Solving the pooling problem using semidefinite programming

Joachim Dahl
MOSEK ApS

MOSEK Seminar, October 6th

Joint work with Martin S. Andersen, DTU

The pooling problem

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters $\left\{q_{1}, q_{2}, q_{3}\right\}$.
- Source 1 and 2 blended at pool 4 with blend quality w_{4}.
- Terminal quality requirements $\left\{q_{5}, q_{6}\right\}$
- Find a flow $\left\{x_{i j}\right\}$ and blend w_{4} that minimizes transportation cost and satisfies quality requirements.

The pooling problem

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters $\left\{q_{1}, q_{2}, q_{3}\right\}$.
- Source 1 and 2 blended at pool 4 with blend quality w_{4}.
- Terminal quality requirements $\left\{q_{5}, q_{6}\right\}$
- Find a flow $\left\{x_{i j}\right\}$ and blend w_{4} that minimizes transportation cost and satisfies quality requirements.

Haverly, C. A. Studies of the Behaviour of Recursions for the Pooling Problem, ACM SIGMAP Bull. 1978.

The pooling problem

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters $\left\{q_{1}, q_{2}, q_{3}\right\}$.
- Source 1 and 2 blended at pool 4 with blend quality w_{4}.
- Terminal quality requirements $\left\{q_{5}, q_{6}\right\}$
- Find a flow $\left\{x_{i j}\right\}$ and blend w_{4} that minimizes transportation cost and satisfies quality requirements.

Haverly, C. A. Studies of the Behaviour of Recursions for the Pooling Problem, ACM SIGMAP Bull. 1978.

The pooling problem

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters $\left\{q_{1}, q_{2}, q_{3}\right\}$.
- Source 1 and 2 blended at pool 4 with blend quality w_{4}.
- Terminal quality requirements $\left\{q_{5}, q_{6}\right\}$.
- Find a flow $\left\{x_{i j}\right\}$ and blend w_{4} that minimizes transportation cost and satisfies quality requirements.

Haverly, C. A. Studies of the Behaviour of Recursions for the Pooling Problem, ACM SIGMAP Bull. 1978.

The pooling problem

- Oil is transported from 3 sources to 2 terminals through a capacitated network.
- Source contamination parameters $\left\{q_{1}, q_{2}, q_{3}\right\}$.
- Source 1 and 2 blended at pool 4 with blend quality w_{4}.
- Terminal quality requirements $\left\{q_{5}, q_{6}\right\}$.
- Find a flow $\left\{x_{i j}\right\}$ and blend w_{4} that minimizes transportation cost and satisfies quality requirements.

Haverly, C. A. Studies of the Behaviour of Recursions for the Pooling Problem, ACM SIGMAP Bull. 1978.

Formulation of optimization problem

- Flow conservation at pools:

$$
x_{14}+x_{24}=x_{45}+x_{46}
$$

- Defining equation for blend variable:

$$
w_{4}\left(x_{15}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24}
$$

- Quality bounds at terminals:

$$
\begin{aligned}
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right)
\end{aligned}
$$

- Capacity bounds:

$$
x_{45}+x_{46} \leq c_{4}, \quad x_{35}+x_{45} \leq c_{5}, \quad x_{36}+x_{46} \leq c_{6}
$$

- Nonnegativity of flow:

Formulation of optimization problem

- Flow conservation at pools:

$$
x_{14}+x_{24}=x_{45}+x_{46}
$$

- Defining equation for blend variable:

$$
w_{4}\left(x_{45}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24}
$$

- Quality bounds at terminals:

$$
\begin{aligned}
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right)
\end{aligned}
$$

- Capacity bounds:

$$
x_{45}+x_{46} \leq c_{4}, \quad x_{35}+x_{45} \leq c_{5}, \quad x_{36}+x_{46} \leq c_{6}
$$

- Nonnegativity of flow:

Formulation of optimization problem

- Flow conservation at pools:

$$
x_{14}+x_{24}=x_{45}+x_{46}
$$

- Defining equation for blend variable:

$$
w_{4}\left(x_{45}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24}
$$

$$
\begin{aligned}
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right)
\end{aligned}
$$

- Capacity bounds:

$$
x_{45}+x_{46} \leq c_{4}, \quad x_{35}+x_{45} \leq c_{5}, \quad x_{36}+x_{46} \leq c_{6}
$$

- Nonnegativity of flow:

Formulation of optimization problem

- Flow conservation at pools:

$$
x_{14}+x_{24}=x_{45}+x_{46}
$$

- Defining equation for blend variable:

$$
w_{4}\left(x_{45}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24}
$$

- Quality bounds at terminals:

$$
\begin{aligned}
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right)
\end{aligned}
$$

- Capacity bounds:

$$
\begin{gathered}
x_{14} \leq c_{1}, \quad x_{24} \leq c_{2}, \quad x_{35}+x_{36} \leq c_{3} \\
x_{45}+x_{46} \leq c_{4}, \quad x_{35}+x_{45} \leq c_{5}, \quad x_{36}+x_{46} \leq c_{6}
\end{gathered}
$$

- Nonnegativity of flow:

Formulation of optimization problem

- Flow conservation at pools:

$$
x_{14}+x_{24}=x_{45}+x_{46}
$$

- Defining equation for blend variable:

$$
w_{4}\left(x_{45}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24}
$$

- Quality bounds at terminals:

$$
\begin{aligned}
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right)
\end{aligned}
$$

- Capacity bounds:

$$
\begin{gathered}
x_{14} \leq c_{1}, \quad x_{24} \leq c_{2}, \quad x_{35}+x_{36} \leq c_{3} \\
x_{45}+x_{46} \leq c_{4}, \quad x_{35}+x_{45} \leq c_{5}, \quad x_{36}+x_{46} \leq c_{6}
\end{gathered}
$$

- Nonnegativity of flow:

$$
\left(x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}\right) \geq 0
$$

Formulation of optimization problem

Minimum-cost formulation for Haverly

$$
\begin{array}{ll}
\operatorname{minimize} & x_{35}-9 x_{45}-5 x_{36}-15 x_{46}+6 x_{14}+16 x_{24} \\
\text { subject to } & x_{14}+x_{24}=x_{45}+x_{46} \\
& w_{4}\left(x_{45}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24} \\
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right) \\
& x_{14} \leq c_{1}, x_{24} \leq c_{2} \\
& x_{35}+x_{36} \leq c_{3} \\
& x_{45}+x_{46} \leq c_{4} \\
& x_{35}+x_{45} \leq c_{5} \\
& x_{36}+x_{46} \leq c_{6} \\
& \left(x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}\right) \geq 0
\end{array}
$$

Very difficult to solve (NP hard)!

Introducing semidefinite variables

Let $v:=\left(\begin{array}{llllllll}1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4}\end{array}\right)^{T}$ and define

$$
X:=\left[\begin{array}{cccccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} x_{14} & x_{35} x_{24} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} x_{14} & x_{45} x_{24} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} x_{14} & x_{36} x_{24} & x_{36} W_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} x_{14} & x_{46} x_{24} & x_{46} W_{4} \\
x_{14} & x_{35} x_{14} & x_{45} x_{14} & x_{36} x_{14} & x_{46} x_{14} & x_{14}^{2} & x_{14} x_{24} & x_{14} W_{4} \\
x_{24} & x_{35} x_{24} & x_{45} x_{24} & x_{36} x_{24} & x_{46} x_{24} & x_{14} x_{24} & x_{24}^{2} & x_{24} W_{4} \\
w_{4} & x_{35} W_{4} & x_{45} W_{4} & x_{36} W_{4} & x_{46} W_{4} & x_{14} W_{4} & x_{24} W_{4} & w_{4}^{2}
\end{array}\right]
$$

- Note that $X=v v^{\top}$ with rank 1 .
- X contains all 36 monomials up to order 2 .
- The pooling problem is equivalent to a nonconvex $S D P$ in X.

Introducing semidefinite variables

Let $v:=\left(\begin{array}{llllllll}1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4}\end{array}\right)^{T}$ and define

$$
X:=\left[\begin{array}{cccccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} x_{14} & x_{35} x_{24} & x_{35} W_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} x_{14} & x_{45} x_{24} & x_{45} W_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} x_{14} & x_{36} x_{24} & x_{36} W_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} x_{14} & x_{46} x_{24} & x_{46} W_{4} \\
x_{14} & x_{35} x_{14} & x_{45} x_{14} & x_{36} x_{14} & x_{46} x_{14} & x_{14}^{2} & x_{14} x_{24} & x_{14} W_{4} \\
x_{24} & x_{35} x_{24} & x_{45} x_{24} & x_{36} x_{24} & x_{46} x_{24} & x_{14} x_{24} & x_{24}^{2} & x_{24} W_{4} \\
w_{4} & x_{35} W_{4} & x_{45} W_{4} & x_{36} W_{4} & x_{46} W_{4} & x_{14} W_{4} & x_{24} W_{4} & w_{4}^{2}
\end{array}\right]
$$

- Note that $X=v v^{T}$ with rank 1 .
- X contains all 36 monomials up to order 2.
- The pooling problem is equivalent to a nonconvex SDP in X.

Introducing semidefinite variables

Let $v:=\left(\begin{array}{llllllll}1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4}\end{array}\right)^{T}$ and define

$$
X:=\left[\begin{array}{cccccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} x_{14} & x_{35} x_{24} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} x_{14} & x_{45} x_{24} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} x_{14} & x_{36} x_{24} & x_{36} W_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} x_{14} & x_{46} x_{24} & x_{46} W_{4} \\
x_{14} & x_{35} x_{14} & x_{45} x_{14} & x_{36} x_{14} & x_{46} x_{14} & x_{14}^{2} & x_{14} x_{24} & x_{14} W_{4} \\
x_{24} & x_{35} x_{24} & x_{45} x_{24} & x_{36} x_{24} & x_{46} x_{24} & x_{14} x_{24} & x_{24}^{2} & x_{24} W_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} W_{4} & x_{46} W_{4} & x_{14} W_{4} & x_{24} W_{4} & w_{4}^{2}
\end{array}\right]
$$

- Note that $X=v v^{T}$ with rank 1 .
- X contains all 36 monomials up to order 2.
- The pooling problem is equivalent to a nonconvex $S D P$ in X.

A nonconvex SDP

Treating each monomial as a separate variable, we get a rank-1 SDP:
minimize $\quad x_{35}-9 x_{45}-5 x_{36}-15 x_{46}+6 x_{14}+16 x_{24}$

Using Lasserre relaxations

Method proposed by Frimannslund, El Ghami, Alfaki and Haugland:

- Eliminate equality constraints,

$$
\begin{aligned}
& x_{14}=\frac{1}{q_{1}-q_{2}} w_{4}\left(x_{45}+x_{46}\right)-\frac{q_{2}}{q_{1}-q_{2}}\left(x_{45}+\frac{1}{2} x_{46}\right) \\
& x_{24}=-\frac{1}{q_{1}-q_{2}} w_{4}\left(x_{45}+x_{46}\right)+\frac{q_{1}}{q_{1}-q_{2}}\left(x_{45}+\frac{1}{2} x_{46}\right)
\end{aligned}
$$

- Tighten relaxation by redundant constraints,

$$
\min \left\{q_{1}, q_{2}\right\} \leq w_{4} \leq \max \left\{q_{1}, q_{2}\right\}
$$

- Solve sequence of Lasserre relaxations.

Solving the pooling problem with LMI relaxations, L. Frimmandslund, et. al, 2012.

Using Lasserre relaxations

Method proposed by Frimannslund, El Ghami, Alfaki and Haugland:

- Eliminate equality constraints,

$$
\begin{aligned}
& x_{14}=\frac{1}{q_{1}-q_{2}} w_{4}\left(x_{45}+x_{46}\right)-\frac{q_{2}}{q_{1}-q_{2}}\left(x_{45}+\frac{1}{2} x_{46}\right) \\
& x_{24}=-\frac{1}{q_{1}-q_{2}} w_{4}\left(x_{45}+x_{46}\right)+\frac{q_{1}}{q_{1}-q_{2}}\left(x_{45}+\frac{1}{2} x_{46}\right)
\end{aligned}
$$

- Tighten relaxation by redundant constraints,

$$
\min \left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\} \leq w_{4} \leq \max \left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}
$$

- Solve sequence of Lasserre relaxations.

Solving the pooling problem with LMI relaxations, L. Frimmandslund, et. al, 2012.

Using Lasserre relaxations

Method proposed by Frimannslund, El Ghami, Alfaki and Haugland:

- Eliminate equality constraints,

$$
\begin{aligned}
& x_{14}=\frac{1}{q_{1}-q_{2}} w_{4}\left(x_{45}+x_{46}\right)-\frac{q_{2}}{q_{1}-q_{2}}\left(x_{45}+\frac{1}{2} x_{46}\right) \\
& x_{24}=-\frac{1}{q_{1}-q_{2}} w_{4}\left(x_{45}+x_{46}\right)+\frac{q_{1}}{q_{1}-q_{2}}\left(x_{45}+\frac{1}{2} x_{46}\right)
\end{aligned}
$$

- Tighten relaxation by redundant constraints,

$$
\min \left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\} \leq w_{4} \leq \max \left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}
$$

- Solve sequence of Lasserre relaxations.

Solving the pooling problem with LMI relaxations, L. Frimmandslund, et. al, 2012.

Frimannslund's relaxation

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{ccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{35} x_{36}^{2} & x_{45} x_{46} \\
x_{45} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} \\
x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& x_{35}+x_{36} \leq 1 \\
& x_{45}+x_{46} \leq 1 \\
& x_{35}+x_{45} \leq(1 / 3) \\
& x_{36}+x_{46} \leq(2 / 3) \\
& 1 \leq w_{4}, w_{4} \leq 3 \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

- 1st order Lasserre relaxation shown.

Frimannslund's relaxation

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \quad \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{\leq} \leq(1 / 3) \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3) \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

- 1st order Lasserre relaxation shown.
- Minor suggestion: square bounds instead of adding

$$
x_{35}^{2}+x_{36}^{2}+x_{45}^{2}+x_{46}^{2}+w_{4}^{2} \leq M .
$$

Numerical experiments for Haverly1

$\left(x_{14}, x_{24}, x_{35}, x_{45}, x_{36}, x_{46}, w_{4}\right)=(0,1 / 3,0,0,1 / 3,1 / 3,1)$ found at relaxation order 2.

Problem and solver statistics

order	1	2	3
\# LMIs	17	17	17
largest LMI	6	21	56
\# vars	37	567	5292
\# cons	20	125	461
time (sec)	<1	<1	<1

Numerical experiments for Foulds2

- Optimal solution found at relaxation order 2.
- For order 3 we run out of memory.

Problem and solver statistics

order	1	2
\# LMIs	41	41
largest LMI	19	190
\# vars	230	25745
\# cons	189	7314
time (sec)	<1	103

Numerical experiments for Adhya1

- Optimal bound (probably) found at relaxation order 3.
- Feasible solution not recovered due to inaccuracies.

Problem and solver statistics

order	1	2	3
\# LMIs	57	57	57
largest LMI	12	78	364
\# vars	134	7449	238966
\# cons	77	1364	12375
time (sec)	<1	8	1197

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \quad \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\left.\left.\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{ccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{45}^{2} & x_{46} \\
x_{46} & x_{45} w_{4} \\
x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{36} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4}
\end{array} w_{4}^{2}\right.}
\end{array}\right] \succeq 0\right\}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \quad \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \quad \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \quad \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \quad \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{ccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} \\
x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} \\
w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\left.\left.\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{ccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} \\
x_{45} & x_{35} x_{45} & x_{35}^{2} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{45} x_{36} & x_{35}^{2} x_{46} \\
x_{45} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} x_{46} & x_{36} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4}
\end{array} x_{46} w_{4}\right.} \\
w_{4}^{2}
\end{array}\right] \succeq 0\right\}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{ccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} w_{4} & x_{45} x_{36} & x_{45} x_{46} \\
x_{36} & x_{35} x_{36} w_{4} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} \\
x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} \\
w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\left.\left.\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{ccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{45} x_{36} & x_{35}^{2} x_{46} \\
x_{45} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} x_{46} & x_{36} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4}
\end{array} x_{46} w_{4}\right.} \\
w_{4}^{2}
\end{array}\right] \succeq 0\right\}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{aligned}
& \text { minimize } \quad x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
& \text { subject to }\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0 \\
& 0 \leq \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} W_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} W_{4}-\frac{1}{2} x_{46} W_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{aligned}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{array}{ll}
\text { minimize } & x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
\text { subject to } & {\left[\begin{array}{ccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} \\
x_{36} & x_{35} x_{36} w_{4} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} \\
x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} \\
w_{4}^{2}
\end{array}\right] \succeq 0} \\
& 0 \leq \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} w_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} w_{4}-\frac{1}{2} x_{46} w_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{array}
$$

Exploiting sparse structure

Let us map all the monomials we actually need:

$$
\begin{aligned}
& \text { minimize } \quad x_{35}+12 x_{45}-5 x_{36}+6 x_{46}-5 x_{45} w_{4}-5 x_{46} w_{4} \\
& \text { subject to }\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0 \\
& 0 \leq \frac{1}{2} x_{35}+\frac{5}{2} x_{45}-x_{45} w_{4} \\
& 0 \leq-\frac{1}{2} x_{36}+\frac{3}{2} x_{46}-x_{46} w_{4} \\
& 0 \leq-\frac{1}{2} x_{45}-\frac{1}{2} x_{46}+\frac{1}{2} x_{45} w_{4}+\frac{1}{2} x_{46} W_{4} \leq 1 \\
& 0 \leq \frac{3}{2} x_{45}+\frac{3}{2} x_{46}-\frac{1}{2} x_{45} W_{4}-\frac{1}{2} x_{46} W_{4} \leq 1 \\
& \left(x_{35}+x_{36}\right)^{2} \leq 1 \\
& \left(x_{45}+x_{46}\right)^{2} \leq 1 \\
& \left(x_{35}+x_{45}\right)^{2} \leq(1 / 3)^{2} \\
& \left(x_{36}+x_{46}\right)^{2} \leq(2 / 3)^{2} \\
& 1 \leq w_{4}, w_{4}^{2} \leq 3^{2} \\
& x_{35}, x_{36}, x_{45}, x_{46} \geq 0
\end{aligned}
$$

Chordal embedding

$$
X=\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0
$$

- In a chordal embedding we add $x_{45} x_{36}$.
- For the chordal matrix we identify the cliques:

$$
I_{1}=\left\{1, x_{35}, x_{45}, x_{36}, w_{4}\right\}, I_{2}=\left\{1, x_{45}, x_{36}, x_{46}, w_{4}\right\} .
$$

- Semidefinite matrix completion:

- I.e., $x_{35} x_{46}$ can be eliminated

Exploiting "Correlative sparsity pattern", Waki et. al, Lasserre, Mevissen.

Chordal embedding

$$
X=\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0
$$

- In a chordal embedding we add $x_{45} x_{36}$.
- For the chordal matrix we identify the cliques:

$$
I_{1}=\left\{1, x_{35}, x_{45}, x_{36}, w_{4}\right\}, I_{2}=\left\{1, x_{45}, x_{36}, x_{46}, w_{4}\right\} .
$$

- Semidefinite matrix completion:
- I.e., $x_{35} x_{46}$ can be eliminated

Exploiting "Correlative sparsity pattern", Waki et. al, Lasserre, Mevissen.

Chordal embedding

$$
X=\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0
$$

- In a chordal embedding we add $x_{45} x_{36}$.
- For the chordal matrix we identify the cliques:

$$
I_{1}=\left\{1, x_{35}, x_{45}, x_{36}, w_{4}\right\}, I_{2}=\left\{1, x_{45}, x_{36}, x_{46}, w_{4}\right\} .
$$

- Semidefinite matrix completion:

$$
X_{1_{1}, l_{1}} \succeq 0, X_{l_{2}, l_{2}} \succeq 0 \quad \exists x_{35} x_{46}: X \succeq 0
$$

- I.e., $x_{35} x_{46}$ can be eliminated.

Exploiting "Correlative sparsity pattern", Waki et. al, Lasserre, Mevissen.

Chordal embedding

$$
X=\left[\begin{array}{cccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} w_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0
$$

- In a chordal embedding we add $x_{45} x_{36}$.
- For the chordal matrix we identify the cliques:

$$
I_{1}=\left\{1, x_{35}, x_{45}, x_{36}, w_{4}\right\}, I_{2}=\left\{1, x_{45}, x_{36}, x_{46}, w_{4}\right\} .
$$

- Semidefinite matrix completion:

$$
X_{l_{1}, l_{1}} \succeq 0, X_{l_{2}, l_{2}} \succeq 0 \quad \Longleftrightarrow \quad \exists x_{35} x_{46}: X \succeq 0
$$

- I.e., $x_{35} x_{46}$ can be eliminated.

Exploiting "Correlative sparsity pattern", Waki et. al, Lasserre, Mevissen.

Chordal relaxation for Foulds2

- Optimal solution found at relaxation order 2 for both versions.
- For order 3 we run out of memory for both versions.

Standard Lasserre relaxations

order	1	2
\# LMIs	41	41
largest LMI	19	190
\# vars	230	25745
\# cons	189	7314
time (sec)	<1	103

Chordal Lasserre relaxations

order	1	2
\# LMIs	41	41
largest LMI	13	91
\# vars	230	14828
\# cons	189	7314
time (sec)	<1	25

Chordal relaxation for Adhya1

- The $2 n d$ order chordal relaxation is weaker than the dense version.
- Optimal bound found at relaxation order 3 for both versions.
- The solution to the chordal version is feasible.

Standard Lasserre relaxations

order	1	2	3
\# LMIs	57	57	57
largest LMI	12	78	364
\# vars	134	7449	238966
\# cons	77	1364	12375
time (sec)	<1	8	1197

Chordal Lasserre relaxations

order	1	2	3
\# LMIs	59	59	59
largest LMI	10	55	220
\# vars	201	6230	114710
\# cons	77	1364	12375
time (sec)	<1	3	218

Tighter relaxations

$$
X:=\left[\begin{array}{cccccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} x_{14} & x_{35} x_{24} & x_{35} W_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} x_{14} & x_{45} x_{24} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} x_{14} & x_{36} x_{24} & x_{36} W_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} x_{14} & x_{46} x_{24} & x_{46} w_{4} \\
x_{14} & x_{35} x_{14} & x_{45} x_{14} & x_{36} x_{14} & x_{46} x_{14} & x_{14}^{2} & x_{14} x_{24} & x_{14} w_{4} \\
x_{24} & x_{35} x_{24} & x_{45} x_{24} & x_{36} x_{24} & x_{46} x_{24} & x_{14} x_{24} & x_{24}^{2} & x_{24} W_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} W_{4} & x_{46} W_{4} & x_{14} W_{4} & x_{24} W_{4} & w_{4}^{2}
\end{array}\right] \succeq 0
$$

- Since $\left(x_{35}, x_{45}, x_{36}, x_{46}, x_{14}, x_{24}, w_{4}\right) \geq 0$ then $X_{i j} \geq 0$.
- X is doubly nonnegative.
- Adding some of the constraints $X_{i j} \geq 0$ is very cheap, but strengthens the relaxation.
- Adding all the constraints $X_{i j} \geq 0$ is still cheaper than increasing the relaxation order

Tighter relaxations

$$
X:=\left[\begin{array}{cccccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} x_{14} & x_{35} x_{24} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} x_{14} & x_{45} x_{24} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} x_{14} & x_{36} x_{24} & x_{36} W_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} x_{14} & x_{46} x_{24} & x_{46} W_{4} \\
x_{14} & x_{35} x_{14} & x_{45} x_{14} & x_{36} x_{14} & x_{46} x_{14} & x_{14}^{2} & x_{14} x_{24} & x_{14} W_{4} \\
x_{24} & x_{35} x_{24} & x_{45} x_{24} & x_{36} x_{24} & x_{46} x_{24} & x_{14} x_{24} & x_{24}^{2} & x_{24} W_{4} \\
w_{4} & x_{35} W_{4} & x_{45} w_{4} & x_{36} W_{4} & x_{46} W_{4} & x_{14} W_{4} & x_{24} W_{4} & w_{4}^{2}
\end{array}\right] \succeq 0
$$

- Since $\left(x_{35}, x_{45}, x_{36}, x_{46}, x_{14}, x_{24}, w_{4}\right) \geq 0$ then $X_{i j} \geq 0$.
- X is doubly nonnegative.
- Adding some of the constraints $X_{i j} \geq 0$ is very cheap, but strengthens the relaxation.
- Adding all the constraints $X_{i j} \geq 0$ is still cheaper than increasing the relaxation order

Tighter relaxations

$$
X:=\left[\begin{array}{cccccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} x_{14} & x_{35} x_{24} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} x_{14} & x_{45} x_{24} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} x_{14} & x_{36} x_{24} & x_{36} W_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} x_{14} & x_{46} x_{24} & x_{46} W_{4} \\
x_{14} & x_{35} x_{14} & x_{45} x_{14} & x_{36} x_{14} & x_{46} x_{14} & x_{14}^{2} & x_{14} x_{24} & x_{14} W_{4} \\
x_{24} & x_{35} x_{24} & x_{45} x_{24} & x_{36} x_{24} & x_{46} x_{24} & x_{14} x_{24} & x_{24}^{2} & x_{24} W_{4} \\
w_{4} & x_{35} W_{4} & x_{45} W_{4} & x_{36} W_{4} & x_{46} W_{4} & x_{14} W_{4} & x_{24} W_{4} & w_{4}^{2}
\end{array}\right] \succeq 0
$$

- Since $\left(x_{35}, x_{45}, x_{36}, x_{46}, x_{14}, x_{24}, w_{4}\right) \geq 0$ then $X_{i j} \geq 0$.
- X is doubly nonnegative.
- Adding some of the constraints $X_{i j} \geq 0$ is very cheap, but strengthens the relaxation.
- Adding all the constraints $X_{i j} \geq 0$ is still cheaper than increasing the relaxation order

Tighter relaxations

$$
X:=\left[\begin{array}{cccccccc}
1 & x_{35} & x_{45} & x_{36} & x_{46} & x_{14} & x_{24} & w_{4} \\
x_{35} & x_{35}^{2} & x_{35} x_{45} & x_{35} x_{36} & x_{35} x_{46} & x_{35} x_{14} & x_{35} x_{24} & x_{35} w_{4} \\
x_{45} & x_{35} x_{45} & x_{45}^{2} & x_{45} x_{36} & x_{45} x_{46} & x_{45} x_{14} & x_{45} x_{24} & x_{45} w_{4} \\
x_{36} & x_{35} x_{36} & x_{45} x_{36} & x_{36}^{2} & x_{36} x_{46} & x_{36} x_{14} & x_{36} x_{24} & x_{36} w_{4} \\
x_{46} & x_{35} x_{46} & x_{45} x_{46} & x_{36} x_{46} & x_{46}^{2} & x_{46} x_{14} & x_{46} x_{24} & x_{46} w_{4} \\
x_{14} & x_{35} x_{14} & x_{45} x_{14} & x_{36} x_{14} & x_{46} x_{14} & x_{14}^{2} & x_{14} x_{24} & x_{14} w_{4} \\
x_{24} & x_{35} x_{24} & x_{45} x_{24} & x_{36} x_{24} & x_{46} x_{24} & x_{14} x_{24} & x_{24}^{2} & x_{24} W_{4} \\
w_{4} & x_{35} w_{4} & x_{45} w_{4} & x_{36} w_{4} & x_{46} w_{4} & x_{14} W_{4} & x_{24} w_{4} & w_{4}^{2}
\end{array}\right] \succeq 0
$$

- Since $\left(x_{35}, x_{45}, x_{36}, x_{46}, x_{14}, x_{24}, w_{4}\right) \geq 0$ then $X_{i j} \geq 0$.
- X is doubly nonnegative.
- Adding some of the constraints $X_{i j} \geq 0$ is very cheap, but strengthens the relaxation.
- Adding all the constraints $X_{i j} \geq 0$ is still cheaper than increasing the relaxation order.

Other ideas

Reconsider that first minimum-cost formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{35}-9 x_{45}-5 x_{36}-15 x_{46}+6 x_{14}+16 x_{24} \\
\text { subject to } & x_{14}+x_{24}=x_{45}+x_{46} \\
& w_{4}\left(x_{45}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24} \\
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right) \\
& x_{14} \leq c_{1}, x_{24} \leq c_{2} \\
& x_{35}+x_{36} \leq c_{3} \\
& x_{45}+x_{46} \leq c_{4} \\
& x_{35}+x_{45} \leq c_{5} \\
& x_{36}+x_{46} \leq c_{6} \\
& \left(x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}\right) \geq 0
\end{array}
$$

- Keep equality constraints to get sparser (but larger) LMIs.
- Specialize the Lasserre relaxations for bilinear problems.
- Break up cliques by adding simple redundant constraints.

Other ideas

Reconsider that first minimum-cost formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{35}-9 x_{45}-5 x_{36}-15 x_{46}+6 x_{14}+16 x_{24} \\
\text { subject to } & x_{14}+x_{24}=x_{45}+x_{46} \\
& w_{4}\left(x_{45}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24} \\
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right) \\
& x_{14} \leq c_{1}, x_{24} \leq c_{2} \\
& x_{35}+x_{36} \leq c_{3} \\
& x_{45}+x_{46} \leq c_{4} \\
& x_{35}+x_{45} \leq c_{5} \\
& x_{36}+x_{46} \leq c_{6} \\
& \left(x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}\right) \geq 0
\end{array}
$$

- Keep equality constraints to get sparser (but larger) LMIs.
- Specialize the Lasserre relaxations for bilinear problems.
- Break up cliques by adding simple redundant constraints.

Other ideas

Reconsider that first minimum-cost formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{35}-9 x_{45}-5 x_{36}-15 x_{46}+6 x_{14}+16 x_{24} \\
\text { subject to } & x_{14}+x_{24}=x_{45}+x_{46} \\
& w_{4}\left(x_{45}+x_{46}\right)=q_{1} x_{14}+q_{2} x_{24} \\
& w_{4} x_{45}+q_{3} x_{35} \leq q_{5}\left(x_{45}+x_{35}\right) \\
& w_{4} x_{46}+q_{3} x_{36} \leq q_{6}\left(x_{46}+x_{36}\right) \\
& x_{14} \leq c_{1}, x_{24} \leq c_{2} \\
& x_{35}+x_{36} \leq c_{3} \\
& x_{45}+x_{46} \leq c_{4} \\
& x_{35}+x_{45} \leq c_{5} \\
& x_{36}+x_{46} \leq c_{6} \\
& \left(x_{14}, x_{24}, x_{35}, x_{36}, x_{45}, x_{46}\right) \geq 0
\end{array}
$$

- Keep equality constraints to get sparser (but larger) LMIs.
- Specialize the Lasserre relaxations for bilinear problems.
- Break up cliques by adding simple redundant constraints.

Conclusions

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

Conclusions

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

Conclusions

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

Conclusions

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

Conclusions

- Exploiting chordal structure gives a noticable improvement, but we can still only solve toy problems.
- The problems are quite difficult to solve with some inherent ill-posedness.
- Scaling of the models is crucial for the solver.
- The relaxations are interesting test problems, because they contain many small LMIs.
- Solving a bilinear problem as a general polynomial optimization problem seems too generic.

