Semidefinite Programming for Power System Stability and Optimization

MOSEK Workshop on Semidefinite Optimization in Power Flow Problems

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^{i}}{i!} f^{(i)}$

Spyros Chatzivasileiadis

DTU Center for Electric Power and Energy

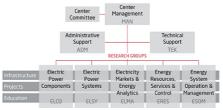
DTU Electrical Engineering Department of Electrical Engineering

Outline

- Who are we? ... And what do we do?
- What is semidefinite programming (SDP) ?
- Power System Stability Assessment and SDP
- Power System Optimization and SDP

DTU Center for Electric Power and Energy

- Established 15 Aug. 2012; merger of existing units (Lyngby+Risø)
- \bullet One of the strongest university centers in Europe with \sim 100 employees



Mission: Provides cutting-edge research, education and innovation in the field of electric power and energy to meet the future needs of society regarding a reliable, cost efficient and environmentally friendly energy system

- BSc & MSc: Electrical Engineering, Wind Energy, Sustainable Energy
- Direct Support from: Energinet.dk, Siemens, DONG Energy, Danfoss

DTU ranked world 2nd in Energy Science and Engineering¹

¹Shanghai Ranking 2016, Global Ranking of Academic Subjects

3 DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

The Energy Analytics & Markets group

One of the 5 groups of the Center for Electric Power and Energy, Department of Electrical Engineering

- Resources: (10 nationalities)
 - Faculty: 1 Prof, 2 Assist. Profs.
 - Junior: 3 post-doc fellows, 9 Ph.D. students (+2 externals), 2-3 research assistants
 - + student helpers, and Ph.D. guests from China, Brazil, US, Spain, France, Italy, Netherlands, Germany, etc.
- Projects (active in 2016):
 - EU: BestPaths
 - Danish: 5s, EcoGrid 2.0, CITIES, EnergyLab Nordhavn, EnergyBlock, CORE, MULTI-DC
 - Danish-Chinese: PROAIN
- Education: Various courses on renewables forecasting, optimization, and electricity markets
- (hopefully) recognized leading expertise in energy analytics and markets

DTU Electrical Engineering 5

Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

- Optimal operation of combined heat, gas, and electricity networks
- Game theoretical approaches for electricity market participants
- Spatiotemporal forecasting for wind, solar, and energy demand
- Stochastic electricity market design and value of information
- HVDC optimization and control under uncertainty

Outline

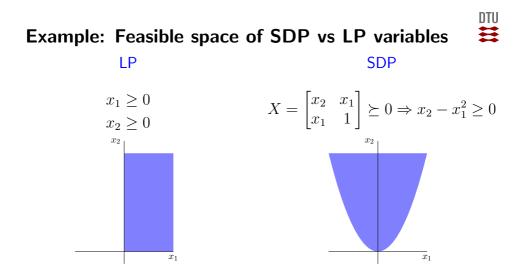
- \bullet Who are we? \ldots and what we do
- What is semidefinite programming (SDP) ?
- Power System Stability Assessment and SDP
- Power System Optimization and SDP

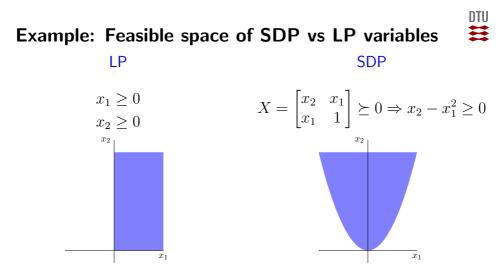
What is Semidefinite Programming? (SDP)

• SDP is the "generalized" form of an LP (linear program)

Linear ProgrammingSemidefinite Programming $\min c^T \cdot x$ $\min C \bullet X := \sum_i \sum_j C_{ij} X_{ij}$ $\operatorname{subject to:}$ $\operatorname{subject to:}$ $a_i \cdot x = b_i, \quad i = 1, \dots, m$ $A_i \bullet X = b_i, \quad i = 1, \dots, m$ $x \ge 0, \quad x \in R^n$ $X \succeq 0$

- LP: Optimization variables in the form of a vector x.
- SDP: Optim. variables in the form of a positive semidefinite matrix X.
- SDP=LP: for diagonal matrices





- In SDP we can express quadratic constraints, e.g. x_1^2 or x_1x_2
- optimization variables need not be strictly non-negative
- LP is a special case of SDP

subject to:

SDP for Power System Stability and Optimization **E**

SDP for Power System Stability

find a feasible X

SDP for Optimal Power Flow

minimize cost of electricity min $C \bullet X$

voltage and power flow constraints

$$A_i \bullet X = b_i, \quad i = 1, \dots, m$$

 $X \succeq 0$

$$\begin{array}{c} A_i \bullet X \succeq 0 \\ X \succeq 0 \end{array}$$

Robust Power System Stability Assessment with Extensions to Inertia and Topology Control

work with: Thanh Long Vu, Kostya Turitsyn MIT Mechanical Engineering

Power blackouts

Blackout viewed from satellite close 🙆 DURING THE BLACKOL

SOURCE: NOAA.gov

Power blackouts

Statistics:

- 2003 US: 55M people; 2011 India: 700M people
- Frequency: $\approx 1hr/year \Longrightarrow$ economic damage: $\approx 100B\$/year$
- Total electric energy cost in US: $\approx 400B\$/year$

Power blackouts

Statistics:

- 2003 US: 55M people; 2011 India: 700M people
- Frequency: $\approx 1hr/year \implies$ economic damage: $\approx 100B\$/year$
- Total electric energy cost in US: $\approx 400B\$/year$

Challenges and opportunities:

• New algorithms for better decision-making

Dynamic Security Assessment

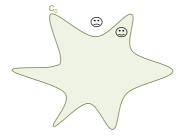
- Security = ability to withstand disturbances
- Security Assessment:
 - Screen contingency list every 15 mins
 - Prepare contingency plans for critical scenarios.

Dynamic Security Assessment

- Dynamic simulations are hard:
 - DAE system with about 10k degrees of freedom
 - Faster than real-time simulations is an open research topic
- Alternative: Energy methods = Security certificates

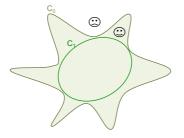
- Security = ability to withstand disturbances
- Security Assessment:
 - Screen contingency list every 15 mins
 - Prepare contingency plans for critical scenarios.

Security certificates



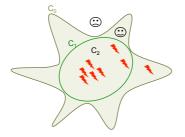
• Security region: non-convex, NP-hard characterization

Security certificates



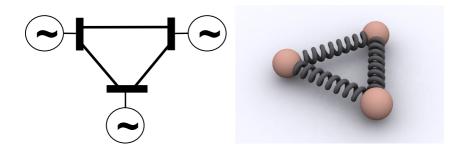
- Security region: non-convex, NP-hard characterization
- Security certificates: tractable sufficient conditions

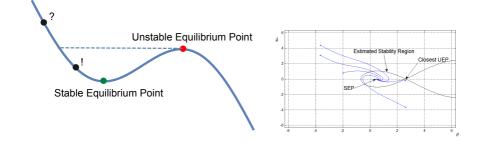
Security certificates



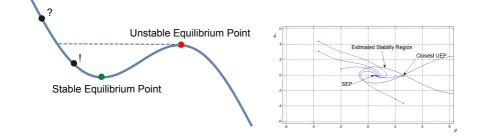
- Security region: non-convex, NP-hard characterization
- Security certificates: tractable sufficient conditions
- Strategy: certify security of most of scenarios with conservative conditions, use simulations for few really dangerous scenarios

Closest mechanical equivalent to a power system is a mass-spring system

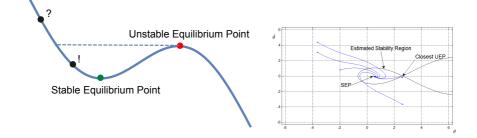




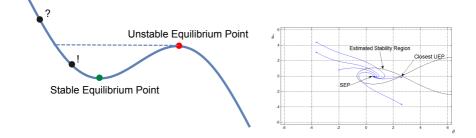
• If $E(\delta_0, \dot{\delta}_0) < E_{CUEP}$, then stable



- If $E(\delta_0, \dot{\delta}_0) < E_{CUEP}$, then stable
- Fast transient stability certificate



- If $E(\delta_0, \dot{\delta}_0) < E_{CUEP}$, then stable
- Fast transient stability certificate
- Computing E_{CUEP} is an NP-hard problem



- If $E(\delta_0, \dot{\delta}_0) < E_{CUEP}$, then stable
- Fast transient stability certificate
- Computing E_{CUEP} is an NP-hard problem
- Certificates are generally conservative

Modeling Approach

• Non-linear swing equation

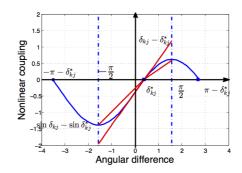
$$m_k \ddot{\delta}_k + d_k \dot{\delta}_k + \sum_{j \in \mathcal{N}_k} a_{kj} \sin(\delta_k - \delta_j) = P_k$$
(1)

$$m_k \ddot{\delta}_k + d_k \dot{\delta}_k + \sum_{j \in \mathcal{N}_k} a_{kj} (\sin(\delta_{kj}) - \sin(\delta_{kj}^*)) = 0$$
(2)

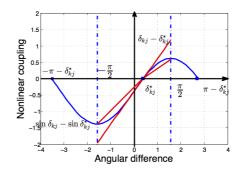
$$\dot{x} = Ax - BF(Cx) \tag{3}$$

- \bullet Structure-preserving model: A and B do not correspond to the reduced model
- $x = \delta_i \delta_i^*$
- A, B, C are independent of the operating point P_k
- F(Cx) stands for the non-linear function $sin(\delta_{kj}) sin(\delta_{kj}^*)$
- 17 DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

Bounding nonlinearity



Bounding nonlinearity



• Sector bound on nonlinearity for polytope $\mathcal{P}: \{\delta, \dot{\delta}: |\delta_{kj}| < \frac{\pi}{2}\}$

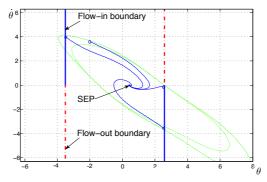
Stability certificate

• If:

$$\bar{A}^T P + P\bar{A} + \frac{(1-g)^2}{4}C^T C + PBB^T P \preceq 0$$
 (4)

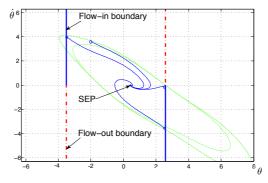
• there exists a quadratic Lyapunov function $V = x^T P x$ that is decreasing whenever $x(t) \in \mathcal{P}$.

Stability region



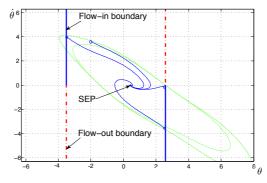
• Lyapunov function $x^T P x$ is an ellipsoid

Stability region



- Lyapunov function $x^T P x$ is an ellipsoid
- Due to the sector bound on the nonlinear $\sin()$ term, stability is certified only as long as we stay within $[-\pi/2,\pi/2]$

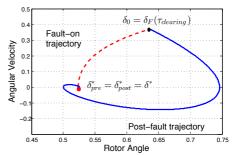
Stability region



- Lyapunov function $x^T P x$ is an ellipsoid
- Due to the sector bound on the nonlinear $\sin()$ term, stability is certified only as long as we stay within $[-\pi/2,\pi/2]$
- Finding the V_{min} within these bounds is now a convex problem!
 - We can solve (even large) convex problems fast and efficiently

Extensions to Remedial Actions

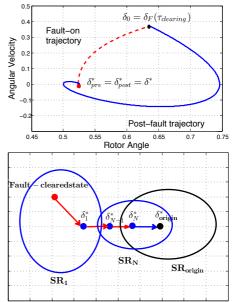
 Can incorporate inertia and damping control by appropriately changing A and B ⇒ bound the growth of Lyapunov function



Extensions to Remedial Actions

 Can incorporate inertia and damping control by appropriately changing A and B ⇒ bound the growth of Lyapunov function

• Can incorporate topology control, e.g. FACTS, by appropriately changing A and $B \Rightarrow$ generate a set of ellipsoids that will guarantee the convergence of x_0 to the post-fault equilibrium



Convex Relaxations of Chance Constrained AC Optimal Power Flow

work with: Andreas Venzke

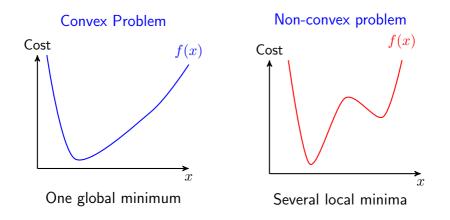
The Optimal Power Flow Problem (OPF)

minimize the cost of electricity generation

subject to:

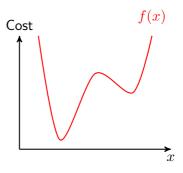
- demand of electric loads
- maximum power of generators
- maximum power capacity of transmission lines
- voltage limits
- The problem is:
 - non-linear: power flow depends on the square of voltages
 - non-convex: there are more than one (local) minima

Convex vs. Non-convex Problem



Several local minima: So what?

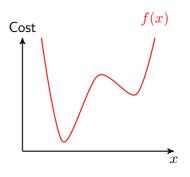
- Electricity Markets: Assume that the difference in the cost function of a local minimum versus a global minimum is 2%
- The total electric energy cost in the US is \approx 400 Billion\$/year
- 2% amounts to 8 billion US\$ in economic losses per year



- Technical operation: Convex OPF determines absolute lower or upper bound of control effort → useful in branch-and-bound methods for mixed integer programming, e.g. unit commitment, capacitor switching
- \bullet Convex problems guarantee that we find a global minimum \rightarrow convexify the OPF problem

Convexifying the Optimal Power Flow problem (OPF)

• Convex relaxation transforms OPF to convex Semi-Definite Program (SDP)



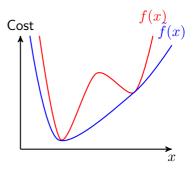
Convex Relaxation

 $^{^2}$ Javad Lavaei and Steven H Low. "Zero duality gap in optimal power flow problem". In: IEEE Transactions on Power Systems 27.1 (2012), pp. 92–107

²⁶ DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

Convexifying the Optimal Power Flow problem (OPF)

• Convex relaxation transforms OPF to convex Semi-Definite Program (SDP)

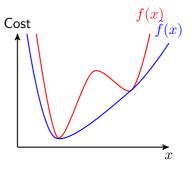


Convex Relaxation

 2 Javad Lavaei and Steven H Low. "Zero duality gap in optimal power flow problem". In: IEEE Transactions on Power Systems 27.1 (2012), pp. 92–107

Convexifying the Optimal Power Flow problem (OPF)

- Convex relaxation transforms OPF to convex Semi-Definite Program (SDP)
- Under certain conditions, the obtained solution is the global optimum to the original OPF problem²



Convex Relaxation

²Javad Lavaei and Steven H Low. "Zero duality gap in optimal power flow problem". In: *IEEE Transactions on Power Systems* 27.1 (2012), pp. 92–107

²⁶ DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

Transforming the AC-OPF to an SDP

• Power is a quadratic function of voltage, e.g.: $P_{ij} = f(V_i^2, V_j^2, V_i V_j)$

Transforming the AC-OPF to an SDP

- Power is a quadratic function of voltage, e.g.: $P_{ij} = f(V_i^2, V_j^2, V_i V_j)$
- Let $W = VV^T$ and express P = f(W). In that case, P is an affine function of W.

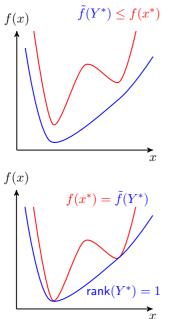
Transforming the AC-OPF to an SDP

- Power is a quadratic function of voltage, e.g.: $P_{ij} = f(V_i^2, V_j^2, V_i V_j)$
- Let $W = VV^T$ and express P = f(W). In that case, P is an affine function of W.
- If $W \succeq 0$ and rank(W) = 1:

 ${\cal W}$ can be expressed as a product of vectors and we can recover the solution ${\cal V}$ to our original problem

• However the rank-1 constraint is non-convex...

Applying convex relaxations with SDP

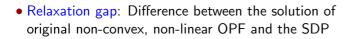


EXACT: $W = VV^T$ \downarrow RELAX: $W \succeq 0$ rank(W) = 1

- For the objective functions, it holds $EXACT \ge RELAX$
- The RELAX problem is an SDP problem!
- If *W*^{*} happens also to be rank-1, then EXACT = RELAX!

Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

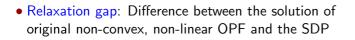
Notes on the Convex Relaxation

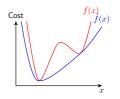


³Daniel K Molzahn et al. "Implementation of a large-scale optimal power flow solver based on semidefinite programming". In: IEEE Transactions on Power Systems 28.4 (2013), pp. 3987-3998.

DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017 29

Notes on the Convex Relaxation



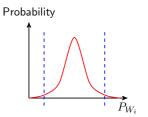


- If rank(W) = 1 or 2: solution to original OPF problem can be recovered \rightarrow global optimum
- If rank $(W) \ge 3$: the solution W has no physical meaning (but still it is a lower bound)
- Molzahn³ derives a heuristic rule: if the ratio of the 2nd to the 3rd eigenvalue of W is larger than $10^5 \rightarrow$ we obtain rank-2.

³Daniel K Molzahn et al. "Implementation of a large-scale optimal power flow solver based on semidefinite programming". In: *IEEE Transactions on Power Systems* 28.4 (2013), pp. 3987–3998.

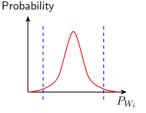
Introducing Uncertainty

Increasing share of uncertain renewables
 ⇒ Include chance constraints in OPF:
 Constraints should be fullfilled for a defined
 probability ε, given an underlying distribution
 of the uncertainty



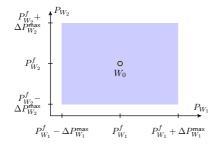
Introducing Uncertainty

- Increasing share of uncertain renewables
 ⇒ Include chance constraints in OPF:
 Constraints should be fullfilled for a defined
 probability ε, given an underlying distribution
 of the uncertainty
 - Uncertainty in wind forecast errors
 - Our Goal: Convex Chance-Constrained AC-OPF
 - Pros:
 - Can consider losses and large uncertainty deviations
 - \bullet Considers reactive power \rightarrow reactive power flow control
 - \bullet Convex \rightarrow can find global optimum
 - Cons:
 - Scalable?



Uncertainty Sets - Rectangular & Gaussian

How to model the uncertainty distribution of forecast errors ΔP_{W_i} ?

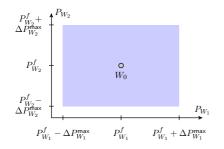


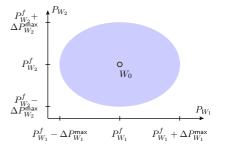
Rectangular uncertainty set: General non-Gaussian distributions. Upper and lower bounds are known a-priori.

³M. Vrakopoulou, M. Katsampani, K. Margellos, J. Lygeros, G. Andersson. "Probabilistic security-constrained AC optimal power flow". In: *IEEE PowerTech (POWERTECH)*. Grenoble, Stanoft Decrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

Uncertainty Sets - Rectangular & Gaussian

How to model the uncertainty distribution of forecast errors ΔP_{W_i} ?





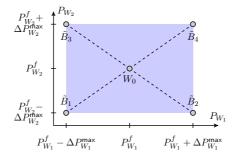
Rectangular uncertainty set: General non-Gaussian distributions. Upper and lower bounds are known a-priori.

Ellipsoid uncertainty set: Multivariate Gaussian distribution with known standard deviation and confidence interval ϵ .

• First steps taken in Vrakopoulou et al, 2013. Here we extend this work in several ways.

³M. Vrakopoulou, M. Katsampani, K. Margellos, J. Lygeros, G. Andersson. "Probabilistic security-constrained AC optimal power flow". In: *IEEE PowerTech (POWERTECH)*. Grenoble, Stanoft Welchical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

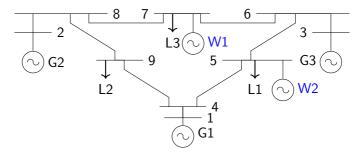
Formulation for Rectangular Uncertainty Set



• It suffices to enforce the chance constraints at the vertices v of the uncertainty set⁴.

⁴Kostas Margellos, Paul Goulart, and John Lygeros. "On the road between robust optimization and the scenario approach for chance constrained optimization problems". In: *IEEE Transactions on Automatic Control* 59.8 (2014), pp. 2258–2263.

Test System



Modified IEEE 9-bus system with wind farms W1 and W2

- \bullet W1 with \pm 50 $\,$ MW deviation inside confidence interval
- \bullet W2 with \pm 40 $\,$ MW deviation inside confidence interval
- SDP-Solver: MOSEK v8
- Coded with Julia (open-source)

Simulation Results

Affine Policy for Rectangular Uncertainty Set

Generator droops Generator droops Weight power loss	
Generator cost Eigenvalue ratios	$\begin{array}{l} 3378.73 \ \frac{8}{h} \\ \rho(W_0) = 6.4 \times 10^6 \\ \rho^*(W_0 + \Delta \tilde{P}_1^{\max} \tilde{B}_1) = 2.5 \times 10^5 \\ \rho^*(W_0 + \Delta \tilde{P}_2^{\max} \tilde{B}_2) = 2.4 \times 10^5 \\ \rho^*(W_0 + \Delta \tilde{P}_3^{\max} \tilde{B}_3) = 2.7 \times 10^6 \\ \rho^*(W_0 + \Delta \tilde{P}_4^{\max} \tilde{B}_4) = 1.9 \times 10^6 \end{array}$

• we satisfy the conditions to obtain the global optimum

# Gen	V_G [p.u.]	P_G [MW]	Q_G [Mvar]	V_G^* [p.u.]	P_G^* [MW]	Q_G^* [Mvar]
G1 G2 G3 W1 W2	1.10 1.09 1.08 	64.70 97.21 65.43 50.00 40.00	8.09 -12.17 -32.98 11.45 1.39	1.07 1.10 0.97	60.96 95.34 63.56 100.00 0.00	31.00 32.70 -80.45 22.94 0.00
Σ	—	317.34	-24.23	—	319.86	6.18
# Branch	from	to	P_{lm} [MW]	P_{lm}^{*} [MW]	Q_{lm} [Mvar]	Q_{lm}^* [Mvar]
3	5	6	42.87	67.50	-24.07	-35.04
Maximum voltage [p.u.]			V ^{max}	1.100	$(V^{max})^*$	1.100

- all constraints are satisfied
- we find the true global minimum

Ongoing Work

- Convex formulation for chance-constrained AC-OPF⁵
- Investigating the conditions to obtain zero relaxation gap
- Investigating how to achieve scalability
- Extending this formulation to combined AC and HVDC grids

⁵A. Venzke, L. Halilbasic, U. Markovic, G. Hug, and S. Chatzivasileiadis. *Convex Relaxations of Chance Constrained AC Optimal Power Flow*. Submitted. [Online]: arxiv.org/abs/1702.08372. 2017

Conclusions

- "Semidefinite programming is the most exciting development in mathematical programming in the 1990's"⁶
- Power interruptions are extremely costly; secure operation is challenging
 - SDP-based methods can extract less conservative stability certificates
- \bullet Large systems have high costs \Rightarrow cannot afford to find a suboptimal local minimum
 - SDP-based optimization allows to recover the global optimum
 - We introduced convex relaxations for a chance-constrained AC-OPF
- Challenges: Numerics & scalability

 ⁶Robert M. Freund. Introduction to Semidefinite Programming. MIT Lecture Notes. 2009.
 ³⁶ DTU Electrical Engineering Semidefinite Programming for Power System Stability and Optimization Feb 28, 2017

Thank you!

spchatz@elektro.dtu.dk

References:

T.L. Vu and K. Turitsyn. "A Framework for Robust Assessment of Power Grid Stability and Resiliency". In: *IEEE Transactions on Automatic Control* PP.99 (2016), pp. 1–1. ISSN: 0018-9286. DOI: 10.1109/TAC.2016.2579743

S. Chatzivasileiadis, T.L. Vu, and K. Turitsyn. "Remedial Actions to Enhance Stability of Low-Inertia Systems". In: *IEEE Power and Energy Society General Meeting 2016, Boston, MA, USA*. 2016, pp. 1–5

T.L. Vu, S. Chatzivasileiadis, H.D. Chang, and K. Turitsyn. "Structural Emergency Control Paradigm". In: *IEEE Journal on Emerging and Selected Topics in Circuits and Systems* (2017). Accepted. [Online]: arxiv.org/abs/1607.08183

A. Venzke, L. Halilbasic, U. Markovic, G. Hug, and S. Chatzivasileiadis. *Convex Relaxations of Chance Constrained AC Optimal Power Flow*. Submitted. [Online]: arxiv.org/abs/1702.08372. 2017