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Our pre-processing philosophy: do simple things

quickly.

"The strategy of detecting simple forms of redundancy, but
doing it fast, seems to be the best strategy.”
— Andersen and Andersen, Presolving in linear programming.

This talk:

@ Pre-processing technique based on facial reduction
(Borwein, Wolkowicz ’81) consistent with this philosophy.

I'll also discuss:
@ Dual solution recovery.
@ A software implementation (fr1ib).



Facial reduction applies to semidefinite programs not

strictly feasible.

@ SDP feasible set is intersection of subspace with PSD cone

minimize C-X
subjectto A;- X =b; Vie{l,...,m}
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Facial reduction applies to semidefinite programs not

strictly feasible.

@ SDP feasible set is intersection of subspace with PSD cone

minimize C-X
subjectto A;- X =b; Vie{l,...,m}
Xes]

@ Strictly feasible when subspace intersects interior of
cone—i.e. if subspace contains positive definite matrix

Strictly feasible Not strictly feasible



Example: strict feasibility can fail in SDP-based

bounds of completely-positive rank.

The following SDP (Fawzi, et al '14) bounds the completely
positive rank of a matrix A:

minimize t t  vect AT n
subject to < vect A X ) €55

2
Xijj < Aj

( additional constraints)

i.e. it bounds smallest R for which

R
A= Z vivi v >0.
i—1
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bounds of completely-positive rank.

The following SDP (Fawzi, et al '14) bounds the completely
positive rank of a matrix A:

minimize t t  vect AT n
subject to < vect A X ) €55

2
Xijj < Aj

( additional constraints)

i.e. it bounds smallest R for which

R
A= Z vivi v >0.
i—1

Strict feasibility fails if any Aj is zero!




Example: strict feasibility can fail in SDP-based tests

of polynomial non-negativity.

Let p(x) be a vector of polynomials. Then, the polynomial f(x)
is a sum-of-squares if there exists Q that solves:
Find Q € S}
subjectto  f(x) = p(x)" Qp(x)

Linear constraints




Example: strict feasibility can fail in SDP-based tests

of polynomial non-negativity.

Let p(x) be a vector of polynomials. Then, the polynomial f(x)
is a sum-of-squares if there exists Q that solves:
Find Q € S}
subjectto  f(x) = p(x)" Qp(x)

Linear constraints

Strict feasibility fails if p(x) # 0 at roots of f(x). ‘




If strict feasibility fails, SDPs can be simplified.

Find X1, X2, X3, X4 € R
subject to
x1 0 0 0
0 —xq Xo 0
0 Xo Xo+Xxg3 0
0 O 0 X4

4
€St
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If strict feasibility fails, SDPs can be simplified.

Find X1, X2, X3, X4 € R
subject to
x1 0 0 0
0 —xq Xo 0
0 Xo Xo+Xxg3 0
0 O 0 X4

viXv =0forv = (1,1,0,0)"—i.e. strict feasibility fails.

X = est

Equivalent reformulation:

Find Xy, X2, X3, X4 € R
subject to

x3 0
X1 =X =0, <O X4>€S2+

If strict feasibility fails, such a reformulation always exists.
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Simplifications arise by reformulating SDP over a face

containing feasible set.

@ What is a face? For a polyhedral cone:

@ For the PSD cone, a face is the subset of matrices with
range contained in a given subspace S

Fs:={X €S :range X C S}

For subspaces A, B, For X € S7,
AC B= F,C Fp. fnulIX:leSi-
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Faces can be parametrized using smaller PSD cones,

which yields smaller SDPs.

@ Fix U € R4, The following holds:

UT

X
XSt sl x |=|Uu|l==
range X C range U S

@ Containment of feasible set in a face yields reformulation

minimize C- X equivalent minimize C-UXUT
subjectto A;- X = b; T subjectto A;- UXUT = b;
X c Si prodlems X c Si

How do you find a face containing feasible set?




Facial reduction is technique for finding a face.

Approaches:
@ Borwein and Wolkowicz '81. Original algorithm.
@ Ramana '97. Generalized SDP dual.
@ Pataki’13. Simplifies 81, generalizes 97 to other cones.
@ Waki and Muramatsu ’13. Simplifies ’81.
@ Cheung and Wolkowicz ’13. Numerical stability.
@ Other application specific methods (e.g. Krislock et al. ’10)



Finding faces is a search problem over the dual cone.

@ Let A denote solutions to A; - X = b; and let S solve:

Find Se(sh)
subjectto St contains A ¢S

10/27



Finding faces is a search problem over the dual cone.

@ Let A denote solutions to A; - X = b; and let S solve:

Find Se(sh)
subjectto St contains A ¢S

@ Then, the face S N S+ contains feasible set AN ST]..

10/27



Finding faces is a search problem over the dual cone.

@ Let A denote solutions to A; - X = b; and let S solve:

Find Se(sh)
subjectto St contains A ¢S

@ Then, the face S N S+ contains feasible set AN ST]..

Finding a face is an SDP!
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Our approach: simplify search by approximating S'.

@ Using a user-specified outer approximation K7,
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Our approach: simplify search by approximating S'.

@ Using a user-specified outer approximation K7,

we find a face by solving easier optimization problem—e.g.
an LP or SOCP:

Find S e (81 Kiyer

subjectto S contains A

@ Since K*

suer © (ST7)*, the set ST N St is a face of ST]..
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Interpretation: for polyhedral approximations, we find a

face by identifying always-active constraints.

@ Polyhedral Kouter yields LP relaxation of SDP:

minimize C-X
subjectto A;- X = b; ie. Xe A

VITXV/ Z O \V/j S I, /e X S Kouter
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Interpretation: for polyhedral approximations, we find a

face by identifying always-active constraints.

@ Polyhedral Kouter yields LP relaxation of SDP:

minimize C-X
subjectto A;- X = b; ie. Xe A

VITXV/ Z O \V/j S I, /e X S Kouter

@ In this LP, some inequalities are always active:

AN Kouter C {XI V/Z-XVk =0 VK € Lyt QI}

@ These inequalities identify a face of S

ANST C ST 0 (ke Vi)
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Example choices for PSD approximation.

Choices for Kouter (in terms of its dual cone K ;,,):
Kiuter Search Size
Non-negative diagonal LP O(n)
Diagonally-dominant LP O(n?)
Scaled diagonally-dominant SOCP O(n?)
Factor width-k SDP (k x k) | O((}))

Can choose Koyter t0
@ set pre-processing effort,
@ enable use of exact arithmetic,
@ ensure reformulation preserves sparsity.
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Sparsity of reformulation is sensitive to chosen

approximation.

To reformulate the SDP over S7 N S+, one applies UT(-)U to
problem data, where range U = null S:
minimize UTCU - X
subjectto UTA;U - X = b;
X esd
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Sparsity of reformulation is sensitive to chosen

approximation.

To reformulate the SDP over S7 N S+, one applies UT(-)U to
problem data, where range U = null S:

minimize UTCU- X
subjectto UTA;U - X = b;

X esd
For S € K} ter>
]Czuter UT(') u
Non-negative diagonal deletes rows/cols
Diagonally-dominant replaces two rows/cols
(rank one) with their sum/difference

Scaled diagonally-dominant | replaces two rows/cols
(rank one) with a linear combination
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Example #1 - SDP from Posa, Tedrake ’13.

@ Lyapunov analysis of rimless wheel, a simple walking

model and hybrid system.

@ Problem has 13000 variables and takes 105s to solve.

With reductions...

Num. | Find Face | Solve

Ko uter Vars. (sec.) (sec.)

Diagonal 4500 A 3.70
Diag. Dom., | 2300 5 1.1
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Example #2 - SDPs from Boyd, Mueller, et al. ’12.

@ SDP-based lower bounds of 4 optimal controllers.

Before After Find face
S x 100 | S8 x 100 | 3 sec
S120 x 100 | S8 x 100 | 4 sec
S120 x 100 | S8 x 100 | 5 sec
S180 % 100 | S8 x 100 | 7 sec

AlW|IN| =

16/27



Example #2 - SDPs from Boyd, Mueller, et al. ’12.

K

@ SDP-based lower bounds of 4 optimal controllers.

Before

After

Find face

Sio x 100

Sio x 100

3 sec

Sfo x 100

Sio x 100

4 sec

Wi —=

S120 » 100

S8 x 100

5 sec

4

S180 » 100

S8 x 100

7 sec

@ Solve times (sec)

*
outer

Before
(SeDuMi)

After
(SeDuMi)

Before
(Mosek)

After
(Mosek)

949

727

246

158

795

593

281

151

W=

617

507

230

189

1270

648

234

170

is set of non-negative diagonal matrices.
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Simple approximations identify "trivial degeneracy"—

this is the job of a pre-processor.

@ In previous examples, strict feasibility failed for "trivial"

reason.
3X4 *

/

example constraint

ne=202

imposed sparsity
@ |dentifying this structure is "due diligence"—analogous to
removing columns of zeros from Ax = b.
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Facial reduction also improves solution accuracy.

Considering the following SDP:

100 X12 Xx13 X14 X5

X X: X: X: X: 2.red=0
12 Xoo Xo3 Xog Xos -
Find x; s.t Xi3 Xog X33 Xag X es® 2 cvan=0
i ot 13 23 33 34 35 + Z blue = 0
X14 Xo4 X34 X44 X45 S mag. =0

X15 Xo5 X3 X45 X55
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Facial reduction also improves solution accuracy.

Considering the following SDP:

100 X12 Xx13 X14 X5

X X: X: X: X: 2.red=0
12 Xoo Xo3 Xogq Xos -
Find x; s.t Xi3 Xog X33 Xag X es® 2 cvan=0
i ot 13 23 33 34 35 + Z blue = 0
X14 Xo4 X34 X44 X45 S mag. =0

X15 Xo5 X35 X45 X55

@ It has a unique solution:

100

X* =

O OO OO
O OO oo
O OO oo
O OO oo
O OO oo
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Facial reduction also improves solution accuracy.

Considering the following SDP:

100 X12 Xx13 X14 X5

X X: X: X: X: 2.red=0
12 Xoo Xo3 Xogq Xos -
Find x; s.t Xi3 Xog X33 Xag X es® 2 cvan=0
i ot 13 23 33 34 35 + Z blue = 0
X14 Xo4 X34 X44 X45 S mag. =0

X15 Xo5 X35 X45 X55

@ It has a unique solution:

100

X* =

O OO OO
O OO oo
O OO oo
O OO oo
O OO oo

@ Facial reduction converts to a 1 x 1 SDP, easily solved.
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Without facial reduction, error is large even though

primal residual is small.

Solution found by solver (no reductions):

100.000 —-0.0000 —-0.0585 —0.0000 0.0000
—0.0000 0.0000 0.0000 0.0000 —0.0000

X=| —-0.0585 0.0000 0.0001 0.0000 —0.0000
—0.0000 0.0000 0.0000 0.1171 -0.1916

0.0000 —0.0000 —0.0000 —-0.1916  0.3832

A(X) = b:

dYred=0

d>cyan=0
> blue =0

>-mag.=0
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Without facial reduction, error is large even though

primal residual is small.

Solution found by solver (no reductions):

100.000 —-0.0000

—0.0000

X =| —0.0585
—0.0000

0.0000

A(X) = b:

dYred=0
d>cyan=0
> blue =0
>-mag.=0

0.0000
0.0000
0.0000
0.0000

—0.0585 —0.0000 0.0000
0.0000 0.0000 —0.0000
0.0001  0.0000 -0.0000
0.0000 0.1171 -0.1916

—0.0000 —-0.1916  0.3832

Residuals:

I|A(X) — b|| = 4.54-107°
Amin(X) = 2.98-10710

True error:

I1X — X*|| = 0.4907
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Without facial reduction, residuals can be (arbitrarily)

small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

100.000 —-0.0000 -0.3044 —-0.0000 0.0000
—0.0000 0.0000 0.0000 0.0004 —0.0005

X =] —-03044 0.0000 0.0010  0.0000 -—0.0000
—0.0000 0.0004 0.0000 0.6088 —0.6963

0.0000 —-0.0005 -0.0000 -0.6963  0.8926

A(X) = b: Residuals:

>red=0

> cyan =0
> blue =0

> “mag.=-5

perturbed
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Without facial reduction, residuals can be (arbitrarily)

small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

100.000 —-0.0000
—0.0000  0.0000

X =1 —0.3044 0.0000
—0.0000 0.0004

0.0000 —0.0005

A(X) = b

>red=0

> cyan =0
> blue =0

> “mag.=-5

perturbed

—0.3044 —0.0000
0.0000  0.0004
0.0010  0.0000
0.0000 0.6088

—0.0000 —0.6963

Residuals:

IA(X) — bl|
)\min(X) =

0.0000
—0.0005
—0.0000
—0.6963

0.8926

7.54.107
482.10°8
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Without facial reduction, residuals can be (arbitrarily)

small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

100.000 —-0.0000 -0.3044 —-0.0000 0.0000
—0.0000 0.0000 0.0000 0.0004 —0.0005

X =] —-03044 0.0000 0.0010  0.0000 -—0.0000
—0.0000 0.0004 0.0000 0.6088 —0.6963

0.0000 —-0.0005 -0.0000 -0.6963  0.8926

A(X) = b: Residuals:
Y red=0 I|AX)—b|| = 7.54-1077
S cyan =0 Amin(X) = 4.82-1078

> blue =0 True error:

>_mag.=—5 X — X*|| = undefined

perturbed

20/27



Part II: Dual solution recovery.

Facial reduction restricts the primal and relaxes the dual:

minimize C- X maximize b’y

subjectto  A; - X = b; subjectto  C=>=4A; €S
C—> VA €S +spanS
Xesinst
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Part II: Dual solution recovery.

Facial reduction restricts the primal and relaxes the dual:

minimize C- X maximize b’y

subjectto  A; - X = b; subjectto  C=>=4A; €S
C—> VA €S +spanS
Xesinst

Solution recovery: (using fact S = 3", diA;, b"d = 0):

Find o such that C — >, y;Ai + oS € ST

Is dual solution recovery possible? Equivalent to asking:

Is C— 3", yiAiin ST + span S§?
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Is dual recovery possible? There are three
possibilities.

o (duality gap). Maybe.

The set S’ + span S and set of optimal slacks, C -}, yiA;
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Can determine if recovery will succeed by comparing
nullspaces.

Pick orthogonal (U, V) satisfying range V = range S and
change coordinates:

Wy W)
(W Wy ) =wwre- Sy

The following holds:
C-Y,¥A €ST +spanS & Wy es?

C-3,yA €St +spanS < Wi eSq, null Wiy C null Way
Recovery succeeds.
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Part lll: fr1ib is a MATLAB-based tool implementing

these ideas.

Basic flow:

SDP and

PSD Approx.

1. Identify 3 2. Solve E 3. Recover
Face Over Face Solution
(Using LP Solver) (Using SDP Solver) * Solution, Flag

Inputs:

@ SDP primal-dual pair

© PSD approximation (e.g non-negative diagonal matrices)
Outputs:

@ Solution to primal-dual pair

© Flag indicating successful dual recovery
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Using fr1ib (direct interface).

Calling directly using diagonal ('d’) approximations:

prg = frlibPrg(A,b,c,K);
prgR = prg.ReducePrimal (‘d’);

[xR, yR] = sedumi (prgR.A, prgR.b,
prgR.c, prgR.K);
[x,y,dual_recovered] = prgR.Recover (xR, VR);

What do these functions do?
@ frlibPrg: readsin SDP in SeDuMiformat A b ¢ K
@ ReducePrimal: finds a face by solving LPs.

@ Recover: converts to original coordinates, attempts dual
recovery.
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Using fr1ib via YALMIP—a parser by Johan Loéfberg:

To use, specify as solver and set options in YALMIP script:

sdpvar x y z

P = 12+y"2-2%X"3xy+2xy* 272+ 6-2xx"3%xz2"2+z"4 ...
+xX"2xy"2;

ops = sdpsettings (’solver’,’ frlib’);

ops sdpsettings (ops,’ frlib.approx’,’dd’);

[sol] = solvesos(sos(p),[],0ps);
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Using fr1ib via YALMIP—a parser by Johan Loéfberg:

To use, specify as solver and set options in YALMIP script:

sdpvar x y z
P = 12+y"2-2%X"3xy+2xy* 272+ 6-2xx"3%xz2"2+z"4 ...
+xX"2xy"2;

ops = sdpsettings (’solver’,’ frlib’);
ops = sdpsettings (ops,’ frlib.approx’,’dd’);
[sol] = solvesos(sos(p),[],0ps);

Produces output:

frlib: reductions found!

Dim PSD constraint(s) (original): 7 2
Dim PSD constraint (s) (reduced): 30
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@ Facial reduction-based pre-processing allowing you to
specify pre-processing effort.

@ Dual solution recovery: not always possible!
@ Software/paper:

www.github.com/frankpermenter/frlib

http://arxiv.org/abs/1408.4685
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