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What is a convex cone?

S is a convex cone if

x ∈ S ⇐⇒ α · x ∈ S , ∀α ≥ 0

Simple examples

• Nonnegative orthant, x ≥ 0.

• Quadratic cone,

Qn =

{
x ∈ Rn | x1 ≥

√
x2

2 + . . .+ x2
n

}
.

also known as second-order or Lorentz cone.
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Semidefinite matrices

A symmetric matrix X ∈ Sn is positive semidefinite iff

• all eigenvalues are nonnegative.
• it can be factored as X = VV T .
• zTXz ≥ 0, ∀z ∈ Rn.

Cone of semidefinite matrices

Sn+ =
{

X ∈ Sn | zTXz ≥ 0, ∀z ∈ Rn
}
.

Notation: X � Y ⇐⇒ (X − Y ) ∈ Sn+.

Matrix inner-products and norms

〈A,B〉 := trace(ATB) =
∑
ij

AijBij

‖A‖2
F := 〈A,A〉 =

∑
ij

A2
ij .
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>> A=[2,1,1; 1,2,1; 1,1,1]

A =

2 1 1

1 2 1

1 1 1

>> [U, D]=eig(A) % A = U*D*U’

U =

0.3251 0.7071 0.6280

0.3251 -0.7071 0.6280

-0.8881 0 0.4597

D =

0.2679 0 0

0 1.0000 0

0 0 3.7321

>> V=U*sqrt(D)

V =

0.1683 0.7071 1.2131

0.1683 -0.7071 1.2131

-0.4597 0 0.8881

>> V*V’ % V is a factor of A

ans =

2.0000 1.0000 1.0000

1.0000 2.0000 1.0000

1.0000 1.0000 1.0000

>> A(:)’*A(:) % squared Frobenius norm

ans =

15.0000

>> sum(diag(D).^2)

ans =

15.0000
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Linear cone problems

minimize cT x
subject to Ax = b

x ∈ C

maximize bT y
subject to c − AT y = s

s ∈ C

where C = C1 × C2 × · · · × Cp is a product of cones.

Admissible cones
• Nonnegative orthant x ≥ 0.

• Quadratic cone Qn.

• Rotated quadratic cone,

Qn
r =

{
x ∈ Rn | 2x1x2 ≥ x2

3 + . . .+ x2
n , x1, x2 ≥ 0

}
.

• Semidefinite cone Sn+.
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Example problem:

minimize

〈2 1 0
1 2 1
0 1 2

 ,X

〉
+ z1

subject to

〈1 0 0
0 1 0
0 0 1

 ,X

〉
+ z1 = 1

〈1 1 1
1 1 1
1 1 1

 ,X

〉
+ z2 + z3 = 1/2

(z1, z2, z3) ∈ Q3, X ∈ S3
+

A standard linear cone problem with

x =
(

z1 z2 z3 X11 X21 X31 X12 X22 X23 X13 X23 X33

)T
c =

(
1 0 0 2 1 0 1 2 1 0 1 2

)T
A =

(
1 0 0 1 0 0 0 1 0 0 0 1
0 1 1 1 1 1 1 1 1 1 1 1

)
b =

(
1 1/2

)T
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>> [x(1:3), s(1:3)]

ans =

0.2544 0.4552

0.1799 -0.3219

0.1799 -0.3219

>> X

X =

0.2173 -0.2600 0.2173

-0.2600 0.3111 -0.2600

0.2173 -0.2600 0.2173

>> S

S =

1.1333 0.6781 -0.3219

0.6781 1.1333 0.6781

-0.3219 0.6781 1.1333

>> c’*x - b’*y

ans =

4.3340e-08

>> norm(A*x-b)

ans =

2.4379e-08

>> norm(c-A’*y-s)

ans =

1.6585e-08

>> x’*s

ans =

2.9971e-08

>> [eig(X), eig(S)]

ans =

0.0000 -0.0000

0.0000 1.4552

0.7456 1.9448

>> x(1)-norm(x(2:3))

ans =

8.0901e-09

>> s(1)-norm(s(2:3))

ans =

2.2202e-08
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Simple examples of quadratic cones

• Absolute values

|x | ≤ t ⇐⇒ (t, x) ∈ Q2

• Euclidean norms

‖x‖ ≤ t ⇐⇒ (t, x) ∈ Qn+1

• Squared euclidean norms

‖x‖2 ≤ t ⇐⇒ (t, 1/2, x) ∈ Qn+2
r

• Hyperbolic sets

1

x
≤ t, x > 0 ⇐⇒ (t, x ,

√
2) ∈ Q3

r
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Very simple examples of semidefinite cones

• Nonnegativity

x ≥ 0 ⇐⇒ diag(x) � 0.

• Quadratic cones(
x1 x3

x3 x2

)
� 0 ⇐⇒ x1x2 ≥ x2

3 , x1, x2 ≥ 0,

in other words,(
x1 x3

x3 x2

)
� 0 ⇐⇒ (x1, x2, x3/

√
2) ∈ Q3

r .

A similar result for n-dimensional quadratic cones.
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A picture is worth a thousand words. . .

The pillow

Consider the set:1 x y
x 1 z
y z 1

 � 0.

• Exterior is a spectrahedron.

• Can be characterized as

x2 + y 2 + z2 − 2xyx = 1.

• Ellipsoids for fixed z ∈ [−1, 1].
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Nearest correlation problem

Consider the set

S = {X ∈ Sn+ | qii = 1, i = 1, . . . , n}.

For A ∈ Sn the nearest correlation matrix is

X ? = arg min
X∈S
‖A− X‖F .

A conic formulation

minimize t
subject to ‖vec(A− X )‖ ≤ t

diag(X ) = e
X � 0

where vec(X ) = (x11, x21, . . . , xn1, x12, . . . xnn).



Semidefinite
optimization

Joachim Dahl

Conic
optimization

Convex cones

Semidefinite
matrices

Linear cone
problems

Conic
modeling

Simple cones

Nearest
correlation

Linear matrix
inequalities

Eigenvalue
optimization

Combinatorial
relaxations

Sum-of-squares
relaxations

Nonnegative
polynomials

Conclusions

Nearest correlation problem

Consider the set

S = {X ∈ Sn+ | qii = 1, i = 1, . . . , n}.

For A ∈ Sn the nearest correlation matrix is

X ? = arg min
X∈S
‖A− X‖F .

A conic formulation

minimize t
subject to ‖vec(A− X )‖ ≤ t

diag(X ) = e
X � 0

where vec(X ) = (x11, x21, . . . , xn1, x12, . . . xnn).



Semidefinite
optimization

Joachim Dahl

Conic
optimization

Convex cones

Semidefinite
matrices

Linear cone
problems

Conic
modeling

Simple cones

Nearest
correlation

Linear matrix
inequalities

Eigenvalue
optimization

Combinatorial
relaxations

Sum-of-squares
relaxations

Nonnegative
polynomials

Conclusions

Linear matrix functions

Consider a matrix-valued function F : Rm 7→ Sn,

F (x) = F0 + x1F1 + · · ·+ xmFm

where Fi ∈ Sn.

• The inequality

F0 + x1F1 + · · ·+ xmFm � 0

is called a linear matrix inequality (LMI).

• Corresponds to conic dual constraints,

C − (y1A1 + · · ·+ ymAm) = S , S � 0.
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Eigenvalue optimization

F (x) = F0 + x1F1 + · · ·+ xmFm, Fi ∈ Sm.

• Minimize largest eigenvalue λ1(F (x)):

minimize γ
subject to γI � F (x),

• Maximize smallest eigenvalue λn(F (x)):

maximize γ
subject to F (x) � γI ,

• Minimize eigenvalue spread λ1(F (x))− λn(F (x)):

minimize γ − λ
subject to γI � F (x) � λI ,
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Minimizing matrix norms

F (x) = F0 + x1F1 + · · ·+ xmFm, Fi ∈ Rn×p.

• (Standard) matrix norm: ‖F (x)‖2 = maxk σk(F (x)),

minimize t

subject to

[
tI F (x)T

F (x) tI

]
� 0,

• Nuclear norm: ‖F (x)‖∗ =
∑

k σk(F (x)),

minimize trace(U + V )/2

subject to

[
U F (x)T

F (x) V

]
� 0.
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A binary quadratic problem

Binary quadratic problem

We consider a binary problem.

minimize xTQx + cT x
subject to xi ∈ {0, 1}, i = 1, . . . , n.

where Q can be indefinite.

• Very difficult non-convex problem.

• In general we have to explore 2n different objectives.

• Instead use a semidefinite relaxation.
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Lifting of binary constraints

Rewrite binary constraints xi ∈ {0, 1}:

x2
i = xi ⇐⇒ X = xxT , diag(X ) = x .

Still non-convex, since rank(X ) = 1.

Semidefinite relaxation of binary constraints

X � xxT , diag(X ) = x .

Note that:

X � xxT ⇐⇒
(

1 xT

x X

)
� 0,

which is a linear matrix inequality.
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Semidefinite relaxation of binary QP

The lifted non-convex problem

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x

X = xxT

The semidefinite relaxation

minimize 〈Q,X 〉+ cT x
subject to diag(X ) = x(

1 xT

x X

)
� 0

• Relaxation is exact if X = xxT .
• Otherwise can be strengthened, e.g., by adding Xij ≥ 0.
• Typical relaxations for combinatorial optimization.
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Relaxations for boolean optimization

Same approach used for boolean constraints xi ∈ {−1,+1}.

Lifting of boolean constraints

Rewrite boolean constraints xi ∈ {−1, 1}:

x2
i = 1 ⇐⇒ X = xxT , diag(X ) = e.

Semidefinite relaxation of boolean constraints

X � xxT , diag(X ) = e.
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Sum-of-squares relaxations

• f : multivariate polynomial of degree 2d .

• vd = (1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

2
n , . . . , x

d
n ).

Vector of monomials of degree d or less.

Sum-of-squares representation

f is a sum-of-squares (SOS) iff

f (x1, . . . , xn) = vT
d Qvd , Q � 0.

If X = LLT then

f (x1, . . . , xn) = vT
d LLT vd =

m∑
i=1

(lTi vd)2.

Is obviously sufficient for f (x1, . . . , xn) ≥ 0.
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A simple example

Consider
f (x , z) = 2x4 + 2x3z − x2z2 + 5z4,

homogeneous of degree 4, so we only need

v =
(
x2 xz z2

)
.

Comparing cofficients of f (x , z) and vTQv = 〈Q, vvT 〉,

〈Q, vvT 〉 = 〈

q00 q01 q02

q10 q11 q12

q20 q21 q22

 ,

 x4 x3z x2z2

x3z x2z2 xz3

x2z2 xz3 z4

〉
we see that f (x , z) is SOS iff Q � 0 and

q00 = 2, 2q10 = 2, 2q20 + q11 = −1, 2q21 = 0, q22 = 5.
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Applications in global optimization

f (x , z) = 4x2 − 21

10
x4 +

1

3
x6 + xz − 4z2 + 4z4

Global lower bound

Replace non-tractable problem,

minimize f (x , z)

by a tractable lower bound

maximize t
subject to f (x , z)− t is SOS.

x

-2.0-1.5-1.0-0.50.00.51.01.5
z

-1.0
-0.5

0.0
0.5

f
(x
, z

)

-2

-1

0

1

2

3

4

5

6

Relaxation finds the global optimum t = −1.031.

Essentially due to Shor, 1987.



f (x , z) − t = 4x2 − 21

10
x4 +

1

3
x6 + xz − 4z2 + 4z4 − t

vvT =



1 x z x2 xz z2 x3 x2z xz2 z3

x x2 xz x3 x2z xz2 x4 x3z x2z2 xz3

z xz z2 x2z xz2 z3 x3z x2z2 xz3 z4

x2 x3 x2z x4 x3z x2z2 x5 x4z x3z2 x2z3

xz x2z xz2 x3z x2z2 xz3 x4z x3z2 x2z3 xz4

z2 xz2 z3 x2z2 xz3 z4 x3z2 x2z3 xz4 y 5

x3 x4 x3z x5 x4z x3z2 x6 x5z x4z2 x3z3

x2z x3z x2z2 x4z x3z2 x2z3 x5z x4z2 x3z3 x2z4

xz2 x2z2 xz3 x3z2 x2z3 xz4 x4z2 x3z3 x2z4 xz5

z3 xz3 z4 x2z3 xz4 z5 x3z3 x2z4 xz5 z6


By comparing cofficients of vTQv and f (x , z) − t:

q00 = −t, (2q30 + q11) = 4, (2q72 + q44) = −21

10
, q77 =

1

3

2(q51 + q32) = 1, (2q61 + q33) = −4, (2q10,3 + q66) = 4

2q10 = 0, 2q20 = 0, 2(q71 + q42) = 0, . . .

A standard SDP with a 10 × 10 variable and 27 constraints.
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Nonnegative polynomials

• Univariate polynomial of degree 2n:

f (x) = c0 + c1x + · · ·+ c2nx2n.

• Nonnegativity is equivalent to SOS, i.e.,

f (x) ≥ 0 ⇐⇒ f (x) = vTQv , Q � 0

with v = (1, x , . . . , xn).

• Simple extensions for nonnegativity on a subinterval I ⊂ R.

Nesterov, Y. Squared functional systems and optimization problems, 2000.
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Polynomial interpolation

Fit a polynomial of degree n to a set of points (xj , yj),

f (xj) = yj , j = 1, . . . ,m,

i.e., linear equality constraints in c ,
1 x1 x2

1 . . . xn
1

1 x2 x2
2 . . . xn

2
...

...
...

...
1 xm x2

m . . . xn
m




c0

c1
...

cn

 =


y1

y2
...

ym



Semidefinite shape constraints

• Nonnegativity f (x) ≥ 0.

• Monotonicity f ′(x) ≥ 0.

• Convexity f ′′(x) ≥ 0.
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Semidefinite shape constraints

• Nonnegativity f (x) ≥ 0.

• Monotonicity f ′(x) ≥ 0.

• Convexity f ′′(x) ≥ 0.



Smooth interpolation

Minimize largest derivative,

minimize maxx∈[−1,1] |f ′(x)|
subject to f (−1) = 1

f (0) = 0
f (1) = 1

or equivalently

minimize z
subject to −z ≤ f ′(x) ≤ z

f (−1) = 1
f (0) = 0
f (1) = 1.

f2(x)

f4(x)

f8(x)

1
2

1

3
2

−2 −1 0 1 2 x

f2(x) = x2 f4(x) =
3

2
x2 − 1

2
x4

f ′2(1) = 2 f ′4(
1√
2

) =
√

2
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