Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone

Frank Permenter (Joint with Pablo Parrilo)

Massachusetts Institute of Technology

Oct 6th, 2014

Our pre-processing philosophy: do simple things quickly.

"The strategy of detecting **simple** forms of redundancy, but doing it **fast**, seems to be the **best** strategy."

- Andersen and Andersen, Presolving in linear programming.

This talk:

 Pre-processing technique based on *facial reduction* (Borwein, Wolkowicz '81) consistent with this philosophy.

I'll also discuss:

- Dual solution recovery.
- A software implementation (frlib).

Facial reduction applies to semidefinite programs not strictly feasible.

SDP feasible set is intersection of subspace with PSD cone

minimize
$$C \cdot X$$

subject to $A_i \cdot X = b_i \quad \forall i \in \{1, \dots, m\}$
 $X \in \mathbb{S}^n_+$

Facial reduction applies to semidefinite programs not strictly feasible.

SDP feasible set is intersection of subspace with PSD cone

minimize
$$C \cdot X$$

subject to $A_i \cdot X = b_i \quad \forall i \in \{1, \dots, m\}$
 $X \in \mathbb{S}^n_+$

 Strictly feasible when subspace intersects interior of cone—i.e. if subspace contains positive *definite* matrix

Example: strict feasibility can fail in SDP-based bounds of completely-positive rank.

The following SDP (Fawzi, et al '14) bounds the *completely positive rank* of a matrix A:

$$\begin{array}{l} \text{minimize } t \\ \text{subject to} \end{array} \begin{pmatrix} t & \text{vect } A^{\mathcal{T}} \\ \text{vect } A & X \end{array} \end{pmatrix} \in \mathbb{S}_{+}^{n} \\ X_{ij,ij} \leq A_{ij}^{2} \\ (\text{ additional constraints}) \end{array}$$

i.e. it bounds smallest *R* for which

٠

$$A = \sum_{i=1}^{R} v_i v_i^T \quad v_i \ge 0.$$

Example: strict feasibility can fail in SDP-based bounds of completely-positive rank.

The following SDP (Fawzi, et al '14) bounds the *completely positive rank* of a matrix A:

$$\begin{array}{l} \text{minimize } t \\ \text{subject to} \end{array} \begin{pmatrix} t & \text{vect } A^{\mathcal{T}} \\ \text{vect } A & X \end{array} \end{pmatrix} \in \mathbb{S}_{+}^{n} \\ X_{ij,ij} \leq A_{ij}^{2} \\ (\text{ additional constraints}) \end{array}$$

i.e. it bounds smallest *R* for which

.

$$A = \sum_{i=1}^{R} v_i v_i^T \quad v_i \ge 0.$$

Strict feasibility fails if any A_{ij} is zero!

Example: strict feasibility can fail in SDP-based tests of polynomial non-negativity.

Let p(x) be a vector of polynomials. Then, the polynomial f(x) is a *sum-of-squares* if there exists Q that solves:

Find $Q \in \mathbb{S}^n_+$

subject to $f(x) = p(x)^T Q p(x)$ Linear constraints

Example: strict feasibility can fail in SDP-based tests of polynomial non-negativity.

Let p(x) be a vector of polynomials. Then, the polynomial f(x) is a *sum-of-squares* if there exists Q that solves:

Find $Q \in \mathbb{S}_{+}^{n}$ subject to $\underbrace{f(x) = p(x)^{T} Q p(x)}_{\text{Linear constraints}}$

Strict feasibility fails if $p(x) \neq 0$ at roots of f(x).

Find $x_1, x_2, x_3, x_4 \in \mathbb{R}$ subject to

$$X = \begin{pmatrix} x_1 & 0 & 0 & 0 \\ 0 & -x_1 & x_2 & 0 \\ 0 & x_2 & x_2 + x_3 & 0 \\ 0 & 0 & 0 & x_4 \end{pmatrix} \in \mathbb{S}^4_+$$

 $v^T X v = 0$ for $v = (1, 1, 0, 0)^T$ —i.e. strict feasibility fails.

 $v^T X v = 0$ for $v = (1, 1, 0, 0)^T$ —i.e. strict feasibility fails.

Equivalent reformulation:

Find
$$x_1, x_2, x_3, x_4 \in \mathbb{R}$$

subject to

$$x_1 = x_2 = 0, \qquad \left(egin{array}{cc} x_3 & 0 \ 0 & x_4 \end{array}
ight) \in \mathbb{S}^2_+$$

 $v^T X v = 0$ for $v = (1, 1, 0, 0)^T$ —i.e. strict feasibility fails.

Equivalent reformulation:

Find
$$x_1, x_2, x_3, x_4 \in \mathbb{R}$$

subject to
 $x_1 = x_2 = 0, \qquad \left(\begin{array}{cc} x_3 & 0\\ 0 & x_4 \end{array}\right) \in \mathbb{S}^2_+$

If strict feasibility fails, such a reformulation *always* exists.

• What is a face? For a polyhedral cone:

• What is a face? For a polyhedral cone:

• For the PSD cone, a face is the subset of matrices with range contained in a given subspace *S*

$$\mathcal{F}_{\mathcal{S}} := \left\{ X \in \mathbb{S}_{+}^{n} : \text{range } X \subseteq \mathcal{S}
ight\}$$

• What is a face? For a polyhedral cone:

• For the PSD cone, a face is the subset of matrices with range contained in a given subspace *S*

$${\mathcal F}_{\mathcal S} := ig\{ {oldsymbol X} \in {\mathbb S}^n_+ : {
m range}\, {oldsymbol X} \subseteq {oldsymbol S} ig\}$$

For subspaces A, B, $A \subseteq B \Rightarrow \mathcal{F}_A \subseteq \mathcal{F}_B$.

• What is a face? For a polyhedral cone:

• For the PSD cone, a face is the subset of matrices with range contained in a given subspace *S*

$$\mathcal{F}_{\mathcal{S}} := \left\{ X \in \mathbb{S}_{+}^{n} : \mathrm{range} \, X \subseteq \mathcal{S}
ight\}$$

 $\begin{array}{ll} \text{For subspaces } A,B, & \text{For } X \in \mathbb{S}^n_+, \\ A \subseteq B \Rightarrow \mathcal{F}_A \subseteq \mathcal{F}_B. & \mathcal{F}_{\mathsf{null}\, X} = X^{\perp} \cap \mathbb{S}^n_+. \end{array}$

Faces can be parametrized using smaller PSD cones, which yields smaller SDPs.

• Fix $U \in \mathbb{R}^{n \times d}$. The following holds:

$$\begin{array}{c|c} X \in \mathbb{S}^n_+ & \Leftrightarrow & X \\ \text{range } X \subseteq \text{range } U & \stackrel{\leftarrow}{} X \end{array} = \begin{bmatrix} U \\ \overbrace{\in} \mathbb{S}^d_+ \end{bmatrix} \underbrace{\begin{array}{c} \hat{X} \\ \leftarrow \mathbb{S}^d_+ \end{bmatrix}} \underbrace{\begin{array}{c} U^T \\ U^T \end{bmatrix}}_{\leftarrow} \end{array}$$

Faces can be parametrized using smaller PSD cones, which yields smaller SDPs.

• Fix $U \in \mathbb{R}^{n \times d}$. The following holds:

Containment of feasible set in a face yields reformulation

$$\begin{array}{lll} \text{minimize} & C \cdot X \\ \text{subject to} & A_i \cdot X = b_i \\ X \in \mathbb{S}^n_+ \end{array} \xrightarrow[\text{problems}]{} \begin{array}{ll} \text{minimize} & C \cdot U \hat{X} U^T \\ \text{subject to} & A_i \cdot U \hat{X} U^T = b_i \\ \hat{X} \in \mathbb{S}^d_+ \end{array}$$

Faces can be parametrized using smaller PSD cones, which yields smaller SDPs.

• Fix $U \in \mathbb{R}^{n \times d}$. The following holds:

Containment of feasible set in a face yields reformulation

$$\begin{array}{lll} \text{minimize} & C \cdot X \\ \text{subject to} & A_i \cdot X = b_i \\ X \in \mathbb{S}^n_+ \end{array} \xrightarrow[\text{problems}]{\text{equivalent}} & \begin{array}{ll} \text{minimize} & C \cdot U \hat{X} U^T \\ \text{subject to} & A_i \cdot U \hat{X} U^T = b_i \\ \hat{X} \in \mathbb{S}^d_+ \end{array}$$

How do you find a face containing feasible set?

Approaches:

- Borwein and Wolkowicz '81. Original algorithm.
- Ramana '97. Generalized SDP dual.
- Pataki '13. Simplifies '81, generalizes '97 to other cones.
- Waki and Muramatsu '13. Simplifies '81.
- Cheung and Wolkowicz '13. Numerical stability.
- Other application specific methods (e.g. Krislock et al. '10)

Finding faces is a search problem over the dual cone.

• Let A denote solutions to $A_i \cdot X = b_i$ and let S solve:

Finding faces is a search problem over the dual cone.

• Let A denote solutions to $A_i \cdot X = b_i$ and let S solve:

• Then, the face $\mathbb{S}^n_+ \cap S^\perp$ contains feasible set $\mathcal{A} \cap \mathbb{S}^n_+$.

Finding faces is a search problem over the dual cone.

• Let A denote solutions to $A_i \cdot X = b_i$ and let S solve:

• Then, the face $\mathbb{S}^n_+ \cap S^\perp$ contains feasible set $\mathcal{A} \cap \mathbb{S}^n_+$.

Finding a face is an SDP!

Our approach: simplify search by approximating \mathbb{S}_{+}^{n} .

• Using a user-specified outer approximation \mathcal{K}^*_{outer} ,

Our approach: simplify search by approximating \mathbb{S}_{+}^{n} .

Using a user-specified outer approximation K^{*}_{outer}

we find a face by solving easier optimization problem—e.g. an LP or SOCP:

Find
$$S \in (S^n_+)^* \quad \mathcal{K}^*_{outer}$$

subject to S^{\perp} contains \mathcal{A}

Our approach: simplify search by approximating \mathbb{S}_{+}^{n} .

Using a user-specified outer approximation K^{*}_{outer}

we find a face by solving easier optimization problem—e.g. an LP or SOCP:

Find
$$S \in (S^n_+)^* \quad \mathcal{K}^*_{outer}$$

subject to S^{\perp} contains \mathcal{A}

• Since $\mathcal{K}^*_{outer} \subseteq (\mathbb{S}^n_+)^*$, the set $\mathbb{S}^n_+ \cap S^{\perp}$ is a face of \mathbb{S}^n_+ .

• Polyhedral *K*_{outer} yields LP relaxation of SDP:

• Polyhedral \mathcal{K}_{outer} yields LP relaxation of SDP:

minimize
$$C \cdot X$$

subject to $A_i \cdot X = b_i$ *i.e.* $X \in \mathcal{A}$
 $X \in S^n$
 $v_j^T X v_j \ge 0 \quad \forall j \in \mathcal{I}, i.e. \quad X \in \mathcal{K}_{outer}$

• In this LP, some inequalities are *always active*:

• Polyhedral \mathcal{K}_{outer} yields LP relaxation of SDP:

minimize
$$C \cdot X$$

subject to $A_i \cdot X = b_i$ *i.e.* $X \in \mathcal{A}$
 $X \in S^n$
 $v_j^T X v_j \ge 0 \quad \forall j \in \mathcal{I}, i.e. \quad X \in \mathcal{K}_{outer}$

• In this LP, some inequalities are always active:

$$\mathcal{A} \cap \mathcal{K}_{\textit{outer}} \subseteq \left\{ X : v_k^T X v_k = 0 \;\; \forall k \in \mathcal{I}_{\textit{act}} \subseteq \mathcal{I} \right\}$$

• Polyhedral \mathcal{K}_{outer} yields LP relaxation of SDP:

minimize
$$C \cdot X$$

subject to $A_i \cdot X = b_i$ *i.e.* $X \in \mathcal{A}$
 $X \in \mathbb{S}^n$
 $v_j^T X v_j \ge 0 \quad \forall j \in \mathcal{I}, i.e. \quad X \in \mathcal{K}_{outer}$

In this LP, some inequalities are always active:

$$\mathcal{A} \cap \mathcal{K}_{\textit{outer}} \subseteq \left\{ X : v_k^T X v_k = 0 \;\; \forall k \in \mathcal{I}_{\textit{act}} \subseteq \mathcal{I} \right\}$$

These inequalities identify a face of Sⁿ₊

$$\mathcal{A} \cap \mathbb{S}^n_+ \subseteq \mathbb{S}^n_+ \cap (\sum_{k \in \mathcal{I}_{act}} v_k v_k^T)^{\perp}$$

Example choices for PSD approximation.

Choices for \mathcal{K}_{outer} (in terms of its dual cone \mathcal{K}_{outer}^*):

\mathcal{K}^*_{outer}	Search	Size
Non-negative diagonal	LP	<i>O</i> (<i>n</i>)
Diagonally-dominant	LP	$O(n^2)$
Scaled diagonally-dominant	SOCP	$O(n^2)$
Factor width-k	SDP ($k \times k$)	$O(\binom{n}{k})$

Can choose $\mathcal{K}_{\textit{outer}}$ to

- set pre-processing effort,
- enable use of *exact arithmetic*,
- ensure reformulation preserves sparsity.

Sparsity of reformulation is sensitive to chosen approximation.

To reformulate the SDP over $\mathbb{S}^n_+ \cap S^{\perp}$, one applies $U^T(\cdot)U$ to problem data, where range U = null S:

minimize $U^T C U \cdot X$ subject to $U^T A_i U \cdot \hat{X} = b_i$ $X \in \mathbb{S}^d_+$

Sparsity of reformulation is sensitive to chosen approximation.

To reformulate the SDP over $\mathbb{S}^n_+ \cap S^{\perp}$, one applies $U^T(\cdot)U$ to problem data, where range U = null S:

minimize
$$U^T C U \cdot X$$

subject to $U^T A_i U \cdot \hat{X} = b_i$
 $X \in \mathbb{S}^d_+$

For $\boldsymbol{S} \in \mathcal{K}^*_{\textit{outer}}$,

\mathcal{K}^*_{outer}	$U^{T}(\cdot)U$
Non-negative diagonal	deletes rows/cols
Diagonally-dominant (rank one)	replaces two rows/cols with their sum/difference
Scaled diagonally-dominant (rank one)	replaces two rows/cols with a linear combination

Example #1 - SDP from Posa, Tedrake '13.

 Lyapunov analysis of *rimless wheel*, a simple walking model and hybrid system.

Problem has 13000 variables and takes 105s to solve.
 With reductions...

\mathcal{K}^*_{outer}	Num. Vars.	Find Face (sec.)	Solve (sec.)
Diagonal	4500	.1	3.70
Diag. Dom.,	2300	.5	1.1

Example #2 - SDPs from Boyd, Mueller, et al. '12.

• SDP-based lower bounds of 4 optimal controllers.

	Before	After	Find face
1	$\mathbb{S}^{90}_+ imes 100$	$\mathbb{S}^{60}_+ imes 100$	3 sec
2	$\mathbb{S}^{120}_+ imes 100$	$\mathbb{S}^{60}_+ imes 100$	4 sec
3	$\mathbb{S}^{120}_+ imes 100$	$\mathbb{S}^{60}_+ imes 100$	5 sec
4	$\mathbb{S}^{150}_+ imes 100$	$\mathbb{S}^{60}_+ imes 100$	7 sec

Example #2 - SDPs from Boyd, Mueller, et al. '12.

• SDP-based lower bounds of 4 optimal controllers.

	Before	After	Find face
1	$\mathbb{S}^{90}_+ imes 100$	$\mathbb{S}^{60}_+ imes 100$	3 sec
2	$\mathbb{S}^{120}_+ imes 100$	$\mathbb{S}^{60}_+ imes 100$	4 sec
3	$\mathbb{S}^{120}_+ imes 100$	$\mathbb{S}^{60}_+ imes 100$	5 sec
4	$\mathbb{S}^{150}_+ imes 100$	$\mathbb{S}^{60}_+ imes 100$	7 sec

• Solve times (sec)

	Before (SeDuMi)	After (SeDuMi)	Before (Mosek)	After (Mosek)
1	949	727	246	158
2	795	593	281	151
3	617	507	230	189
4	1270	648	234	170

 $\mathcal{K}_{\textit{outer}}^{*}$ is set of non-negative diagonal matrices.

Simple approximations identify "trivial degeneracy" this is the job of a pre-processor.

 In previous examples, strict feasibility failed for "trivial" reason.

• Identifying this structure is "due diligence"—analogous to removing columns of zeros from Ax = b.

Facial reduction also improves solution accuracy.

Considering the following SDP:

 $\mathsf{Find} \ x_{ii} \ \mathsf{s.t.} \left(\begin{array}{ccccc} 100 & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{12} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{13} & x_{23} & x_{33} & x_{34} & x_{35} \\ x_{14} & x_{24} & x_{34} & x_{44} & x_{45} \\ x_{15} & x_{25} & x_{35} & x_{45} & x_{55} \end{array} \right) \in \mathbb{S}_{+}^{5} \quad \begin{array}{c} \sum \mathsf{red} = 0 \\ \sum \mathsf{cyan} = 0 \\ \sum \mathsf{blue} = 0 \\ \sum \mathsf{mag.} = 0 \end{array} \right)$

Facial reduction also improves solution accuracy.

Considering the following SDP:

 $\mathsf{Find} \ x_{ii} \ \mathsf{s.t.} \left(\begin{array}{ccccc} 100 & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{12} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{13} & x_{23} & x_{33} & x_{34} & x_{35} \\ x_{14} & x_{24} & x_{34} & x_{44} & x_{45} \\ x_{15} & x_{25} & x_{35} & x_{45} & x_{55} \end{array} \right) \in \mathbb{S}_{+}^{5} \quad \begin{array}{c} \sum \mathsf{red} = 0 \\ \sum \mathsf{cyan} = 0 \\ \sum \mathsf{blue} = 0 \\ \sum \mathsf{mag.} = 0 \end{array} \right)$

It has a unique solution:

Facial reduction also improves solution accuracy.

Considering the following SDP:

 $\text{Find } x_{ii} \text{ s.t. } \begin{pmatrix} 100 & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{12} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{13} & x_{23} & x_{33} & x_{34} & x_{35} \\ x_{14} & x_{24} & x_{34} & x_{44} & x_{45} \\ x_{15} & x_{25} & x_{35} & x_{45} & x_{55} \end{pmatrix} \in \mathbb{S}^5_+ \quad \begin{array}{c} \sum \text{red} = 0 \\ \sum \text{cyan} = 0 \\ \sum \text{blue} = 0 \\ \sum \text{mag.} = 0 \\ \end{array}$

It has a unique solution:

• Facial reduction converts to a 1×1 SDP, easily solved.

Without facial reduction, error is large even though primal residual is small.

Solution found by solver (no reductions):

	/ 100.000	-0.0000	-0.0585	-0.0000	0.0000
	-0.0000	0.0000	0.0000	0.0000	-0.0000
<i>X</i> =	-0.0585	0.0000	0.0001	0.0000	-0.0000
	-0.0000	0.0000	0.0000	0.1171	-0.1916
	0.0000	-0.0000	-0.0000	-0.1916	0.3832

A(X) = b:

 $\sum red = 0$ $\sum cyan = 0$ $\sum blue = 0$ $\sum mag. = 0$

Without facial reduction, error is large even though primal residual is small.

Solution found by solver (no reductions):

	/ 100.000	-0.0000	-0.0585	-0.0000	0.0000	
	-0.0000	0.0000	0.0000	0.0000	-0.0000	
<i>X</i> =	-0.0585	0.0000	0.0001	0.0000	-0.0000	
	-0.0000	0.0000	0.0000	0.1171	-0.1916	
	0.0000	-0.0000	-0.0000	-0.1916	0.3832)

A(X) = b:

Residuals:

$$\sum red = 0$$

$$\sum cyan = 0$$

$$\sum blue = 0$$

$$\sum mag. = 0$$

$$\begin{aligned} |A(X) - b|| &= 4.54 \cdot 10^{-9} \\ \lambda_{\min}(X) &= 2.98 \cdot 10^{-10} \end{aligned}$$

Without facial reduction, error is large even though primal residual is small.

Solution found by solver (no reductions):

	/ 100.000	-0.0000	-0.0585	-0.0000	0.0000	
	-0.0000	0.0000	0.0000	0.0000	-0.0000	
X =	-0.0585	0.0000	0.0001	0.0000	-0.0000	
	-0.0000	0.0000	0.0000	0.1171	-0.1916	
	0.0000	-0.0000	-0.0000	-0.1916	0.3832)

A(X) = b:

Residuals:

$$\sum red = 0$$

$$\sum cyan = 0$$

$$\sum blue = 0$$

$$\sum mag. = 0$$

$$\begin{aligned} |A(X) - b|| &= 4.54 \cdot 10^{-9} \\ \lambda_{\min}(X) &= 2.98 \cdot 10^{-10} \end{aligned}$$

True error:

 $||X - X^*|| = 0.4907$

Without facial reduction, residuals can be (arbitrarily) small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

	(100.000	-0.0000	-0.3044	-0.0000	0.0000
		-0.0000	0.0000	0.0000	0.0004	-0.0005
X =		-0.3044	0.0000	0.0010	0.0000	-0.0000
		-0.0000	0.0004	0.0000	0.6088	-0.6963
		0.0000	-0.0005	-0.0000	-0.6963	0.8926

A(X) = b:

Residuals:

$$\sum red = 0$$
$$\sum cyan = 0$$
$$\sum blue = 0$$
$$\underbrace{\sum mag. = -.5}_{perturbed}$$

Without facial reduction, residuals can be (arbitrarily) small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

	(100.000	-0.0000	-0.3044	-0.0000	0.0000)
		-0.0000	0.0000	0.0000	0.0004	-0.0005	
X =		-0.3044	0.0000	0.0010	0.0000	-0.0000	
		-0.0000	0.0004	0.0000	0.6088	-0.6963	
	ĺ	0.0000	-0.0005	-0.0000	-0.6963	0.8926)
				–			

A(X) = b:

$$\sum red = 0$$

$$\sum cyan = 0$$

$$\sum blue = 0$$

$$\underbrace{\sum mag. = -.5}_{perturbed}$$

Residuals:

$$||A(X) - b|| = 7.54 \cdot 10^{-7}$$

 $\lambda_{min}(X) = 4.82 \cdot 10^{-8}$

Without facial reduction, residuals can be (arbitrarily) small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

	/ 100.000	-0.0000	-0.3044	-0.0000	0.0000	
	-0.0000	0.0000	0.0000	0.0004	-0.0005	
X =	-0.3044	0.0000	0.0010	0.0000	-0.0000	
	-0.0000	0.0004	0.0000	0.6088	-0.6963	
	0.0000	-0.0005	-0.0000	-0.6963	0.8926)
A(X) = b:		Residu	uals:			

$$\sum red = 0$$
$$\sum cyan = 0$$
$$\sum blue = 0$$
$$\underbrace{\sum mag. = -.5}_{perturbed}$$

Residuals:

$$|A(X) - b|| = 7.54 \cdot 10^{-7}$$

 $\lambda_{min}(X) = 4.82 \cdot 10^{-8}$

True error:

$$||X - X^*|| =$$
 undefined

Facial reduction *restricts* the primal and *relaxes* the dual:

minimize $C \cdot X$ subject to $A_i \cdot X = b_i$ subject to $C = \sum_{i \neq i} A_i \in \mathbb{S}^n_+$ XEST $X \in \mathbb{S}^n_+ \cap S^\perp$

maximize $b^T v$ $C - \sum_{i} y_i A_i \in \overline{\mathbb{S}^n_+} + \operatorname{span} S$ Facial reduction *restricts* the primal and *relaxes* the dual:

minimize
$$C \cdot X$$

subject to $A_i \cdot X = b_i$
 $X \in \mathbb{S}^n_+$
 $X \in \mathbb{S}^n_+ \cap S^\perp$

maximize $b^T y$ subject to $C = \sum_i y_i A_i \in \mathbb{S}^n_+$ $C - \sum_i y_i A_i \in \overline{\mathbb{S}^n_+} + \operatorname{span} S$

Solution recovery: (using fact $S = \sum_i d_i A_i, b^T d = 0$):

Find
$$\alpha$$
 such that $C - \sum_i y_i A_i + \alpha S \in \mathbb{S}^n_+$

Facial reduction *restricts* the primal and *relaxes* the dual:

minimize
$$C \cdot X$$

subject to $A_i \cdot X = b_i$
 $X \in \mathbb{S}^n_+$
 $X \in \mathbb{S}^n_+ \cap S^\perp$

maximize $b^T y$ subject to $C = \sum_i y_i A_i \in \mathbb{S}^n_+$ $C - \sum_i y_i A_i \in \overline{\mathbb{S}^n_+} + \operatorname{span} S$

Solution recovery: (using fact $S = \sum_i d_i A_i, b^T d = 0$):

Find
$$\alpha$$
 such that $C - \sum_i y_i A_i + \alpha S \in \mathbb{S}^n_+$

Is dual solution recovery possible? Equivalent to asking:

Is
$$C - \sum_i y_i A_i$$
 in \mathbb{S}^n_+ + span *S*?

Is dual recovery possible? There are three possibilities.

The set \mathbb{S}^n_+ + span *S* and set of optimal slacks, $C - \sum_i y_i A_i$.

Can determine if recovery will succeed by comparing nullspaces.

Pick orthogonal (U, V) satisfying range V = range S and change coordinates:

$$\begin{pmatrix} W_{11} & W_{21}^{T} \\ W_{21} & W_{22} \end{pmatrix} := (U, V)^{T} (C - \sum_{i} y_{i} A_{i}) (U, V)$$

The following holds:

 $C - \sum_{i} y_{i} A_{i} \in \overline{\mathbb{S}_{+}^{n}} + \operatorname{span} S \iff W_{11} \in \mathbb{S}_{+}^{d}$ $C - \sum_{i} y_{i} A_{i} \in \mathbb{S}_{+}^{n} + \operatorname{span} S \iff W_{11} \in \mathbb{S}_{+}^{d}, \underbrace{\operatorname{null} W_{11} \subseteq \operatorname{null} W_{21}}_{\operatorname{Recovery succeeds.}}$

Part III: frlib is a MATLAB-based tool implementing these ideas.

Inputs:

- SDP primal-dual pair
- PSD approximation (e.g non-negative diagonal matrices)

Outputs:

- Solution to primal-dual pair
- Plag indicating successful dual recovery

Calling directly using diagonal ('d') approximations:

```
prg = frlibPrg(A,b,c,K);
prgR = prg.ReducePrimal(`d');
[xR,yR] = sedumi(prgR.A, prgR.b, ...
prgR.c, prgR.K);
[x,y,dual_recovered] = prgR.Recover(xR,yR);
```

What do these functions do?

- frlibPrg: reads in SDP in SeDuMi format A b c K
- ReducePrimal: finds a face by solving LPs.
- Recover: converts to original coordinates, attempts dual recovery.

Using frlib via YALMIP—a parser by Johan Löfberg:

To use, specify as solver and set options in YALMIP script:

Using frlib via YALMIP—a parser by Johan Löfberg:

To use, specify as solver and set options in YALMIP script:

Produces output:

frlib: reductions found! Dim PSD constraint(s) (original): 7 2 Dim PSD constraint(s) (reduced): 3 0

- Facial reduction-based pre-processing allowing you to specify pre-processing effort.
- Dual solution recovery: not always possible!
- Software/paper:

```
www.github.com/frankpermenter/frlib
```

http://arxiv.org/abs/1408.4685