
http://www.mosek.com

Modeling with MOSEK Fusion

Ulf Worsøe

INFORMS Minneapolis

October 5 2013

What is Fusion?

2 / 24

What is Fusion?

What is Fusion?

What is Fusion?

Why Fusion?

Let’s get to the code
part!

Performance

Conclusions

3 / 24

■ Fusion is a modern object oriented API for conic
optimization in MOSEK available for

◆ Matlab
◆ Java 1.6+
◆ .NET 2.2+
◆ Python 2.6+

■ Fusion is designed to be as efficient as possible while
making it easy to develop models.

■ Fusion includes a library of generic functionality to assist
model building.

Why Fusion?

What is Fusion?

What is Fusion?

Why Fusion?

Let’s get to the code
part!

Performance

Conclusions

4 / 24

■ Developing complex models in the optimizer API is time
consuming and error prone — especially so for
semi-definite programming introduced in MOSEK 7.0.

■ Several customers have built their own Fusion-like
functionality to be able to implement complex models.

■ Fusion allows only conic models which can be solved
very efficiently in MOSEK.

■ Fusion allows and encourages vectorized formulations
making the model building more efficient than many
third party interfaces and modeling languages.

Finally, Fusion is implemented to be as efficient as possible:
Conic optimization can be solved very efficiently, and the
model building phase should not dominate in terms of time.

Even if the last seconds mean everything, using Fusion

for prototyping decreases the model development time.

Let’s get to the code part!

5 / 24

Portfolio model

What is Fusion?

Let’s get to the code
part!

Portfolio model
Portfolio model
transformed
Portfolio in
Fusion/Python

Traffic flow network
Traffic flow network:
original form

Traffic flow network:
conic form
Traffic flow in
Fusion/Python

Modeling a complex
cone: Geometric
mean cone

GM cone of power 2

GM cone
Geometric mean
cone in
Fusion/Python

Performance

Conclusions

6 / 24

This is a variant of the Markowitz portfolio model that we
often see:

minimize xT (GTG)x+
n
∑

i=1

mix
3/2

such that rTx = t

x ∈ R
n, x ≥ 0

This model assumes that we have no initial investment and
that we require a certain return.
Here:

■ xTGTGx is the variance (or risk) of the portfolio x,
■

∑n
i=1mix

3/2 is the market impact term, and
■ rTx is the expected return of the portfolio x

Portfolio model transformed

What is Fusion?

Let’s get to the code
part!

Portfolio model
Portfolio model
transformed
Portfolio in
Fusion/Python

Traffic flow network
Traffic flow network:
original form

Traffic flow network:
conic form
Traffic flow in
Fusion/Python

Modeling a complex
cone: Geometric
mean cone

GM cone of power 2

GM cone
Geometric mean
cone in
Fusion/Python

Performance

Conclusions

7 / 24

The conic form of this:

minimize z +mT y

such that rTx = t

2 · (1/2) · z ≥ ||Gx||22
2yiwi ≥ x2i , for i = 1 . . . n

2 · (1/8) · xi ≥ w2
i , for i = 1 . . . n

x ∈ R
n, x ≥ 0G

The three non-linear constraints can be implemented using
the rotated quadratic cone of dimension 3:

Q3
r = {x ∈ R

3|2x1x2 ≥ x23}

Portfolio in Fusion/Python

8 / 24

from mosek.fusion import *

def portfolio(G,m,r,t):
n = len(m)

with Model("Markowitz") as M:
x = M.variable(n,Domain.greaterThan(0.0))
y = M.variable(n,Domain.unbounded())
z = M.variable(1,Domain.unbounded())
w = M.variable(n,Domain.unbounded())

M.constraint(Expr.mul(r,x), Domain.equalsTo(t))
M.constraint(Expr.vstack(0.5,z,Expr.mul(G,x)),

Domain.inRotatedQCone())
M.constraint(Expr.hstack(y,w,x), Domain.inRotatedQCone())
M.constraint(Expr.hstack(Expr.constTerm(n,.125),x,w), Domain.inRotatedQCone())
M.objective(ObjectiveSense.Minimize, Expr.add(z,Expr.dot(m,y)))

M.solve()
return x.level()

if __name__ == ’__main__’:
G = DenseMatrix(3,3, [0.16667,0.02322, 0.00126,

0, 0.10286,-0.00223,
0, 0, 0.03381])

r = [0.1073, 0.0737, 0.0627]
m = [0.01, 0.01, 0.01]

print "x =",portfolio(G,m,r,0.08)

Traffic flow network

What is Fusion?

Let’s get to the code
part!

Portfolio model
Portfolio model
transformed
Portfolio in
Fusion/Python

Traffic flow network
Traffic flow network:
original form

Traffic flow network:
conic form
Traffic flow in
Fusion/Python

Modeling a complex
cone: Geometric
mean cone

GM cone of power 2

GM cone
Geometric mean
cone in
Fusion/Python

Performance

Conclusions

9 / 24

Traffic network model based on a presentation by Robert
Fourer (Convexity Detection in Large-Scale Optimization.,
2011. OR 53 Nottingham 6-8 September 2011).

0

1

2

3

x01

x02

x13

x23

x21

x30

source sink

The red arc is added to simplify the formulation of the model,
but it has infinite capacity and is not included in the objective.

Traffic flow network: original form

What is Fusion?

Let’s get to the code
part!

Portfolio model
Portfolio model
transformed
Portfolio in
Fusion/Python

Traffic flow network
Traffic flow network:
original form

Traffic flow network:
conic form
Traffic flow in
Fusion/Python

Modeling a complex
cone: Geometric
mean cone

GM cone of power 2

GM cone
Geometric mean
cone in
Fusion/Python

Performance

Conclusions

10 / 24

minimize
∑

(i,j)∈A

tijxij/T

such that tij = bij
sijxij

1− xijcij
, (i, j) ∈ A

∑

j:(i,j)∈A+

xij =
∑

j:(j,i)∈A+

xji, i ∈ N

xes = T

0 ≤ xij ≤ cij , (i, j) ∈ A

where N is the set of nodes, A is the set of arcs and A+ is the
set of arcs plus an arc from sink to source. cij is the capacity
and sij is the sensitivity of arc (i, j).

Traffic flow network: conic form

What is Fusion?

Let’s get to the code
part!

Portfolio model
Portfolio model
transformed
Portfolio in
Fusion/Python

Traffic flow network
Traffic flow network:
original form

Traffic flow network:
conic form
Traffic flow in
Fusion/Python

Modeling a complex
cone: Geometric
mean cone

GM cone of power 2

GM cone
Geometric mean
cone in
Fusion/Python

Performance

Conclusions

11 / 24

minimize
∑

(i,j)∈A

1

T
(bijxij + yij) (1)

such that 2
1− xijcij

2sij
yij ≥ x2ij , (i, j) ∈ A (2)

∑

j:(i,j)∈A+

xij =
∑

j:(j,i)∈A+

xji, i ∈ N (3)

xes = T (4)

0 ≤ xij ≤ cij , (i, j) ∈ A (5)

■ Objective (1) is now linear.
■ The term t is completely gone (in fact we substituted t

into the original objective).
■ Constraint (2) is a rotated quadratic cone.

Traffic flow in Fusion/Python

12 / 24

def main(N,E, source,sink, arc_sensitivity, arc_capacity, arc_baseTravelTime, T):
with Model("Traffic Network") as M:

arc_i = [i for i,j in E]
arc_j = [j for i,j in E]
e = Matrix.sparse(N,N, arc_i,arc_j, 1.0)

c = Matrix.sparse(N,N,arc_i,arc_j, arc_capacity)
cplus = Matrix.sparse(N,N,arc_i + [sink],arc_j + [source], arc_capacity + [T])
Set up (5)
x = M.sparseVariable(’x’, NDSet(N,N), Domain.inRange(0.0, cplus))
y = M.sparseVariable(’y’, NDSet(N,N), Domain.unbounded())
Set up (1)
b = Matrix.sparse(N,N, arc_i,arc_j,arc_baseTravelTime)
M.objective(ObjectiveSense.Minimize,

Expr.mul(1.0/T, Expr.add((Expr.dot(x,b), Expr.dot(y,e)))))
Set up (2)
y_sel = y.pick_flat([i * N+j for (i,j) in E])
x_sel = x.pick_flat([i * N+j for (i,j) in E])
one_div_2s = [0.5/s for s in arc_sensitivity]

M.constraint(’(2)’,
Expr.hstack(Expr.mulElm(Expr.sub(1.0,Expr.mulElm(x_sel,[1.0/c for c in arc_capacity])),

one_div_2s),
y_sel,
x_sel),

Domain.inRotatedQCone())
Set up (3)
eplus_T = Matrix.sparse(N,N, arc_j+[source],arc_i+[sink], 1.0)
M.constraint(’(3)’, Expr.sub(Expr.mulDiag(x,eplus_T), Expr.mulDiag(eplus_T,x)),

Domain.equalsTo(0.0))
Set up (4)
M.constraint(’(4)’, x.index(sink,source), Domain.equalsTo(T))

M.solve()
return x_sel.level()

Modeling a complex cone: Geometric mean cone

What is Fusion?

Let’s get to the code
part!

Portfolio model
Portfolio model
transformed
Portfolio in
Fusion/Python

Traffic flow network
Traffic flow network:
original form

Traffic flow network:
conic form
Traffic flow in
Fusion/Python

Modeling a complex
cone: Geometric
mean cone

GM cone of power 2

GM cone
Geometric mean
cone in
Fusion/Python

Performance

Conclusions

13 / 24

It is possible to model several complex sets using quadratic
cones. One example: The geometric mean (GM) cone:

t ≤
(

n
∏

i=1

xi

)1/n

, xi ≥ 0

We notice first that the GM cone of size 3 is in fact almost the
rotated quadratic cone of size 3:

t ≤
√
2x1x2 ⇔ (x1, x2, t) ∈ Q3

r

so, e.g., the GM cone of size 5 can then be implemented as:

√
2t ≤,

√
2t1t2,

√
2t1 ≤

√
2x1x2,

√
2t2 ≤

√
2x3x4

⇔
(t1, t2

√
2t), (x1, x2,

√
2t1), (x3, x4,

√
2t2) ∈ Q3

r

GM cone of power 2

What is Fusion?

Let’s get to the code
part!

Portfolio model
Portfolio model
transformed
Portfolio in
Fusion/Python

Traffic flow network
Traffic flow network:
original form

Traffic flow network:
conic form
Traffic flow in
Fusion/Python

Modeling a complex
cone: Geometric
mean cone

GM cone of power 2

GM cone
Geometric mean
cone in
Fusion/Python

Performance

Conclusions

14 / 24

We notice that this approach allows us to build GM cones of
size 1 + 2n.

x1x2 x3x4 x5x6 x7x8 ...x2n

t11 t12 t13 ...

t21 t22 ...

t31

...

t14

t

(x1, x2,
√
2t11), (x3, x4,

√
2t12), (x5, x6,

√
2t13), . . . ∈ Q3

r

(t11, t12,
√
2t21), (t13, t14,

√
2t22), . . . ∈ Q3

r

(t21, t22,
√
2t31), . . . ∈ Q3

r

...

(tlog2 n−2,1, tlog2 n−2,2,
√
2t) ∈ Q3

r

GM cone

What is Fusion?

Let’s get to the code
part!

Portfolio model
Portfolio model
transformed
Portfolio in
Fusion/Python

Traffic flow network
Traffic flow network:
original form

Traffic flow network:
conic form
Traffic flow in
Fusion/Python

Modeling a complex
cone: Geometric
mean cone

GM cone of power 2

GM cone
Geometric mean
cone in
Fusion/Python

Performance

Conclusions

15 / 24

We can now formulate

(t, x1, x2, . . . , x2p) ∈ G2p+1 : tn ≤ x1x2x3 . . . x2p

It now only remains to observe that for n < 2p we can write
the GM cone of n+ 1 elements as the GM cone of 2p + 1
elements:

t2
p ≤ x1x2 · · ·xn · t2p−n

or
(t, x1, x2, . . . , xn, t, . . . , t) ∈ G2p+1

A 2p + 1 GM cone requires 2p − 2 extra variables and 2p − 1
rotated quadratic cones of size 3.

Geometric mean cone in Fusion/Python

16 / 24

def geometric_mean(M,x,t):
’’’
Models the convex set

S = { (x, t) \in Rˆn x R | x >= 0, t <= (x1 * x2 * ... * xn)ˆ(1/n) }

as the intersection of rotated quadratic cones and affine hyperplanes.
’’’
def rec(x):

n = x.shape.dim(0)
if n > 1:

y = M.variable(n/2, Domain.unbounded())
M.constraint(Variable.hstack(Variable.reshape(x, NDSet(n/2,2)), y), Domain.inRotatedQCone())
return rec(y)

else:
return x

n = x.shape.dim(0)
l = int(ceil(log(n, 2)))
m = int(2 ** l) - n

if size of x is not a power of 2 we pad it:
if m > 0:

x_padding = M.variable(m,Domain.unbounded())
M.constraint(Expr.sub(x_padding, Variable.repeat(t,m)), Domain.equalsTo(0.0))
set the last m elements equal to t
x = Variable.stack(x,x_padding)

M.constraint(Expr.sub(Expr.mul(2.0 ** (l/2.0), t),rec(x)), Domain.equalsTo(0.0))

Performance

17 / 24

Modeling and solving

What is Fusion?

Let’s get to the code
part!

Performance
Modeling and
solving

A sparse conic
problem

Performance test:
chainsing.java

Performance: Fusion
vs. solver API

Conclusions

18 / 24

MOSEK solves purely continuous problems very efficiently.
This means that:

■ Setting up a model in a modeling language is often
slower than solving it,

■ . . . it may even have worse run-time complexity!
■ Setting up a model in e.g. the Python API or a similar API

is sometimes slower than solving it.

When creating mixed-integer models this is rarely an issue.
Fusion is designed to make model development simpler
while

■ minimizing the overhead of loops and function calls by
encouraging vectorized operations, and

■ minimizing the run-time complexity when handling
sparse structures.

A sparse conic problem

What is Fusion?

Let’s get to the code
part!

Performance
Modeling and
solving

A sparse conic
problem

Performance test:
chainsing.java

Performance: Fusion
vs. solver API

Conclusions

19 / 24

Conic formulation of the CHAINSING model:

minimize eT s+ eT t+ eT p+ eT q
such that (1/2, sj , xi + 10xi+1) ∈ Q3

r

(1/2, tj , 5
1/2(xi+2 − xi+3)) ∈ Q3

r

(1/2, rj , xi+1 − 2xi+2) ∈ Q3
r

(1/2, uj , 10
1/4(xi − 10xi+3)) ∈ Q3

r

(1/2, pj , rj) ∈ Q3
r

< (1/2, qj , uj) ∈ Q3
r , j = 0, . . . , (n− 2)/2, i = 2j

0.1 ≤ xi ≤ 1.1, i = 0, 2, . . . , n− 2.

A sparse conic problem we can scale easily.

“Sparse second order cone programming formulations for convex
optimization problems.” K. Kobayashi, S.-Y. Kim, M. Kojima,
Journal of the Operations Research Society of Japan, Vol. 51,
No. 3 (2008), pp. 241-264.

Performance test: chainsing.java

20 / 24

public static void chainsing4(Model M, int n)
{

int m = (n-2) / 2;
Variable x = M.variable(n, Domain.unbounded());
Variable p = M.variable(m, Domain.unbounded());
Variable q = M.variable(m, Domain.unbounded());
Variable r = M.variable(m, Domain.unbounded());
Variable s = M.variable(m, Domain.unbounded());
Variable t = M.variable(m, Domain.unbounded());
Variable u = M.variable(m, Domain.unbounded());

Variable x_i = Variable.reshape(x,n/2,2).slice(new int[]{0,0},new int[]{n/2-1,1});
Variable x_iplus1 = Variable.reshape(x,n/2,2).slice(new int[]{0,0},new int[]{n/2-1,1});
Variable x_iplus2 = Variable.reshape(x,n/2,2).slice(new int[]{1,0},new int[]{n/2,1});
Variable x_iplus3 = Variable.reshape(x,n/2,2).slice(new int[]{1,0},new int[]{n/2,1});
Expression c = Expr.constTerm(m,0.5);
// s[j] >= (x[i] + 10 * x[i+1])ˆ2
M.constraint(Expr.hstack(c, s, Expr.add(x_i, Expr.mul(10.0,x_iplus1))), Domain.inRotatedQCone());
// t[j] >= 5 * (x[i+2] - x[i+3])ˆ2
M.constraint(Expr.hstack(c, t, Expr.mul(Math.sqrt(5), Expr.sub(x_iplus2,x_iplus3))),

Domain.inRotatedQCone());
// r[j] >= (x[i+1] - 2 * x[i+2])ˆ2
M.constraint(Expr.hstack(c, r, Expr.sub(x_iplus1, Expr.mul(2.0,x_iplus2))),

Domain.inRotatedQCone());
// u[j] >= sqrt(10) * (x[i] - 10 * x[i+3])ˆ2
M.constraint(Expr.hstack(Expr.constTerm(m,0.5/Math.sqrt(10)),

u,
Expr.sub(x_i, Expr.mul(10,x_iplus3))), Domain.inRotatedQCone());

// p[j] >= r[j]ˆ2
M.constraint(Expr.hstack(c,p,r), Domain.inRotatedQCone());
// q[j] >= u[j]ˆ2
M.constraint(Expr.hstack(c,q,u), Domain.inRotatedQCone());
// 0.1 <= x[j] <= 1.1
M.constraint(x,Domain.inRange(0.1, 1.1));
M.objective(ObjectiveSense.Minimize, Expr.sum(Variable.vstack(new Variable[]{s, t, p, q})));

}

Performance: Fusion vs. solver API

What is Fusion?

Let’s get to the code
part!

Performance
Modeling and
solving

A sparse conic
problem

Performance test:
chainsing.java

Performance: Fusion
vs. solver API

Conclusions

21 / 24

Solver API Fusion Java
n C Java scalar vectorized

2000 0.01 0.25 0.08 0.25 0.52 0.20 0.17 0.28
4000 0.01 0.58 0.15 0.49 0.86 0.39 0.19 0.54
8000 0.03 1.16 0.27 1.01 1.49 0.81 0.33 1.10
16000 0.06 2.43 0.50 2.09 3.07 1.72 0.50 2.25
32000 0.12 5.14 0.97 4.47 8.74 3.60 0.89 4.85
64000 0.25 10.81 1.91 9.40 33.38 7.92 1.65 10.83
128000 0.50 23.82 3.64 21.30 115.46 18.73 3.15 25.66

Model setup time and solver time in seconds for each
implementation of CHAINSING. The numbers do not include
JVM startup time.

Conclusions

22 / 24

Conclusions

What is Fusion?

Let’s get to the code
part!

Performance

Conclusions

Conclusions

23 / 24

■ Fusion handles non-linearities in conic form, but many
complex sets can be constructed from these.

■ Fusion makes it significantly faster to build complex
models.

■ Fusion overhead is small giving a good compromise
between efficiency and ease of use.

http://www.mosek.com

Fusion is included in MOSEK 7.0 and requires no extra license.

These slides and source code for examples are available at
http://mosek.com/resources/presentations/

	What is Fusion?
	What is Fusion?
	Why Fusion?

	Let's get to the code part!
	Portfolio model
	Portfolio model transformed
	Portfolio in Fusion/Python
	Traffic flow network
	Traffic flow network: original form
	Traffic flow network: conic form
	Traffic flow in Fusion/Python
	Modeling a complex cone: Geometric mean cone
	GM cone of power 2
	GM cone
	Geometric mean cone in Fusion/Python

	Performance
	Modeling and solving
	A sparse conic problem
	Performance test: chainsing.java
	Performance: Fusion vs. solver API

	Conclusions
	Conclusions
	

