Exploiting special structure in semidefinite programs: an overview

Etienne de Klerk

Tilburg University, The Netherlands

MOSEK Workshop, October 6, 2014

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Standard form SDP

Primal problem

$$\min_{X \succeq 0} \operatorname{trace}(A_0 X) \text{ subject to trace}(A_k X) = b_k \ (k = 1, \dots, m),$$

where the data matrices $A_i \in \mathbb{S}^{n \times n}$ (i = 0, ..., m) are linearly independent.

- $\mathbb{S}^{n \times n}$: symmetric $n \times n$ matrices;
- $X \succeq 0$: X symmetric positive semi-definite.

Standard form SDP

Primal problem

 $\min_{X \succeq 0} \operatorname{trace}(A_0 X) \text{ subject to trace}(A_k X) = b_k \ (k = 1, \dots, m),$

where the data matrices $A_i \in \mathbb{S}^{n \times n}$ (i = 0, ..., m) are linearly independent.

- $\mathbb{S}^{n \times n}$: symmetric $n \times n$ matrices;
- $X \succeq 0$: X symmetric positive semi-definite.

Sometimes we will add the additional constraint $X \ge 0$ (componentwise nonnegative).

・ロト ・聞ト ・ヨト ・ヨト

Three types of structure in the SDP data matrices A_0, \ldots, A_m may be effectively exploited by interior point methods:

メロト メロト メヨト メ

Three types of structure in the SDP data matrices A_0, \ldots, A_m may be effectively exploited by interior point methods:

(a) low rank of A_1, \ldots, A_m ; (Benson-Ye-Zhang, DSDP software)

Three types of structure in the SDP data matrices A_0, \ldots, A_m may be effectively exploited by interior point methods:

1 low rank of A_1, \ldots, A_m ; (Benson-Ye-Zhang, DSDP software)

Further reading:

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial optimization. *SIAM J. Optim.*, **10**(2):443–461, 2000.

Three types of structure in the SDP data matrices A_0, \ldots, A_m may be effectively exploited by interior point methods:

1 low rank of A_1, \ldots, A_m ; (Benson-Ye-Zhang, DSDP software)

Further reading:

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial optimization. *SIAM J. Optim.*, **10**(2):443–461, 2000.

aggregate chordal sparsity pattern of the A_i's; (Wolkowicz et al, Laurent, ...)

Three types of structure in the SDP data matrices A_0, \ldots, A_m may be effectively exploited by interior point methods:

1 low rank of A_1, \ldots, A_m ; (Benson-Ye-Zhang, DSDP software)

Further reading:

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial optimization. *SIAM J. Optim.*, **10**(2):443–461, 2000.

aggregate *chordal* sparsity pattern of the A_i's; (Wolkowicz et al, Laurent, ...) Talk by Joachim Dahl later today.

Three types of structure in the SDP data matrices A_0, \ldots, A_m may be effectively exploited by interior point methods:

1 low rank of A_1, \ldots, A_m ; (Benson-Ye-Zhang, DSDP software)

Further reading:

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial optimization. *SIAM J. Optim.*, **10**(2):443–461, 2000.

aggregate *chordal* sparsity pattern of the A_i's; (Wolkowicz et al, Laurent, ...) Talk by Joachim Dahl later today.

Further reading:

R. Grone, C.R. Johnson, E.M. Sá, and H. Wolkowicz. Positive definite completions of partial Hermitian matrices. *Linear Algebra and its Applications*, **58**:109–124, 1984.

イロト イヨト イヨト イヨト

Three types of structure in the SDP data matrices A_0, \ldots, A_m may be effectively exploited by interior point methods:

1 low rank of A_1, \ldots, A_m ; (Benson-Ye-Zhang, DSDP software)

Further reading:

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial optimization. *SIAM J. Optim.*, **10**(2):443–461, 2000.

aggregate chordal sparsity pattern of the A_i's; (Wolkowicz et al, Laurent, ...) Talk by Joachim Dahl later today.

Further reading:

R. Grone, C.R. Johnson, E.M. Sá, and H. Wolkowicz. Positive definite completions of partial Hermitian matrices. *Linear Algebra and its Applications*, **58**:109–124, 1984.

if the A_i's lie in a low dimensional matrix algebra (this talk).

・ロン ・四 ・ ・ ヨン ・ ヨン

Definition

A set $\mathcal{A} \subseteq \mathbb{C}^{n \times n}$ (resp. $\mathbb{R}^{n \times n}$) is called a *matrix* *-*algebra* over \mathbb{C} (resp. \mathbb{R}) if, for all $X, Y \in \mathcal{A}$:

Definition

A set $\mathcal{A} \subseteq \mathbb{C}^{n \times n}$ (resp. $\mathbb{R}^{n \times n}$) is called a *matrix* *-*algebra* over \mathbb{C} (resp. \mathbb{R}) if, for all $X, Y \in \mathcal{A}$:

• $\alpha X + \beta Y \in \mathcal{A} \quad \forall \alpha, \beta \in \mathbb{C} \text{ (resp. } \mathbb{R}\text{)};$

Definition

A set $\mathcal{A} \subseteq \mathbb{C}^{n \times n}$ (resp. $\mathbb{R}^{n \times n}$) is called a *matrix* *-*algebra* over \mathbb{C} (resp. \mathbb{R}) if, for all $X, Y \in \mathcal{A}$:

- $\alpha X + \beta Y \in \mathcal{A} \quad \forall \alpha, \beta \in \mathbb{C} \text{ (resp. } \mathbb{R}\text{);}$
- $X^* \in \mathcal{A}$;

Definition

A set $\mathcal{A} \subseteq \mathbb{C}^{n \times n}$ (resp. $\mathbb{R}^{n \times n}$) is called a *matrix* *-*algebra* over \mathbb{C} (resp. \mathbb{R}) if, for all $X, Y \in \mathcal{A}$:

- $\alpha X + \beta Y \in \mathcal{A} \quad \forall \alpha, \beta \in \mathbb{C} \text{ (resp. } \mathbb{R}\text{);}$
- $X^* \in \mathcal{A}$;
- $XY \in \mathcal{A}$.

Definition

A set $\mathcal{A} \subseteq \mathbb{C}^{n \times n}$ (resp. $\mathbb{R}^{n \times n}$) is called a *matrix* *-*algebra* over \mathbb{C} (resp. \mathbb{R}) if, for all $X, Y \in \mathcal{A}$:

- $\alpha X + \beta Y \in \mathcal{A} \quad \forall \alpha, \beta \in \mathbb{C} \text{ (resp. } \mathbb{R}\text{);}$
- $X^* \in \mathcal{A}$;
- $XY \in \mathcal{A}$.

Assumption

There is a 'low dimensional' matrix *-algebra
$$\mathcal{A}_{SDP} \supseteq \{A_0, \ldots, A_m\}$$
.

* ロ > * 個 > * 注 > * 注 >

Example

The circulant matrices form a commutative matrix *-algebra.

Form of a circulant matrix C

$$C = \begin{bmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & & \cdots & \\ c_{n-2} & c_{n-1} & c_0 & c_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ & & & & & c_1 \\ c_1 & & \cdots & c_{n-1} & c_0 \end{bmatrix}$$

Each row is a cyclic shift of the row above it, i.e: $C_{ij} = c_{i-j \mod n}$ (i, j = 0, ..., n-1).

* ロ > * 個 > * 注 > * 注 >

Example

The circulant matrices form a commutative matrix *-algebra.

Form of a circulant matrix C

$$C = \begin{bmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & & \cdots \\ c_{n-2} & c_{n-1} & c_0 & c_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ & & & & & c_1 \\ c_1 & & \cdots & c_{n-1} & c_0 \end{bmatrix}$$

Each row is a cyclic shift of the row above it, i.e: $C_{ij} = c_{i-j \mod n}$ (i, j = 0, ..., n-1).

Further reading:

R.M. Gray. Toeplitz and Circulant Matrices: A review. Foundations and Trends in Communications and Information Theory, **2**(3):155–239, 2006. Available online.

Etienne de Klerk (Tilburg University)

イロト イヨト イヨト イヨト

Theorem (Von Neumann)

Let $X \succeq 0$ and A a matrix *-algebra,

・ロト ・聞ト ・ヨト ・ヨト

Theorem (Von Neumann)

Let $X \succeq 0$ and A a matrix *-algebra, and denote the orthogonal projection operator onto A by P_A .

(日) (四) (三) (三)

Theorem (Von Neumann)

Let $X \succeq 0$ and A a matrix *-algebra, and denote the orthogonal projection operator onto A by P_A . Then $P_A(X) \succeq 0$.

Theorem (Von Neumann)

Let $X \succeq 0$ and \mathcal{A} a matrix *-algebra, and denote the orthogonal projection operator onto \mathcal{A} by $P_{\mathcal{A}}$. Then $P_{\mathcal{A}}(X) \succeq 0$.

This has the following implication for SDP.

Theorem (Von Neumann)

Let $X \succeq 0$ and \mathcal{A} a matrix *-algebra, and denote the orthogonal projection operator onto \mathcal{A} by $P_{\mathcal{A}}$. Then $P_{\mathcal{A}}(X) \succeq 0$.

This has the following implication for SDP.

Theorem

If the primal SDP has a solution, it has a solution in A_{SDP} .

イロト イヨト イヨト イヨ

Theorem (Von Neumann)

Let $X \succeq 0$ and \mathcal{A} a matrix *-algebra, and denote the orthogonal projection operator onto \mathcal{A} by $P_{\mathcal{A}}$. Then $P_{\mathcal{A}}(X) \succeq 0$.

This has the following implication for SDP.

Theorem

If the primal SDP has a solution, it has a solution in A_{SDP} .

Proof: If X is an optimal solution, then so is $P_{\mathcal{A}_{SDP}}(X)$.

・ロト ・ 日 ト ・ 目 ト ・

Theorem (Von Neumann)

Let $X \succeq 0$ and \mathcal{A} a matrix *-algebra, and denote the orthogonal projection operator onto \mathcal{A} by $P_{\mathcal{A}}$. Then $P_{\mathcal{A}}(X) \succeq 0$.

This has the following implication for SDP.

Theorem

If the primal SDP has a solution, it has a solution in A_{SDP} .

Proof: If X is an optimal solution, then so is $P_{\mathcal{A}_{SDP}}(X)$.

Consequence

We may restrict the primal problem to:

$$\min_{X \succeq 0} \{ \operatorname{trace}(A_0 X) : \operatorname{trace}(A_k X) = b_k \quad (k = 1, \dots, m), \ X \in \mathcal{A}_{SDP} \}.$$

<ロト </p>

Canonical decomposition of a matrix *-algebra $\mathcal A$

Theorem (Wedderburn (1907))

Assume A is a matrix *-algebra over $\mathbb C$ that contains I.

ヘロト 人間 ト 人注 ト 人注

Canonical decomposition of a matrix *-algebra ${\cal A}$

Theorem (Wedderburn (1907))

Assume A is a matrix *-algebra over \mathbb{C} that contains I. Then there is a unitary Q $(Q^*Q = I)$ and some integer s such that

where each $A_i \sim \mathbb{C}^{n_i \times n_i}$ for some integers n_i ,

イロト イポト イヨト イヨ

Canonical decomposition of a matrix *-algebra ${\cal A}$

Theorem (Wedderburn (1907))

Assume A is a matrix *-algebra over \mathbb{C} that contains I. Then there is a unitary Q $(Q^*Q = I)$ and some integer s such that

where each $\mathcal{A}_i \sim \mathbb{C}^{n_i \times n_i}$ for some integers n_i , and takes the form

$$\mathcal{A}_i = \left\{ \left(\begin{array}{cccc} A & 0 & \cdots & 0 \\ 0 & A & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & A \end{array} \right) \middle| A \in \mathbb{C}^{n_i \times n_i} \right\} \quad (i = 1, \dots, s).$$

Etienne de Klerk (Tilburg University)

イロン イ理シ イヨン イヨ

Illustration: $\mathcal{A} \subset \mathbb{C}^{2438 imes 2438}$

Sparsity pattern of a generic matrix in $\mathcal{A} \subset \mathbb{C}^{2438 \times 2438}$:

Illustration: $\mathcal{A} \subset \mathbb{C}^{2438 \times 2438}$ (ctd.)

Simple components of \mathcal{A} after unitary transformation:

Illustration: $\mathcal{A} \subset \mathbb{C}^{2438 \times 2438}$ (ctd.)

Irreducible components of A after second unitary transformation:

Example

The circulant matrices:

$$\begin{bmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \cdots & & \\ & c_{n-1} & c_0 & c_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ & & & & c_1 \\ c_1 & & \cdots & c_{n-1} & c_0 \end{bmatrix}$$

are diagonalized by the unitary (discrete Fourier transform) matrix:

$$Q_{ij} := rac{1}{\sqrt{n}} e^{-2\pi\sqrt{-1}ij/n}$$
 $(i, j = 0, \dots, n-1).$

・ロト ・聞 ト ・ ヨト ・ ヨ

Remarks

If a basis of A is known, the unitary matrix Q may be computed using only linear algebra.

・ロト ・聞 ト ・ ヨト ・ ヨ

Remarks

If a basis of A is known, the unitary matrix Q may be computed using only linear algebra.

Randomized algorithms:

K. Murota, Y. Kanno, M. Kojima and S. Kojima, A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, *Japan Journal of Industrial and Applied Mathematics*, Vol. 27(1), 125–160, 2010.

T. Maehara and K. Murota, A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components Vol. 27(2), 263–293, 2010.

E. de Klerk, C. Dobre, and D.V. Pasechnik, Numerical block diagonalization of matrix *-algebras with application to semidefinite programming, *Mathematical Programming B*, 129(1), 91–111, 2011.

イロト イ団ト イヨト イヨト

If a basis of A is known, the unitary matrix Q may be computed using only linear algebra.

Randomized algorithms:

K. Murota, Y. Kanno, M. Kojima and S. Kojima, A Numerical Algorithm for Block-Diagonal Decomposition of Matrix *-Algebras, *Japan Journal of Industrial and Applied Mathematics*, Vol. 27(1), 125–160, 2010.

T. Maehara and K. Murota, A numerical algorithm for block-diagonal decomposition of matrix *-algebras with general irreducible components Vol. 27(2), 263–293, 2010.

E. de Klerk, C. Dobre, and D.V. Pasechnik, Numerical block diagonalization of matrix *-algebras with application to semidefinite programming, *Mathematical Programming B*, 129(1), 91–111, 2011.

We give a simple prototype algorithm to illustrate the basic procedure ...

イロト イヨト イヨト イヨト

Algorithm

Input: A basis B_1, \ldots, B_d of a matrix *-algebra \mathcal{A} .

メロト メロト メヨト メ

Algorithm

Input: A basis B_1, \ldots, B_d of a matrix *-algebra \mathcal{A} .

Q Compute a (random) $A \in \mathcal{A}$ such that

 $AB_i = B_i A \quad \forall i.$

メロト メロト メヨト メ

Algorithm

Input: A basis B_1, \ldots, B_d of a matrix *-algebra \mathcal{A} .

Q Compute a (random) $A \in \mathcal{A}$ such that

 $AB_i = B_i A \quad \forall i.$

2 Do the spectral decomposition: $A = Q\Lambda Q^*$ where Q is unitary. **Output:** Block diagonal matrices Q^*B_iQ (i = 1, ..., d).

Algorithm

Input: A basis B_1, \ldots, B_d of a matrix *-algebra \mathcal{A} .

Q Compute a (random) $A \in \mathcal{A}$ such that

 $AB_i = B_i A \quad \forall i.$

2 Do the spectral decomposition: $A = Q\Lambda Q^*$ where Q is unitary. **Output:** Block diagonal matrices Q^*B_iQ (i = 1, ..., d).

The block sizes equal the multiplicities of the eigenvalues of A.

Assume we have a basis B_1, \ldots, B_d of \mathcal{A}_{SDP} .

$$\min_{X \succeq 0} \{ \operatorname{trace}(\mathcal{A}_0 X) : \operatorname{trace}(\mathcal{A}_k X) = b_k \quad (k = 1, \dots, m), X \in \mathcal{A}_{SDP} \}$$

・ロト ・回ト ・ヨト ・ヨ

S

Assume we have a basis B_1, \ldots, B_d of \mathcal{A}_{SDP} .

$$\min_{X \succeq 0} \{ \operatorname{trace}(A_0 X) : \operatorname{trace}(A_k X) = b_k \quad (k = 1, \dots, m), X \in \mathcal{A}_{SDP} \}$$

Setting $X = \sum_{i=1}^d x_i B_i$, this becomes:
$$\min_{x \in \mathbb{R}^d} \left\{ \sum_{i=1}^d x_i \operatorname{trace}(A_0 B_i) : \sum_{i=1}^d x_i \operatorname{trace}(A_k B_i) = b_k \ (k = 1, \dots, m), \ \sum_{i=1}^d x_i B_i \succeq 0 \right\}.$$

・ロト ・ 日 ・ ・ ヨ ト ・

Se

 $m_{x \in \mathbb{I}}$

Assume we have a basis B_1, \ldots, B_d of \mathcal{A}_{SDP} .

$$\min_{X \succeq 0} \{ \operatorname{trace}(A_0 X) : \operatorname{trace}(A_k X) = b_k \quad (k = 1, \dots, m), X \in \mathcal{A}_{SDP} \}$$

tting $X = \sum_{i=1}^d x_i B_i$, this becomes:
$$\lim_{\mathbb{R}^d} \left\{ \sum_{i=1}^d x_i \operatorname{trace}(A_0 B_i) : \sum_{i=1}^d x_i \operatorname{trace}(A_k B_i) = b_k \ (k = 1, \dots, m), \ \sum_{i=1}^d x_i B_i \succeq 0 \right\}.$$

• Replace the LMI by $\sum_{i=1}^{d} x_i Q^* B_i Q \succeq 0$ to get block-diagonal structure.

Image: A match a ma

Assume we have a basis B_1, \ldots, B_d of \mathcal{A}_{SDP} .

 $\min_{X \succeq 0} \{ \operatorname{trace}(A_0 X) : \operatorname{trace}(A_k X) = b_k \quad (k = 1, \dots, m), X \in \mathcal{A}_{SDP} \}$

Setting $X = \sum_{i=1}^{d} x_i B_i$, this becomes:

$$\min_{x \in \mathbb{R}^d} \left\{ \sum_{i=1}^d x_i \operatorname{trace}(A_0 B_i) : \sum_{i=1}^d x_i \operatorname{trace}(A_k B_i) = b_k \ (k = 1, \dots, m), \ \sum_{i=1}^d x_i B_i \succeq 0 \right\}.$$

• Replace the LMI by $\sum_{i=1}^{d} x_i Q^* B_i Q \succeq 0$ to get block-diagonal structure.

• Delete any identical copies of blocks in the block structure.

* ロ > * 個 > * 注 > * 注 >

A basis B_1, \ldots, B_d of a matrix *-algebra is called a coherent configuration if:

• The B_i's are 0-1 matrices;

Image: A match a ma

A basis B_1, \ldots, B_d of a matrix *-algebra is called a coherent configuration if:

- The B_i's are 0-1 matrices;
- For each *i*, $B_i^T = B_{i^*}$ for some $i^* \in \{1, \ldots, d\}$;

Image: A match a ma

A basis B_1, \ldots, B_d of a matrix *-algebra is called a coherent configuration if:

- The B_i's are 0-1 matrices;
- For each i, $B_i^T = B_{i^*}$ for some $i^* \in \{1, \ldots, d\}$;
- $\sum_{i=1}^{d} B_i = J$ (the all-ones matrix);

A basis B_1, \ldots, B_d of a matrix *-algebra is called a coherent configuration if:

- The B_i's are 0-1 matrices;
- For each i, $B_i^T = B_{i^*}$ for some $i^* \in \{1, \ldots, d\}$;
- $\sum_{i=1}^{d} B_i = J$ (the all-ones matrix);
- $I \in \operatorname{span}\{B_1, \ldots, B_d\}.$

A basis B_1, \ldots, B_d of a matrix *-algebra is called a coherent configuration if:

- The B_i's are 0-1 matrices;
- For each *i*, $B_i^T = B_{i^*}$ for some $i^* \in \{1, \ldots, d\}$;
- $\sum_{i=1}^{d} B_i = J$ (the all-ones matrix);
- $I \in \operatorname{span}\{B_1, \ldots, B_d\}.$

If the B_i 's also commute, and $B_1 = I$, then we speak of an association scheme.

A basis B_1, \ldots, B_d of a matrix *-algebra is called a coherent configuration if:

- The B_i's are 0-1 matrices;
- For each *i*, $B_i^T = B_{i^*}$ for some $i^* \in \{1, \ldots, d\}$;
- $\sum_{i=1}^{d} B_i = J$ (the all-ones matrix);
- $I \in \operatorname{span}\{B_1, \ldots, B_d\}.$

If the B_i 's also commute, and $B_1 = I$, then we speak of an association scheme.

Consequence

If \mathcal{A}_{SDP} is spanned by a coherent configuration and $X = \sum_{i=1}^{d} x_i B_i$, then

$$X \succeq 0 \text{ and } X \ge 0 \iff \sum_{i=1}^d x_i B_i \succeq 0 \text{ and } x \ge 0.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Example

The circulant matrices have the basis

1 0	0 1	0 0	•••		0		0 0	1 0	0 1			0	
0	0	1	0	·.	÷			0	0	1	·.	÷	
÷	·	·	·	·.		,	1 :	·.	·	·.	·.		,
0				0	1		1				0	1 0	

and form an association scheme.

・ロト ・回ト ・ヨト ・ヨ

How does one find a coherent algebra A_{SDP} that contains $\{A_0, \ldots, A_m\}$?

・ロト ・ 日 ・ ・ ヨ ト ・

How does one find a coherent algebra A_{SDP} that contains $\{A_0, \ldots, A_m\}$?

An $O(n^3 \log n)$ algorithm is given in:

Babel, L.; Baumann, S.; Ludecke, M.; Tinhofer, G.: STABCOL: Graph Isomorphism Testing Based on the Weisfeiler-Leman Algorithm. Technische Universität München, 1997. Available online.

< □ > < 同 > < 回 > < Ξ > < Ξ

How does one find a coherent algebra A_{SDP} that contains $\{A_0, \ldots, A_m\}$?

An $O(n^3 \log n)$ algorithm is given in:

Babel, L.; Baumann, S.; Ludecke, M.; Tinhofer, G.: STABCOL: Graph Isomorphism Testing Based on the Weisfeiler-Leman Algorithm. Technische Universität München, 1997. Available online.

A more recent implementation (C code) is described in:

L. Babel, I.V. Chuvaeva, M. Klin, D.V. Pasechnik. In *Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms. II.* Program Implementation of the Weisfeiler-Leman Algorithm. arXiv:1002.1921

イロト イヨト イヨト イヨト

How does one find a coherent algebra A_{SDP} that contains $\{A_0, \ldots, A_m\}$?

An $O(n^3 \log n)$ algorithm is given in:

Babel, L.; Baumann, S.; Ludecke, M.; Tinhofer, G.: STABCOL: Graph Isomorphism Testing Based on the Weisfeiler-Leman Algorithm. Technische Universität München, 1997. Available online.

A more recent implementation (C code) is described in:

L. Babel, I.V. Chuvaeva, M. Klin, D.V. Pasechnik. In *Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms. II.* Program Implementation of the Weisfeiler-Leman Algorithm. arXiv:1002.1921

We give an illustration of how the method works ...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Example: Weisfeiler-Leman Algorithm

What is the smallest coherent algebra that contains this matrix?

$$\begin{pmatrix} 0 & 3 & 2 & 2 & 4 & 4 \\ 3 & 0 & 4 & 4 & 2 & 2 \\ 2 & 4 & 1 & 4 & 4 & 4 \\ 2 & 4 & 4 & 1 & 4 & 4 \\ 4 & 2 & 4 & 4 & 1 & 4 \\ 4 & 2 & 4 & 4 & 4 & 1 \end{pmatrix}$$

イロト イヨト イヨト イ

Example: Weisfeiler-Leman Algorithm

What is the smallest coherent algebra that contains this matrix?

(0	3	2	2	4	4)
3	0	4	4	2	2
2	4	1	4	4	4
2	4	4	1	4	4
4	2	4	4	1	4
4	2	4	4	4	1)

Replace equal entries by different, non-commuting variables:

$$\begin{pmatrix} 0 & 3 & 2 & 2 & 4 & 4 \\ 3 & 0 & 4 & 4 & 2 & 2 \\ 2 & 4 & 1 & 4 & 4 & 4 \\ 2 & 4 & 4 & 1 & 4 & 4 \\ 4 & 2 & 4 & 4 & 1 & 4 \\ 4 & 2 & 4 & 4 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} t_0 & t_3 & t_2 & t_2 & t_4 & t_4 \\ t_3 & t_0 & t_4 & t_4 & t_2 & t_2 \\ t_2 & t_4 & t_1 & t_4 & t_4 & t_4 \\ t_2 & t_4 & t_4 & t_1 & t_4 & t_4 \\ t_4 & t_2 & t_4 & t_4 & t_1 & t_4 \\ t_4 & t_2 & t_4 & t_4 & t_1 & t_4 \end{pmatrix}$$

Image: A match a ma

Example: Weisfeiler-Leman Algorithm (ctd.)

Now square the symbolic matrix to get:

$$\begin{pmatrix} t_0 & t_3 & t_2 & t_2 & t_4 & t_4 \\ t_3 & t_0 & t_4 & t_4 & t_2 & t_2 \\ t_2 & t_4 & t_1 & t_4 & t_4 & t_4 \\ t_2 & t_4 & t_1 & t_4 & t_1 & t_4 \\ t_4 & t_2 & t_4 & t_4 & t_1 & t_4 \\ t_4 & t_2 & t_4 & t_4 & t_4 & t_1 \end{pmatrix}^2 = \begin{pmatrix} x_0 & x_2 & x_3 & x_3 & x_4 & x_4 \\ x_2 & x_0 & x_4 & x_4 & x_3 & x_3 \\ x_5 & x_6 & x_1 & x_7 & x_8 & x_8 \\ x_5 & x_6 & x_7 & x_1 & x_8 & x_8 \\ x_6 & x_5 & x_8 & x_8 & x_1 & x_7 \\ x_6 & x_5 & x_8 & x_8 & x_7 & x_1 \end{pmatrix},$$

where

$$\begin{aligned} x_0 &= t_0^2 + 2t_2^2 + t_3^2 + 2t_4^2 \\ x_1 &= t_1^2 + t_2^2 + 4t_3^2 \\ x_2 &= t_0t_3 + 2t_2t_4 + t_3t_0 + 2t_4t_2, \text{ etc.} \end{aligned}$$

•

Example: Weisfeiler-Leman Algorithm (ctd.)

Now square the symbolic matrix to get:

$$\begin{pmatrix} t_0 & t_3 & t_2 & t_2 & t_4 & t_4 \\ t_3 & t_0 & t_4 & t_4 & t_2 & t_2 \\ t_2 & t_4 & t_1 & t_4 & t_4 & t_4 \\ t_2 & t_4 & t_1 & t_4 & t_1 & t_4 \\ t_4 & t_2 & t_4 & t_4 & t_1 & t_4 \\ t_4 & t_2 & t_4 & t_4 & t_4 & t_1 \end{pmatrix}^2 = \begin{pmatrix} x_0 & x_2 & x_3 & x_3 & x_4 & x_4 \\ x_2 & x_0 & x_4 & x_4 & x_3 & x_3 \\ x_5 & x_6 & x_1 & x_7 & x_8 & x_8 \\ x_5 & x_6 & x_7 & x_1 & x_8 & x_8 \\ x_6 & x_5 & x_8 & x_8 & x_1 & x_7 \\ x_6 & x_5 & x_8 & x_8 & x_7 & x_1 \end{pmatrix},$$

where

$$\begin{aligned} x_0 &= t_0^2 + 2t_2^2 + t_3^2 + 2t_4^2 \\ x_1 &= t_1^2 + t_2^2 + 4t_3^2 \\ x_2 &= t_0t_3 + 2t_2t_4 + t_3t_0 + 2t_4t_2, \text{ etc.} \end{aligned}$$

Repeat this process and add new symbols until convergence.

・ロト ・日下・ ・ ヨト・

• Symmetry reduction in SDP is the application of representation theory to reduce the size of specially structured SDP instances.

メロト メロト メヨト メ

- Symmetry reduction in SDP is the application of representation theory to reduce the size of specially structured SDP instances.
- The most notable applications are in computer assisted proofs (bounds on crossing numbers, kissing numbers, error correcting codes, ...)

- Symmetry reduction in SDP is the application of representation theory to reduce the size of specially structured SDP instances.
- The most notable applications are in computer assisted proofs (bounds on crossing numbers, kissing numbers, error correcting codes, ...)
- ... but also pre-processing of some SDP's arising in optimal design (truss design, QAP, ...)

- Symmetry reduction in SDP is the application of representation theory to reduce the size of specially structured SDP instances.
- The most notable applications are in computer assisted proofs (bounds on crossing numbers, kissing numbers, error correcting codes, ...)
- ... but also pre-processing of some SDP's arising in optimal design (truss design, QAP, ...)
- More applications in polynomial optimization, graph coloring, ...

The End

Survey paper:

E. de Klerk. Exploiting special structure in semidefinite programming: A survey of theory and applications. *European Journal of Operational Research*, 201(1), 1–10, 2010.

Further reading:

F. Vallentin. Symmetry in semidefinite programs. Linear Algebra and Appl., 430, 360-369, 2009.

THANK YOU!

イロト イポト イヨト イヨ