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The pooling problem

• Oil is transported from 3 sources to 2
terminals through a capacitated
network.

• Source contamination parameters
{q1, q2, q3}.

• Source 1 and 2 blended at pool 4
with blend quality w4.

• Terminal quality requirements
{q5, q6}.

• Find a flow {xij} and blend w4 that
minimizes transportation cost and
satisfies quality requirements.
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Formulation of optimization problem

• Flow conservation at pools:

x14 + x24 = x45 + x46

• Defining equation for blend variable:

w4(x45 + x46) = q1x14 + q2x24

• Quality bounds at terminals:

w4x45 + q3x35 ≤ q5(x45 + x35)

w4x46 + q3x36 ≤ q6(x46 + x36)

• Capacity bounds:

x14 ≤ c1, x24 ≤ c2, x35+x36 ≤ c3

x45+x46 ≤ c4, x35+x45 ≤ c5, x36+x46 ≤ c6

• Nonnegativity of flow:

(x14, x24, x35, x36, x45, x46) ≥ 0
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Formulation of optimization problem

Minimum-cost formulation for Haverly

minimize x35 − 9x45 − 5x36 − 15x46 + 6x14 + 16x24
subject to x14 + x24 = x45 + x46

w4(x45 + x46) = q1x14 + q2x24
w4x45 + q3x35 ≤ q5(x45 + x35)
w4x46 + q3x36 ≤ q6(x46 + x36)
x14 ≤ c1, x24 ≤ c2
x35 + x36 ≤ c3
x45 + x46 ≤ c4
x35 + x45 ≤ c5
x36 + x46 ≤ c6
(x14, x24, x35, x36, x45, x46) ≥ 0

Very difficult to solve (NP hard)!



Introducing semidefinite variables

Let v :=
(

1 x35 x45 x36 x46 x14 x24 w4

)T
and define

X :=



1 x35 x45 x36 x46 x14 x24 w4

x35 x2
35 x35x45 x35x36 x35x46 x35x14 x35x24 x35w4

x45 x35x45 x2
45 x45x36 x45x46 x45x14 x45x24 x45w4

x36 x35x36 x45x36 x2
36 x36x46 x36x14 x36x24 x36w4

x46 x35x46 x45x46 x36x46 x2
46 x46x14 x46x24 x46w4

x14 x35x14 x45x14 x36x14 x46x14 x2
14 x14x24 x14w4

x24 x35x24 x45x24 x36x24 x46x24 x14x24 x2
24 x24w4

w4 x35w4 x45w4 x36w4 x46w4 x14w4 x24w4 w 2
4


• Note that X = vvT with rank 1.

• X contains all 36 monomials up to order 2.

• The pooling problem is equivalent to a nonconvex SDP in X .
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A nonconvex SDP

Treating each monomial as a separate variable, we get a rank-1 SDP:

minimize x35 − 9x45 − 5x36 − 15x46 + 6x14 + 16x24

subject to



1 x35 x45 x36 x46 x14 x24 w4

x35 x2
35 x35x45 x35x36 x35x46 x35x14 x35x24 x35w4

x45 x35x45 x2
45 x45x36 x45x46 x45x14 x45x24 x45w4

x36 x35x36 x45x36 x2
36 x36x46 x36x14 x36x24 x36w4
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4


= vvT

x14 + x24 = x45 + x46
w4x45 + w4x46 = q1x14 + q2x24
w4x45 + q3x35 ≤ q5(x45 + x35)
w4x46 + q3x36 ≤ q6(x46 + x36)
x14 ≤ c1, x24 ≤ c2
x35 + x36 ≤ c3
x45 + x46 ≤ c4
x35 + x45 ≤ c5
x36 + x46 ≤ c6
(x14, x24, x35, x36, x45, x46) ≥ 0.



Using Lasserre relaxations

Method proposed by Frimannslund, El Ghami, Alfaki and Haugland:

• Eliminate equality constraints,

x14 =
1

q1 − q2
w4(x45 + x46)− q2

q1 − q2
(x45 +

1

2
x46)

x24 = − 1

q1 − q2
w4(x45 + x46) +

q1
q1 − q2

(x45 +
1

2
x46)

• Tighten relaxation by redundant constraints,

min{q1, q2} ≤ w4 ≤ max{q1, q2}

• Solve sequence of Lasserre relaxations.

Solving the pooling problem with LMI relaxations, L. Frimmandslund, et. al, 2012.
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Frimannslund’s relaxation

minimize x35 + 12x45 − 5x36 + 6x46 − 5x45w4 − 5x46w4

subject to



1 x35 x45 x36 x46 w4

x35 x2
35 x35x45 x35x36 x35x46 x35w4

x45 x35x45 x2
45 x45x36 x45x46 x45w4

x36 x35x36 x45x36 x2
36 x36x46 x36w4

x46 x35x46 x45x46 x36x46 x2
46 x46w4

w4 x35w4 x45w4 x36w4 x46w4 w 2
4

 � 0

0 ≤ 1
2
x35 + 5

2
x45 − x45w4

0 ≤ − 1
2
x36 + 3

2
x46 − x46w4

0 ≤ − 1
2
x45 − 1

2
x46 + 1

2
x45w4 + 1

2
x46w4 ≤ 1

0 ≤ 3
2
x45 + 3

2
x46 − 1

2
x45w4 − 1

2
x46w4 ≤ 1

x35 + x36 ≤ 1
x45 + x46 ≤ 1
x35 + x45 ≤ (1/3)
x36 + x46 ≤ (2/3)

1 ≤ w4, w4 ≤ 3
x35, x36, x45, x46 ≥ 0

• 1st order Lasserre relaxation shown.

• Minor suggestion: square bounds instead of adding

x2
35 + x2

36 + x2
45 + x2

46 + w 2
4 ≤ M.
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Numerical experiments for Haverly1

(x14, x24, x35, x45, x36, x46,w4) = (0, 1/3, 0, 0, 1/3, 1/3, 1) found at relaxation order 2.

Problem and solver statistics

order 1 2 3
# LMIs 17 17 17

largest LMI 6 21 56
# vars 37 567 5292
# cons 20 125 461

time (sec) < 1 < 1 < 1

1
q1 = 3
c1 = 1

2
q2 = 1
c2 = 1

3
q3 = 1
c3 = 1

4

1 ≤ w4 ≤ 3
c4 = 1

5
q5 = 5/2
c5 = 1/3

6
q6 = 3/2
c6 = 1/3

x1,4

x2,4

x3,5

x3,6

x4,5

x4,6



Numerical experiments for Foulds2

• Optimal solution found at relaxation order 2.

• For order 3 we run out of memory.

Problem and solver statistics

order 1 2
# LMIs 41 41

largest LMI 19 190
# vars 230 25745
# cons 189 7314

time (sec) < 1 103
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Numerical experiments for Adhya1

• Optimal bound (probably) found at relaxation order 3.

• Feasible solution not recovered due to inaccuracies.

Problem and solver statistics

order 1 2 3
# LMIs 57 57 57

largest LMI 12 78 364
# vars 134 7449 238966
# cons 77 1364 12375

time (sec) < 1 8 1197

1qk1

2qk2

3qk3

4qk4

5qk5

6

wk
6

7

wk
7

8 qk8

9 qk9

10 qk10
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k = 1, . . . , 4



Exploiting sparse structure

Let us map all the monomials we actually need:

minimize x35 + 12x45 − 5x36 + 6x46 − 5x45w4 − 5x46w4

subject to



1 x35 x45 x36 x46 w4

x35 x2
35 x35x45 x35x36 x35x46 x35w4

x45 x35x45 x2
45 x45x36 x45x46 x45w4

x36 x35x36 x45x36 x2
36 x36x46 x36w4

x46 x35x46 x45x46 x36x46 x2
46 x46w4

w4 x35w4 x45w4 x36w4 x46w4 w 2
4

 � 0

0 ≤ 1
2
x35 + 5

2
x45 − x45w4

0 ≤ − 1
2
x36 + 3

2
x46 − x46w4

0 ≤ − 1
2
x45 − 1

2
x46 + 1

2
x45w4 + 1

2
x46w4 ≤ 1

0 ≤ 3
2
x45 + 3

2
x46 − 1

2
x45w4 − 1

2
x46w4 ≤ 1

(x35 + x36)2 ≤ 1
(x45 + x46)2 ≤ 1
(x35 + x45)2 ≤ (1/3)2

(x36 + x46)2 ≤ (2/3)2

1 ≤ w4, w
2
4 ≤ 32

x35, x36, x45, x46 ≥ 0
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Chordal embedding

X =



1 x35 x45 x36 x46 w4

x35 x2
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w4 x35w4 x45w4 x36w4 x46w4 w 2
4

 � 0

• In a chordal embedding we add x45x36.

• For the chordal matrix we identify the cliques:

I1 = {1, x35, x45, x36,w4}, I2 = {1, x45, x36, x46,w4}.

• Semidefinite matrix completion:

XI1,I1 � 0, XI2,I2 � 0 ⇐⇒ ∃x35x46 : X � 0

• I.e., x35x46 can be eliminated.

Exploiting “Correlative sparsity pattern”, Waki et. al, Lasserre, Mevissen.
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Chordal relaxation for Foulds2

• Optimal solution found at relaxation order 2 for both versions.

• For order 3 we run out of memory for both versions.

Standard Lasserre relaxations

order 1 2
# LMIs 41 41

largest LMI 19 190
# vars 230 25745
# cons 189 7314

time (sec) < 1 103

Chordal Lasserre relaxations

order 1 2
# LMIs 41 41

largest LMI 13 91
# vars 230 14828
# cons 189 7314

time (sec) < 1 25



Chordal relaxation for Adhya1

• The 2nd order chordal relaxation is weaker than the dense version.

• Optimal bound found at relaxation order 3 for both versions.

• The solution to the chordal version is feasible.

Standard Lasserre relaxations

order 1 2 3
# LMIs 57 57 57

largest LMI 12 78 364
# vars 134 7449 238966
# cons 77 1364 12375

time (sec) < 1 8 1197

Chordal Lasserre relaxations

order 1 2 3
# LMIs 59 59 59

largest LMI 10 55 220
# vars 201 6230 114710
# cons 77 1364 12375

time (sec) < 1 3 218



Tighter relaxations

X :=



1 x35 x45 x36 x46 x14 x24 w4

x35 x2
35 x35x45 x35x36 x35x46 x35x14 x35x24 x35w4

x45 x35x45 x2
45 x45x36 x45x46 x45x14 x45x24 x45w4

x36 x35x36 x45x36 x2
36 x36x46 x36x14 x36x24 x36w4

x46 x35x46 x45x46 x36x46 x2
46 x46x14 x46x24 x46w4

x14 x35x14 x45x14 x36x14 x46x14 x2
14 x14x24 x14w4

x24 x35x24 x45x24 x36x24 x46x24 x14x24 x2
24 x24w4

w4 x35w4 x45w4 x36w4 x46w4 x14w4 x24w4 w 2
4


� 0.

• Since (x35, x45, x36, x46, x14, x24,w4) ≥ 0 then Xij ≥ 0.

• X is doubly nonnegative.

• Adding some of the constraints Xij ≥ 0 is very cheap, but strengthens
the relaxation.

• Adding all the constraints Xij ≥ 0 is still cheaper than increasing the
relaxation order.
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Other ideas

Reconsider that first minimum-cost formulation:

minimize x35 − 9x45 − 5x36 − 15x46 + 6x14 + 16x24
subject to x14 + x24 = x45 + x46

w4(x45 + x46) = q1x14 + q2x24
w4x45 + q3x35 ≤ q5(x45 + x35)
w4x46 + q3x36 ≤ q6(x46 + x36)
x14 ≤ c1, x24 ≤ c2
x35 + x36 ≤ c3
x45 + x46 ≤ c4
x35 + x45 ≤ c5
x36 + x46 ≤ c6
(x14, x24, x35, x36, x45, x46) ≥ 0

• Keep equality constraints to get sparser (but larger) LMIs.

• Specialize the Lasserre relaxations for bilinear problems.

• Break up cliques by adding simple redundant constraints.



Other ideas

Reconsider that first minimum-cost formulation:

minimize x35 − 9x45 − 5x36 − 15x46 + 6x14 + 16x24
subject to x14 + x24 = x45 + x46

w4(x45 + x46) = q1x14 + q2x24
w4x45 + q3x35 ≤ q5(x45 + x35)
w4x46 + q3x36 ≤ q6(x46 + x36)
x14 ≤ c1, x24 ≤ c2
x35 + x36 ≤ c3
x45 + x46 ≤ c4
x35 + x45 ≤ c5
x36 + x46 ≤ c6
(x14, x24, x35, x36, x45, x46) ≥ 0

• Keep equality constraints to get sparser (but larger) LMIs.

• Specialize the Lasserre relaxations for bilinear problems.

• Break up cliques by adding simple redundant constraints.



Other ideas

Reconsider that first minimum-cost formulation:

minimize x35 − 9x45 − 5x36 − 15x46 + 6x14 + 16x24
subject to x14 + x24 = x45 + x46

w4(x45 + x46) = q1x14 + q2x24
w4x45 + q3x35 ≤ q5(x45 + x35)
w4x46 + q3x36 ≤ q6(x46 + x36)
x14 ≤ c1, x24 ≤ c2
x35 + x36 ≤ c3
x45 + x46 ≤ c4
x35 + x45 ≤ c5
x36 + x46 ≤ c6
(x14, x24, x35, x36, x45, x46) ≥ 0

• Keep equality constraints to get sparser (but larger) LMIs.

• Specialize the Lasserre relaxations for bilinear problems.

• Break up cliques by adding simple redundant constraints.



Conclusions

• Exploiting chordal structure gives a noticable improvement, but we
can still only solve toy problems.

• The problems are quite difficult to solve with some inherent
ill-posedness.

• Scaling of the models is crucial for the solver.

• The relaxations are interesting test problems, because they contain
many small LMIs.

• Solving a bilinear problem as a general polynomial optimization
problem seems too generic.
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