

problems J. Dahl

Solving the pooling problem using semidefinite programming

Joachim Dahl

MOSEK ApS

MOSEK Seminar, October 6th

Joint work with Martin S. Andersen, DTU

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters {*q*₁, *q*₂, *q*₃}.
- Source 1 and 2 blended at pool 4 with blend quality w₄.
- Terminal quality requirements {*q*₅, *q*₆}.
- Find a flow {x_{ij}} and blend w₄ that minimizes transportation cost and satisfies quality requirements.

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters {*q*₁, *q*₂, *q*₃}.
- Source 1 and 2 blended at pool 4 with blend quality w₄.
- Terminal quality requirements {*q*₅, *q*₆}.
- Find a flow {x_{ij}} and blend w₄ that minimizes transportation cost and satisfies quality requirements.

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters {*q*₁, *q*₂, *q*₃}.
- Source 1 and 2 blended at pool 4 with blend quality w₄.
- Terminal quality requirements {*q*₅, *q*₆}.
- Find a flow {x_{ij}} and blend w₄ that minimizes transportation cost and satisfies quality requirements.

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters {*q*₁, *q*₂, *q*₃}.
- Source 1 and 2 blended at pool 4 with blend quality w₄.
- Terminal quality requirements {*q*₅, *q*₆}.
- Find a flow {x_{ij}} and blend w₄ that minimizes transportation cost and satisfies quality requirements.

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters {*q*₁, *q*₂, *q*₃}.
- Source 1 and 2 blended at pool 4 with blend quality w₄.
- Terminal quality requirements {*q*₅, *q*₆}.
- Find a flow {x_{ij}} and blend w₄ that minimizes transportation cost and satisfies quality requirements.

• Flow conservation at pools:

 $x_{14} + x_{24} = x_{45} + x_{46}$

• Defining equation for blend variable:

 $w_4(x_{45}+x_{46})=q_1x_{14}+q_2x_{24}$

• Quality bounds at terminals:

 $w_{4}x_{45} + q_{3}x_{35} \le q_{5}(x_{45} + x_{35})$ $w_{4}x_{46} + q_{3}x_{36} \le q_{6}(x_{46} + x_{36})$

• Capacity bounds:

 $x_{14} \leq c_1, \quad x_{24} \leq c_2, \quad x_{35} + x_{36} \leq c_3$ $x_{45} + x_{46} \leq c_4, \quad x_{35} + x_{45} \leq c_5, \quad x_{36} + x_{46} \leq c_6$

• Nonnegativity of flow:

• Flow conservation at pools:

 $x_{14} + x_{24} = x_{45} + x_{46}$

• Defining equation for blend variable:

 $w_4(x_{45}+x_{46})=q_1x_{14}+q_2x_{24}$

• Quality bounds at terminals:

 $w_{4}x_{45} + q_{3}x_{35} \le q_{5}(x_{45} + x_{35})$ $w_{4}x_{46} + q_{3}x_{36} \le q_{6}(x_{46} + x_{36})$

• Capacity bounds:

 $x_{14} \leq c_1, \quad x_{24} \leq c_2, \quad x_{35} + x_{36} \leq c_3$ $x_{45} + x_{46} \leq c_4, \quad x_{35} + x_{45} \leq c_5, \quad x_{36} + x_{46} \leq c_6$

• Nonnegativity of flow:

• Flow conservation at pools:

 $x_{14} + x_{24} = x_{45} + x_{46}$

• Defining equation for blend variable:

 $w_4(x_{45}+x_{46})=q_1x_{14}+q_2x_{24}$

• Quality bounds at terminals:

 $w_4 x_{45} + q_3 x_{35} \le q_5(x_{45} + x_{35})$ $w_4 x_{46} + q_3 x_{36} \le q_6(x_{46} + x_{36})$

• Capacity bounds:

 $x_{14} \leq c_1, \quad x_{24} \leq c_2, \quad x_{35} + x_{36} \leq c_3$ $x_{45} + x_{46} \leq c_4, \quad x_{35} + x_{45} \leq c_5, \quad x_{36} + x_{46} \leq c_6$

• Nonnegativity of flow:

• Flow conservation at pools:

 $x_{14} + x_{24} = x_{45} + x_{46}$

• Defining equation for blend variable:

 $w_4(x_{45}+x_{46})=q_1x_{14}+q_2x_{24}$

• Quality bounds at terminals:

 $w_4 x_{45} + q_3 x_{35} \le q_5(x_{45} + x_{35})$ $w_4 x_{46} + q_3 x_{36} \le q_6(x_{46} + x_{36})$

• Capacity bounds:

 $\begin{array}{ll} x_{14} \leq c_1, & x_{24} \leq c_2, & x_{35} + x_{36} \leq c_3 \\ x_{45} + x_{46} \leq c_4, & x_{35} + x_{45} \leq c_5, & x_{36} + x_{46} \leq c_6 \end{array}$

• Nonnegativity of flow:

• Flow conservation at pools:

 $x_{14} + x_{24} = x_{45} + x_{46}$

• Defining equation for blend variable:

 $w_4(x_{45}+x_{46})=q_1x_{14}+q_2x_{24}$

• Quality bounds at terminals:

 $w_4 x_{45} + q_3 x_{35} \le q_5(x_{45} + x_{35})$ $w_4 x_{46} + q_3 x_{36} \le q_6(x_{46} + x_{36})$

• Capacity bounds:

 $\begin{array}{ll} x_{14} \leq c_1, & x_{24} \leq c_2, & x_{35} + x_{36} \leq c_3 \\ x_{45} + x_{46} \leq c_4, & x_{35} + x_{45} \leq c_5, & x_{36} + x_{46} \leq c_6 \end{array}$

• Nonnegativity of flow:

Minimum-cost formulation for Haverly

minimize	$x_{35} - 9x_{45} - 5x_{36} - 15x_{46} + 6x_{14} + 16x_{24}$
subject to	$x_{14} + x_{24} = x_{45} + x_{46}$
	$w_4(x_{45}+x_{46})=q_1x_{14}+q_2x_{24}$
	$w_4x_{45} + q_3x_{35} \leq q_5(x_{45} + x_{35})$
	$w_4x_{46}+q_3x_{36}\leq q_6(x_{46}+x_{36})$
	$x_{14} \leq c_1, x_{24} \leq c_2$
	$x_{35}+x_{36}\leq c_3$
	$x_{45}+x_{46}\leq c_4$
	$x_{35}+x_{45}\leq c_5$
	$x_{36} + x_{46} \leq c_6$
	$(x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}) \geq 0$

Very difficult to solve (NP hard)!

Introducing semidefinite variables

Let $v := \begin{pmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_4 \end{pmatrix}^T$ and define $X := \begin{pmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}x_{14} & x_{35}x_{24} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}x_{14} & x_{45}x_{24} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}x_{14} & x_{36}x_{24} & x_{36}w_4 \\ x_{46} & x_{35}x_{46} & x_{45}x_{14} & x_{36}x_{14} & x_{46}x_{14} & x_{14}x_{24} & x_{14}w_4 \\ x_{14} & x_{35}x_{14} & x_{45}x_{14} & x_{36}x_{14} & x_{46}x_{14} & x_{14}^2 & x_{14}x_{24} & x_{14}w_4 \\ x_{24} & x_{35}x_{24} & x_{45}w_4 & x_{36}w_4 & x_{46}w_4 & x_{14}w_4 & x_{24}w_4 & w_4^2 \end{pmatrix}$

• Note that $X = vv^T$ with rank 1.

• X contains all 36 monomials up to order 2.

• The pooling problem is equivalent to a *nonconvex SDP* in X.

Introducing semidefinite variables

Let $v := (1$	<i>X</i> 35	X45 X	36 X46	<i>x</i> ₁₄ <i>x</i> ₂	$(4 w_4)$	$^{\tau}$ and d	efine	
	1	<i>x</i> ₃₅	X45	<i>x</i> ₃₆	<i>x</i> ₄₆	<i>x</i> ₁₄	<i>x</i> ₂₄	W4
	X35	x_{35}^2	X35X45	X35 X36	X35 X46	X35X14	X35 X24	X35 W4
×	X45	$X_{35}X_{45}$	x_{45}^2	$X_{45}X_{36}$	$X_{45}X_{46}$	$x_{45}x_{14}$	$X_{45}X_{24}$	$X_{45}W_{4}$
	X36	X35 X36	X45X36	x_{36}^2	X36 X46	X36X14	X36 X24	X36 W4
× .=	<i>x</i> ₄₆	$X_{35}X_{46}$	$X_{45}X_{46}$	<i>x</i> ₃₆ <i>x</i> ₄₆	x_{46}^2	$x_{46}x_{14}$	$x_{46}x_{24}$	$X_{46}W_4$
	<i>x</i> ₁₄	$x_{35}x_{14}$	$x_{45}x_{14}$	$x_{36}x_{14}$	$x_{46}x_{14}$	x_{14}^2	$x_{14}x_{24}$	$X_{14}W_{4}$
	<i>X</i> 24	X35 X24	X45X24	X36 X24	X46 X24	<i>X</i> 14 <i>X</i> 24	x_{24}^2	X24 W4
	W_4	X35 W4	X45 W4	X36 W4	$X_{46}W_{4}$	$X_{14}W_{4}$	$X_{24}W_{4}$	w_4^2

• Note that $X = vv^T$ with rank 1.

• X contains all 36 monomials up to order 2.

The pooling problem is equivalent to a nonconvex SDP in X.

Introducing semidefinite variables

Let $v := (1$	<i>X</i> 35	X45 X	36 X46	<i>x</i> ₁₄ <i>x</i> ₂	$(4 w_4)$	$^{\tau}$ and d	efine	
	[1	X35	<i>X</i> 45	<i>X</i> 36	<i>x</i> ₄₆	<i>x</i> ₁₄	<i>x</i> ₂₄	W4
	X35	x_{35}^2	X35X45	X35 X36	X35 X46	X35X14	X35 X24	X35 W4
	X45	X35 X45	x_{45}^2	$X_{45}X_{36}$	$X_{45}X_{46}$	$x_{45}x_{14}$	$X_{45}X_{24}$	$X_{45}W_{4}$
x	X36	X35 X36	X45X36	x_{36}^2	X36 X46	X36X14	X36 X24	X36 W4
A .=	<i>X</i> 46	$X_{35}X_{46}$	<i>X</i> 45 <i>X</i> 46	<i>x</i> ₃₆ <i>x</i> ₄₆	x_{46}^2	$x_{46}x_{14}$	$x_{46}x_{24}$	$X_{46}W_4$
	<i>x</i> ₁₄	$x_{35}x_{14}$	$x_{45}x_{14}$	$x_{36}x_{14}$	$x_{46}x_{14}$	x_{14}^2	$x_{14}x_{24}$	$X_{14}W_{4}$
	<i>X</i> 24	X35 X24	X45X24	X36 X24	X46 X24	<i>X</i> 14 <i>X</i> 24	x_{24}^2	X24 W4
	W4	X35 W4	X45 W4	X36 W4	$X_{46}W_4$	$X_{14}W_{4}$	$X_{24}W_{4}$	w_4^2

• Note that $X = vv^T$ with rank 1.

- X contains all 36 monomials up to order 2.
- The pooling problem is equivalent to a *nonconvex SDP* in X.

A nonconvex SDP

Treating each monomial as a separate variable, we get a rank-1 SDP:

Using Lasserre relaxations

Method proposed by Frimannslund, El Ghami, Alfaki and Haugland:

Eliminate equality constraints,

$$\begin{split} x_{14} &= \quad \frac{1}{q_1-q_2} \, w_4(x_{45}+x_{46}) - \frac{q_2}{q_1-q_2}(x_{45}+\frac{1}{2}x_{46}) \\ x_{24} &= -\frac{1}{q_1-q_2} \, w_4(x_{45}+x_{46}) + \frac{q_1}{q_1-q_2}(x_{45}+\frac{1}{2}x_{46}) \end{split}$$

Tighten relaxation by redundant constraints,

 $\min\{q_1, q_2\} \le w_4 \le \max\{q_1, q_2\}$

• Solve sequence of Lasserre relaxations.

Solving the pooling problem with LMI relaxations, L. Frimmandslund, et. al, 2012.

Using Lasserre relaxations

Method proposed by Frimannslund, El Ghami, Alfaki and Haugland:

Eliminate equality constraints,

$$egin{array}{rll} x_{14} &=& \displaystyle rac{1}{q_1-q_2} w_4(x_{45}+x_{46}) - rac{q_2}{q_1-q_2}(x_{45}+rac{1}{2}x_{46}) \ x_{24} &=& \displaystyle -rac{1}{q_1-q_2} w_4(x_{45}+x_{46}) + rac{q_1}{q_1-q_2}(x_{45}+rac{1}{2}x_{46}) \end{array}$$

Tighten relaxation by redundant constraints,

$$\min\{q_1,q_2\} \le w_4 \le \max\{q_1,q_2\}$$

• Solve sequence of Lasserre relaxations.

Solving the pooling problem with LMI relaxations, L. Frimmandslund, et. al, 2012.

Using Lasserre relaxations

Method proposed by Frimannslund, El Ghami, Alfaki and Haugland:

• Eliminate equality constraints,

$$egin{array}{rll} x_{14} &=& \displaystylerac{1}{q_1-q_2}\,w_4(x_{45}+x_{46}) - \displaystylerac{q_2}{q_1-q_2}(x_{45}+rac{1}{2}x_{46}) \ x_{24} &=& \displaystyle-rac{1}{q_1-q_2}\,w_4(x_{45}+x_{46}) + \displaystylerac{q_1}{q_1-q_2}(x_{45}+rac{1}{2}x_{46}) \end{array}$$

Tighten relaxation by redundant constraints,

$$\min\{q_1,q_2\} \le w_4 \le \max\{q_1,q_2\}$$

• Solve sequence of Lasserre relaxations.

Solving the pooling problem with LMI relaxations, L. Frimmandslund, et. al, 2012.

Frimannslund's relaxation

$x_{35} + 1$	$2x_{45} - 5$	$x_{36} + 6x_{4}$	$_{46} - 5x_{45}$	$w_4 - 5x_4$	46 W4				
[1	X35	<i>X</i> 45	<i>x</i> ₃₆	<i>x</i> ₄₆	<i>W</i> 4	1			
X35	x_{35}^2	X35X45	X35 X36	X35X46	X35 W4				
X45	$X_{35}X_{45}$	x_{45}^2	X45 X36	$X_{45}X_{46}$	$X_{45}W_4$				
×36	$X_{35}X_{36}$	$X_{45}X_{36}$	x_{36}^2	X36X46	$X_{36}W_{4}$	<u> </u>			
X46	X35X46	X45X46	X36 X46	x_{46}^2	X46 W4				
<i>w</i> ₄	X35 W4	$X_{45}W_4$	$X_{36}W_{4}$	$X_{46}W_4$	w_4^2	-			
$0 \leq \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4$									
$0 \leq -\frac{1}{2}$	$\frac{1}{2}x_{36} + \frac{3}{2}x_{36}$	$x_{46} - x_{46}$	W4						
$0 \leq -$	$\frac{1}{2}x_{45} - \frac{1}{2}x_{45}$	$x_{46} + \frac{1}{2}x_{46}$	$_{45}W_4 + \frac{1}{2}$	$x_{46}w_4 \leq$	1				
$0 \leq 1$	$0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 \leq 1$								
$x_{35} + $	$x_{36} \le 1$	L							
$x_{45} + $	$x_{46} \le 1$	L							
$x_{35} + $	$x_{45} \leq ($	1/3)							
$x_{36} + $	$x_{46} \leq ($	2/3)							
$1 \leq w_4$	$, w_4 \leq 3$	3							
x_{35}, x_{36}	$, x_{45}, x_{46}$	\geq 0							
	$\begin{array}{c} x_{35}+1\\ 1\\ x_{35}\\ x_{45}\\ x_{36}\\ x_{46}\\ w_4\\ 0\leq \\ 0\leq \\ 0\leq \\ 0\leq \\ x_{35}+ \\ x_{45}+ \\ x_{35}+ \\ x_{36}+ \\ 1\leq w_4\\ x_{35}, x_{36} \end{array}$	$\begin{array}{c} x_{35}+12x_{45}-5,\\ 1&x_{35}\\ x_{35}&x_{35}^2\\ x_{45}&x_{35}x_{45}\\ x_{46}&x_{35}x_{46}\\ x_{46}&x_{35}x_{46}\\ w_4&x_{35}w_4\\ 0\leq \frac{1}{2}x_{35}+\frac{5}{2};\\ 0\leq -\frac{1}{2}x_{45}-\frac{1}{2};\\ 0\leq \frac{3}{2}x_{45}+\frac{3}{2};\\ x_{35}+x_{36}\leq 1\\ x_{45}+x_{46}\leq 1\\ x_{35}+x_{45}\leq (1\\ x_{36}+x_{46}\leq (1\\ 1\leq w_4,w_4\leq 1)\\ x_{35},x_{36},x_{45},x_{46} \end{array}$	$\begin{array}{c} x_{35}+12x_{45}-5x_{36}+6x,\\ \left[\begin{array}{cccc} 1 & x_{35} & x_{45} \\ x_{35} & x_{35}^2 & x_{35}x_{45} \\ x_{45} & x_{35}x_{45} & x_{45}^2 \\ x_{36} & x_{35}x_{36} & x_{45}x_{46} \\ x_{46} & x_{35}x_{46} & x_{45}x_{46} \\ w_4 & x_{35}w_4 & x_{45}w_4 \\ 0 \leq & \frac{1}{2}x_{35}+\frac{5}{2}x_{45}-x_{45} \\ 0 \leq & -\frac{1}{2}x_{45}-\frac{1}{2}x_{46}+\frac{1}{2}x,\\ 0 \leq & \frac{3}{2}x_{45}+\frac{3}{2}x_{46}-\frac{1}{2}x,\\ 0 \leq & \frac{3}{2}x_{45}+\frac{3}{2}x_{46}-\frac{1}{2}x,\\ x_{35}+x_{36} & \leq 1 \\ x_{45}+x_{46} & \leq 1 \\ x_{35}+x_{46} & \leq (1/3) \\ x_{36}+x_{46} & \leq (2/3) \\ 1 \leq w_4, w_4 & \leq 3 \\ x_{35}, x_{36}, x_{45}, x_{46} \geq 0 \end{array}$	$\begin{array}{c} x_{35}+12x_{45}-5x_{36}+6x_{46}-5x_{45}\\ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} x_{35}+12x_{45}-5x_{36}+6x_{46}-5x_{45}w_4-5x_6\\ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} x_{35}+12x_{45}-5x_{36}+6x_{46}-5x_{45}w_4-5x_{46}w_4\\ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$			

- 1st order Lasserre relaxation shown.
- Minor suggestion: square bounds instead of adding

 $x_{35}^2 + x_{36}^2 + x_{45}^2 + x_{46}^2 + w_4^2 \le M.$

Frimannslund's relaxation

minimize	$x_{35} + 1$	$2x_{45} - 5$	$x_{36} + 6x_{36}$	$_{16} - 5x_{45}$	$w_4 - 5x_4$	46 W4				
	[1	X35	<i>X</i> 45	<i>x</i> ₃₆	<i>x</i> ₄₆	<i>W</i> 4]			
	X35	x_{35}^2	X35X45	X35X36	X35X46	X35 W4				
subject to	X45	<i>X</i> 35 <i>X</i> 45	x_{45}^2	X45 X36	$X_{45}X_{46}$	$X_{45}W_4$				
Subject to	x ₃₆	$X_{35}X_{36}$	$X_{45}X_{36}$	x_{36}^2	x ₃₆ x ₄₆	$X_{36}W_{4}$	<u> </u>			
	X46	X35X46	X45X46	X36X46	x_{46}^2	X46 W4				
	W4	$X_{35}W_{4}$	$X_{45}W_4$	$X_{36}W_{4}$	$X_{46}W_{4}$	w_4^2				
	$0 \leq \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4$									
	$0 \leq -\frac{1}{2}$	$\frac{1}{2}x_{36} + \frac{3}{2}x_{36}$	$x_{46} - x_{46}$	W4						
	$0 \leq -\frac{1}{2}$	$\frac{1}{2}x_{45} - \frac{1}{2}x_{45}$	$x_{46} + \frac{1}{2}x_{46}$	$_{45}W_4 + \frac{1}{2}$	$x_{46}w_4 \leq$	1				
	$0 \leq \frac{1}{2}$	$\frac{3}{2}x_{45} + \frac{3}{2}x_{45}$	$x_{46} - \frac{1}{2}x_{46}$	$_{45}W_4 - \frac{1}{2}$	$x_{46}w_4 \leq$	1				
	$(x_{35} + x_{35})$	$(x_{36})^2 \le 1$	L							
	$(x_{45} + x_{45})$	$(x_{46})^2 \le 1$	L							
	$(x_{35} + x_{35})$	$(x_{45})^2 \le ($	[1/3]							
	$(x_{36} + x_{36})$	$(x_{46})^2 \le ($	(2/3)							
	$1 \leq w_4$	$, w_4^2 \le 3$	²							
	x_{35}, x_{36}	$, x_{45}, x_{46}$	\geq 0							

- 1st order Lasserre relaxation shown.
- Minor suggestion: square bounds instead of adding

$$x_{35}^2 + x_{36}^2 + x_{45}^2 + x_{46}^2 + w_4^2 \le M.$$

Numerical experiments for Haverly1

 $(x_{14}, x_{24}, x_{35}, x_{45}, x_{36}, x_{46}, w_4) = (0, 1/3, 0, 0, 1/3, 1/3, 1)$ found at relaxation order 2.

Problem and solver statistics

order	1	2	3
# LMIs	17	17	17
largest LMI	6	21	56
<i></i>	37	567	5292
# cons	20	125	461
time (sec)	< 1	< 1	< 1

Numerical experiments for Foulds2

- Optimal solution found at relaxation order 2.
- For order 3 we run out of memory.

Problem and solver statistics

order	1	2
# LMIs	41	41
largest LMI	19	190
<i></i>	230	25745
# cons	189	7314
time (sec)	< 1	103

Numerical experiments for Adhya1

- Optimal bound (probably) found at relaxation order 3.
- Feasible solution not recovered due to inaccuracies.

order	1	2	3
# LMIs	57	57	57
largest LMI	12	78	364
# vars	134	7449	238966
# cons	77	1364	12375
time (sec)	< 1	8	1197

Problem and solver statistics

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \\ x_{46} & x_{35}x_{46} & x_{45}x_{46} & x_{36}x_{46} & x_{46}^2 & x_{46}w_4 \\ w_4 & x_{35}w_4 & x_{45}w_4 & x_{36}w_4 & x_{46}w_4 & w_4^2 \end{bmatrix} \succeq \mathbf{0}$ subject to $\begin{array}{l} \mathsf{L} & \mathsf{x}_{45} + \mathsf{x}_{45} + \mathsf{x}_{45} + \mathsf{x}_{45} \\ \mathsf{0} \leq -\frac{1}{2} \mathsf{x}_{36} + \frac{3}{2} \mathsf{x}_{46} - \mathsf{x}_{46} \mathsf{w}_{4} \\ \mathsf{0} \leq -\frac{1}{2} \mathsf{x}_{45} - \frac{1}{2} \mathsf{x}_{46} + \frac{1}{2} \mathsf{x}_{45} \mathsf{w}_{4} + \frac{1}{2} \mathsf{x}_{46} \mathsf{w}_{4} \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 1 \\ 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_{4} \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_{4} \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_{4} + \frac{1}{2}x_{46}w_{4} \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 \leq 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_{4} \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_{4} \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_{4} + \frac{1}{2}x_{46}w_{4} \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \\ x_{46} & x_{35}x_{46} & x_{45}x_{46} & x_{36}x_{46} & x_{46}^2 & x_{46}w_4 \\ w_4 & x_{35}w_4 & x_{45}w_4 & x_{36}w_4 & x_{46}w_4 & w_4^2 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 \leq 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 \le (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \\ x_{46} & x_{35}x_{46} & x_{45}x_{46} & x_{36}x_{46} & x_{46}^2 & x_{46}w_4 \\ w_4 & x_{35}w_4 & x_{45}w_4 & x_{36}w_4 & x_{46}w_4 & w_4^2 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35} + x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ X35 X45 X36 X46 W_4 $\begin{bmatrix} 1 & \lambda_{35} & \lambda_{45} & \lambda_{36} & \lambda_{46} & w_4 \\ x_{35} & x_{35}^2 & \lambda_{35} x_{45} & x_{35} x_{36} & \lambda_{35} x_{46} & x_{35} w_4 \\ x_{45} & x_{35} x_{45} & x_{45}^2 & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_4 \\ x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^2 & x_{36} x_{46} & x_{36} w_4 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ X35 X45 X36 X46 W_4 subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

 $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ minimize X₃₅ X₄₅ X₃₆ X46 W_4 subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \le (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

 $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ minimize $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

minimize $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ X35 X45 X36 X46 W_4 subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

Let us map all the monomials we actually need:

 $x_{35} + 12x_{45} - 5x_{36} + 6x_{46} - 5x_{45}w_4 - 5x_{46}w_4$ minimize $\begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \end{bmatrix} \succeq 0$ subject to $\begin{array}{l} 0 \leq & \frac{1}{2}x_{35} + \frac{5}{2}x_{45} - x_{45}w_4 \\ 0 \leq & -\frac{1}{2}x_{36} + \frac{3}{2}x_{46} - x_{46}w_4 \\ 0 \leq & -\frac{1}{2}x_{45} - \frac{1}{2}x_{46} + \frac{1}{2}x_{45}w_4 + \frac{1}{2}x_{46}w_4 \leq 1 \end{array}$ $0 \leq \frac{3}{2}x_{45} + \frac{3}{2}x_{46} - \frac{1}{2}x_{45}w_4 - \frac{1}{2}x_{46}w_4 < 1$ $(x_{35}+x_{36})^2 < 1$ $(x_{45} + x_{46})^2 < 1$ $(x_{35} + x_{45})^2 < (1/3)^2$ $(x_{36} + x_{46})^2 \leq (2/3)^2$ $1 < w_4, w_4^2 < 3^2$ $x_{35}, x_{36}, x_{45}, x_{46} > 0$

 $X = \begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \\ x_{46} & x_{35}x_{46} & x_{45}x_{46} & x_{36}w_4 & x_{46}w_4 & w_4^2 \end{bmatrix} \succeq 0$

- In a chordal embedding we add x₄₅x₃₆.
- For the chordal matrix we identify the cliques:

 $I_1 = \{1, x_{35}, x_{45}, x_{36}, w_4\}, I_2 = \{1, x_{45}, x_{36}, x_{46}, w_4\}.$

• Semidefinite matrix completion:

 $X_{l_1,l_1} \succeq 0, X_{l_2,l_2} \succeq 0 \quad \Longleftrightarrow \quad \exists x_{35} x_{46} \, : \, X \succeq 0$

• I.e., $x_{35}x_{46}$ can be eliminated.

 $X = \begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \\ x_{46} & x_{35}x_{46} & x_{45}x_{46} & x_{36}x_{46} & x_{46}^2 & x_{46}w_4 \\ w_4 & x_{35}w_4 & x_{45}w_4 & x_{36}w_4 & x_{46}w_4 & w_4^2 \end{bmatrix} \succeq 0$

- In a chordal embedding we add x₄₅x₃₆.
- For the chordal matrix we identify the cliques:

$$I_1 = \{1, x_{35}, x_{45}, x_{36}, w_4\}, I_2 = \{1, x_{45}, x_{36}, x_{46}, w_4\}.$$

• Semidefinite matrix completion:

 $X_{l_1,l_1} \succeq 0, X_{l_2,l_2} \succeq 0 \quad \Longleftrightarrow \quad \exists x_{35} x_{46} \, : \, X \succeq 0$

• I.e., $x_{35}x_{46}$ can be eliminated.

 $X = \begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \\ x_{46} & x_{35}x_{46} & x_{45}x_{46} & x_{36}x_{46} & x_{46}^2 & x_{46}w_4 \\ w_4 & x_{35}w_4 & x_{45}w_4 & x_{36}w_4 & x_{46}w_4 & w_4^2 \end{bmatrix} \succeq 0$

- In a chordal embedding we add x₄₅x₃₆.
- For the chordal matrix we identify the cliques:

$$I_1 = \{1, x_{35}, x_{45}, x_{36}, w_4\}, I_2 = \{1, x_{45}, x_{36}, x_{46}, w_4\}.$$

Semidefinite matrix completion:

$$X_{l_1,l_1} \succeq 0, X_{l_2,l_2} \succeq 0 \quad \Longleftrightarrow \quad \exists x_{35}x_{46} \, : \, X \succeq 0$$

• I.e., $x_{35}x_{46}$ can be eliminated.

 $X = \begin{bmatrix} 1 & x_{35} & x_{45} & x_{36} & x_{46} & w_4 \\ x_{35} & x_{35}^2 & x_{35}x_{45} & x_{35}x_{36} & x_{35}x_{46} & x_{35}w_4 \\ x_{45} & x_{35}x_{45} & x_{45}^2 & x_{45}x_{36} & x_{45}x_{46} & x_{45}w_4 \\ x_{36} & x_{35}x_{36} & x_{45}x_{36} & x_{36}^2 & x_{36}x_{46} & x_{36}w_4 \\ x_{46} & x_{35}x_{46} & x_{45}x_{46} & x_{36}w_4 & x_{46}w_4 & w_4^2 \end{bmatrix} \succeq 0$

- In a chordal embedding we add x₄₅x₃₆.
- For the chordal matrix we identify the cliques:

$$I_1 = \{1, x_{35}, x_{45}, x_{36}, w_4\}, I_2 = \{1, x_{45}, x_{36}, x_{46}, w_4\}.$$

Semidefinite matrix completion:

$$X_{l_1,l_1} \succeq 0, X_{l_2,l_2} \succeq 0 \quad \Longleftrightarrow \quad \exists x_{35}x_{46} \, : \, X \succeq 0$$

• I.e., *x*₃₅*x*₄₆ can be eliminated.

Chordal relaxation for Foulds2

- Optimal solution found at relaxation order 2 for both versions.
- For order 3 we run out of memory for both versions.

Standard Lasserre relaxations

order	1	2
# LMIs	41	41
largest LMI	19	190
<i>⋕</i> vars	230	25745
# cons	189	7314
time (sec)	< 1	103

Chordal Lasserre relaxations

order	1	2
# LMIs	41	41
largest LMI	13	91
<i></i>	230	14828
# cons	189	7314
time (sec)	$<$ 1	25

Chordal relaxation for Adhya1

- The 2nd order chordal relaxation is weaker than the dense version.
- Optimal bound found at relaxation order 3 for both versions.
- The solution to the chordal version is feasible.

Standard Lasserre relaxations

Chordal Lasserre relaxations

order	1	2	3	order	1	2	3
# LMIs	57	57	57	# LMIs	59	59	59
largest LMI	12	78	364	largest LMI	10	55	220
<i></i>	134	7449	238966	<i>⋕</i> vars	201	6230	114710
# cons	77	1364	12375	# cons	77	1364	12375
time (sec)	< 1	8	1197	time (sec)	< 1	3	218

	1	X35	X45	X36	X46	<i>X</i> 14	<i>X</i> 24	W4	
	X35	x_{35}^2	X35X45	$x_{35}x_{36}$	$X_{35}X_{46}$	$x_{35}x_{14}$	$x_{35}x_{24}$	$X_{35}W_{4}$	
	<i>X</i> 45	X35 X45	x_{45}^2	X45 X36	X45 X46	X45 X14	X45 X24	X45 W4	
x	<i>x</i> ₃₆	$X_{35}X_{36}$	$X_{45}X_{36}$	x_{36}^2	x ₃₆ x ₄₆	$x_{36}x_{14}$	$x_{36}x_{24}$	$X_{36}W_{4}$	
л. <u>–</u>	X46	$X_{35}X_{46}$	$X_{45}X_{46}$	$X_{36}X_{46}$	x_{46}^2	$x_{46}x_{14}$	$X_{46}X_{24}$	$X_{46}W_4$	<u>-</u> •
	<i>X</i> 14	X35 X14	X45X14	X36X14	X46X14	x_{14}^2	X14 X24	X14 W4	
-	<i>X</i> 24	$x_{35}x_{24}$	$x_{45}x_{24}$	$x_{36}x_{24}$	$x_{46}x_{24}$	$x_{14}x_{24}$	x_{24}^2	X24 W4	
	W4	$X_{35}W_{4}$	$X_{45}W_{4}$	$X_{36}W_{4}$	$X_{46}W_{4}$	$X_{14}W_4$	$X_{24}W_{4}$	w_4^2	

- Since $(x_{35}, x_{45}, x_{36}, x_{46}, x_{14}, x_{24}, w_4) \ge 0$ then $X_{ij} \ge 0$.
- X is doubly nonnegative.
- Adding some of the constraints X_{ij} ≥ 0 is very cheap, but strengthens the relaxation.
- Adding all the constraints $X_{ij} \ge 0$ is still cheaper than increasing the relaxation order.

	1	X35	<i>X</i> 45	X36	<i>X</i> 46	<i>X</i> 14	<i>X</i> 24	W4	
X :=	<i>X</i> 35	x_{35}^2	$x_{35}x_{45}$	$x_{35}x_{36}$	$X_{35}X_{46}$	$x_{35}x_{14}$	$x_{35}x_{24}$	$X_{35}W_{4}$	
	<i>X</i> 45	X35 X45	x_{45}^2	X45 X36	X45 X46	X45 X14	X45 X24	X45 W4	≥ 0.
	<i>x</i> ₃₆	$x_{35}x_{36}$	$x_{45}x_{36}$	x_{36}^2	x ₃₆ x ₄₆	$x_{36}x_{14}$	$x_{36}x_{24}$	$X_{36}W_{4}$	
	<i>X</i> 46	$X_{35}X_{46}$	$X_{45}X_{46}$	$x_{36}x_{46}$	x_{46}^2	$X_{46}X_{14}$	$X_{46}X_{24}$	$X_{46}W_4$	
	<i>X</i> 14	X35 X14	$X_{45}X_{14}$	X36X14	X46X14	x_{14}^2	X14 X24	X14 W4	
	<i>x</i> ₂₄	$x_{35}x_{24}$	$x_{45}x_{24}$	$x_{36}x_{24}$	$x_{46}x_{24}$	$x_{14}x_{24}$	x_{24}^2	X24 W4	
	W4	$X_{35}W_{4}$	$X_{45}W_{4}$	$X_{36}W_{4}$	$X_{46}W_{4}$	$X_{14}W_4$	$X_{24}W_{4}$	w_4^2	

- Since $(x_{35}, x_{45}, x_{36}, x_{46}, x_{14}, x_{24}, w_4) \ge 0$ then $X_{ij} \ge 0$.
- X is doubly nonnegative.
- Adding some of the constraints X_{ij} ≥ 0 is very cheap, but strengthens the relaxation.
- Adding all the constraints $X_{ij} \ge 0$ is still cheaper than increasing the relaxation order.

	1	X35	X45	X36	X46	<i>X</i> 14	<i>X</i> 24	W4	
X :=	X35	x_{35}^2	X35X45	$x_{35}x_{36}$	$X_{35}X_{46}$	$x_{35}x_{14}$	$x_{35}x_{24}$	$X_{35}W_{4}$	
	<i>X</i> 45	X35 X45	x_{45}^2	X45 X36	X45 X46	X45 X14	X45 X24	X45 W4) ≥ 0
	<i>x</i> ₃₆	$X_{35}X_{36}$	$X_{45}X_{36}$	x_{36}^2	x ₃₆ x ₄₆	$x_{36}x_{14}$	$x_{36}x_{24}$	$X_{36}W_{4}$	
	X46	$X_{35}X_{46}$	$X_{45}X_{46}$	$X_{36}X_{46}$	x_{46}^2	$x_{46}x_{14}$	$X_{46}X_{24}$	$X_{46}W_4$	
	<i>X</i> 14	X35 X14	X45X14	X36X14	X46X14	x_{14}^2	X14 X24	X14 W4	
	<i>X</i> 24	$x_{35}x_{24}$	$x_{45}x_{24}$	$x_{36}x_{24}$	$x_{46}x_{24}$	$x_{14}x_{24}$	x_{24}^2	X24 W4	
	W4	$X_{35}W_{4}$	$X_{45}W_{4}$	$X_{36}W_{4}$	$X_{46}W_{4}$	$X_{14}W_4$	$X_{24}W_{4}$	w_4^2	

- Since $(x_{35}, x_{45}, x_{36}, x_{46}, x_{14}, x_{24}, w_4) \ge 0$ then $X_{ij} \ge 0$.
- X is doubly nonnegative.
- Adding some of the constraints X_{ij} ≥ 0 is very cheap, but strengthens the relaxation.
- Adding all the constraints $X_{ij} \ge 0$ is still cheaper than increasing the relaxation order.

	1	X35	X45	X36	X46	<i>X</i> 14	<i>X</i> 24	W4	
X :=	X35	x_{35}^2	X35X45	$x_{35}x_{36}$	$x_{35}x_{46}$	$x_{35}x_{14}$	$x_{35}x_{24}$	$X_{35}W_{4}$	≥ 0.
	<i>X</i> 45	X35 X45	x_{45}^2	X45 X36	X45 X46	X45 X14	X45 X24	X45 W4	
	<i>x</i> ₃₆	$X_{35}X_{36}$	$X_{45}X_{36}$	x_{36}^2	x ₃₆ x ₄₆	$x_{36}x_{14}$	$x_{36}x_{24}$	$X_{36}W_{4}$	
	X46	$X_{35}X_{46}$	$X_{45}X_{46}$	$X_{36}X_{46}$	x_{46}^2	$x_{46}x_{14}$	$X_{46}X_{24}$	$X_{46}W_4$	
	<i>X</i> 14	X35 X14	X45X14	X36X14	X46X14	x_{14}^2	X14 X24	X14 W4	
-	<i>X</i> 24	$x_{35}x_{24}$	$x_{45}x_{24}$	$x_{36}x_{24}$	$x_{46}x_{24}$	$x_{14}x_{24}$	x_{24}^2	X24 W4	
	W4	$X_{35}W_{4}$	$X_{45}W_{4}$	$X_{36}W_{4}$	$X_{46}W_{4}$	$X_{14}W_4$	$X_{24}W_{4}$	w_4^2	

- Since $(x_{35}, x_{45}, x_{36}, x_{46}, x_{14}, x_{24}, w_4) \ge 0$ then $X_{ij} \ge 0$.
- X is doubly nonnegative.
- Adding some of the constraints X_{ij} ≥ 0 is very cheap, but strengthens the relaxation.
- Adding all the constraints $X_{ij} \ge 0$ is still cheaper than increasing the relaxation order.

Other ideas

Reconsider that first minimum-cost formulation:

 $\begin{array}{ll} \mbox{minimize} & x_{35} - 9x_{45} - 5x_{36} - 15x_{46} + 6x_{14} + 16x_{24} \\ \mbox{subject to} & x_{14} + x_{24} = x_{45} + x_{46} \\ & w_4(x_{45} + x_{46}) = q_1x_{14} + q_2x_{24} \\ & w_4x_{45} + q_3x_{35} \leq q_5(x_{45} + x_{35}) \\ & w_4x_{46} + q_3x_{36} \leq q_6(x_{46} + x_{36}) \\ & x_{14} \leq c_1, \ x_{24} \leq c_2 \\ & x_{35} + x_{36} \leq c_3 \\ & x_{45} + x_{46} \leq c_4 \\ & x_{35} + x_{45} \leq c_5 \\ & x_{36} + x_{46} \leq c_6 \\ & (x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}) > 0 \end{array}$

• Keep equality constraints to get sparser (but larger) LMIs.

- Specialize the Lasserre relaxations for bilinear problems.
- Break up cliques by adding simple redundant constraints.

Other ideas

Reconsider that first minimum-cost formulation:

 $\begin{array}{ll} \mbox{minimize} & x_{35} - 9x_{45} - 5x_{36} - 15x_{46} + 6x_{14} + 16x_{24} \\ \mbox{subject to} & x_{14} + x_{24} = x_{45} + x_{46} \\ & w_4(x_{45} + x_{46}) = q_1x_{14} + q_2x_{24} \\ & w_4x_{45} + q_3x_{35} \leq q_5(x_{45} + x_{35}) \\ & w_4x_{46} + q_3x_{36} \leq q_6(x_{46} + x_{36}) \\ & x_{14} \leq c_1, \ x_{24} \leq c_2 \\ & x_{35} + x_{36} \leq c_3 \\ & x_{45} + x_{46} \leq c_4 \\ & x_{35} + x_{45} \leq c_5 \\ & x_{36} + x_{46} \leq c_6 \\ & (x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}) > 0 \end{array}$

- Keep equality constraints to get sparser (but larger) LMIs.
- Specialize the Lasserre relaxations for bilinear problems.
- Break up cliques by adding simple redundant constraints.

Other ideas

Reconsider that first minimum-cost formulation:

 $\begin{array}{ll} \mbox{minimize} & x_{35} - 9x_{45} - 5x_{36} - 15x_{46} + 6x_{14} + 16x_{24} \\ \mbox{subject to} & x_{14} + x_{24} = x_{45} + x_{46} \\ & w_4(x_{45} + x_{46}) = q_1x_{14} + q_2x_{24} \\ & w_4x_{45} + q_3x_{35} \leq q_5(x_{45} + x_{35}) \\ & w_4x_{46} + q_3x_{36} \leq q_6(x_{46} + x_{36}) \\ & x_{14} \leq c_1, \ x_{24} \leq c_2 \\ & x_{35} + x_{36} \leq c_3 \\ & x_{45} + x_{46} \leq c_4 \\ & x_{35} + x_{45} \leq c_5 \\ & x_{36} + x_{46} \leq c_6 \\ & (x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}) > 0 \end{array}$

- Keep equality constraints to get sparser (but larger) LMIs.
- Specialize the Lasserre relaxations for bilinear problems.
- Break up cliques by adding simple redundant constraints.

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.