Semidefinite optimization

Joachim Dahl

Semidefinite optimization with MOSEK

Joachim Dahl

MOSEK ApS
INFORMS annual meeting
Minneapolis, October 5th, 2013
optimization
Convex con-s
Semidefinite
matrices
Linear cone
problems
Conic modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions

Conic optimization
 Convex cones
 Semidefinite matrices
 Linear cone problems

Conic modeling

Simple cones
Nearest correlation
Linear matrix inequalities
Eigenvalue optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Semidefinite
optimization
Joachim Dahl

Conic
optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial
relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions
mosek

Semidefinite optimization

Joachim Dahl
S is a convex cone if

$$
x \in S \quad \Longleftrightarrow \quad \alpha \cdot x \in S, \forall \alpha \geq 0
$$

Simple examples

- Nonnegative orthant, $x \geq 0$.
- Quadratic cone,

also known as second-order or Lorentz cone.

mosek

What is a convex cone?

S is a convex cone if

$$
x \in S \quad \Longleftrightarrow \quad \alpha \cdot x \in S, \forall \alpha \geq 0
$$

Simple examples

- Nonnegative orthant, $x \geq 0$.
- Quadratic cone,

$$
\mathcal{Q}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq \sqrt{x_{2}^{2}+\ldots+x_{n}^{2}}\right\} .
$$

also known as second-order or Lorentz cone.

Semidefinite matrices

A symmetric matrix $X \in \mathcal{S}^{n}$ is positive semidefinite of

- all eigenvalues are nonnegative.
- it can be factored as $X=V V^{T}$
- $z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}$.

Cone of semidefinite matrices

Notation

Matrix inner-products and norms

Semidefinite optimization

Joachim Dahl
optimization
Convex cones
Semidefinite matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix inequalities
Eigenvalue optimization
Combinatorial
relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions

Semidefinite matrices

A symmetric matrix $X \in \mathcal{S}^{n}$ is positive semidefinite iff

- all eigenvalues are nonnegative.
- it can be factored as $X=V V^{T}$.
- $z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}$.

Cone of semidefinite matrices

Notation:

Matrix inner-products and norms

Semidefinite optimization

Joachim Dahl
optimization

Semidefinite matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix inequalities
Eigenvalue optimization
Combinatorial
relaxations
Sun-of-squares relaxations
Nonnegative
polynomials
Conclusions

Semidefinite matrices

A symmetric matrix $X \in \mathcal{S}^{n}$ is positive semidefinite iff

- all eigenvalues are nonnegative.
- it can be factored as $X=V V^{T}$.
- $z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}$.

Cone of semidefinite matrices

Notation: $X \succeq Y \Longleftrightarrow(X-Y) \in \mathcal{S}_{+}^{n}$
Matrix inner-products and norms

Semidefinite optimization

Joachim Dahl
optimization
Semidefinite matrices

Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue optimization
Combinatorial
relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions

Semidefinite matrices

A symmetric matrix $X \in \mathcal{S}^{n}$ is positive semidefinite iff

- all eigenvalues are nonnegative.
- it can be factored as $X=V V^{T}$.
- $z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}$.

Cone of semidefinite matrices

$$
\mathcal{S}_{+}^{n}=\left\{X \in \mathcal{S}^{n} \mid z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}\right\}
$$

Notation: $X \succeq Y \Longleftrightarrow(X-Y) \in \mathcal{S}_{+}^{n}$.

Matrix inner-products and norms

mosek

Semidefinite optimization

Joachim Dahl

Semidefinite matrices

Semidefinite matrices

A symmetric matrix $X \in \mathcal{S}^{n}$ is positive semidefinite iff

- all eigenvalues are nonnegative.
- it can be factored as $X=V V^{T}$.
- $z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}$.

Cone of semidefinite matrices

$$
\mathcal{S}_{+}^{n}=\left\{X \in \mathcal{S}^{n} \mid z^{T} X z \geq 0, \forall z \in \mathbb{R}^{n}\right\}
$$

Notation: $X \succeq Y \Longleftrightarrow(X-Y) \in \mathcal{S}_{+}^{n}$.
Matrix inner-products and norms

$$
\begin{aligned}
\langle A, B\rangle & :=\operatorname{trace}\left(A^{T} B\right)=\sum_{i j} A_{i j} B_{i j} \\
\|A\|_{F}^{2} & :=\langle A, A\rangle=\sum_{i j} A_{i j}^{2}
\end{aligned}
$$

Semidefinite optimization

Joachim Dahl

Conic
optimization
Semidefinite matrices
$\gg A=[2,1,1 ; 1,2,1 ; 1,1,1]$
$\mathrm{A}=$

2	1	1
1	2	1
1	1	1

$\gg[U, D]=\operatorname{eig}(A) \% A=U * D * U '$
$\mathrm{U}=$

0.3251	0.7071	0.6280
0.3251	-0.7071	0.6280
-0.8881	0	0.4597

$\mathrm{D}=$

0.2679	0	0
0	1.0000	0
0	0	3.7321

$$
\gg \mathrm{V}=\mathrm{U} * \operatorname{sqrt}(\mathrm{D})
$$

$$
\mathrm{V}=
$$

$$
\begin{array}{lll}
0.1683 & 0.7071 & 1.2131
\end{array}
$$

$$
\begin{array}{lll}
0.1683 & -0.7071 & 1.2131
\end{array}
$$

$$
\begin{array}{lll}
-0.4597 & 0 & 0.8881
\end{array}
$$

$$
\gg \mathrm{V} * \mathrm{~V}^{\prime} \quad \% V \text { is a factor of } A
$$

ans =

$$
2.0000 \quad 1.0000 \quad 1.0000
$$

$$
1.0000 \quad 2.0000 \quad 1.0000
$$

$$
\begin{array}{lll}
1.0000 & 1.0000 & 1.0000
\end{array}
$$

$$
\gg \mathrm{A}(:)^{\prime} * \mathrm{~A}(:) \quad \% \text { squared Frobenius norm }
$$

ans =

$$
15.0000
$$

$$
\gg \operatorname{sum}\left(\operatorname{diag}(D) \cdot{ }^{\wedge} 2\right)
$$

$$
\text { ans }=
$$

15.0000

Semidefinite
optimization
Joachim Dahl

Conic
optimization
Convex cones
Semidefinite matrices Linear cone problems

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix inequalities
Eigenvalue optimization Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions
mosek

Linear cone problems

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \in \mathcal{C}
\end{array}
$$

Admissible cones

- Nonnegative orthant $x \geq 0$
- Quadratic cone Q^{n}
- Rotated quadratic cone,

Semidefinite optimization

Joachim Dahl

Conic

optimization
Convex cones
Semidefinite matrices
Linear cone problems

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial
relaxations
Sum-of-squares
relaxations
Nonnegative
polynomials
Conclusions
mosek

Linear cone problems

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \in \mathcal{C}
\end{array}
$$

Semidefinite optimization

Joachim Dahl
optimization
Convex cones
Semidefinite
matrices problems

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial
relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions

Linear cone problems

$$
\begin{array}{llll}
\operatorname{minimize} & c^{T} x & \text { maximize } & b^{T} y \\
\text { subject to } & A x=b & \text { subject to } & c-A^{T} y=s \\
& x \in \mathcal{C} & & s \in \mathcal{C}
\end{array}
$$

where $\mathcal{C}=\mathcal{C}_{1} \times \mathcal{C}_{2} \times \cdots \times \mathcal{C}_{p}$ is a product of cones.

Admissible cones

- Nonnegative orthant $x \geq 0$.
- Quadratic cone \mathcal{Q}^{n}.
- Rotated quadratic cone,

$$
\mathcal{Q}_{r}^{n}=\left\{x \in \mathbb{R}^{n} \mid 2 x_{1} x_{2} \geq x_{3}^{2}+\ldots+x_{n}^{2}, x_{1}, x_{2} \geq 0\right\}
$$

Semidefinite optimization

Joachim Dahl

optimization

Convex cones
Semidefinite
Linear cone problems

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial
relaxations
Sum-of-squares
relaxations
Nonnegative
polynomials
Conclusions

- Semidefinite cone \mathcal{S}_{+}^{n}.

Example problem:

$$
\begin{aligned}
\operatorname{minimize} & \left\langle\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right), X\right\rangle+z_{1} \\
\text { subject to } & \left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), X\right\rangle+z_{1}=1 \\
& \left\langle\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), X\right\rangle+z_{2}+z_{3}=1 / 2 \\
& \left(z_{1}, z_{2}, z_{3}\right) \in Q^{3}, X \in \mathcal{S}_{+}^{3}
\end{aligned}
$$

A standard linear cone problem with

Semidefinite optimization

Joachim Dahl

Conic

optimization
Convex cones
Semidefinite
Linear cone problems

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sum-of-squares relaxations

Nonnegative polynomials

Example problem:

$$
\begin{aligned}
\operatorname{minimize} & \left\langle\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right), X\right\rangle+z_{1} \\
& \left\langle\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), X\right\rangle+z_{1}=1 \\
\text { subject to } & \left\langle\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), X\right\rangle+z_{2}+z_{3}=1 / 2 \\
& \left\langle z_{1}, z_{2}, z_{3}\right) \in Q^{3}, X \in \mathcal{S}_{+}^{3}
\end{aligned}
$$

Semidefinite optimization

Joachim Dahl

Conic

optimization

Linear cone problems

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue optimization Combinatorial $x=\left(\begin{array}{llllllllllll}z_{1} & z_{2} & z_{3} & X_{11} & X_{21} & X_{31} & X_{12} & X_{22} & X_{23} & X_{13} & X_{23} & X_{33}\end{array}\right)$ $c=\left(\begin{array}{llllllllllll}1 & 0 & 0 & 2 & 1 & 0 & 1 & 2 & 1 & 0 & 1 & 2\end{array}\right)^{T}$ $A=\left(\begin{array}{llllllllllll}1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right)$
$b=\left(\begin{array}{ll}1 & 1 / 2\end{array}\right)^{\top}$
mosek

Semidefinite optimization

Joachim Dahl

Conic
optimization
Convex cones
Semidefinite
matrices
Linear cone problems

Conic modeling
Simple cones
Nearest
correlation
Linear matrix inequalities
Eigenvalue optimization Combinatorial relaxations
Sum-of-squares relaxations Nonnegative polynomials

Conclusions

Conic optimization

Convex cones
Semidefinite matrices
Linear cone problems

Conic modeling
Simple cones
Nearest correlation
Linear matrix inequalities
Eigenvalue optimization Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Semidefinite
optimization
Joachim Dahl
optimization
Convex cones
Semidefinite matrices

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial
relaxations
Sum-of-squares
relaxations
Nonnegative
polynomials
Conclusions

Simple examples of quadratic cones

- Absolute values

$$
|x| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{2}
$$

- Euclidean norms

- Squared euclidean norms

mosek

Semidefinite
optimization
Joachim Dahl

optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions

- Hyperbolic sets

Simple examples of quadratic cones

- Absolute values

$$
|x| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{2}
$$

- Euclidean norms

$$
\|x\| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{n+1}
$$

- Squared euclidean norms

Semidefinite optimization

Joachim Dahl
optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sunt-of-squares
relaxations
Nonnegative
polynomials
Conclusions

- Hyperbolic sets

Simple examples of quadratic cones

- Absolute values

$$
|x| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{2}
$$

- Euclidean norms

$$
\|x\| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{n+1}
$$

- Squared euclidean norms

$$
\|x\|^{2} \leq t \quad \Longleftrightarrow \quad(t, 1 / 2, x) \in \mathcal{Q}_{r}^{n+2}
$$

Semidefinite optimization

Joachim Dahl
optimization
Convex cones
Semidefinite
matrices
problem
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial
relaxations
Sum-of-squares
relaxations
Nonnegative
polynomials
Conclusions

- Hyperbolic sets

Simple examples of quadratic cones

- Absolute values

$$
|x| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{2}
$$

- Euclidean norms

$$
\|x\| \leq t \quad \Longleftrightarrow \quad(t, x) \in \mathcal{Q}^{n+1}
$$

- Squared euclidean norms

$$
\|x\|^{2} \leq t \quad \Longleftrightarrow \quad(t, 1 / 2, x) \in \mathcal{Q}_{r}^{n+2}
$$

- Hyperbolic sets

$$
\frac{1}{x} \leq t, x>0 \quad \Longleftrightarrow \quad(t, x, \sqrt{2}) \in \mathcal{Q}_{r}^{3}
$$

Very simple examples of semidefinite cones

- Nonnegativity

$$
x \geq 0 \quad \Longleftrightarrow \quad \operatorname{diag}(x) \succeq 0
$$

- Quadratic cones

Semidefinite optimization
Joachim Dahl

Very simple examples of semidefinite cones

- Nonnegativity

$$
x \geq 0 \quad \Longleftrightarrow \quad \operatorname{diag}(x) \succeq 0
$$

- Quadratic cones

$$
\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{3} & x_{2}
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad x_{1} x_{2} \geq x_{3}^{2}, \quad x_{1}, x_{2} \geq 0
$$

in other words,


```
Semidefinite optimization
Joachim Dahl
```


Very simple examples of semidefinite cones

- Nonnegativity

$$
x \geq 0 \Longleftrightarrow \operatorname{diag}(x) \succeq 0
$$

- Quadratic cones

$$
\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{3} & x_{2}
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad x_{1} x_{2} \geq x_{3}^{2}, \quad x_{1}, x_{2} \geq 0
$$

in other words,

$$
\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{3} & x_{2}
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad\left(x_{1}, x_{2}, x_{3} / \sqrt{2}\right) \in \mathcal{Q}_{r}^{3} .
$$

A similar result for n-dimensional quadratic cones.

Semidefinite optimization

Joachim Dahl

Very simple examples of semidefinite cones

mosek

- Nonnegativity

$$
x \geq 0 \quad \Longleftrightarrow \quad \operatorname{diag}(x) \succeq 0
$$

- Quadratic cones

$$
\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{3} & x_{2}
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad x_{1} x_{2} \geq x_{3}^{2}, \quad x_{1}, x_{2} \geq 0
$$

in other words,

$$
\left(\begin{array}{ll}
x_{1} & x_{3} \\
x_{3} & x_{2}
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad\left(x_{1}, x_{2}, x_{3} / \sqrt{2}\right) \in \mathcal{Q}_{r}^{3} .
$$

A similar result for n-dimensional quadratic cones.

A picture is worth a thousand words...

The pillow

Consider the set:

$$
\left(\begin{array}{lll}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right) \succeq 0
$$

- Exterior is a spectrahedron.
- Can be characterized as

$$
x^{2}+y^{2}+z^{2}-2 x y x=1 .
$$

A picture is worth a thousand words...

The pillow

Consider the set:

$$
\left(\begin{array}{lll}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right) \succeq 0
$$

- Exterior is a spectrahedron.
- Can be characterized as

$$
x^{2}+y^{2}+z^{2}-2 x y x=1
$$

A picture is worth a thousand words...

The pillow

Consider the set:

$$
\left(\begin{array}{lll}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right) \succeq 0
$$

- Exterior is a spectrahedron.
- Can be characterized as

$$
x^{2}+y^{2}+z^{2}-2 x y x=1
$$

- Ellipsoids for fixed $z \in[-1,1]$.
mosek

Nearest correlation problem

Consider the set

$$
S=\left\{X \in \mathcal{S}_{+}^{n} \mid q_{i i}=1, i=1, \ldots, n\right\} .
$$

For $A \in \mathcal{S}^{n}$ the nearest correlation matrix is

$$
X^{\star}=\arg \min _{X \in S}\|A-X\|_{F}
$$

A conic formulation

minimize

subject to

where $\operatorname{vec}(X)=\left(x_{11}, x_{21}, \ldots, x_{n 1}, x_{12}, \ldots x_{n n}\right)$

Semidefinite optimization

Joachim Dahl

Conic

optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial
relaxations
Sum-of-squares relaxations

Nonnegative
polynomials
Conclusions
mosek

Nearest correlation problem

Consider the set

$$
S=\left\{X \in \mathcal{S}_{+}^{n} \mid q_{i i}=1, i=1, \ldots, n\right\} .
$$

For $A \in \mathcal{S}^{n}$ the nearest correlation matrix is

$$
X^{\star}=\arg \min _{X \in S}\|A-X\|_{F}
$$

A conic formulation

where $\operatorname{vec}(X)=\left(x_{11}, x_{21}, \ldots, x_{n 1}, x_{12}, \ldots x_{n n}\right)$.

Linear matrix functions

mosek

Consider a matrix-valued function $F: \mathbb{R}^{m} \mapsto \mathcal{S}^{n}$,

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}
$$

where $F_{i} \in \mathcal{S}^{n}$.

- The inequality
is called a linear matrix inequality (LMI).
- Corresnonds to conic dual constraints,

Semidefinite optimization

Joachim Dahl
optimization
Convex cones
Semidefinite
matrices
tinear cone.
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix inequalities
Eigenvalue optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions

Linear matrix functions

Semidefinite optimization

Joachim Dahl
Consider a matrix-valued function $F: \mathbb{R}^{m} \mapsto \mathcal{S}^{n}$,

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}
$$

where $F_{i} \in \mathcal{S}^{n}$.

- The inequality

$$
F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m} \succeq 0
$$

is called a linear matrix inequality (LMI).

- Corresponds to conic dual constraints,

$$
C-\left(y_{1} A_{1}+\cdots+y_{m} A_{m}\right)=S,
$$

Linear matrix functions

Consider a matrix-valued function $F: \mathbb{R}^{m} \mapsto \mathcal{S}^{n}$,

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}
$$

where $F_{i} \in \mathcal{S}^{n}$.

- The inequality

$$
F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m} \succeq 0
$$

is called a linear matrix inequality (LMI).

- Corresponds to conic dual constraints,

$$
C-\left(y_{1} A_{1}+\cdots+y_{m} A_{m}\right)=S, \quad S \succeq 0
$$

Eigenvalue optimization

mosek

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathcal{S}_{m} .
$$

- Minimize largest eigenvalue $\lambda_{1}(F(x))$:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma \\
\text { subject to } & \gamma I \succeq F(x),
\end{array}
$$

- Maximize smallest eigenvalue $\lambda_{n}(F(x))$:
maximize
subiect to $F(x) \succeq \gamma /$,
- Minimize eigenvalue spread $\lambda_{1}(F(x))-\lambda_{n}(F(x))$:
minimize
subject to $\gamma I \succeq F(x) \succeq \lambda I$,

Semidefinite
optimization
Joachim Dahl

Conic
optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions

Eigenvalue optimization

mosek

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathcal{S}_{m} .
$$

- Minimize largest eigenvalue $\lambda_{1}(F(x))$:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma \\
\text { subject to } & \gamma I \succeq F(x),
\end{array}
$$

- Maximize smallest eigenvalue $\lambda_{n}(F(x))$:

$$
\begin{array}{ll}
\text { maximize } & \gamma \\
\text { subject to } & F(x) \succeq \gamma I,
\end{array}
$$

Semidefinite optimization

Joachim Dahl

Eigenvalue optimization

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathcal{S}_{m}
$$

- Minimize largest eigenvalue $\lambda_{1}(F(x))$:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma \\
\text { subject to } & \gamma I \succeq F(x),
\end{array}
$$

- Maximize smallest eigenvalue $\lambda_{n}(F(x))$:

$$
\begin{array}{ll}
\operatorname{maximize} & \gamma \\
\text { subject to } & F(x) \succeq \gamma I,
\end{array}
$$

- Minimize eigenvalue spread $\lambda_{1}(F(x))-\lambda_{n}(F(x))$:

$$
\begin{array}{ll}
\operatorname{minimize} & \gamma-\lambda \\
\text { subject to } & \gamma I \succeq F(x) \succeq \lambda I,
\end{array}
$$

Semidefinite optimization

Joachim Dahl

Minimizing matrix norms

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathbb{R}^{n \times p} .
$$

- (Standard) matrix norm: $\|F(x)\|_{2}=\max _{k} \sigma_{k}(F(x))$,

$$
\left.\begin{array}{l}
\text { minimize } \\
\text { subject to }
\end{array} \begin{array}{cc}
t \\
t^{\prime} & F(x)^{T} \\
F(x) & t l
\end{array}\right] \succeq 0,
$$

- Nuclear norm: $\|F(x)\|_{*}=\sum_{k} \sigma_{k}(F(x))$,

minimize

Semidefinite optimization

Joachim Dahl

Conic
optimization
Convex cones
Semidefinite
matrices
Linear co
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions

Minimizing matrix norms

$$
F(x)=F_{0}+x_{1} F_{1}+\cdots+x_{m} F_{m}, \quad F_{i} \in \mathbb{R}^{n \times p} .
$$

Semidefinite optimization

Joachim Dahl

A binary quadratic problem

Binary quadratic problem

We consider a binary problem.

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & x_{i} \in\{0,1\}, \quad i=1, \ldots, n .
\end{array}
$$

where Q can be indefinite.

- Very difficult non-convex problem.
- In general we have to explore 2^{n} different objectives.
- Instead use a semidefinite relaxation.

Semidefinite optimization

Joachim Dahl
optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions

A binary quadratic problem

Binary quadratic problem

We consider a binary problem.

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & x_{i} \in\{0,1\}, \quad i=1, \ldots, n .
\end{array}
$$

where Q can be indefinite.

- Very difficult non-convex problem.
- In general we have to explore 2^{n} different objectives.
- Instead use a semidefinite relaxation.

Semidefinite optimization

Joachim Dahl
optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions

A binary quadratic problem

Binary quadratic problem

We consider a binary problem.

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & x_{i} \in\{0,1\}, \quad i=1, \ldots, n .
\end{array}
$$

where Q can be indefinite.

- Very difficult non-convex problem.
- In general we have to explore 2^{n} different objectives.
- Instead use a semidefinite relaxation.

Semidefinite optimization

A binary quadratic problem

Binary quadratic problem

We consider a binary problem.

$$
\begin{array}{ll}
\operatorname{minimize} & x^{\top} Q x+c^{\top} x \\
\text { subject to } & x_{i} \in\{0,1\}, \quad i=1, \ldots, n .
\end{array}
$$

where Q can be indefinite.

- Very difficult non-convex problem.
- In general we have to explore 2^{n} different objectives.
- Instead use a semidefinite relaxation.

Semidefinite optimization
mosek

Lifting of binary constraints

Rewrite binary constraints $x_{i} \in\{0,1\}$:

$$
x_{i}^{2}=x_{i} \quad \Longleftrightarrow \quad X=x x^{\top}, \quad \operatorname{diag}(X)=x .
$$

Still non-convex, since $\operatorname{rank}(X)=1$.

Semidefinite relaxation of binary constraints

Note that:

Semidefinite optimization

Joachim Dahl

Conic

optimization
Convex cones
Semidefinite
matrices
Linear cone problems

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions

mosek

Lifting of binary constraints

Rewrite binary constraints $x_{i} \in\{0,1\}$:

$$
x_{i}^{2}=x_{i} \quad \Longleftrightarrow \quad X=x x^{\top}, \quad \operatorname{diag}(X)=x .
$$

Still non-convex, since $\operatorname{rank}(X)=1$.

Semidefinite relaxation of binary constraints

$$
X \succeq x x^{T}, \quad \operatorname{diag}(X)=x
$$

Note that:

$$
X \succeq x x^{T} \quad \Longleftrightarrow \quad\left(\begin{array}{cc}
1 & x^{T} \\
x & x
\end{array}\right) \succeq 0
$$

which is a linear matrix inequality.

Semidefinite relaxation of binary QP

The lifted non-convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& X=x x^{T}
\end{array}
$$

The semidefinite relaxation

minimize
subject to

- Relaxation is exact if $X=x x^{T}$
- Otherwise can be strengthened, e.g., by adding $X_{i j} \geq 0$
- Typical relaxations for combinatorial optimization.

Semidefinite relaxation of binary QP

The lifted non-convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& X=x x^{T}
\end{array}
$$

The semidefinite relaxation

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& \left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \succeq 0
\end{array}
$$

Semidefinite relaxation of binary QP

Semidefinite optimization

Joachim Dahl

Conic

optimization
Convex cones
Semidefinite
matrices
Linear cone

problems

Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions

- Relaxation is exact if $X=x x^{T}$.
- Otherwise can be strengthened, e.g., by adding $X_{i j} \geq 0$
- Typical relaxations for combinatorial optimization.

Semidefinite relaxation of binary QP

Semidefinite
optimization

Joachim Dahl

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{\top} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& X=x x^{\top}
\end{array}
$$

The semidefinite relaxation

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& \left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \succeq 0
\end{array}
$$

- Relaxation is exact if $X=x x^{T}$.
- Otherwise can be strengthened, e.g., by adding $X_{i j} \geq 0$.
- Typical relaxations for combinatorial optimization.

Semidefinite relaxation of binary QP

mosek

The lifted non-convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& X=x x^{T}
\end{array}
$$

The semidefinite relaxation

$$
\begin{array}{ll}
\operatorname{minimize} & \langle Q, X\rangle+c^{T} x \\
\text { subject to } & \operatorname{diag}(X)=x \\
& \left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \succeq 0
\end{array}
$$

Semidefinite optimization

- Relaxation is exact if $X=x x^{T}$.
- Otherwise can be strengthened, e.g., by adding $X_{i j} \geq 0$.
- Typical relaxations for combinatorial optimization.

Relaxations for boolean optimization

Same approach used for boolean constraints $x_{i} \in\{-1,+1\}$.

Lifting of boolean constraints

Rewrite boolean constraints $x_{i} \in\{-1,1\}$:

$$
x_{i}^{2}=1 \quad \Longleftrightarrow \quad X=x x^{\top}, \quad \operatorname{diag}(X)=e
$$

Semidefinite relaxation of boolean constraints

$$
X \succeq x x^{T}, \quad \operatorname{diag}(X)=e .
$$

Semidefinite optimization

Joachim Dahl
optimization
Convex cones Semidefinite matrices Linear cone problems

Conic modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative
polynomials
Conclusions

Sum-of-squares relaxations

- f : multivariate polynomial of degree $2 d$.
- $v_{d}=\left(1, x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{2}, \ldots, x_{n}^{d}\right)$. Vector of monomials of degree d or less.

mosek

Semidefinite optimization

Joachim Dahl
optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions

Sum-of-squares relaxations

mosek

- f : multivariate polynomial of degree $2 d$.
- $v_{d}=\left(1, x_{1}, x_{2}, \ldots, x_{n}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{n}^{2}, \ldots, x_{n}^{d}\right)$.

Vector of monomials of degree d or less.

Sum-of-squares representation

f is a sum-of-squares (SOS) iff

$$
f\left(x_{1}, \ldots, x_{n}\right)=v_{d}^{T} Q v_{d}, \quad Q \succeq 0 .
$$

If $X=L L^{T}$ then

$$
f\left(x_{1}, \ldots, x_{n}\right)=v_{d}^{T} L L^{T} v_{d}=\sum_{i=1}^{m}\left(l_{i}^{T} v_{d}\right)^{2} .
$$

Is obviously sufficient for $f\left(x_{1}, \ldots, x_{n}\right) \geq 0$.

A simple example

Consider

$$
f(x, z)=2 x^{4}+2 x^{3} z-x^{2} z^{2}+5 z^{4}
$$

homogeneous of degree 4, so we only need

$$
v=\left(\begin{array}{lll}
x^{2} & x z & z^{2}
\end{array}\right)
$$

we see that $f(x, z)$ is SOS iff $Q \succeq 0$ and

Semidefinite optimization

Joachim Dahl
Conic
optimization
Convex cones
Semidefinite
matrices
Linear cone
problems
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue optimization
Combinatorial relaxations
Sum-of-squares relaxations Nonnegative polynomials

Conclusions

A simple example

Consider

$$
f(x, z)=2 x^{4}+2 x^{3} z-x^{2} z^{2}+5 z^{4}
$$

homogeneous of degree 4, so we only need

$$
v=\left(\begin{array}{lll}
x^{2} & x z & z^{2}
\end{array}\right)
$$

Comparing cofficients of $f(x, z)$ and $v^{\top} Q v=\left\langle Q, v v^{\top}\right\rangle$,

$$
\left\langle Q, v v^{T}\right\rangle=\left\langle\left(\begin{array}{lll}
q_{00} & q_{01} & q_{02} \\
q_{10} & q_{11} & q_{12} \\
q_{20} & q_{21} & q_{22}
\end{array}\right),\left(\begin{array}{ccc}
x^{4} & x^{3} z & x^{2} z^{2} \\
x^{3} z & x^{2} z^{2} & x z^{3} \\
x^{2} z^{2} & x z^{3} & z^{4}
\end{array}\right)\right\rangle
$$

we see that $f(x, z)$ is SOS iff $Q \succeq 0$ and

Semidefinite optimization

Joachim Dahl

Applications in global optimization

$$
f(x, z)=4 x^{2}-\frac{21}{10} x^{4}+\frac{1}{3} x^{6}+x z-4 z^{2}+4 z^{4}
$$

Global lower bound

Replace non-tractable problem,

$$
\operatorname{minimize} f(x, z)
$$

by a tractable lower bound

maximize	t
subject to	$f(x, z)-t$ is SOS.

Relaxation finds the global optimum $t=-1.031$.
Essentially due to Shor, 1987.

$$
\begin{aligned}
& f(x, z)-t=4 x^{2}-\frac{21}{10} x^{4}+\frac{1}{3} x^{6}+x z-4 z^{2}+4 z^{4}-t
\end{aligned}
$$

By comparing cofficients of $v^{\top} Q v$ and $f(x, z)-t$:

$$
\begin{gathered}
q_{00}=-t, \quad\left(2 q_{30}+q_{11}\right)=4, \quad\left(2 q_{72}+q_{44}\right)=-\frac{21}{10}, \quad q_{77}=\frac{1}{3} \\
2\left(q_{51}+q_{32}\right)=1, \quad\left(2 q_{61}+q_{33}\right)=-4, \quad\left(2 q_{10,3}+q_{66}\right)=4 \\
2 q_{10}=0, \quad 2 q_{20}=0, \quad 2\left(q_{71}+q_{42}\right)=0, \quad \ldots
\end{gathered}
$$

A standard SDP with a 10×10 variable and 27 constraints.

Nonnegative polynomials

mosek

- Univariate polynomial of degree $2 n$:

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{2 n} x^{2 n}
$$

- Nonnegativity is equivalent to SOS, i.e.,
$f(x) \geq 0 \quad f(x)=v^{\top} Q v, \quad Q \succeq 0$
with $v=\left(1, x, \ldots, x^{n}\right)$.
- Simple extensions for nonnegativity on a subinterval $/ \subset \mathbb{R}$.

Nesterov, Y. Squared functional systems and optimization problems, 2000.

Nonnegative polynomials

Semidefinite optimization

- Univariate polynomial of degree $2 n$:

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{2 n} x^{2 n} .
$$

- Nonnegativity is equivalent to SOS, i.e.,

$$
f(x) \geq 0 \quad \Longleftrightarrow \quad f(x)=v^{\top} Q v, \quad Q \succeq 0
$$

with $v=\left(1, x, \ldots, x^{n}\right)$.

- Simple extensions for nonnegativity on a subinterval $I \subset \mathbb{R}$.

Nesterov, Y. Squared functional systems and optimization problems, 2000.

Nonnegative polynomials

Semidefinite optimization

- Univariate polynomial of degree $2 n$:

$$
f(x)=c_{0}+c_{1} x+\cdots+c_{2 n} x^{2 n}
$$

- Nonnegativity is equivalent to SOS, i.e.,

$$
f(x) \geq 0 \quad \Longleftrightarrow \quad f(x)=v^{T} Q v, \quad Q \succeq 0
$$

with $v=\left(1, x, \ldots, x^{n}\right)$.

- Simple extensions for nonnegativity on a subinterval $/ \subset \mathbb{R}$.

Nesterov, Y. Squared functional systems and optimization problems, 2000.

mosek

Polynomial interpolation

Fit a polynomial of degree n to a set of points $\left(x_{j}, y_{j}\right)$,

$$
f\left(x_{j}\right)=y_{j}, \quad j=1, \ldots, m,
$$

i.e., linear equality constraints in c,

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

Semidefinite shape constraints

Semidefinite optimization

Joachim Dahl

Convex cones
Semidefinite
matrices
Linear cone
Conic
modeling
Simple cones
Nearest
correlation
Linear matrix
inequalities
Eigenvalue
optimization
Combinatorial
relaxations
Sum-of-squares
relaxations
Nonnegative polynomials

Conclusions

Polynomial interpolation

Fit a polynomial of degree n to a set of points $\left(x_{j}, y_{j}\right)$,

$$
f\left(x_{j}\right)=y_{j}, \quad j=1, \ldots, m,
$$

i.e., linear equality constraints in c,

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{m} & x_{m}^{2} & \ldots & x_{m}^{n}
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

Semidefinite shape constraints

- Nonnegativity $f(x) \geq 0$.
- Monotonicity $f^{\prime}(x) \geq 0$.
- Convexity $f^{\prime \prime}(x) \geq 0$.

Smooth interpolation

Minimize largest derivative,
minimize $\max _{x \in[-1,1]}\left|f^{\prime}(x)\right|$
subject to $f(-1)=1$
$f(0)=0$
$f(1)=1$
or equivalently

$$
\begin{array}{ll}
\operatorname{minimize} & z \\
\text { subject to } & -z \leq f^{\prime}(x) \leq z \\
& f(-1)=1 \\
& f(0)=0 \\
& f(1)=1
\end{array}
$$

$$
\begin{array}{ll}
f_{2}(x)=x^{2} & f_{4}(x)=\frac{3}{2} x^{2}-\frac{1}{2} x^{4} \\
f_{2}^{\prime}(1)=2 & f_{4}^{\prime}\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}
\end{array}
$$

mosek

Conic optimization
Convex cones Semidefinite matrices
Linear cone problems

Conic modeling
Simple cones
Nearest correlation
Linear matrix inequalities
Eigenvalue optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions
mosek

Conic optimization
Convex cones Semidefinite matrices
Linear cone problems

Conic modeling
Simple cones
Nearest correlation
Linear matrix inequalities
Eigenvalue optimization
Combinatorial relaxations
Sum-of-squares relaxations
Nonnegative polynomials

Conclusions

