
Partial facial reduction: simplified, equivalent
SDPs via approximations of the PSD cone

Frank Permenter (Joint with Pablo Parrilo)

Massachusetts Institute of Technology

Oct 6th, 2014

1 / 27

Our pre-processing philosophy: do simple things
quickly.

"The strategy of detecting simple forms of redundancy, but
doing it fast, seems to be the best strategy."
– Andersen and Andersen, Presolving in linear programming.

This talk:
Pre-processing technique based on facial reduction
(Borwein, Wolkowicz ’81) consistent with this philosophy.

I’ll also discuss:
Dual solution recovery.
A software implementation (frlib).

2 / 27

Facial reduction applies to semidefinite programs not
strictly feasible.

SDP feasible set is intersection of subspace with PSD cone

minimize C · X
subject to Ai · X = bi ∀i ∈ {1, . . . ,m}

X ∈ Sn
+

Strictly feasible when subspace intersects interior of
cone—i.e. if subspace contains positive definite matrix

Strictly feasible Not strictly feasible

3 / 27

Facial reduction applies to semidefinite programs not
strictly feasible.

SDP feasible set is intersection of subspace with PSD cone

minimize C · X
subject to Ai · X = bi ∀i ∈ {1, . . . ,m}

X ∈ Sn
+

Strictly feasible when subspace intersects interior of
cone—i.e. if subspace contains positive definite matrix

Strictly feasible Not strictly feasible
3 / 27

Example: strict feasibility can fail in SDP-based
bounds of completely-positive rank.

The following SDP (Fawzi, et al ’14) bounds the completely
positive rank of a matrix A:

minimize t
subject to

(
t vect AT

vect A X

)
∈ Sn

+

Xij,ij ≤ A2
ij

(additional constraints)

i.e. it bounds smallest R for which

A =
R∑

i=1

vivT
i vi ≥ 0.

.

Strict feasibility fails if any Aij is zero!

4 / 27

Example: strict feasibility can fail in SDP-based
bounds of completely-positive rank.

The following SDP (Fawzi, et al ’14) bounds the completely
positive rank of a matrix A:

minimize t
subject to

(
t vect AT

vect A X

)
∈ Sn

+

Xij,ij ≤ A2
ij

(additional constraints)

i.e. it bounds smallest R for which

A =
R∑

i=1

vivT
i vi ≥ 0.

.

Strict feasibility fails if any Aij is zero!

4 / 27

Example: strict feasibility can fail in SDP-based tests
of polynomial non-negativity.

Let p(x) be a vector of polynomials. Then, the polynomial f (x)
is a sum-of-squares if there exists Q that solves:

Find Q ∈ Sn
+

subject to f (x) = p(x)T Qp(x)︸ ︷︷ ︸
Linear constraints

Strict feasibility fails if p(x) 6= 0 at roots of f (x).

5 / 27

Example: strict feasibility can fail in SDP-based tests
of polynomial non-negativity.

Let p(x) be a vector of polynomials. Then, the polynomial f (x)
is a sum-of-squares if there exists Q that solves:

Find Q ∈ Sn
+

subject to f (x) = p(x)T Qp(x)︸ ︷︷ ︸
Linear constraints

Strict feasibility fails if p(x) 6= 0 at roots of f (x).

5 / 27

If strict feasibility fails, SDPs can be simplified.

Find x1, x2, x3, x4 ∈ R
subject to

X =

x1 0 0 0
0 −x1 x2 0
0 x2 x2 + x3 0
0 0 0 x4

 ∈ S4
+

vT Xv = 0 for v = (1,1,0,0)T —i.e. strict feasibility fails.

Equivalent reformulation:

Find x1, x2, x3, x4 ∈ R
subject to

x1 = x2 = 0,
(

x3 0
0 x4

)
∈ S2

+

If strict feasibility fails, such a reformulation always exists.

6 / 27

If strict feasibility fails, SDPs can be simplified.

Find x1, x2, x3, x4 ∈ R
subject to

X =

x1 0 0 0
0 −x1 x2 0
0 x2 x2 + x3 0
0 0 0 x4

 ∈ S4
+

vT Xv = 0 for v = (1,1,0,0)T —i.e. strict feasibility fails.

Equivalent reformulation:

Find x1, x2, x3, x4 ∈ R
subject to

x1 = x2 = 0,
(

x3 0
0 x4

)
∈ S2

+

If strict feasibility fails, such a reformulation always exists.

6 / 27

If strict feasibility fails, SDPs can be simplified.

Find x1, x2, x3, x4 ∈ R
subject to

X =

x1 0 0 0
0 −x1 x2 0
0 x2 x2 + x3 0
0 0 0 x4

 ∈ S4
+

vT Xv = 0 for v = (1,1,0,0)T —i.e. strict feasibility fails.

Equivalent reformulation:

Find x1, x2, x3, x4 ∈ R
subject to

x1 = x2 = 0,
(

x3 0
0 x4

)
∈ S2

+

If strict feasibility fails, such a reformulation always exists.

6 / 27

If strict feasibility fails, SDPs can be simplified.

Find x1, x2, x3, x4 ∈ R
subject to

X =

x1 0 0 0
0 −x1 x2 0
0 x2 x2 + x3 0
0 0 0 x4

 ∈ S4
+

vT Xv = 0 for v = (1,1,0,0)T —i.e. strict feasibility fails.

Equivalent reformulation:

Find x1, x2, x3, x4 ∈ R
subject to

x1 = x2 = 0,
(

x3 0
0 x4

)
∈ S2

+

If strict feasibility fails, such a reformulation always exists.

6 / 27

Simplifications arise by reformulating SDP over a face
containing feasible set.

What is a face? For a polyhedral cone:

For the PSD cone, a face is the subset of matrices with
range contained in a given subspace S

FS :=
{

X ∈ Sn
+ : range X ⊆ S

}
For subspaces A,B,
A ⊆ B ⇒ FA ⊆ FB.

For X ∈ Sn
+,

Fnull X = X⊥ ∩ Sn
+.

7 / 27

Simplifications arise by reformulating SDP over a face
containing feasible set.

What is a face? For a polyhedral cone:

For the PSD cone, a face is the subset of matrices with
range contained in a given subspace S

FS :=
{

X ∈ Sn
+ : range X ⊆ S

}

For subspaces A,B,
A ⊆ B ⇒ FA ⊆ FB.

For X ∈ Sn
+,

Fnull X = X⊥ ∩ Sn
+.

7 / 27

Simplifications arise by reformulating SDP over a face
containing feasible set.

What is a face? For a polyhedral cone:

For the PSD cone, a face is the subset of matrices with
range contained in a given subspace S

FS :=
{

X ∈ Sn
+ : range X ⊆ S

}
For subspaces A,B,
A ⊆ B ⇒ FA ⊆ FB.

For X ∈ Sn
+,

Fnull X = X⊥ ∩ Sn
+.

7 / 27

Simplifications arise by reformulating SDP over a face
containing feasible set.

What is a face? For a polyhedral cone:

For the PSD cone, a face is the subset of matrices with
range contained in a given subspace S

FS :=
{

X ∈ Sn
+ : range X ⊆ S

}
For subspaces A,B,
A ⊆ B ⇒ FA ⊆ FB.

For X ∈ Sn
+,

Fnull X = X⊥ ∩ Sn
+.

7 / 27

Faces can be parametrized using smaller PSD cones,
which yields smaller SDPs.

Fix U ∈ Rn×d . The following holds:

X ∈ Sn
+

range X ⊆ range U
⇔ X = U

X̂︸ ︷︷ ︸
∈ Sd

+

UT

Containment of feasible set in a face yields reformulation

minimize C · X
subject to Ai · X = bi

X ∈ Sn
+

equivalent
←−−−−−−−−→

problems

minimize C · UX̂UT

subject to Ai · UX̂UT = bi

X̂ ∈ Sd
+

How do you find a face containing feasible set?

8 / 27

Faces can be parametrized using smaller PSD cones,
which yields smaller SDPs.

Fix U ∈ Rn×d . The following holds:

X ∈ Sn
+

range X ⊆ range U
⇔ X = U

X̂︸ ︷︷ ︸
∈ Sd

+

UT

Containment of feasible set in a face yields reformulation

minimize C · X
subject to Ai · X = bi

X ∈ Sn
+

equivalent
←−−−−−−−−→

problems

minimize C · UX̂UT

subject to Ai · UX̂UT = bi

X̂ ∈ Sd
+

How do you find a face containing feasible set?

8 / 27

Faces can be parametrized using smaller PSD cones,
which yields smaller SDPs.

Fix U ∈ Rn×d . The following holds:

X ∈ Sn
+

range X ⊆ range U
⇔ X = U

X̂︸ ︷︷ ︸
∈ Sd

+

UT

Containment of feasible set in a face yields reformulation

minimize C · X
subject to Ai · X = bi

X ∈ Sn
+

equivalent
←−−−−−−−−→

problems

minimize C · UX̂UT

subject to Ai · UX̂UT = bi

X̂ ∈ Sd
+

How do you find a face containing feasible set?

8 / 27

Facial reduction is technique for finding a face.

Approaches:
Borwein and Wolkowicz ’81. Original algorithm.
Ramana ’97. Generalized SDP dual.
Pataki ’13. Simplifies ’81, generalizes ’97 to other cones.
Waki and Muramatsu ’13. Simplifies ’81.
Cheung and Wolkowicz ’13. Numerical stability.
Other application specific methods (e.g. Krislock et al. ’10)

9 / 27

Finding faces is a search problem over the dual cone.

Let A denote solutions to Ai · X = bi and let S solve:

Find S ∈ (Sn
+)
∗

subject to S⊥ contains A

Then, the face Sn
+ ∩ S⊥ contains feasible set A ∩ Sn

+.

Finding a face is an SDP!

10 / 27

Finding faces is a search problem over the dual cone.

Let A denote solutions to Ai · X = bi and let S solve:

Find S ∈ (Sn
+)
∗

subject to S⊥ contains A

Then, the face Sn
+ ∩ S⊥ contains feasible set A ∩ Sn

+.

Finding a face is an SDP!

10 / 27

Finding faces is a search problem over the dual cone.

Let A denote solutions to Ai · X = bi and let S solve:

Find S ∈ (Sn
+)
∗

subject to S⊥ contains A

Then, the face Sn
+ ∩ S⊥ contains feasible set A ∩ Sn

+.

Finding a face is an SDP!

10 / 27

Our approach: simplify search by approximating Sn
+.

Using a user-specified outer approximation K∗outer ,

we find a face by solving easier optimization problem—e.g.
an LP or SOCP:

Find S ∈����XXXX(Sn
+)
∗ K∗outer

subject to S⊥ contains A

Since K∗outer ⊆ (Sn
+)
∗, the set Sn

+ ∩ S⊥ is a face of Sn
+.

11 / 27

Our approach: simplify search by approximating Sn
+.

Using a user-specified outer approximation K∗outer ,

we find a face by solving easier optimization problem—e.g.
an LP or SOCP:

Find S ∈����XXXX(Sn
+)
∗ K∗outer

subject to S⊥ contains A

Since K∗outer ⊆ (Sn
+)
∗, the set Sn

+ ∩ S⊥ is a face of Sn
+.

11 / 27

Our approach: simplify search by approximating Sn
+.

Using a user-specified outer approximation K∗outer ,

we find a face by solving easier optimization problem—e.g.
an LP or SOCP:

Find S ∈����XXXX(Sn
+)
∗ K∗outer

subject to S⊥ contains A

Since K∗outer ⊆ (Sn
+)
∗, the set Sn

+ ∩ S⊥ is a face of Sn
+.

11 / 27

Interpretation: for polyhedral approximations, we find a
face by identifying always-active constraints.

Polyhedral Kouter yields LP relaxation of SDP:

minimize C · X
subject to Ai · X = bi i .e. X ∈ A

���
��XXXXXX ∈ Sn
+

vT
j Xvj ≥ 0 ∀j ∈ I, i .e. X ∈ Kouter

In this LP, some inequalities are always active:

A ∩Kouter ⊆
{

X : vT
k Xvk = 0 ∀k ∈ Iact ⊆ I

}

These inequalities identify a face of Sn
+

A ∩ Sn
+ ⊆ Sn

+ ∩ (
∑

k∈Iact
vkvT

k)⊥

12 / 27

Interpretation: for polyhedral approximations, we find a
face by identifying always-active constraints.

Polyhedral Kouter yields LP relaxation of SDP:

minimize C · X
subject to Ai · X = bi i .e. X ∈ A

���
��XXXXXX ∈ Sn
+

vT
j Xvj ≥ 0 ∀j ∈ I, i .e. X ∈ Kouter

In this LP, some inequalities are always active:

A ∩Kouter ⊆
{

X : vT
k Xvk = 0 ∀k ∈ Iact ⊆ I

}

These inequalities identify a face of Sn
+

A ∩ Sn
+ ⊆ Sn

+ ∩ (
∑

k∈Iact
vkvT

k)⊥

12 / 27

Interpretation: for polyhedral approximations, we find a
face by identifying always-active constraints.

Polyhedral Kouter yields LP relaxation of SDP:

minimize C · X
subject to Ai · X = bi i .e. X ∈ A

���
��XXXXXX ∈ Sn
+

vT
j Xvj ≥ 0 ∀j ∈ I, i .e. X ∈ Kouter

In this LP, some inequalities are always active:

A ∩Kouter ⊆
{

X : vT
k Xvk = 0 ∀k ∈ Iact ⊆ I

}

These inequalities identify a face of Sn
+

A ∩ Sn
+ ⊆ Sn

+ ∩ (
∑

k∈Iact
vkvT

k)⊥

12 / 27

Interpretation: for polyhedral approximations, we find a
face by identifying always-active constraints.

Polyhedral Kouter yields LP relaxation of SDP:

minimize C · X
subject to Ai · X = bi i .e. X ∈ A

���
��XXXXXX ∈ Sn
+

vT
j Xvj ≥ 0 ∀j ∈ I, i .e. X ∈ Kouter

In this LP, some inequalities are always active:

A ∩Kouter ⊆
{

X : vT
k Xvk = 0 ∀k ∈ Iact ⊆ I

}

These inequalities identify a face of Sn
+

A ∩ Sn
+ ⊆ Sn

+ ∩ (
∑

k∈Iact
vkvT

k)⊥

12 / 27

Example choices for PSD approximation.

Choices for Kouter (in terms of its dual cone K∗outer):

K∗outer Search Size
Non-negative diagonal LP O(n)
Diagonally-dominant LP O(n2)

Scaled diagonally-dominant SOCP O(n2)

Factor width-k SDP (k × k) O(
(n

k

)
)

Can choose Kouter to
set pre-processing effort,
enable use of exact arithmetic,
ensure reformulation preserves sparsity.

13 / 27

Sparsity of reformulation is sensitive to chosen
approximation.

To reformulate the SDP over Sn
+ ∩ S⊥, one applies UT (·)U to

problem data, where range U = null S:

minimize UT CU · X
subject to UT AiU · X̂ = bi

X ∈ Sd
+

For S ∈ K∗outer ,

K∗outer UT (·)U
Non-negative diagonal deletes rows/cols
Diagonally-dominant

(rank one)
replaces two rows/cols

with their sum/difference
Scaled diagonally-dominant

(rank one)
replaces two rows/cols

with a linear combination

14 / 27

Sparsity of reformulation is sensitive to chosen
approximation.

To reformulate the SDP over Sn
+ ∩ S⊥, one applies UT (·)U to

problem data, where range U = null S:

minimize UT CU · X
subject to UT AiU · X̂ = bi

X ∈ Sd
+

For S ∈ K∗outer ,

K∗outer UT (·)U
Non-negative diagonal deletes rows/cols
Diagonally-dominant

(rank one)
replaces two rows/cols

with their sum/difference
Scaled diagonally-dominant

(rank one)
replaces two rows/cols

with a linear combination

14 / 27

Example #1 - SDP from Posa, Tedrake ’13.

Lyapunov analysis of rimless wheel, a simple walking
model and hybrid system.

Problem has 13000 variables and takes 105s to solve.
With reductions...

K∗outer

Num.
Vars.

Find Face
(sec.)

Solve
(sec.)

Diagonal 4500 .1 3.70
Diag. Dom., 2300 .5 1.1

15 / 27

Example #2 - SDPs from Boyd, Mueller, et al. ’12.

SDP-based lower bounds of 4 optimal controllers.

Before After Find face

1 S90
+ × 100 S60

+ × 100 3 sec

2 S120
+ × 100 S60

+ × 100 4 sec

3 S120
+ × 100 S60

+ × 100 5 sec

4 S150
+ × 100 S60

+ × 100 7 sec

Solve times (sec)

Before
(SeDuMi)

After
(SeDuMi)

Before
(Mosek)

After
(Mosek)

1 949 727 246 158
2 795 593 281 151
3 617 507 230 189
4 1270 648 234 170

K∗outer is set of non-negative diagonal matrices.

16 / 27

Example #2 - SDPs from Boyd, Mueller, et al. ’12.

SDP-based lower bounds of 4 optimal controllers.

Before After Find face

1 S90
+ × 100 S60

+ × 100 3 sec

2 S120
+ × 100 S60

+ × 100 4 sec

3 S120
+ × 100 S60

+ × 100 5 sec

4 S150
+ × 100 S60

+ × 100 7 sec

Solve times (sec)

Before
(SeDuMi)

After
(SeDuMi)

Before
(Mosek)

After
(Mosek)

1 949 727 246 158
2 795 593 281 151
3 617 507 230 189
4 1270 648 234 170

K∗outer is set of non-negative diagonal matrices.
16 / 27

Simple approximations identify "trivial degeneracy"—
this is the job of a pre-processor.

In previous examples, strict feasibility failed for "trivial"
reason.

 3x1 ∗ · · ·
∗ −x1 · · ·
...

...
. . .

 ∈ Sn
+

︸ ︷︷ ︸
example constraint

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 292︸ ︷︷ ︸
imposed sparsity

Identifying this structure is "due diligence"—analogous to
removing columns of zeros from Ax = b.

17 / 27

Facial reduction also improves solution accuracy.

Considering the following SDP:

Find xii s.t.

100 x12 x13 x14 x15
x12 x22 x23 x24 x25
x13 x23 x33 x34 x35
x14 x24 x34 x44 x45
x15 x25 x35 x45 x55

 ∈ S5
+

∑
red = 0∑
cyan = 0∑
blue = 0∑
mag. = 0

It has a unique solution:

X ∗ =

100 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Facial reduction converts to a 1× 1 SDP, easily solved.

18 / 27

Facial reduction also improves solution accuracy.

Considering the following SDP:

Find xii s.t.

100 x12 x13 x14 x15
x12 x22 x23 x24 x25
x13 x23 x33 x34 x35
x14 x24 x34 x44 x45
x15 x25 x35 x45 x55

 ∈ S5
+

∑
red = 0∑
cyan = 0∑
blue = 0∑
mag. = 0

It has a unique solution:

X ∗ =

100 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Facial reduction converts to a 1× 1 SDP, easily solved.

18 / 27

Facial reduction also improves solution accuracy.

Considering the following SDP:

Find xii s.t.

100 x12 x13 x14 x15
x12 x22 x23 x24 x25
x13 x23 x33 x34 x35
x14 x24 x34 x44 x45
x15 x25 x35 x45 x55

 ∈ S5
+

∑
red = 0∑
cyan = 0∑
blue = 0∑
mag. = 0

It has a unique solution:

X ∗ =

100 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Facial reduction converts to a 1× 1 SDP, easily solved.
18 / 27

Without facial reduction, error is large even though
primal residual is small.

Solution found by solver (no reductions):

X =

100.000 −0.0000 −0.0585 −0.0000 0.0000
−0.0000 0.0000 0.0000 0.0000 −0.0000
−0.0585 0.0000 0.0001 0.0000 −0.0000
−0.0000 0.0000 0.0000 0.1171 −0.1916

0.0000 −0.0000 −0.0000 −0.1916 0.3832

A(X) = b:∑

red = 0∑
cyan = 0∑
blue = 0∑

mag. = 0

Residuals:

||A(X)− b|| = 4.54 · 10−9

λmin(X) = 2.98 · 10−10

True error:

||X − X ∗|| = 0.4907

19 / 27

Without facial reduction, error is large even though
primal residual is small.

Solution found by solver (no reductions):

X =

100.000 −0.0000 −0.0585 −0.0000 0.0000
−0.0000 0.0000 0.0000 0.0000 −0.0000
−0.0585 0.0000 0.0001 0.0000 −0.0000
−0.0000 0.0000 0.0000 0.1171 −0.1916

0.0000 −0.0000 −0.0000 −0.1916 0.3832

A(X) = b:∑

red = 0∑
cyan = 0∑
blue = 0∑

mag. = 0

Residuals:

||A(X)− b|| = 4.54 · 10−9

λmin(X) = 2.98 · 10−10

True error:

||X − X ∗|| = 0.4907

19 / 27

Without facial reduction, error is large even though
primal residual is small.

Solution found by solver (no reductions):

X =

100.000 −0.0000 −0.0585 −0.0000 0.0000
−0.0000 0.0000 0.0000 0.0000 −0.0000
−0.0585 0.0000 0.0001 0.0000 −0.0000
−0.0000 0.0000 0.0000 0.1171 −0.1916

0.0000 −0.0000 −0.0000 −0.1916 0.3832

A(X) = b:∑

red = 0∑
cyan = 0∑
blue = 0∑

mag. = 0

Residuals:

||A(X)− b|| = 4.54 · 10−9

λmin(X) = 2.98 · 10−10

True error:

||X − X ∗|| = 0.4907

19 / 27

Without facial reduction, residuals can be (arbitrarily)
small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

X =

100.000 −0.0000 −0.3044 −0.0000 0.0000
−0.0000 0.0000 0.0000 0.0004 −0.0005
−0.3044 0.0000 0.0010 0.0000 −0.0000
−0.0000 0.0004 0.0000 0.6088 −0.6963

0.0000 −0.0005 −0.0000 −0.6963 0.8926

A(X) = b: ∑

red = 0∑
cyan = 0∑
blue = 0∑

mag. = −.5︸ ︷︷ ︸
perturbed

Residuals:

||A(X)− b|| = 7.54 · 10−7

λmin(X) = 4.82 · 10−8

True error:

||X − X ∗|| = undefined

20 / 27

Without facial reduction, residuals can be (arbitrarily)
small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

X =

100.000 −0.0000 −0.3044 −0.0000 0.0000
−0.0000 0.0000 0.0000 0.0004 −0.0005
−0.3044 0.0000 0.0010 0.0000 −0.0000
−0.0000 0.0004 0.0000 0.6088 −0.6963

0.0000 −0.0005 −0.0000 −0.6963 0.8926

A(X) = b: ∑

red = 0∑
cyan = 0∑
blue = 0∑

mag. = −.5︸ ︷︷ ︸
perturbed

Residuals:

||A(X)− b|| = 7.54 · 10−7

λmin(X) = 4.82 · 10−8

True error:

||X − X ∗|| = undefined

20 / 27

Without facial reduction, residuals can be (arbitrarily)
small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

X =

100.000 −0.0000 −0.3044 −0.0000 0.0000
−0.0000 0.0000 0.0000 0.0004 −0.0005
−0.3044 0.0000 0.0010 0.0000 −0.0000
−0.0000 0.0004 0.0000 0.6088 −0.6963

0.0000 −0.0005 −0.0000 −0.6963 0.8926

A(X) = b: ∑

red = 0∑
cyan = 0∑
blue = 0∑

mag. = −.5︸ ︷︷ ︸
perturbed

Residuals:

||A(X)− b|| = 7.54 · 10−7

λmin(X) = 4.82 · 10−8

True error:

||X − X ∗|| = undefined

20 / 27

Part II: Dual solution recovery.

Facial reduction restricts the primal and relaxes the dual:

minimize C · X
subject to Ai · X = bi

���
�XXXXX ∈ Sn
+

X ∈ Sn
+ ∩ S⊥

maximize bT y
subject to ((((

(((hhhhhhhC −
∑

i yiAi ∈Sn
+

C −
∑

i yiAi ∈ Sn
+ + span S

Solution recovery: (using fact S =
∑

i diAi ,bT d = 0):

Find α such that C −
∑

i yiAi + αS ∈ Sn
+

Is dual solution recovery possible? Equivalent to asking:

Is C −
∑

i yiAi in Sn
+ + span S?

21 / 27

Part II: Dual solution recovery.

Facial reduction restricts the primal and relaxes the dual:

minimize C · X
subject to Ai · X = bi

���
�XXXXX ∈ Sn
+

X ∈ Sn
+ ∩ S⊥

maximize bT y
subject to ((((

(((hhhhhhhC −
∑

i yiAi ∈Sn
+

C −
∑

i yiAi ∈ Sn
+ + span S

Solution recovery: (using fact S =
∑

i diAi ,bT d = 0):

Find α such that C −
∑

i yiAi + αS ∈ Sn
+

Is dual solution recovery possible? Equivalent to asking:

Is C −
∑

i yiAi in Sn
+ + span S?

21 / 27

Part II: Dual solution recovery.

Facial reduction restricts the primal and relaxes the dual:

minimize C · X
subject to Ai · X = bi

���
�XXXXX ∈ Sn
+

X ∈ Sn
+ ∩ S⊥

maximize bT y
subject to ((((

(((hhhhhhhC −
∑

i yiAi ∈Sn
+

C −
∑

i yiAi ∈ Sn
+ + span S

Solution recovery: (using fact S =
∑

i diAi ,bT d = 0):

Find α such that C −
∑

i yiAi + αS ∈ Sn
+

Is dual solution recovery possible? Equivalent to asking:

Is C −
∑

i yiAi in Sn
+ + span S?

21 / 27

Is dual recovery possible? There are three
possibilities.

The set Sn
+ + span S and set of optimal slacks, C −

∑
i yiAi .

22 / 27

Can determine if recovery will succeed by comparing
nullspaces.

Pick orthogonal (U,V) satisfying range V = range S and
change coordinates:(

W11 W T
21

W21 W22

)
:= (U,V)T (C −

∑
i

yiAi)(U,V)

The following holds:

C −
∑

i yiAi ∈ Sn
+ + span S ⇔ W11 ∈ Sd

+

C −
∑

i yiAi ∈ Sn
+ + span S ⇔ W11 ∈ Sd

+, null W11 ⊆ null W21︸ ︷︷ ︸
Recovery succeeds.

23 / 27

Part III: frlib is a MATLAB-based tool implementing
these ideas.

Basic flow:

1. Identify

Face

2. Solve

Over Face

SDP and

PSD Approx.

Solution, Flag
(Using LP Solver) (Using SDP Solver)

3. Recover

Solution

Inputs:
1 SDP primal-dual pair
2 PSD approximation (e.g non-negative diagonal matrices)

Outputs:
1 Solution to primal-dual pair
2 Flag indicating successful dual recovery

24 / 27

Using frlib (direct interface).

Calling directly using diagonal (’d’) approximations:

prg = frlibPrg(A,b,c,K);
prgR = prg.ReducePrimal(‘d’);
[xR,yR] = sedumi(prgR.A, prgR.b, ...

prgR.c, prgR.K);
[x,y,dual_recovered] = prgR.Recover(xR,yR);

What do these functions do?
frlibPrg: reads in SDP in SeDuMi format A b c K

ReducePrimal: finds a face by solving LPs.
Recover: converts to original coordinates, attempts dual
recovery.

25 / 27

Using frlib via YALMIP—a parser by Johan Löfberg:

To use, specify as solver and set options in YALMIP script:

sdpvar x y z
p = 12+y^2-2*x^3*y+2*y*z^2+x^6-2*x^3*z^2+z^4...

+x^2*y^2;
ops = sdpsettings(’solver’,’frlib’);
ops = sdpsettings(ops,’frlib.approx’,’dd’);
[sol] = solvesos(sos(p),[],ops);

Produces output:

frlib: reductions found!

Dim PSD constraint(s) (original): 7 2
Dim PSD constraint(s) (reduced): 3 0

26 / 27

Using frlib via YALMIP—a parser by Johan Löfberg:

To use, specify as solver and set options in YALMIP script:

sdpvar x y z
p = 12+y^2-2*x^3*y+2*y*z^2+x^6-2*x^3*z^2+z^4...

+x^2*y^2;
ops = sdpsettings(’solver’,’frlib’);
ops = sdpsettings(ops,’frlib.approx’,’dd’);
[sol] = solvesos(sos(p),[],ops);

Produces output:

frlib: reductions found!

Dim PSD constraint(s) (original): 7 2
Dim PSD constraint(s) (reduced): 3 0

26 / 27

Summary

Facial reduction-based pre-processing allowing you to
specify pre-processing effort.
Dual solution recovery: not always possible!
Software/paper:

www.github.com/frankpermenter/frlib

http : //arxiv.org/abs/1408.4685

27 / 27

