Partial facial reduction: simplified, equivalent SDPs via approximations of the PSD cone

Frank Permenter (Joint with Pablo Parrilo)

Massachusetts Institute of Technology

Oct 6th, 2014

Our pre-processing philosophy: do simple things quickly.

"The strategy of detecting simple forms of redundancy, but doing it fast, seems to be the best strategy."

- Andersen and Andersen, Presolving in linear programming.

This talk:

- Pre-processing technique based on facial reduction (Borwein, Wolkowicz '81) consistent with this philosophy.

I'll also discuss:

- Dual solution recovery.
- A software implementation (frlib).

Facial reduction applies to semidefinite programs not strictly feasible.

- SDP feasible set is intersection of subspace with PSD cone

$$
\begin{array}{ll}
\operatorname{minimize} & C \cdot X \\
\text { subject to } & A_{i} \cdot X=b_{i} \quad \forall i \in\{1, \ldots, m\} \\
& X \in \mathbb{S}_{+}^{n}
\end{array}
$$

Facial reduction applies to semidefinite programs not strictly feasible.

- SDP feasible set is intersection of subspace with PSD cone

$$
\begin{array}{ll}
\operatorname{minimize} & C \cdot X \\
\text { subject to } & A_{i} \cdot X=b_{i} \quad \forall i \in\{1, \ldots, m\} \\
& X \in \mathbb{S}_{+}^{n}
\end{array}
$$

- Strictly feasible when subspace intersects interior of cone-i.e. if subspace contains positive definite matrix

Strictly feasible

Not strictly feasible

Example: strict feasibility can fail in SDP-based bounds of completely-positive rank.

The following SDP (Fawzi, et al '14) bounds the completely positive rank of a matrix A:

$$
\begin{array}{r}
\begin{array}{c}
\text { minimize } t \\
\text { subject to }
\end{array}\left(\begin{array}{cc}
t & \operatorname{vect} A^{T} \\
\text { vect } A & X
\end{array}\right) \in \mathbb{S}_{+}^{n} \\
X_{i j, i j} \leq A_{i j}^{2} \\
\text { (additional constraints) }
\end{array}
$$

i.e. it bounds smallest R for which

$$
A=\sum_{i=1}^{R} v_{i} v_{i}^{T} \quad v_{i} \geq 0
$$

Example: strict feasibility can fail in SDP-based bounds of completely-positive rank.

The following SDP (Fawzi, et al '14) bounds the completely positive rank of a matrix A :

$$
\begin{array}{r}
\begin{array}{r}
\text { minimize } t \\
\text { subject to }
\end{array}\left(\begin{array}{cc}
t & \text { vect } A^{T} \\
\operatorname{vect} A & X
\end{array}\right) \in \mathbb{S}_{+}^{n} \\
X_{i j, i j} \leq A_{i j}^{2} \\
\text { (additional constraints) }
\end{array}
$$

i.e. it bounds smallest R for which

$$
A=\sum_{i=1}^{R} v_{i} v_{i}^{T} \quad v_{i} \geq 0
$$

Strict feasibility fails if any $A_{i j}$ is zero!

Example: strict feasibility can fail in SDP-based tests of polynomial non-negativity.

Let $p(x)$ be a vector of polynomials. Then, the polynomial $f(x)$ is a sum-of-squares if there exists Q that solves:

Find $Q \in \mathbb{S}_{+}^{n}$

$$
\text { subject to } \underbrace{f(x)=p(x)^{\top} Q p(x)}_{\text {Linear constraints }}
$$

Example: strict feasibility can fail in SDP-based tests of polynomial non-negativity.

Let $p(x)$ be a vector of polynomials. Then, the polynomial $f(x)$ is a sum-of-squares if there exists Q that solves:

Find $Q \in \mathbb{S}_{+}^{n}$

$$
\text { subject to } \underbrace{f(x)=p(x)^{\top} Q p(x)}_{\text {Linear constraints }}
$$

Strict feasibility fails if $p(x) \neq 0$ at roots of $f(x)$.

If strict feasibility fails, SDPs can be simplified.

Find $\quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$
subject to

$$
X=\left(\begin{array}{cccc}
x_{1} & 0 & 0 & 0 \\
0 & -x_{1} & x_{2} & 0 \\
0 & x_{2} & x_{2}+x_{3} & 0 \\
0 & 0 & 0 & x_{4}
\end{array}\right) \in \mathbb{S}_{+}^{4}
$$

If strict feasibility fails, SDPs can be simplified.

Find $\quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$
subject to

$$
X=\left(\begin{array}{cccc}
x_{1} & 0 & 0 & 0 \\
0 & -x_{1} & x_{2} & 0 \\
0 & x_{2} & x_{2}+x_{3} & 0 \\
0 & 0 & 0 & x_{4}
\end{array}\right) \in \mathbb{S}_{+}^{4}
$$

$v^{\top} X v=0$ for $v=(1,1,0,0)^{T}$-i.e. strict feasibility fails.

If strict feasibility fails, SDPs can be simplified.

Find $\quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$
subject to

$$
X=\left(\begin{array}{cccc}
x_{1} & 0 & 0 & 0 \\
0 & -x_{1} & x_{2} & 0 \\
0 & x_{2} & x_{2}+x_{3} & 0 \\
0 & 0 & 0 & x_{4}
\end{array}\right) \in \mathbb{S}_{+}^{4}
$$

$v^{\top} X v=0$ for $v=(1,1,0,0)^{T}$-i.e. strict feasibility fails.

Equivalent reformulation:
Find $\quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$ subject to

$$
x_{1}=x_{2}=0, \quad\left(\begin{array}{cc}
x_{3} & 0 \\
0 & x_{4}
\end{array}\right) \in \mathbb{S}_{+}^{2}
$$

If strict feasibility fails, SDPs can be simplified.

Find $\quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$
subject to

$$
X=\left(\begin{array}{cccc}
x_{1} & 0 & 0 & 0 \\
0 & -x_{1} & x_{2} & 0 \\
0 & x_{2} & x_{2}+x_{3} & 0 \\
0 & 0 & 0 & x_{4}
\end{array}\right) \in \mathbb{S}_{+}^{4}
$$

$v^{\top} X v=0$ for $v=(1,1,0,0)^{T}$-i.e. strict feasibility fails.

Equivalent reformulation:
Find $\quad x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}$ subject to

$$
x_{1}=x_{2}=0, \quad\left(\begin{array}{cc}
x_{3} & 0 \\
0 & x_{4}
\end{array}\right) \in \mathbb{S}_{+}^{2}
$$

If strict feasibility fails, such a reformulation always exists.

Simplifications arise by reformulating SDP over a face containing feasible set.

- What is a face? For a polyhedral cone:

Simplifications arise by reformulating SDP over a face containing feasible set.

- What is a face? For a polyhedral cone:

- For the PSD cone, a face is the subset of matrices with range contained in a given subspace S

$$
\mathcal{F}_{S}:=\left\{X \in \mathbb{S}_{+}^{n}: \text { range } X \subseteq S\right\}
$$

Simplifications arise by reformulating SDP over a face containing feasible set.

- What is a face? For a polyhedral cone:

- For the PSD cone, a face is the subset of matrices with range contained in a given subspace S

$$
\mathcal{F}_{S}:=\left\{X \in \mathbb{S}_{+}^{n}: \text { range } X \subseteq S\right\}
$$

For subspaces A, B,
$A \subseteq B \Rightarrow \mathcal{F}_{A} \subseteq \mathcal{F}_{B}$.

Simplifications arise by reformulating SDP over a face containing feasible set.

- What is a face? For a polyhedral cone:

- For the PSD cone, a face is the subset of matrices with range contained in a given subspace S

$$
\mathcal{F}_{S}:=\left\{X \in \mathbb{S}_{+}^{n}: \text { range } X \subseteq S\right\}
$$

For subspaces A, B, $A \subseteq B \Rightarrow \mathcal{F}_{A} \subseteq \mathcal{F}_{B}$.

$$
\begin{aligned}
& \text { For } X \in \mathbb{S}_{+}^{n}, \\
& \mathcal{F}_{\text {null } X}=X^{\perp} \cap \mathbb{S}_{+}^{n} .
\end{aligned}
$$

Faces can be parametrized using smaller PSD cones, which yields smaller SDPs.

- Fix $U \in \mathbb{R}^{n \times d}$. The following holds:

Faces can be parametrized using smaller PSD cones, which yields smaller SDPs.

- Fix $U \in \mathbb{R}^{n \times d}$. The following holds:

- Containment of feasible set in a face yields reformulation

minimize	$C \cdot X$			
subject to	$A_{i} \cdot X=b_{i}$	equivalent	minimize	$C \cdot U \hat{X} U^{T}$
	$X \in \mathbb{S}_{+}^{n}$		problems	
			$\hat{X} \in \mathbb{S}_{+}^{d}$	

Faces can be parametrized using smaller PSD cones, which yields smaller SDPs.

- Fix $U \in \mathbb{R}^{n \times d}$. The following holds:

- Containment of feasible set in a face yields reformulation

minimize	$C \cdot X$			
subject to	$A_{i} \cdot X=b_{i}$	equivalent	minimize	$C \cdot U \hat{X} U^{T}$
	$X \in \mathbb{S}_{+}^{n}$		problems	
			$\hat{X} \in \mathbb{S}_{+}^{d}$	

How do you find a face containing feasible set?

Facial reduction is technique for finding a face.

Approaches:

- Borwein and Wolkowicz '81. Original algorithm.
- Ramana '97. Generalized SDP dual.
- Pataki '13. Simplifies '81, generalizes '97 to other cones.
- Waki and Muramatsu '13. Simplifies '81.
- Cheung and Wolkowicz '13. Numerical stability.
- Other application specific methods (e.g. Krislock et al. '10)
- Let \mathcal{A} denote solutions to $A_{i} \cdot X=b_{i}$ and let S solve:

Find subject to S^{\perp} contains \mathcal{A}

- Let \mathcal{A} denote solutions to $A_{i} \cdot X=b_{i}$ and let S solve:

Find $S \in\left(\mathbb{S}_{+}^{n}\right)^{*}$ subject to S^{\perp} contains \mathcal{A}

- Then, the face $\mathbb{S}_{+}^{n} \cap S^{\perp}$ contains feasible set $\mathcal{A} \cap \mathbb{S}_{+}^{n}$.
- Let \mathcal{A} denote solutions to $A_{i} \cdot X=b_{i}$ and let S solve:

Find subject to S^{\perp} contains \mathcal{A}

- Then, the face $\mathbb{S}_{+}^{n} \cap S^{\perp}$ contains feasible set $\mathcal{A} \cap \mathbb{S}_{+}^{n}$.

Finding a face is an SDP!

Our approach: simplify search by approximating \mathbb{S}_{+}^{n}.

- Using a user-specified outer approximation $\mathcal{K}_{\text {outer }}^{*}$,

Our approach: simplify search by approximating \mathbb{S}_{+}^{n}.

- Using a user-specified outer approximation $\mathcal{K}_{\text {outer }}^{*}$,

we find a face by solving easier optimization problem-e.g. an LP or SOCP:

$$
\begin{array}{cc}
\text { Find } & S \in\left(S_{S}^{n}\right)^{*} \mathcal{K}_{\text {outer }}^{*} \\
\text { subject to } & S^{\perp} \text { contains } \mathcal{A}
\end{array}
$$

Our approach: simplify search by approximating \mathbb{S}_{+}^{n}.

- Using a user-specified outer approximation $\mathcal{K}_{\text {outer }}^{*}$,

we find a face by solving easier optimization problem-e.g. an LP or SOCP:

$$
\begin{array}{ll}
\text { Find } & S \in \underset{\left(S_{\sim}^{n}\right) *}{*} \mathcal{K}_{\text {outer }}^{*} \\
\text { subject to } & S^{\perp} \text { contains }
\end{array}
$$

- Since $\mathcal{K}_{\text {outer }}^{*} \subseteq\left(\mathbb{S}_{+}^{n}\right)^{*}$, the set $\mathbb{S}_{+}^{n} \cap S^{\perp}$ is a face of \mathbb{S}_{+}^{n}.

Interpretation: for polyhedral approximations, we find a face by identifying always-active constraints.

- Polyhedral $\mathcal{K}_{\text {outer }}$ yields LP relaxation of SDP:

$$
\begin{array}{lll}
\operatorname{minimize} & C \cdot X & \\
\text { subject to } & A_{i} \cdot X=b_{i} & \text { i.e. } X \in \mathcal{A} \\
& \frac{X \in \mathbb{S}_{+}^{n}}{v_{j}^{\top} X v_{j} \geq 0} \quad \forall j \in \mathcal{I}, & \text { i.e. } X \in \mathcal{K}_{\text {outer }}
\end{array}
$$

Interpretation: for polyhedral approximations, we find a face by identifying always-active constraints.

- Polyhedral $\mathcal{K}_{\text {outer }}$ yields LP relaxation of SDP:

$$
\begin{array}{lll}
\operatorname{minimize} & C \cdot X & \\
\text { subject to } & A_{i} \cdot X=b_{i} & \text { i.e. } X \in \mathcal{A} \\
& X_{\in \in \mathbb{S}_{+}^{n}} & v_{j}^{\top} X v_{j} \geq 0 \quad \forall j \in \mathcal{I}, \\
\text { i.e. } X \in \mathcal{K}_{\text {outer }}
\end{array}
$$

- In this LP, some inequalities are always active:

Interpretation: for polyhedral approximations, we find a face by identifying always-active constraints.

- Polyhedral $\mathcal{K}_{\text {outer }}$ yields LP relaxation of SDP:

$$
\begin{array}{lll}
\operatorname{minimize} & C \cdot X & \\
\text { subject to } & A_{i} \cdot X=b_{i} & \text { i.e. } X \in \mathcal{A} \\
& \frac{X \in \mathbb{S}_{+}^{n}}{v_{j}^{\top} X v_{j} \geq 0} \quad \forall j \in \mathcal{I}, & \text { i.e. } X \in \mathcal{K}_{\text {outer }}
\end{array}
$$

- In this LP, some inequalities are always active:

$$
\mathcal{A} \cap \mathcal{K}_{\text {outer }} \subseteq\left\{X: v_{k}^{T} X v_{k}=0 \quad \forall k \in \mathcal{I}_{\text {act }} \subseteq \mathcal{I}\right\}
$$

Interpretation: for polyhedral approximations, we find a face by identifying always-active constraints.

- Polyhedral $\mathcal{K}_{\text {outer }}$ yields LP relaxation of SDP:

$$
\begin{array}{lll}
\operatorname{minimize} & C \cdot X & \\
\text { subject to } & A_{i} \cdot X=b_{i} & \text { i.e. } X \in \mathcal{A} \\
& \frac{X \in \mathbb{S}_{+}^{n}}{v_{j}^{T} X v_{j} \geq 0} \forall j \in \mathcal{I}, & \text { i.e. } X \in \mathcal{K}_{\text {outer }}
\end{array}
$$

- In this LP, some inequalities are always active:

$$
\mathcal{A} \cap \mathcal{K}_{\text {outer }} \subseteq\left\{X: v_{k}^{T} X v_{k}=0 \quad \forall k \in \mathcal{I}_{\text {act }} \subseteq \mathcal{I}\right\}
$$

- These inequalities identify a face of \mathbb{S}_{+}^{n}

$$
\mathcal{A} \cap \mathbb{S}_{+}^{n} \subseteq \mathbb{S}_{+}^{n} \cap\left(\sum_{k \in \mathcal{I}_{\text {act }}} v_{k} v_{k}^{T}\right)^{\perp}
$$

Example choices for PSD approximation.

Choices for $\mathcal{K}_{\text {outer }}$ (in terms of its dual cone $\mathcal{K}_{\text {outer }}^{*}$):

$\mathcal{K}_{\text {outer }}^{*}$	Search	Size
Non-negative diagonal	LP	$O(n)$
Diagonally-dominant	LP	$O\left(n^{2}\right)$
Scaled diagonally-dominant	SOCP	$O\left(n^{2}\right)$
Factor width- k	SDP $(k \times k)$	$O\left(\binom{n}{k}\right)$

Can choose $\mathcal{K}_{\text {outer }}$ to

- set pre-processing effort,
- enable use of exact arithmetic,
- ensure reformulation preserves sparsity.

Sparsity of reformulation is sensitive to chosen approximation.

To reformulate the SDP over $\mathbb{S}_{+}^{n} \cap S^{\perp}$, one applies $U^{T}(\cdot) \cup$ to problem data, where range $U=$ null S :

$$
\begin{array}{ll}
\operatorname{minimize} & U^{T} C U \cdot X \\
\text { subject to } & U^{T} A_{i} U \cdot \hat{X}=b_{i} \\
& X \in \mathbb{S}_{+}^{d}
\end{array}
$$

Sparsity of reformulation is sensitive to chosen approximation.

To reformulate the SDP over $\mathbb{S}_{+}^{n} \cap S^{\perp}$, one applies $U^{\top}(\cdot) U$ to problem data, where range $U=$ null S :

$$
\begin{array}{ll}
\text { minimize } & U^{T} C U \cdot X \\
\text { subject to } & U^{\top} A_{i} U \cdot \hat{X}=b_{i} \\
& X \in \mathbb{S}_{+}^{d}
\end{array}
$$

For $S \in \mathcal{K}_{\text {outer }}^{*}$,

$\mathcal{K}_{\text {outer }}^{*}$	$U^{\top}(\cdot) U$
Non-negative diagonal	deletes rows/cols
Diagonally-dominant (rank one)	replaces two rows/cols with their sum/difference
Scaled diagonally-dominant (rank one)	replaces two rows/cols with a linear combination

Example \#1 - SDP from Posa, Tedrake '13.

- Lyapunov analysis of rimless wheel, a simple walking model and hybrid system.

- Problem has 13000 variables and takes 105 s to solve. With reductions...

$\mathcal{K}_{\text {outer }}^{*}$	Num. Vars.	Find Face (sec.)	Solve (sec.)
Diagonal	4500	.1	3.70
Diag. Dom.,	2300	.5	1.1

Example \#2 - SDPs from Boyd, Mueller, et al. '12.

- SDP-based lower bounds of 4 optimal controllers.

	Before	After	Find face
1	$\mathbb{S}_{+}^{90} \times 100$	$\mathbb{S}_{+}^{60} \times 100$	3 sec
2	$\mathbb{S}_{+}^{120} \times 100$	$\mathbb{S}_{+}^{60} \times 100$	4 sec
3	$\mathbb{S}_{+}^{120} \times 100$	$\mathbb{S}_{+}^{60} \times 100$	5 sec
4	$\mathbb{S}_{+}^{150} \times 100$	$\mathbb{S}_{+}^{60} \times 100$	7 sec

Example \#2 - SDPs from Boyd, Mueller, et al. '12.

- SDP-based lower bounds of 4 optimal controllers.

	Before	After	Find face
1	$\mathbb{S}_{+}^{90} \times 100$	$\mathbb{S}_{+}^{60} \times 100$	3 sec
2	$\mathbb{S}_{+}^{120} \times 100$	$\mathbb{S}_{+}^{60} \times 100$	4 sec
3	$\mathbb{S}_{+}^{120} \times 100$	$\mathbb{S}_{+}^{60} \times 100$	5 sec
4	$\mathbb{S}_{+}^{150} \times 100$	$\mathbb{S}_{+}^{60} \times 100$	7 sec

- Solve times (sec)

	Before (SeDuMi)	After $($ SeDuMi $)$	Before (Mosek)	After (Mosek)
1	949	727	246	158
2	795	593	281	151
3	617	507	230	189
4	1270	648	234	170

$\mathcal{K}_{\text {outer }}^{*}$ is set of non-negative diagonal matrices.

Simple approximations identify "trivial degeneracy"this is the job of a pre-processor.

- In previous examples, strict feasibility failed for "trivial" reason.

- Identifying this structure is "due diligence"-analogous to removing columns of zeros from $A x=b$.

Facial reduction also improves solution accuracy.

Considering the following SDP:
Find $x_{i i}$ s.t. $\left(\begin{array}{lllll}100 & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{12} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{13} & x_{23} & x_{33} & x_{34} & x_{35} \\ x_{14} & x_{24} & x_{34} & x_{44} & x_{45} \\ x_{15} & x_{25} & x_{35} & x_{45} & x_{55}\end{array}\right) \in \mathbb{S}_{+}^{5} \quad \begin{aligned} & \sum \text { red }=0 \\ & \sum \text { cyan }=0 \\ & \sum \text { blue }=0 \\ & \sum \text { mag. }=0\end{aligned}$

Facial reduction also improves solution accuracy.

Considering the following SDP:
Find $x_{i i}$ s.t. $\left(\begin{array}{lllll}100 & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{12} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{13} & x_{23} & x_{33} & x_{34} & x_{35} \\ x_{14} & x_{24} & x_{34} & x_{44} & x_{45} \\ x_{15} & x_{25} & x_{35} & x_{45} & x_{55}\end{array}\right) \in \mathbb{S}_{+}^{5} \quad \begin{aligned} & \sum \text { red }=0 \\ & \sum \text { cyan }=0 \\ & \sum \text { blue }=0 \\ & \sum \text { mag. }=0\end{aligned}$

- It has a unique solution:

$$
X^{*}=\left(\begin{array}{ccccc}
100 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

Facial reduction also improves solution accuracy.

Considering the following SDP:
Find $x_{i i}$ s.t. $\left(\begin{array}{lllll}100 & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{12} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{13} & x_{23} & x_{33} & x_{34} & x_{35} \\ x_{14} & x_{24} & x_{34} & x_{44} & x_{45} \\ x_{15} & x_{25} & x_{35} & x_{45} & x_{55}\end{array}\right) \in \mathbb{S}_{+}^{5} \quad \begin{aligned} & \sum \text { red }=0 \\ & \sum \text { cyan }=0 \\ & \sum \text { blue }=0 \\ & \sum \text { mag. }=0\end{aligned}$

- It has a unique solution:

$$
X^{*}=\left(\begin{array}{ccccc}
100 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- Facial reduction converts to a 1×1 SDP, easily solved.

Without facial reduction, error is large even though primal residual is small.

Solution found by solver (no reductions):

$$
X=\left(\begin{array}{rrrrr}
100.000 & -0.0000 & -0.0585 & -0.0000 & 0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.0000 & -0.0000 \\
-0.0585 & 0.0000 & 0.0001 & 0.0000 & -0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.1171 & -0.1916 \\
0.0000 & -0.0000 & -0.0000 & -0.1916 & 0.3832
\end{array}\right)
$$

$$
A(X)=b:
$$

$$
\begin{aligned}
\sum \text { red } & =0 \\
\sum \text { cyan } & =0 \\
\sum \text { blue } & =0 \\
\sum \text { mag. } & =0
\end{aligned}
$$

Without facial reduction, error is large even though primal residual is small.

Solution found by solver (no reductions):

$$
X=\left(\begin{array}{rrrrr}
100.000 & -0.0000 & -0.0585 & -0.0000 & 0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.0000 & -0.0000 \\
-0.0585 & 0.0000 & 0.0001 & 0.0000 & -0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.1171 & -0.1916 \\
0.0000 & -0.0000 & -0.0000 & -0.1916 & 0.3832
\end{array}\right)
$$

$$
A(X)=b:
$$

Residuals:

$$
\begin{aligned}
\sum \text { red } & =0 \\
\sum \text { cyan } & =0 \\
\sum \text { blue } & =0 \\
\sum \text { mag. } & =0
\end{aligned}
$$

$$
\begin{aligned}
\|A(X)-b\| & =4.54 \cdot 10^{-9} \\
\lambda_{\min }(X) & =2.98 \cdot 10^{-10}
\end{aligned}
$$

Without facial reduction, error is large even though primal residual is small.

Solution found by solver (no reductions):

$$
X=\left(\begin{array}{rrrrr}
100.000 & -0.0000 & -0.0585 & -0.0000 & 0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.0000 & -0.0000 \\
-0.0585 & 0.0000 & 0.0001 & 0.0000 & -0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.1171 & -0.1916 \\
0.0000 & -0.0000 & -0.0000 & -0.1916 & 0.3832
\end{array}\right)
$$

$$
A(X)=b:
$$

Residuals:

$$
\begin{aligned}
\sum \text { red } & =0 \\
\sum \text { cyan } & =0 \\
\sum \text { blue } & =0 \\
\sum \text { mag. } & =0
\end{aligned}
$$

$$
\begin{aligned}
\|A(X)-b\| & =4.54 \cdot 10^{-9} \\
\lambda_{\min }(X) & =2.98 \cdot 10^{-10}
\end{aligned}
$$

True error:

$$
\left\|X-X^{*}\right\|=0.4907
$$

Without facial reduction, residuals can be (arbitrarily) small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

$$
X=\left(\begin{array}{rrrrr}
100.000 & -0.0000 & -0.3044 & -0.0000 & 0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.0004 & -0.0005 \\
-0.3044 & 0.0000 & 0.0010 & 0.0000 & -0.0000 \\
-0.0000 & 0.0004 & 0.0000 & 0.6088 & -0.6963 \\
0.0000 & -0.0005 & -0.0000 & -0.6963 & 0.8926
\end{array}\right)
$$

$$
A(X)=b:
$$

Residuals:

$$
\begin{array}{r}
\sum \text { red }=0 \\
\sum \text { cyan }=0 \\
\sum \text { blue }=0 \\
\underbrace{\sum \text { mag. }=-.5}_{\text {perturbed }}
\end{array}
$$

Without facial reduction, residuals can be (arbitrarily) small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

$$
\begin{aligned}
& X=\left(\begin{array}{rrrrr}
100.000 & -0.0000 & -0.3044 & -0.0000 & 0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.0004 & -0.0005 \\
-0.3044 & 0.0000 & 0.0010 & 0.0000 & -0.0000 \\
-0.0000 & 0.0004 & 0.0000 & 0.6088 & -0.6963 \\
0.0000 & -0.0005 & -0.0000 & -0.6963 & 0.8926
\end{array}\right) \\
& A(X)=b: \quad \text { Residuals: } \\
& \sum \text { red }=0 \\
& \sum \text { cyan }=0 \\
& \sum \text { blue }=0 \\
& \underbrace{\sum \text { mag. }=-.5}_{\text {perturbed }}
\end{aligned}
$$

Without facial reduction, residuals can be (arbitrarily) small even if problem is infeasible.

Solution found by solver for perturbed, infeasible problem:

$$
X=\left(\begin{array}{rrrrr}
100.000 & -0.0000 & -0.3044 & -0.0000 & 0.0000 \\
-0.0000 & 0.0000 & 0.0000 & 0.0004 & -0.0005 \\
-0.3044 & 0.0000 & 0.0010 & 0.0000 & -0.0000 \\
-0.0000 & 0.0004 & 0.0000 & 0.6088 & -0.6963 \\
0.0000 & -0.0005 & -0.0000 & -0.6963 & 0.8926
\end{array}\right)
$$

$$
A(X)=b:
$$

Residuals:

$$
\begin{array}{r}
\sum \text { red }=0 \\
\sum \text { cyan }=0 \\
\sum \text { blue }=0 \\
\underbrace{\sum \text { mag. }=-.5}_{\text {perturbed }}
\end{array}
$$

$$
\begin{aligned}
\|A(X)-b\| & =7.54 \cdot 10^{-7} \\
\lambda_{\min }(X) & =4.82 \cdot 10^{-8}
\end{aligned}
$$

True error:

$$
\left\|X-X^{*}\right\|=\text { undefined }
$$

Facial reduction restricts the primal and relaxes the dual:

$\operatorname{minimize}$	$C \cdot X$
subject to	$A_{i} \cdot X=b_{i}$
	$X \in \mathbb{S}_{+}^{n}$
	$X \in \mathbb{S}_{+}^{n} \cap S^{\perp}$

subject to $\frac{C-\sum_{i} y_{i} A_{i} \in \mathbb{S}_{+}^{n}}{C-\sum_{i} y_{i} A_{i} \in \mathbb{S}_{+}^{n}+\operatorname{span} S}$

Facial reduction restricts the primal and relaxes the dual:

```
minimize C.X maximize b}\mp@subsup{b}{}{T}
subject to }\begin{array}{ll}{\mp@subsup{A}{i}{}\cdotX=\mp@subsup{b}{i}{\prime}}\\{}&{X\in\mp@subsup{\mathbb{S}}{+}{n}}\end{array}\quad\mathrm{ subject to }\frac{C-\mp@subsup{\sum}{i}{}\mp@subsup{y}{i}{}\mp@subsup{A}{i}{}\in\mp@subsup{\mathbb{S}}{+}{n}}{C-\mp@subsup{\sum}{i}{\prime}\mp@subsup{y}{i}{}\mp@subsup{A}{i}{}\in\mp@subsup{\mathbb{S}}{+}{n}+\operatorname{spanS}
```

Solution recovery: (using fact $S=\sum_{i} d_{i} A_{i}, b^{T} d=0$):
Find α such that $C-\sum_{i} y_{i} \boldsymbol{A}_{i}+\alpha \boldsymbol{S} \in \mathbb{S}_{+}^{n}$

Part II: Dual solution recovery.

Facial reduction restricts the primal and relaxes the dual:

```
minimize C.X
```

maximize $b^{\top} y$
$\begin{array}{ll}\text { subject to } & A_{i} \cdot X=b_{i} \quad \text { subject to } \quad \frac{C-\sum_{i} y_{i} A_{i} \in \mathbb{S}_{+}^{n}}{C-\sum_{i} y_{i} A_{i} \in \mathbb{S}_{+}^{n}+\operatorname{span} S} \\ & \underline{X} \in \mathbb{S}_{+}^{n}\end{array}$

Solution recovery: (using fact $S=\sum_{i} d_{i} A_{i}, b^{\top} d=0$):
Find α such that $C-\sum_{i} y_{i} \boldsymbol{A}_{i}+\alpha \boldsymbol{S} \in \mathbb{S}_{+}^{n}$
Is dual solution recovery possible? Equivalent to asking:

$$
\text { Is } C-\sum_{i} y_{i} A_{i} \text { in } \mathbb{S}_{+}^{n}+\operatorname{span} S ?
$$

Is dual recovery possible? There are three possibilities.

$\underbrace{1}_{Y \text { Yes. }}$

Maybe.

The set $\mathbb{S}_{+}^{n}+\operatorname{span} S$ and set of optimal slacks, $C-\sum_{i} y_{i} A_{i}$.

Can determine if recovery will succeed by comparing nullspaces.

Pick orthogonal (U, V) satisfying range $V=$ range S and change coordinates:

$$
\left(\begin{array}{ll}
W_{11} & W_{21}^{T} \\
W_{21} & W_{22}
\end{array}\right):=(U, V)^{T}\left(C-\sum_{i} y_{i} A_{i}\right)(U, V)
$$

The following holds:

$$
C-\sum_{i} y_{i} A_{i} \in \overline{\mathbb{S}_{+}^{n}+\operatorname{span} S} \Leftrightarrow W_{11} \in \mathbb{S}_{+}^{d}
$$

$C-\sum_{i} y_{i} A_{i} \in \mathbb{S}_{+}^{n}+\operatorname{span} S \Leftrightarrow W_{11} \in \mathbb{S}_{+}^{d}, \underbrace{\text { null } W_{11} \subseteq \text { null } W_{21}}_{\text {Recovery succeeds. }}$

Part III: frlib is a MATLAB-based tool implementing these ideas.

Basic flow:

Inputs:
(1) SDP primal-dual pair
(2) PSD approximation (e.g non-negative diagonal matrices)

Outputs:
(1) Solution to primal-dual pair
(2) Flag indicating successful dual recovery

Using frlib (direct interface).

Calling directly using diagonal ('d') approximations:

```
prg = frlibPrg(A,b,c,K);
prgR = prg.ReducePrimal('d');
[xR,yR] = sedumi(prgR.A, prgR.b, ...
    prgR.c, prgR.K);
[x,y,dual_recovered] = prgR.Recover(xR,yR);
```

What do these functions do?

- frlibPrg: reads in SDP in SeDuMi format A b c K
- ReducePrimal: finds a face by solving LPs.
- Recover: converts to original coordinates, attempts dual recovery.

Using frlib via YALMIP—a parser by Johan Löfberg:

To use, specify as solver and set options in YALMIP script:
sdpvar x y z
$p=12+y^{\wedge} 2-2 * x^{\wedge} 3 * y+2 * y^{*} z^{\wedge} 2+x^{\wedge} 6-2 * x^{\wedge} 3 * z^{\wedge} 2+z^{\wedge} 4 .$. $+x^{\wedge} 2 * y^{\wedge} 2$;
ops = sdpsettings('solver','frlib');
ops = sdpsettings(ops,'frlib.approx' ' ' dd');
[sol] $=$ solvesos (sos (p), [],ops);

Using frlib via YALMIP—a parser by Johan Löfberg:

To use, specify as solver and set options in YALMIP script:
sdpvar x y z
$p=12+y^{\wedge} 2-2 * x^{\wedge} 3 * y+2 * y * z^{\wedge} 2+x^{\wedge} 6-2 * x^{\wedge} 3 * z^{\wedge} 2+z^{\wedge} 4 .$. $+x^{\wedge} 2 * y^{\wedge} 2$;
ops = sdpsettings('solver','frlib');
ops = sdpsettings(ops,'frlib.approx' $\left.{ }^{\prime}{ }^{\prime} d^{\prime} \mathbf{\prime}^{\prime}\right)$;
[sol] $=$ solvesos (sos (p), [],ops);
Produces output:
frlib: reductions found!
$\begin{array}{llll}\text { Dim PSD constraint (s) (original): } & 72 \\ \text { Dim PSD constraint (s) (reduced): } & 30\end{array}$

Summary

- Facial reduction-based pre-processing allowing you to specify pre-processing effort.
- Dual solution recovery: not always possible!
- Software/paper:

$$
\begin{gathered}
\text { www.github.com/frankpermenter/frlib } \\
\text { http://arxiv.org/abs/1408.4685 }
\end{gathered}
$$

