else

cilkspawn (Gy1 = A2:Ai’: gemm
cilkspawn Ci1 = A1:AI syrk
cilk_spawn Gy = A2;A2T: syrk
cilk_sync

Usage of recursion is allowed!

Our experience with cilk

cilk is easy to learn i.e. 3 new keywords.

Nested /recursive parallelism is allowed.

Useful for both sparse and dense matrix computations.

Efficient parallelization is nevertheless hard.

Summary and conclusions

| am behind the schedule with MOSEK version 8.

Proposed a new algorithm for computing the Schur matrix in
the semidefinite case.

Discussed the usage of task based parallelization framework
exemplified by cilk.

Slides url https://mosek.com/resources/presentations.

https://mosek.com/resources/presentations

