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Introduction

Standard form SDP

Primal problem

min
X�0

trace(A0X ) subject to trace (AkX ) = bk (k = 1, . . . ,m),

where the data matrices Ai ∈ S
n×n (i = 0, . . . ,m) are linearly independent.

Sn×n: symmetric n× n matrices;

X � 0: X symmetric positive semi-definite.
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Standard form SDP

Primal problem

min
X�0

trace(A0X ) subject to trace (AkX ) = bk (k = 1, . . . ,m),

where the data matrices Ai ∈ S
n×n (i = 0, . . . ,m) are linearly independent.

Sn×n: symmetric n× n matrices;

X � 0: X symmetric positive semi-definite.

Sometimes we will add the additional constraint X ≥ 0 (componentwise
nonnegative).
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Introduction

Structured SDP instances

Three types of structure in the SDP data matrices A0, . . . ,Am may be effectively
exploited by interior point methods:
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Three types of structure in the SDP data matrices A0, . . . ,Am may be effectively
exploited by interior point methods:

1 low rank of A1, . . . ,Am; (Benson-Ye-Zhang, DSDP software)

Further reading:

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for
combinatorial optimization. SIAM J. Optim., 10(2):443–461, 2000.

2 aggregate chordal sparsity pattern of the Ai ’s; (Wolkowicz et al, Laurent, ...)
Talk by Joachim Dahl later today.

Further reading:

R. Grone, C.R. Johnson, E.M. Sá, and H. Wolkowicz. Positive definite completions of partial
Hermitian matrices. Linear Algebra and its Applications, 58:109–124, 1984.

3 if the Ai ’s lie in a low dimensional matrix algebra (this talk).
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SDP and matrix algebras

Matrix algebras

Definition

A set A ⊆ Cn×n (resp. Rn×n) is called a matrix *-algebra over C (resp. R) if, for
all X ,Y ∈ A:
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SDP and matrix algebras

Matrix algebras

Definition

A set A ⊆ Cn×n (resp. Rn×n) is called a matrix *-algebra over C (resp. R) if, for
all X ,Y ∈ A:

αX + βY ∈ A ∀α, β ∈ C (resp. R);

X ∗ ∈ A;

XY ∈ A.

Assumption

There is a ‘low dimensional’ matrix *-algebra ASDP ⊇ {A0, . . . ,Am}.
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SDP and matrix algebras

Example

The circulant matrices form a commutative matrix *-algebra.

Form of a circulant matrix C

C =





















c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · ·
cn−2 cn−1 c0 c1

. . .
...

...
. . .

. . .
. . .

. . .

c1
c1 · · · cn−1 c0





















.

Each row is a cyclic shift of the row above it, i.e: Cij = c
i−j mod n

(i , j = 0, . . . , n− 1).
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. . .
...

...
. . .

. . .
. . .

. . .

c1
c1 · · · cn−1 c0





















.

Each row is a cyclic shift of the row above it, i.e: Cij = c
i−j mod n

(i , j = 0, . . . , n− 1).

Further reading:

R.M. Gray. Toeplitz and Circulant Matrices: A review. Foundations and Trends in

Communications and Information Theory, 2(3):155–239, 2006. Available online.
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SDP and matrix algebras

Projection onto A

Theorem (Von Neumann)

Let X � 0 and A a matrix ∗-algebra,
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This has the following implication for SDP.

Theorem

If the primal SDP has a solution, it has a solution in ASDP .

Proof: If X is an optimal solution, then so is PASDP
(X ).

Etienne de Klerk (Tilburg University) Special structure in SDP MOSEK workshop 6 / 21



SDP and matrix algebras

Projection onto A

Theorem (Von Neumann)

Let X � 0 and A a matrix ∗-algebra, and denote the orthogonal projection
operator onto A by PA.Then PA(X ) � 0.

This has the following implication for SDP.

Theorem

If the primal SDP has a solution, it has a solution in ASDP .

Proof: If X is an optimal solution, then so is PASDP
(X ).

Consequence

We may restrict the primal problem to:

min
X�0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m), X ∈ ASDP} .
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Decomposition of matrix *-algebras

Canonical decomposition of a matrix *-algebra A

Theorem (Wedderburn (1907))

Assume A is a matrix *-algebra over C that contains I .
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Decomposition of matrix *-algebras

Canonical decomposition of a matrix *-algebra A

Theorem (Wedderburn (1907))

Assume A is a matrix *-algebra over C that contains I . Then there is a unitary Q
(Q∗Q = I ) and some integer s such that

Q∗AQ =













A1 0 · · · 0

0 A2

...
...

. . . 0
0 · · · 0 As













,

where each Ai ∼ Cni×ni for some integers ni ,
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Decomposition of matrix *-algebras

Canonical decomposition of a matrix *-algebra A

Theorem (Wedderburn (1907))

Assume A is a matrix *-algebra over C that contains I . Then there is a unitary Q
(Q∗Q = I ) and some integer s such that

Q∗AQ =













A1 0 · · · 0

0 A2

...
...

. . . 0
0 · · · 0 As













,

where each Ai ∼ Cni×ni for some integers ni , and takes the form

Ai =



































A 0 · · · 0

0 A
...

...
. . . 0

0 · · · 0 A













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A ∈ C
ni×ni























(i = 1, . . . , s).
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Decomposition of matrix *-algebras

Illustration: A ⊂ C
2438×2438

Sparsity pattern of a generic matrix in A ⊂ C2438×2438:

Etienne de Klerk (Tilburg University) Special structure in SDP MOSEK workshop 8 / 21



Decomposition of matrix *-algebras

Illustration: A ⊂ C
2438×2438 (ctd.)

Simple components of A after unitary transformation:
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Decomposition of matrix *-algebras

Illustration: A ⊂ C
2438×2438 (ctd.)

Irreducible components of A after second unitary transformation:
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Decomposition of matrix *-algebras

Example

The circulant matrices:





















c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · ·
cn−1 c0 c1

. . .
...

...
. . .

. . .
. . .

. . .

c1
c1 · · · cn−1 c0





















are diagonalized by the unitary (discrete Fourier transform) matrix:

Qij :=
1√
n
e−2π

√
−1ij/n (i , j = 0, . . . , n − 1).
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Decomposition of matrix *-algebras

Remarks

If a basis of A is known, the unitary matrix Q may be computed using only linear
algebra.
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Decomposition of matrix *-algebras

Remarks

If a basis of A is known, the unitary matrix Q may be computed using only linear
algebra.

Randomized algorithms:

K. Murota, Y. Kanno, M. Kojima and S. Kojima, A Numerical Algorithm for Block-Diagonal
Decomposition of Matrix *-Algebras, Japan Journal of Industrial and Applied Mathematics, Vol.
27(1), 125–160, 2010.

T. Maehara and K. Murota, A numerical algorithm for block-diagonal decomposition of matrix
∗-algebras with general irreducible components Vol. 27(2), 263–293, 2010.

E. de Klerk, C. Dobre, and D.V. Pasechnik, Numerical block diagonalization of matrix ∗-algebras
with application to semidefinite programming, Mathematical Programming B, 129(1), 91–111,
2011.
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Decomposition of matrix *-algebras

Remarks

If a basis of A is known, the unitary matrix Q may be computed using only linear
algebra.

Randomized algorithms:

K. Murota, Y. Kanno, M. Kojima and S. Kojima, A Numerical Algorithm for Block-Diagonal
Decomposition of Matrix *-Algebras, Japan Journal of Industrial and Applied Mathematics, Vol.
27(1), 125–160, 2010.

T. Maehara and K. Murota, A numerical algorithm for block-diagonal decomposition of matrix
∗-algebras with general irreducible components Vol. 27(2), 263–293, 2010.

E. de Klerk, C. Dobre, and D.V. Pasechnik, Numerical block diagonalization of matrix ∗-algebras
with application to semidefinite programming, Mathematical Programming B, 129(1), 91–111,
2011.

We give a simple prototype algorithm to illustrate the basic procedure ...
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Decomposition of matrix *-algebras

Simple block diagonalization algorithm

Algorithm

Input: A basis B1, . . . ,Bd of a matrix ∗-algebra A.
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Decomposition of matrix *-algebras
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Input: A basis B1, . . . ,Bd of a matrix ∗-algebra A.

1 Compute a (random) A ∈ A such that

ABi = BiA ∀ i .
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Input: A basis B1, . . . ,Bd of a matrix ∗-algebra A.
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Decomposition of matrix *-algebras

Simple block diagonalization algorithm

Algorithm

Input: A basis B1, . . . ,Bd of a matrix ∗-algebra A.

1 Compute a (random) A ∈ A such that

ABi = BiA ∀ i .

2 Do the spectral decomposition: A = QΛQ∗ where Q is unitary.

Output: Block diagonal matrices Q∗BiQ (i = 1, . . . , d).

The block sizes equal the multiplicities of the eigenvalues of A.
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SDP reformulation

SDP reformulation

Assume we have a basis B1, . . . ,Bd of ASDP .

min
X�0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m),X ∈ ASDP}
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SDP reformulation

SDP reformulation

Assume we have a basis B1, . . . ,Bd of ASDP .

min
X�0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m),X ∈ ASDP}

Setting X =
∑d

i=1 xiBi , this becomes:

min
x∈Rd

{

d
∑

i=1

xi trace(A0Bi ) :

d
∑

i=1

xi trace(AkBi ) = bk (k = 1, . . . ,m),

d
∑

i=1

xiBi � 0

}

.
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min
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{
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∑

i=1

xi trace(A0Bi ) :

d
∑

i=1

xi trace(AkBi ) = bk (k = 1, . . . ,m),

d
∑

i=1

xiBi � 0

}

.

Replace the LMI by
∑d

i=1 xiQ
∗BiQ � 0 to get block-diagonal structure.
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SDP reformulation

SDP reformulation

Assume we have a basis B1, . . . ,Bd of ASDP .

min
X�0

{trace(A0X ) : trace(AkX ) = bk (k = 1, . . . ,m),X ∈ ASDP}

Setting X =
∑d

i=1 xiBi , this becomes:

min
x∈Rd

{

d
∑

i=1

xi trace(A0Bi ) :

d
∑

i=1

xi trace(AkBi ) = bk (k = 1, . . . ,m),

d
∑

i=1

xiBi � 0

}

.

Replace the LMI by
∑d

i=1 xiQ
∗BiQ � 0 to get block-diagonal structure.

Delete any identical copies of blocks in the block structure.
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Coherent configurations

Coherent configurations

A basis B1, . . . ,Bd of a matrix *-algebra is called a coherent configuration if:

The Bi ’s are 0-1 matrices;
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A basis B1, . . . ,Bd of a matrix *-algebra is called a coherent configuration if:

The Bi ’s are 0-1 matrices;

For each i , BT
i = Bi∗ for some i∗ ∈ {1, . . . , d};

∑d

i=1 Bi = J (the all-ones matrix);

I ∈ span{B1, . . . ,Bd}.
If the Bi ’s also commute, and B1 = I , then we speak of an association scheme.
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Coherent configurations

Coherent configurations

A basis B1, . . . ,Bd of a matrix *-algebra is called a coherent configuration if:

The Bi ’s are 0-1 matrices;

For each i , BT
i = Bi∗ for some i∗ ∈ {1, . . . , d};

∑d

i=1 Bi = J (the all-ones matrix);

I ∈ span{B1, . . . ,Bd}.
If the Bi ’s also commute, and B1 = I , then we speak of an association scheme.

Consequence

If ASDP is spanned by a coherent configuration and X =
∑d

i=1 xiBi , then

X � 0 and X ≥ 0 ⇐⇒
d
∑

i=1

xiBi � 0 and x ≥ 0.
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Coherent configurations

Example

The circulant matrices have the basis





















1 0 0 · · · 0
0 1 0 · · ·
0 0 1 0

. . .
...

...
. . .

. . .
. . .

. . .

0 · · · 0 1





















,





















0 1 0 · · · 0
0 0 1 · · ·

0 0 1
. . .

...
...

. . .
. . .

. . .
. . .

1
1 · · · 0 0





















, . . .

and form an association scheme.
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Stabilization

Stabilization

How does one find a coherent algebra ASDP that contains {A0, . . . ,Am}?
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Stabilization

Stabilization

How does one find a coherent algebra ASDP that contains {A0, . . . ,Am}?

An O(n3 log n) algorithm is given in:

Babel, L.; Baumann, S.; Ludecke, M.; Tinhofer, G.: STABCOL: Graph Isomorphism Testing
Based on the Weisfeiler-Leman Algorithm. Technische Universität München, 1997. Available
online.
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Stabilization

Stabilization

How does one find a coherent algebra ASDP that contains {A0, . . . ,Am}?

An O(n3 log n) algorithm is given in:

Babel, L.; Baumann, S.; Ludecke, M.; Tinhofer, G.: STABCOL: Graph Isomorphism Testing
Based on the Weisfeiler-Leman Algorithm. Technische Universität München, 1997. Available
online.

A more recent implementation (C code) is described in:

L. Babel, I.V. Chuvaeva, M. Klin, D.V. Pasechnik. In Algebraic Combinatorics in Mathematical

Chemistry. Methods and Algorithms. II. Program Implementation of the Weisfeiler-Leman
Algorithm. arXiv:1002.1921
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An O(n3 log n) algorithm is given in:

Babel, L.; Baumann, S.; Ludecke, M.; Tinhofer, G.: STABCOL: Graph Isomorphism Testing
Based on the Weisfeiler-Leman Algorithm. Technische Universität München, 1997. Available
online.

A more recent implementation (C code) is described in:

L. Babel, I.V. Chuvaeva, M. Klin, D.V. Pasechnik. In Algebraic Combinatorics in Mathematical

Chemistry. Methods and Algorithms. II. Program Implementation of the Weisfeiler-Leman
Algorithm. arXiv:1002.1921

We give an illustration of how the method works ...
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Stabilization

Example: Weisfeiler-Leman Algorithm

What is the smallest coherent algebra that contains this matrix?
















0 3 2 2 4 4
3 0 4 4 2 2
2 4 1 4 4 4
2 4 4 1 4 4
4 2 4 4 1 4
4 2 4 4 4 1
















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Example: Weisfeiler-Leman Algorithm

What is the smallest coherent algebra that contains this matrix?
















0 3 2 2 4 4
3 0 4 4 2 2
2 4 1 4 4 4
2 4 4 1 4 4
4 2 4 4 1 4
4 2 4 4 4 1

















Replace equal entries by different, non-commuting variables:

















0 3 2 2 4 4
3 0 4 4 2 2
2 4 1 4 4 4
2 4 4 1 4 4
4 2 4 4 1 4
4 2 4 4 4 1

















→

















t0 t3 t2 t2 t4 t4
t3 t0 t4 t4 t2 t2
t2 t4 t1 t4 t4 t4
t2 t4 t4 t1 t4 t4
t4 t2 t4 t4 t1 t4
t4 t2 t4 t4 t4 t1

















.
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Stabilization

Example: Weisfeiler-Leman Algorithm (ctd.)

Now square the symbolic matrix to get:

















t0 t3 t2 t2 t4 t4
t3 t0 t4 t4 t2 t2
t2 t4 t1 t4 t4 t4
t2 t4 t4 t1 t4 t4
t4 t2 t4 t4 t1 t4
t4 t2 t4 t4 t4 t1

















2

=

















x0 x2 x3 x3 x4 x4
x2 x0 x4 x4 x3 x3
x5 x6 x1 x7 x8 x8
x5 x6 x7 x1 x8 x8
x6 x5 x8 x8 x1 x7
x6 x5 x8 x8 x7 x1

















,

where

x0 = t20 + 2t22 + t23 + 2t24

x1 = t21 + t22 + 4t23

x2 = t0t3 + 2t2t4 + t3t0 + 2t4t2, etc.
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Stabilization

Example: Weisfeiler-Leman Algorithm (ctd.)

Now square the symbolic matrix to get:

















t0 t3 t2 t2 t4 t4
t3 t0 t4 t4 t2 t2
t2 t4 t1 t4 t4 t4
t2 t4 t4 t1 t4 t4
t4 t2 t4 t4 t1 t4
t4 t2 t4 t4 t4 t1

















2

=

















x0 x2 x3 x3 x4 x4
x2 x0 x4 x4 x3 x3
x5 x6 x1 x7 x8 x8
x5 x6 x7 x1 x8 x8
x6 x5 x8 x8 x1 x7
x6 x5 x8 x8 x7 x1

















,

where

x0 = t20 + 2t22 + t23 + 2t24

x1 = t21 + t22 + 4t23

x2 = t0t3 + 2t2t4 + t3t0 + 2t4t2, etc.

Repeat this process and add new symbols until convergence.
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Conclusion

And, finally ...

Symmetry reduction in SDP is the application of representation theory to
reduce the size of specially structured SDP instances.
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Conclusion

And, finally ...

Symmetry reduction in SDP is the application of representation theory to
reduce the size of specially structured SDP instances.

The most notable applications are in computer assisted proofs (bounds on
crossing numbers, kissing numbers, error correcting codes, ...)

... but also pre-processing of some SDP’s arising in optimal design (truss
design, QAP, ...)

More applications in polynomial optimization, graph coloring, ...
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Conclusion

The End

Survey paper:

E. de Klerk. Exploiting special structure in semidefinite programming: A survey of theory and
applications. European Journal of Operational Research, 201(1), 1–10, 2010.

Further reading:

F. Vallentin. Symmetry in semidefinite programs. Linear Algebra and Appl., 430, 360–369, 2009.

THANK YOU!
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