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Outline

• Who are we? ... And what do we do?

• What is semidefinite programming (SDP) ?

• Power System Stability Assessment and SDP

• Power System Optimization and SDP
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DTU Center for Electric Power and Energy

• Established 15 Aug. 2012; merger of existing units (Lyngby+Risø)

• One of the strongest university centers in Europe with ⇠ 100 employees

Mission: Provides cutting-edge research, education and innovation in the field of electric power
and energy to meet the future needs of society regarding a reliable, cost e�cient and

environmentally friendly energy system

• BSc & MSc: Electrical Engineering, Wind Energy, Sustainable Energy

• Direct Support from: Energinet.dk, Siemens, DONG Energy, Danfoss

DTU ranked world 2nd in Energy Science and Engineering

1

1Shanghai Ranking 2016, Global Ranking of Academic Subjects
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The Energy Analytics & Markets group
One of the 5 groups of the Center for Electric Power and Energy,
Department of Electrical Engineering

• Resources: (10 nationalities)
• Faculty: 1 Prof, 2 Assist. Profs.

• Junior: 3 post-doc fellows, 9 Ph.D. students (+2
externals), 2-3 research assistants

• + student helpers, and Ph.D. guests from China,
Brazil, US, Spain, France, Italy, Netherlands,
Germany, etc.

• Projects (active in 2016):
• EU: BestPaths
• Danish: 5s, EcoGrid 2.0, CITIES, EnergyLab

Nordhavn, EnergyBlock, CORE, MULTI-DC
• Danish-Chinese: PROAIN

• Education: Various courses on renewables forecasting, optimization, and
electricity markets

• (hopefully) recognized leading expertise in energy analytics and markets
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What we really do...

Energy Analytics
& Markets

Data-driven
analytics

Forecasting
Clustering
& Profiling

Big data

Energy
markets

Design

Uncertainty,
variability

& flexibility

O↵ering
strategy

& trading
Modelling
& Sim-
ulation

System
models
& Opti-
mization

Stochastic
opti-

mization

Equilibrium
models

Large-scale
opti-

mization

Open dis-
semination

Open-
source

software

Open
access

datasets

Open
courses
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Research Topics (Selection)

• Optimal operation of combined heat, gas, and electricity networks

• Game theoretical approaches for electricity market participants

• Spatiotemporal forecasting for wind, solar, and energy demand

• Stochastic electricity market design and value of information

• HVDC optimization and control under uncertainty
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What is Semidefinite Programming? (SDP)

• SDP is the“generalized” form of an LP (linear program)

Linear Programming Semidefinite Programming

min cT · x

subject to:

ai · x = bi, i = 1, . . . ,m

x �0, x 2 R

n

minC • X :=
X

i

X

j

CijXij

subject to:

Ai • X = bi, i = 1, . . . ,m

X ⌫0

• LP: Optimization variables in the form of a vector x.

• SDP: Optim. variables in the form of a positive semidefinite matrix X.

• SDP=LP: for diagonal matrices
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Example: Feasible space of SDP vs LP variables

LP SDP

x1 � 0

x2 � 0
X =


x2 x1

x1 1

�
⌫ 0 ) x2 � x

2
1 � 0

x2

x1

x2

x1

• In SDP we can express quadratic constraints, e.g. x

2
1 or x1x2

• optimization variables need not be strictly non-negative

• LP is a special case of SDP
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SDP for Power System Stability and Optimization

SDP for Power System Stability SDP for Optimal Power Flow

find a feasible X

subject to:

Ai • X ⌫ 0

X ⌫0

minimize cost of electricity

min C • X

subject to:

voltage and power flow constraints

Ai • X = bi, i = 1, . . . ,m

X ⌫0
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Robust Power System Stability Assessment with Extensions
to Inertia and Topology Control

work with:
Thanh Long Vu, Kostya Turitsyn

MIT Mechanical Engineering
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Power blackouts

Statistics:

• 2003 US: 55M people; 2011 India: 700M people

• Frequency: ⇡ 1hr/year =) economic damage: ⇡ 100B$/year

• Total electric energy cost in US: ⇡ 400B$/year

Challenges and opportunities:

• New algorithms for better decision-making
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Dynamic Security Assessment

• Security = ability to withstand
disturbances

• Security Assessment:

• Screen contingency list every
15 mins

• Prepare contingency plans
for critical scenarios.

• Dynamic simulations are hard:

• DAE system with about 10k degrees of freedom
• Faster than real-time simulations is an open research topic

• Alternative: Energy methods = Security certificates
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Security certificates

С0 

• Security region: non-convex, NP-hard characterization

• Security certificates: tractable su�cient conditions

• Strategy: certify security of most of scenarios with conservative
conditions, use simulations for few really dangerous scenarios

14 DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017



Security certificates

С0 

С1 

• Security region: non-convex, NP-hard characterization

• Security certificates: tractable su�cient conditions

• Strategy: certify security of most of scenarios with conservative
conditions, use simulations for few really dangerous scenarios

14 DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017



Security certificates

С0 

С1 С2 

• Security region: non-convex, NP-hard characterization

• Security certificates: tractable su�cient conditions
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Closest mechanical equivalent to a power system
is a mass-spring system

	

~ ~ 

~ 
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Energy method

Stable Equilibrium Point

Unstable Equilibrium Point

!

?

• If E(�0, �̇0) < ECUEP , then stable

• Fast transient stability certificate

• Computing ECUEP is an NP-hard problem

• Certificates are generally conservative
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Modeling Approach
• Non-linear swing equation

mk�̈k + dk�̇k +
X

j2Nk

akj sin(�k � �j) =Pk (1)

mk�̈k + dk�̇k +
X

j2Nk

akj(sin(�kj) � sin(�⇤kj)) = 0 (2)

ẋ = Ax � BF (Cx) (3)

• Structure-preserving model: A and B do not correspond to the reduced
model

•
x = �i � �

⇤
i

•
A, B, C are independent of the operating point Pk

•
F (Cx) stands for the non-linear function sin(�kj) � sin(�⇤kj)
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Bounding nonlinearity

• Sector bound on nonlinearity for polytope P : {�, �̇ : |�kj | <

⇡
2 }
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Stability certificate

• If:

Ā

T
P + PĀ+

(1 � g)2

4
C

T
C + PBB

T
P � 0 (4)

• there exists a quadratic Lyapunov function V = x

T
Px that is decreasing

whenever x(t) 2 P.
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Stability region
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• Lyapunov function x

T
Px is an ellipsoid

• Due to the sector bound on the nonlinear sin() term, stability is certified
only as long as we stay within [�⇡/2, ⇡/2]

• Finding the Vmin within these bounds is now a convex problem!

• We can solve (even large) convex problems fast and e�ciently
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Extensions to Remedial Actions

• Can incorporate inertia and
damping control by appropriately
changing A and B ) bound the
growth of Lyapunov function

0.45 0.5 0.55 0.6 0.65 0.7 0.75

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Rotor Angle

An
gu

la
r V

el
oc

ity

Fault−on
trajectory

Post−fault trajectory

δ∗pre = δ∗post = δ∗
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• Can incorporate topology control,
e.g. FACTS, by appropriately
changing A and B ) generate a
set of ellipsoids that will
guarantee the convergence of x0

to the post-fault equilibrium
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Convex Relaxations of Chance Constrained AC Optimal
Power Flow

work with:
Andreas Venzke
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The Optimal Power Flow Problem (OPF)

minimize the cost of electricity generation

subject to:

demand of electric loads

maximum power of generators

maximum power capacity of transmission lines

voltage limits

• The problem is:

• non-linear: power flow depends on the square of voltages
• non-convex: there are more than one (local) minima
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Convex vs. Non-convex Problem

Convex Problem Non-convex problem

x

Cost
f(x)

x

Cost
f(x)

One global minimum Several local minima
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Several local minima: So what?

• Electricity Markets: Assume that
the di↵erence in the cost function
of a local minimum versus a
global minimum is 2%

• The total electric energy cost in
the US is ⇡ 400 Billion$/year

• 2% amounts to 8 billion US$ in
economic losses per year x

Cost
f(x)

• Technical operation: Convex OPF determines absolute lower or upper
bound of control e↵ort ! useful in branch-and-bound methods for mixed
integer programming, e.g. unit commitment, capacitor switching

• Convex problems guarantee that we find a global minimum ! convexify
the OPF problem
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Convexifying the Optimal Power Flow problem
(OPF)

• Convex relaxation transforms
OPF to convex Semi-Definite
Program (SDP)

• Under certain conditions, the
obtained solution is the global
optimum to the original OPF
problem2

x

Cost
f(x)

Convex Relaxation

2Javad Lavaei and Steven H Low. “Zero duality gap in optimal power flow problem”. In:
IEEE Transactions on Power Systems 27.1 (2012), pp. 92–107
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Transforming the AC-OPF to an SDP

• Power is a quadratic function of voltage, e.g.: Pij = f(V 2
i , V

2
j , ViVj)

• Let W = V V

T and express P = f(W ). In that case, P is an a�ne
function of W .

• If W ⌫ 0 and rank(W ) = 1:

W can be expressed as a product of vectors and we can recover the
solution V to our original problem

• However the rank-1 constraint is non-convex. . .
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Applying convex relaxations with SDP

x

f(x) f̃(Y ⇤)  f(x⇤)

x

f(x)

f(x⇤) = f̃(Y ⇤)

rank(Y ⇤) = 1

EXACT: W = V V

T

+
RELAX: W ⌫ 0

(((((((rank(W ) = 1

• For the objective functions,
it holds EXACT � RELAX

• The RELAX problem is an
SDP problem!

• If W

⇤ happens also to be
rank-1, then EXACT =
RELAX!
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Notes on the Convex Relaxation

• Relaxation gap: Di↵erence between the solution of
original non-convex, non-linear OPF and the SDP

x

Cost
f(x)

f̃(x)

• If rank(W ) = 1 or 2: solution to original OPF problem can be recovered
! global optimum

• If rank(W ) � 3: the solution W has no physical meaning (but still it is a
lower bound)

• Molzahn3 derives a heuristic rule: if the ratio of the 2nd to the 3rd
eigenvalue of W is larger than 105 ! we obtain rank-2.

3Daniel K Molzahn et al. “Implementation of a large-scale optimal power flow solver based on
semidefinite programming”. In: IEEE Transactions on Power Systems 28.4 (2013),
pp. 3987–3998.
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Introducing Uncertainty

• Increasing share of uncertain renewables
) Include chance constraints in OPF:
Constraints should be fullfilled for a defined
probability ✏, given an underlying distribution
of the uncertainty

PWi

Probability

• Uncertainty in wind forecast errors

• Our Goal: Convex Chance-Constrained AC-OPF

• Pros:

• Can consider losses and large uncertainty deviations
• Considers reactive power ! reactive power flow control
• Convex ! can find global optimum

• Cons:

• Scalable?
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Uncertainty Sets - Rectangular & Gaussian
How to model the uncertainty distribution of forecast errors �PWi?

PW1

PW2

P

f
W1

� �P

max
W1

P

f
W1

P

f
W1

+�P

max
W1

P

f
W2

P

f
W2

+
�P

max
W2

P

f
W2

�
�P

max
W2

W0

Rectangular uncertainty set: General
non-Gaussian distributions. Upper and lower
bounds are known a-priori.

PW1

PW2

P

f
W1

� �P

max
W1

P

f
W1

P

f
W1

+�P

max
W1

P

f
W2

P

f
W2

+
�P

max
W2

P

f
W2

�
�P

max
W2

W0

Ellipsoid uncertainty set: Multivariate Gaussian
distribution with known standard deviation and
confidence interval ✏.

• First steps taken in Vrakopoulou et al, 2013. Here we extend this work in
several ways.

3M. Vrakopoulou, M. Katsampani, K. Margellos, J. Lygeros, G. Andersson. “Probabilistic
security-constrained AC optimal power flow”. In: IEEE PowerTech (POWERTECH). Grenoble,
France, 201231 DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017
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Formulation for Rectangular Uncertainty Set

PW1

PW2

P

f
W1

� �P

max
W1

P

f
W1

P

f
W1

+�P

max
W1

P

f
W2

P

f
W2

+
�P

max
W2

P

f
W2

�
�P

max
W2

W0

B̃1 B̃2

B̃3 B̃4

• It su�ces to enforce the chance constraints at the vertices v of the
uncertainty set4.

4Kostas Margellos, Paul Goulart, and John Lygeros. “On the road between robust optimization
and the scenario approach for chance constrained optimization problems”. In: IEEE Transactions
on Automatic Control 59.8 (2014), pp. 2258–2263.
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Test System

2
8 7 6

3

9

4
1

G3G2

G1

W2L1L2

5
L3 W1

Modified IEEE 9-bus system with wind farms W1 and W2

• W1 with ± 50 MW deviation inside confidence interval

• W2 with ± 40 MW deviation inside confidence interval

• SDP-Solver: MOSEK v8

• Coded with Julia (open-source)
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Simulation Results
A�ne Policy for Rectangular Uncertainty Set

Generator droops d1 = [0.5 0.25 0.25 0 -1 0 0 0 0]
Generator droops d2 = [0.5 0.25 0.25 0 0 0 -1 0 0]

Weight power loss µ = 0.4 $
hMW

Generator cost 3378.73 $
h

Eigenvalue ratios ⇢(W0) = 6.4 ⇥ 106

⇢⇤(W0 + �P̃ max
1 B̃1) = 2.5 ⇥ 105

⇢⇤(W0 + �P̃ max
2 B̃2) = 2.4 ⇥ 105

⇢⇤(W0 + �P̃ max
3 B̃3) = 2.7 ⇥ 106

⇢⇤(W0 + �P̃ max
4 B̃4) = 1.9 ⇥ 106

• we satisfy the
conditions to
obtain the global
optimum

# Gen VG PG QG V ⇤
G P⇤

G Q⇤
G

[p.u.] [MW] [Mvar] [p.u.] [MW] [Mvar]

G1 1.10 64.70 8.09 1.07 60.96 31.00
G2 1.09 97.21 -12.17 1.10 95.34 32.70
G3 1.08 65.43 -32.98 0.97 63.56 -80.45
W1 — 50.00 11.45 — 100.00 22.94
W2 — 40.00 1.39 — 0.00 0.00

P
— 317.34 -24.23 — 319.86 6.18

# Branch from to Plm P⇤
lm Qlm Q⇤

lm
[MW] [MW] [Mvar] [Mvar]

3 5 6 42.87 67.50 -24.07 -35.04

Maximum voltage [p.u.] V max 1.100 (V max)⇤ 1.100

• all constraints are
satisfied

• we find the true
global minimum
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Ongoing Work

• Convex formulation for chance-constrained AC-OPF5

• Investigating the conditions to obtain zero relaxation gap

• Investigating how to achieve scalability

• Extending this formulation to combined AC and HVDC grids

5A. Venzke, L. Halilbasic, U. Markovic, G. Hug, and S. Chatzivasileiadis. Convex Relaxations
of Chance Constrained AC Optimal Power Flow. Submitted. [Online]:
arxiv.org/abs/1702.08372. 2017
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Conclusions

•“Semidefinite programming is the most exciting development in
mathematical programming in the 1990’s”6

• Power interruptions are extremely costly; secure operation is challenging

• SDP-based methods can extract less conservative stability certificates

• Large systems have high costs ) cannot a↵ord to find a suboptimal local
minimum

• SDP-based optimization allows to recover the global optimum
• We introduced convex relaxations for a chance-constrained AC-OPF

• Challenges: Numerics & scalability

6Robert M. Freund. Introduction to Semidefinite Programming. MIT Lecture Notes. 2009.
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Thank you!

spchatz@elektro.dtu.dk
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